summaryrefslogtreecommitdiffstats
path: root/src/lib/dhcp/pkt6.cc
blob: 55d3b5f6bdd4feceb1343268aa4832902f2adc7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
// Copyright (C) 2011-2022 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>

#include <dhcp/dhcp6.h>
#include <dhcp/libdhcp++.h>
#include <dhcp/option.h>
#include <dhcp/option_space.h>
#include <dhcp/option_vendor_class.h>
#include <dhcp/option_vendor.h>
#include <dhcp/pkt6.h>
#include <dhcp/docsis3_option_defs.h>
#include <util/io_utilities.h>
#include <exceptions/exceptions.h>
#include <dhcp/duid.h>
#include <dhcp/iface_mgr.h>

#include <iterator>
#include <iostream>
#include <sstream>

using namespace std;
using namespace isc::asiolink;

/// @brief Default address used in Pkt6 constructor
const IOAddress DEFAULT_ADDRESS6("::");

namespace isc {
namespace dhcp {

Pkt6::RelayInfo::RelayInfo()
    : msg_type_(0), hop_count_(0), linkaddr_(DEFAULT_ADDRESS6),
      peeraddr_(DEFAULT_ADDRESS6), relay_msg_len_(0) {
}

std::string Pkt6::RelayInfo::toText() const {
    stringstream tmp;
    tmp << "msg-type=" << static_cast<int>(msg_type_) << "(" << getName(msg_type_)
        << "), hop-count=" << static_cast<int>(hop_count_)  << "," << endl
        << "link-address=" << linkaddr_.toText()
        << ", peer-address=" << peeraddr_.toText() << ", "
        << options_.size() << " option(s)" << endl;
    for (const auto& option : options_) {
        tmp << option.second->toText() << endl;
    }
    return (tmp.str());
}

Pkt6::Pkt6(const uint8_t* buf, uint32_t buf_len, DHCPv6Proto proto /* = UDP */)
    : Pkt(buf, buf_len, DEFAULT_ADDRESS6, DEFAULT_ADDRESS6, 0, 0), proto_(proto),
      msg_type_(0) {
}

Pkt6::Pkt6(uint8_t msg_type, uint32_t transid, DHCPv6Proto proto /*= UDP*/)
    : Pkt(transid, DEFAULT_ADDRESS6, DEFAULT_ADDRESS6, 0, 0), proto_(proto),
      msg_type_(msg_type) {
}

size_t Pkt6::len() {
    if (relay_info_.empty()) {
        return (directLen());
    } else {
        // Unfortunately we need to re-calculate relay size every time, because
        // we need to make sure that once a new option is added, its extra size
        // is reflected in Pkt6::len().
        calculateRelaySizes();
        return (relay_info_[0].relay_msg_len_ + getRelayOverhead(relay_info_[0]));
    }
}

void
Pkt6::prepareGetAnyRelayOption(const RelaySearchOrder& order,
                               int& start, int& end, int& direction) const {
    switch (order) {
    case RELAY_SEARCH_FROM_CLIENT:
        // Search backwards
        start = relay_info_.size() - 1;
        end = 0;
        direction = -1;
        break;
    case RELAY_SEARCH_FROM_SERVER:
        // Search forward
        start = 0;
        end = relay_info_.size() - 1;
        direction = 1;
        break;
    case RELAY_GET_FIRST:
        // Look at the innermost relay only
        start = relay_info_.size() - 1;
        end = start;
        direction = 1;
        break;
    case RELAY_GET_LAST:
        // Look at the outermost relay only
        start = 0;
        end = 0;
        direction = 1;
    }
}


OptionPtr
Pkt6::getNonCopiedAnyRelayOption(const uint16_t option_code,
                                 const RelaySearchOrder& order) const {
    if (relay_info_.empty()) {
        // There's no relay info, this is a direct message
        return (OptionPtr());
    }

    int start = 0; // First relay to check
    int end = 0;   // Last relay to check
    int direction = 0; // How we going to iterate: forward or backward?

    prepareGetAnyRelayOption(order, start, end, direction);

    // This is a tricky loop. It must go from start to end, but it must work in
    // both directions (start > end; or start < end). We can't use regular
    // exit condition, because we don't know whether to use i <= end or i >= end.
    // That's why we check if in the next iteration we would go past the
    // list (end + direction). It is similar to STL concept of end pointing
    // to a place after the last element
    for (int i = start; i != end + direction; i += direction) {
        OptionPtr opt = getNonCopiedRelayOption(option_code, i);
        if (opt) {
            return (opt);
        }
    }

    // We iterated over specified relays and haven't found what we were
    // looking for
    return (OptionPtr());
}

OptionPtr
Pkt6::getAnyRelayOption(const uint16_t option_code,
                        const RelaySearchOrder& order) {

    if (relay_info_.empty()) {
        // There's no relay info, this is a direct message
        return (OptionPtr());
    }

    int start = 0; // First relay to check
    int end = 0;   // Last relay to check
    int direction = 0; // How we going to iterate: forward or backward?

    prepareGetAnyRelayOption(order, start, end, direction);

    // This is a tricky loop. It must go from start to end, but it must work in
    // both directions (start > end; or start < end). We can't use regular
    // exit condition, because we don't know whether to use i <= end or i >= end.
    // That's why we check if in the next iteration we would go past the
    // list (end + direction). It is similar to STL concept of end pointing
    // to a place after the last element
    for (int i = start; i != end + direction; i += direction) {
        OptionPtr opt = getRelayOption(option_code, i);
        if (opt) {
            return (opt);
        }
    }

    // We iterated over specified relays and haven't found what we were
    // looking for
    return (OptionPtr());
}

OptionPtr
Pkt6::getNonCopiedRelayOption(const uint16_t opt_type,
                              const uint8_t relay_level) const {
    if (relay_level >= relay_info_.size()) {
        isc_throw(OutOfRange, "This message was relayed "
                  << relay_info_.size() << " time(s)."
                  << " There is no info about "
                  << relay_level + 1 << " relay.");
    }

    OptionCollection::const_iterator x = relay_info_[relay_level].options_.find(opt_type);
    if (x != relay_info_[relay_level].options_.end()) {
        return (x->second);
    }

    return (OptionPtr());
}

OptionPtr
Pkt6::getRelayOption(const uint16_t opt_type, const uint8_t relay_level) {
    if (relay_level >= relay_info_.size()) {
        isc_throw(OutOfRange, "This message was relayed "
                  << relay_info_.size() << " time(s)."
                  << " There is no info about "
                  << relay_level + 1 << " relay.");
    }

    OptionCollection::iterator x = relay_info_[relay_level].options_.find(opt_type);
    if (x != relay_info_[relay_level].options_.end()) {
        if (copy_retrieved_options_) {
            OptionPtr relay_option_copy = x->second->clone();
            x->second = relay_option_copy;
        }
        return (x->second);
    }

    return (OptionPtr());
}

const isc::asiolink::IOAddress&
Pkt6::getRelay6LinkAddress(uint8_t relay_level) const {
    if (relay_level >= relay_info_.size()) {
        isc_throw(OutOfRange, "This message was relayed " << relay_info_.size() << " time(s)."
                  << " There is no info about " << relay_level + 1 << " relay.");
    }

    return (relay_info_[relay_level].linkaddr_);
}

const isc::asiolink::IOAddress&
Pkt6::getRelay6PeerAddress(uint8_t relay_level) const {
    if (relay_level >= relay_info_.size()) {
        isc_throw(OutOfRange, "This message was relayed " << relay_info_.size() << " time(s)."
                  << " There is no info about " << relay_level + 1 << " relay.");
    }

    return (relay_info_[relay_level].peeraddr_);
}

uint16_t Pkt6::getRelayOverhead(const RelayInfo& relay) const {
    uint16_t len = DHCPV6_RELAY_HDR_LEN // fixed header
        + Option::OPTION6_HDR_LEN; // header of the relay-msg option

    for (const auto& opt : relay.options_) {
        len += (opt.second)->len();
    }

    return (len);
}

uint16_t Pkt6::calculateRelaySizes() {

    uint16_t len = directLen(); // start with length of all options

    for (int relay_index = relay_info_.size(); relay_index > 0; --relay_index) {
        relay_info_[relay_index - 1].relay_msg_len_ = len;
        len += getRelayOverhead(relay_info_[relay_index - 1]);
    }

    return (len);
}

uint16_t Pkt6::directLen() const {
    uint16_t length = DHCPV6_PKT_HDR_LEN; // DHCPv6 header

    for (const auto& it : options_) {
        length += it.second->len();
    }

    return (length);
}


void
Pkt6::pack() {
    switch (proto_) {
    case UDP:
        packUDP();
        break;
    case TCP:
        packTCP();
        break;
    default:
        isc_throw(BadValue, "Invalid protocol specified (non-TCP, non-UDP)");
    }
}

void
Pkt6::packUDP() {
    try {
        // Make sure that the buffer is empty before we start writing to it.
        buffer_out_.clear();

        // is this a relayed packet?
        if (!relay_info_.empty()) {

            // calculate size needed for each relay (if there is only one relay,
            // then it will be equal to "regular" length + relay-forw header +
            // size of relay-msg option header + possibly size of interface-id
            // option (if present). If there is more than one relay, the whole
            // process is called iteratively for each relay.
            calculateRelaySizes();

            // Now for each relay, we need to...
            for (vector<RelayInfo>::iterator relay = relay_info_.begin();
                 relay != relay_info_.end(); ++relay) {

                // build relay-forw/relay-repl header (see RFC 8415, section 9)
                buffer_out_.writeUint8(relay->msg_type_);
                buffer_out_.writeUint8(relay->hop_count_);
                buffer_out_.writeData(&(relay->linkaddr_.toBytes()[0]),
                                     isc::asiolink::V6ADDRESS_LEN);
                buffer_out_.writeData(&relay->peeraddr_.toBytes()[0],
                                     isc::asiolink::V6ADDRESS_LEN);

                // store every option in this relay scope. Usually that will be
                // only interface-id, but occasionally other options may be
                // present here as well (vendor-opts for Cable modems,
                // subscriber-id, remote-id, options echoed back from Echo
                // Request Option, etc.)
                for (const auto& opt : relay->options_) {
                    (opt.second)->pack(buffer_out_);
                }

                // and include header relay-msg option. Its payload will be
                // generated in the next iteration (if there are more relays)
                // or outside the loop (if there are no more relays and the
                // payload is a direct message)
                buffer_out_.writeUint16(D6O_RELAY_MSG);
                buffer_out_.writeUint16(relay->relay_msg_len_);
            }

        }

        // DHCPv6 header: message-type (1 octet) + transaction id (3 octets)
        buffer_out_.writeUint8(msg_type_);
        // store 3-octet transaction-id
        buffer_out_.writeUint8( (transid_ >> 16) & 0xff );
        buffer_out_.writeUint8( (transid_ >> 8) & 0xff );
        buffer_out_.writeUint8( (transid_) & 0xff );

        // the rest are options
        LibDHCP::packOptions6(buffer_out_, options_);
    }
    catch (const Exception& e) {
       // An exception is thrown and message will be written to Logger
       isc_throw(InvalidOperation, e.what());
    }
}

void
Pkt6::packTCP() {
    /// TODO Implement this function.
    isc_throw(NotImplemented, "DHCPv6 over TCP (bulk leasequery and failover)"
              " not implemented yet.");
}

void
Pkt6::unpack() {
    switch (proto_) {
    case UDP:
        return unpackUDP();
    case TCP:
        return unpackTCP();
    default:
        isc_throw(BadValue, "Invalid protocol specified (non-TCP, non-UDP)");
    }
}

void
Pkt6::unpackUDP() {
    if (data_.size() < 4) {
        isc_throw(BadValue, "Received truncated UDP DHCPv6 packet of size "
                  << data_.size() << ", DHCPv6 header alone has 4 bytes.");
    }
    msg_type_ = data_[0];
    switch (msg_type_) {
    case DHCPV6_SOLICIT:
    case DHCPV6_ADVERTISE:
    case DHCPV6_REQUEST:
    case DHCPV6_CONFIRM:
    case DHCPV6_RENEW:
    case DHCPV6_REBIND:
    case DHCPV6_REPLY:
    case DHCPV6_DECLINE:
    case DHCPV6_RECONFIGURE:
    case DHCPV6_INFORMATION_REQUEST:
    case DHCPV6_DHCPV4_QUERY:
    case DHCPV6_DHCPV4_RESPONSE:
    default: // assume that unknown messages are not using relay format
        {
            return (unpackMsg(data_.begin(), data_.end()));
        }
    case DHCPV6_RELAY_FORW:
    case DHCPV6_RELAY_REPL:
        return (unpackRelayMsg());
    }
}

void
Pkt6::unpackMsg(OptionBuffer::const_iterator begin,
                OptionBuffer::const_iterator end) {
    size_t size = std::distance(begin, end);
    if (size < 4) {
        // truncated message (less than 4 bytes)
        isc_throw(BadValue, "Received truncated UDP DHCPv6 packet of size "
                  << data_.size() << ", DHCPv6 header alone has 4 bytes.");
    }

    msg_type_ = *begin++;

    transid_ = ( (*begin++) << 16 ) +
        ((*begin++) << 8) + (*begin++);
    transid_ = transid_ & 0xffffff;

    // See below about invoking Postel's law, as we aren't using
    // size we don't need to update it.  If we do so in the future
    // perhaps for stats gathering we can uncomment this.
    //    size -= sizeof(uint32_t); // We just parsed 4 bytes header

    OptionBuffer opt_buffer(begin, end);

    // If custom option parsing function has been set, use this function
    // to parse options. Otherwise, use standard function from libdhcp.
    size_t offset = LibDHCP::unpackOptions6(opt_buffer, DHCP6_OPTION_SPACE, options_);

    // If offset is not equal to the size, then something is wrong here. We
    // either parsed past input buffer (bug in our code) or we haven't parsed
    // everything (received trailing garbage or truncated option).
    //
    // Invoking Jon Postel's law here: be conservative in what you send, and be
    // liberal in what you accept. There's no easy way to log something from
    // libdhcp++ library, so we just choose to be silent about remaining
    // bytes. We also need to quell compiler warning about unused offset
    // variable.
    //
    // if (offset != size) {
    //        isc_throw(BadValue, "Received DHCPv6 buffer of size " << size
    //                  << ", were able to parse " << offset << " bytes.");
    // }
    (void)offset;
}

void
Pkt6::unpackRelayMsg() {

    // we use offset + bufsize, because we want to avoid creating unnecessary
    // copies. There may be up to 32 relays. While using InputBuffer would
    // be probably a bit cleaner, copying data up to 32 times is unacceptable
    // price here. Hence a single buffer with offsets and lengths.
    size_t bufsize = data_.size();
    size_t offset = 0;

    while (bufsize >= DHCPV6_RELAY_HDR_LEN) {

        RelayInfo relay;

        size_t relay_msg_offset = 0;
        size_t relay_msg_len = 0;

        // parse fixed header first (first 34 bytes)
        relay.msg_type_ = data_[offset++];
        relay.hop_count_ = data_[offset++];
        relay.linkaddr_ = IOAddress::fromBytes(AF_INET6, &data_[offset]);
        offset += isc::asiolink::V6ADDRESS_LEN;
        relay.peeraddr_ = IOAddress::fromBytes(AF_INET6, &data_[offset]);
        offset += isc::asiolink::V6ADDRESS_LEN;
        bufsize -= DHCPV6_RELAY_HDR_LEN; // 34 bytes (1+1+16+16)

        // parse the rest as options
        OptionBuffer opt_buffer(&data_[offset], &data_[offset] + bufsize);

        // If custom option parsing function has been set, use this function
        // to parse options. Otherwise, use standard function from libdhcp.
        LibDHCP::unpackOptions6(opt_buffer, DHCP6_OPTION_SPACE, relay.options_,
                                &relay_msg_offset, &relay_msg_len);

        /// @todo: check that each option appears at most once
        //relay.interface_id_ = options->getOption(D6O_INTERFACE_ID);
        //relay.subscriber_id_ = options->getOption(D6O_SUBSCRIBER_ID);
        //relay.remote_id_ = options->getOption(D6O_REMOTE_ID);

        if (relay_msg_offset == 0 || relay_msg_len == 0) {
            isc_throw(BadValue, "Mandatory relay-msg option missing");
        }

        // store relay information parsed so far
        addRelayInfo(relay);

        /// @todo: implement ERO (Echo Request Option, RFC 4994) here

        if (relay_msg_len >= bufsize) {
            // length of the relay_msg option extends beyond end of the message
            isc_throw(Unexpected, "Relay-msg option is truncated.");
        }
        uint8_t inner_type = data_[offset + relay_msg_offset];
        offset += relay_msg_offset; // offset is relative
        bufsize = relay_msg_len;    // length is absolute

        if ( (inner_type != DHCPV6_RELAY_FORW) &&
             (inner_type != DHCPV6_RELAY_REPL)) {
            // Ok, the inner message is not encapsulated, let's decode it
            // directly
            return (unpackMsg(data_.begin() + offset, data_.begin() + offset
                              + relay_msg_len));
        }

        // Oh well, there's inner relay-forw or relay-repl inside. Let's
        // unpack it as well. The next loop iteration will take care
        // of that.
    }

    if ( (offset == data_.size()) && (bufsize == 0) ) {
        // message has been parsed completely
        return;
    }

    /// @todo: log here that there are additional unparsed bytes
}

void
Pkt6::addRelayInfo(const RelayInfo& relay) {
    if (relay_info_.size() > HOP_COUNT_LIMIT) {
        isc_throw(BadValue, "Massage cannot be encapsulated more than 32 times");
    }

    /// @todo: Implement type checks here (e.g. we could receive relay-forw in relay-repl)
    relay_info_.push_back(relay);
}

void
Pkt6::unpackTCP() {
    isc_throw(Unexpected, "DHCPv6 over TCP (bulk leasequery and failover) "
              "not implemented yet.");
}

HWAddrPtr
Pkt6::getMACFromDUID() {
    HWAddrPtr mac;
    OptionPtr opt_duid = getNonCopiedOption(D6O_CLIENTID);
    if (!opt_duid) {
        return (mac);
    }

    uint8_t hlen = opt_duid->getData().size();
    if (!hlen) {
        return (mac);
    }
    vector<uint8_t> hw_addr(hlen, 0);
    std::vector<unsigned char> duid_data = opt_duid->getData();

    // Read the first two bytes. That duid type.
    uint16_t duid_type = util::readUint16(&duid_data[0], duid_data.size());

    switch (duid_type) {
    case DUID::DUID_LL:
    {
        // 2 bytes of duid type, 2 bytes of hardware type and at least
        // 1 byte of actual identification
        if (duid_data.size() >= 5) {
            uint16_t hwtype = util::readUint16(&duid_data[2],
                                               duid_data.size() - 2);
            mac.reset(new HWAddr(&duid_data[4], duid_data.size() - 4, hwtype));
        }
        break;
    }
    case DUID::DUID_LLT:
    {
        // 2 bytes of duid type, 2 bytes of hardware, 4 bytes for timestamp,
        // and at least 1 byte of actual identification
        if (duid_data.size() >= 9) {
            uint16_t hwtype = util::readUint16(&duid_data[2],
                                               duid_data.size() - 2);
            mac.reset(new HWAddr(&duid_data[8], duid_data.size() - 8, hwtype));
        }
        break;
    }
    default:
        break;
    }

    if (mac) {
        mac->source_ = HWAddr::HWADDR_SOURCE_DUID;
    }

    return (mac);
}

std::string
Pkt6::makeLabel(const DuidPtr duid, const uint32_t transid,
                const HWAddrPtr& hwaddr) {
    // Create label with DUID and HW address.
    std::stringstream label;
    label << makeLabel(duid, hwaddr);

    // Append transaction id.
    label << ", tid=0x" << std::hex << transid << std::dec;

    return (label.str());
}

std::string
Pkt6::makeLabel(const DuidPtr duid, const HWAddrPtr& hwaddr) {
    std::stringstream label;
    // DUID should be present at all times, so explicitly inform when
    // it is no present (no info).
    label << "duid=[" << (duid ? duid->toText() : "no info")
          << "]";

    // HW address is typically not carried in the DHCPv6 messages
    // and can be extracted using various, but not fully reliable,
    // techniques. If it is not present, don't print anything.
    if (hwaddr) {
        label << ", [" << hwaddr->toText() << "]";
    }

    return (label.str());
}

std::string
Pkt6::getLabel() const {
    /// @todo Do not print HW address as it is unclear how it should
    /// be retrieved if there is no access to user configuration which
    /// specifies the order of various techniques to be used to retrieve
    /// it.
    return (makeLabel(getClientId(), getTransid(), HWAddrPtr()));}

std::string
Pkt6::toText() const {
    stringstream tmp;

    // First print the basics
    tmp << "localAddr=[" << local_addr_ << "]:" << local_port_
        << " remoteAddr=[" << remote_addr_ << "]:" << remote_port_ << endl;
    tmp << "msgtype=" << static_cast<int>(msg_type_) << "(" << getName(msg_type_)
        << "), transid=0x" <<
        hex << transid_ << dec << endl;

    // Then print the options
    for (const auto& opt : options_) {
        tmp << opt.second->toText() << std::endl;
    }

    // Finally, print the relay information (if present)
    if (!relay_info_.empty()) {
        tmp << relay_info_.size() << " relay(s):" << endl;
        int cnt = 0;
        for (const auto& relay : relay_info_) {
            tmp << "relay[" << cnt++ << "]: " << relay.toText();
        }
    } else {
        tmp << "No relays traversed." << endl;
    }
    return tmp.str();
}

DuidPtr
Pkt6::getClientId() const {
    OptionPtr opt_duid = getNonCopiedOption(D6O_CLIENTID);
    try {
        // This will throw if the DUID length is larger than 128 bytes
        // or is too short.
        return (opt_duid ? DuidPtr(new DUID(opt_duid->getData())) : DuidPtr());
    } catch (...) {
        // Do nothing. This method is used only by getLabel(), which is
        // used for logging purposes. We should not throw, but rather
        // report no DUID. We should not log anything, as we're in the
        // process of logging something for this packet. So the only
        // choice left is to return an empty pointer.
    }
    return (DuidPtr());
}

isc::dhcp::OptionCollection
Pkt6::getNonCopiedOptions(const uint16_t opt_type) const {
    std::pair<OptionCollection::const_iterator,
              OptionCollection::const_iterator> range = options_.equal_range(opt_type);
    return (OptionCollection(range.first, range.second));
}

isc::dhcp::OptionCollection
Pkt6::getOptions(const uint16_t opt_type) {
    OptionCollection options_copy;

    std::pair<OptionCollection::iterator,
              OptionCollection::iterator> range = options_.equal_range(opt_type);
    // If options should be copied on retrieval, we should now iterate over
    // matching options, copy them and replace the original ones with new
    // instances.
    if (copy_retrieved_options_) {
        for (OptionCollection::iterator opt_it = range.first;
             opt_it != range.second; ++opt_it) {
            OptionPtr option_copy = opt_it->second->clone();
            opt_it->second = option_copy;
        }
    }
    // Finally, return updated options. This can also be empty in some cases.
    return (OptionCollection(range.first, range.second));
}

const char*
Pkt6::getName(const uint8_t type) {
    static const char* ADVERTISE = "ADVERTISE";
    static const char* CONFIRM = "CONFIRM";
    static const char* DECLINE = "DECLINE";
    static const char* INFORMATION_REQUEST = "INFORMATION_REQUEST";
    static const char* LEASEQUERY = "LEASEQUERY";
    static const char* LEASEQUERY_REPLY = "LEASEQUERY_REPLY";
    static const char* REBIND = "REBIND";
    static const char* RECONFIGURE = "RECONFIGURE";
    static const char* RELAY_FORW = "RELAY_FORWARD";
    static const char* RELAY_REPL = "RELAY_REPLY";
    static const char* RELEASE = "RELEASE";
    static const char* RENEW = "RENEW";
    static const char* REPLY = "REPLY";
    static const char* REQUEST = "REQUEST";
    static const char* SOLICIT = "SOLICIT";
    static const char* DHCPV4_QUERY = "DHCPV4_QUERY";
    static const char* DHCPV4_RESPONSE = "DHCPV4_RESPONSE";
    static const char* UNKNOWN = "UNKNOWN";

    switch (type) {
    case DHCPV6_ADVERTISE:
        return (ADVERTISE);

    case DHCPV6_CONFIRM:
        return (CONFIRM);

    case DHCPV6_DECLINE:
        return (DECLINE);

    case DHCPV6_INFORMATION_REQUEST:
        return (INFORMATION_REQUEST);

    case DHCPV6_LEASEQUERY:
        return (LEASEQUERY);

    case DHCPV6_LEASEQUERY_REPLY:
        return (LEASEQUERY_REPLY);

    case DHCPV6_REBIND:
        return (REBIND);

    case DHCPV6_RECONFIGURE:
        return (RECONFIGURE);

    case DHCPV6_RELAY_FORW:
        return (RELAY_FORW);

    case DHCPV6_RELAY_REPL:
        return (RELAY_REPL);

    case DHCPV6_RELEASE:
        return (RELEASE);

    case DHCPV6_RENEW:
        return (RENEW);

    case DHCPV6_REPLY:
        return (REPLY);

    case DHCPV6_REQUEST:
        return (REQUEST);

    case DHCPV6_SOLICIT:
        return (SOLICIT);

    case DHCPV6_DHCPV4_QUERY:
        return (DHCPV4_QUERY);

    case DHCPV6_DHCPV4_RESPONSE:
        return (DHCPV4_RESPONSE);

    default:
        ;
    }
    return (UNKNOWN);
}

const char* Pkt6::getName() const {
    return (getName(getType()));
}

void Pkt6::copyRelayInfo(const Pkt6Ptr& question) {

    // We use index rather than iterator, because we need that as a parameter
    // passed to getNonCopiedRelayOption()
    for (size_t i = 0; i < question->relay_info_.size(); ++i) {
        RelayInfo info;
        info.msg_type_ = DHCPV6_RELAY_REPL;
        info.hop_count_ = question->relay_info_[i].hop_count_;
        info.linkaddr_ = question->relay_info_[i].linkaddr_;
        info.peeraddr_ = question->relay_info_[i].peeraddr_;

        // Is there an interface-id option in this nesting level?
        // If there is, we need to echo it back
        OptionPtr opt = question->getNonCopiedRelayOption(D6O_INTERFACE_ID, i);
        // taken from question->RelayInfo_[i].options_
        if (opt) {
            info.options_.insert(make_pair(opt->getType(), opt));
        }

        // Same for relay-source-port option
        opt = question->getNonCopiedRelayOption(D6O_RELAY_SOURCE_PORT, i);
        if (opt) {
            info.options_.insert(make_pair(opt->getType(), opt));
        }

        /// @todo: Implement support for ERO (Echo Request Option, RFC4994)

        // Add this relay-forw info (client's message) to our relay-repl
        // message (server's response)
        relay_info_.push_back(info);
    }
}

HWAddrPtr
Pkt6::getMACFromSrcLinkLocalAddr() {
    if (relay_info_.empty()) {
        // This is a direct message, use source address
        return (getMACFromIPv6(remote_addr_));
    }

    // This is a relayed message, get the peer-addr from the first relay-forw
    return (getMACFromIPv6(relay_info_[relay_info_.size() - 1].peeraddr_));
}

HWAddrPtr
Pkt6::getMACFromIPv6RelayOpt() {
    HWAddrPtr mac;

    // This is not a direct message
    if (!relay_info_.empty()) {
        // RFC6969 Section 6: Look for the client_linklayer_addr option on the
        // relay agent closest to the client
        OptionPtr opt = getAnyRelayOption(D6O_CLIENT_LINKLAYER_ADDR,
                                          RELAY_GET_FIRST);
        if (opt) {
            const OptionBuffer data = opt->getData();
            // This client link address option is supposed to be
            // 2 bytes of link-layer type followed by link-layer address.
            if (data.size() >= 3) {
                // +2, -2 means to skip the initial 2 bytes which are
                // hwaddress type
                mac.reset(new HWAddr(&data[0] + 2, data.size() - 2,
                          opt->getUint16()));

                mac->source_ = HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION;
            }
        }
    }

    return mac;
}

HWAddrPtr
Pkt6::getMACFromDocsisModem() {
    HWAddrPtr mac;
    OptionVendorPtr vendor = boost::dynamic_pointer_cast<
        OptionVendor>(getNonCopiedOption(D6O_VENDOR_OPTS));

    // Check if this is indeed DOCSIS3 environment
    if (vendor && vendor->getVendorId() == VENDOR_ID_CABLE_LABS) {
        // If it is, try to get device-id option
        OptionPtr device_id = vendor->getOption(DOCSIS3_V6_DEVICE_ID);
        if (device_id) {
            // If the option contains any data, use it as MAC address
            if (!device_id->getData().empty()) {
                mac.reset(new HWAddr(device_id->getData(), HTYPE_DOCSIS));
                mac->source_ = HWAddr::HWADDR_SOURCE_DOCSIS_MODEM;
            }
        }
    }

    return mac;
}

HWAddrPtr
Pkt6::getMACFromDocsisCMTS() {
    HWAddrPtr mac;

    // If the message passed through a CMTS, there'll
    // CMTS-specific options in it.
    if (!relay_info_.empty()) {
        OptionVendorPtr vendor = boost::dynamic_pointer_cast<
            OptionVendor>(getAnyRelayOption(D6O_VENDOR_OPTS,
                                            RELAY_SEARCH_FROM_CLIENT));

        // Check if this is indeed DOCSIS3 environment
        if (vendor && vendor->getVendorId() == VENDOR_ID_CABLE_LABS) {
            // Try to get cable modem mac
            OptionPtr cm_mac = vendor->getOption(DOCSIS3_V6_CMTS_CM_MAC);

            // If the option contains any data, use it as MAC address
            if (cm_mac && !cm_mac->getData().empty()) {
                mac.reset(new HWAddr(cm_mac->getData(), HTYPE_DOCSIS));
                mac->source_ = HWAddr::HWADDR_SOURCE_DOCSIS_CMTS;
            }
        }
    }

    return (mac);
}

HWAddrPtr
Pkt6::getMACFromRemoteIdRelayOption() {
    HWAddrPtr mac;

    // If this is relayed message
    if (!relay_info_.empty()) {
        // Get remote-id option from a relay agent closest to the client
        OptionPtr opt = getAnyRelayOption(D6O_REMOTE_ID, RELAY_GET_FIRST);
        if (opt) {
            const OptionBuffer data = opt->getData();
            // This remote-id option is supposed to be 4 bytes of
            // of enterprise-number followed by remote-id.
            if (data.size() >= 5) {
                // Let's get the interface this packet was received on.
                // We need it to get the hardware type.
                IfacePtr iface = IfaceMgr::instance().getIface(iface_);
                uint16_t hwtype = 0; // not specified

                // If we get the interface HW type, great! If not,
                // let's not panic.
                if (iface) {
                    hwtype = iface->getHWType();
                }

                size_t len = data.size() - 4;

                if (len > HWAddr::MAX_HWADDR_LEN) {
                    len = HWAddr::MAX_HWADDR_LEN;
                }

                // Skip the initial 4 bytes which are enterprise-number.
                mac.reset(new HWAddr(&data[0] + 4, len, hwtype));
                mac->source_ = HWAddr::HWADDR_SOURCE_REMOTE_ID;
            }
        }
    }

    return (mac);
}

} // end of namespace isc::dhcp
} // end of namespace isc