summaryrefslogtreecommitdiffstats
path: root/src/lib/dhcpsrv/tests/ip_range_permutation_unittest.cc
blob: 25a45f4397501889044d4c3044abf64359196889 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Copyright (C) 2020 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>
#include <dhcpsrv/ip_range_permutation.h>

#include <gtest/gtest.h>

#include <set>

using namespace isc;
using namespace isc::asiolink;
using namespace isc::dhcp;

namespace {

// This test verifies that the object can be successfully constructed for
// both IPv4 and IPv6 address range.
TEST(IPRangePermutationTest, constructor) {
    ASSERT_NO_THROW({
        AddressRange range(IOAddress("192.0.2.10"), IOAddress("192.0.2.100"));
        IPRangePermutation perm(range);
    });
    ASSERT_NO_THROW({
        AddressRange range(IOAddress("3000::"), IOAddress("3000::10"));
        IPRangePermutation perm(range);
    });
}

// This test verifies that a permutation of IPv4 address range can
// be generated.
TEST(IPRangePermutationTest, ipv4) {
    // Create address range with 91 addresses.
    AddressRange range(IOAddress("192.0.2.10"), IOAddress("192.0.2.100"));
    IPRangePermutation perm(range);

    // This set will record unique IP addresses generated.
    std::set<IOAddress> addrs;
    bool done = false;

    // Call the next() function 95 times. The first 91 calls should return non-zero
    // IP addresses.
    for (auto i = 0; i < 95; ++i) {
        auto next = perm.next(done);
        if (!next.isV4Zero()) {
            // Make sure the returned address is within the range.
            EXPECT_LE(range.start_, next);
            EXPECT_LE(next, range.end_);
        }
        // If we went over all addresses in the range, the flags indicating that
        // the permutation is exhausted should be set to true.
        if (i >= 90) {
            EXPECT_TRUE(done);
            EXPECT_TRUE(perm.exhausted());
        } else {
            // We're not done yet, so these flag should still be false.
            EXPECT_FALSE(done);
            EXPECT_FALSE(perm.exhausted());
        }
        // Insert the address returned to the set.
        addrs.insert(next);
    }

    // We should have recorded 92 unique addresses, including the zero address.
    EXPECT_EQ(92, addrs.size());
    EXPECT_TRUE(addrs.begin()->isV4Zero());
}

// This test verifies that a permutation of IPv6 address range can
// be generated.
TEST(IPRangePermutationTest, ipv6) {
    AddressRange range(IOAddress("2001:db8:1::1:fea0"),
                       IOAddress("2001:db8:1::2:abcd"));
    IPRangePermutation perm(range);

    std::set<IOAddress> addrs;
    bool done = false;
    for (auto i = 0; i < 44335; ++i) {
        auto next = perm.next(done);
        if (!next.isV6Zero()) {
            // Make sure that the address is within the range.
            EXPECT_LE(range.start_, next);
            EXPECT_LE(next, range.end_);
        }
        // If we went over all addresses in the range, the flags indicating that
        // the permutation is exhausted should be set to true.
        if (i >= 44333) {
            EXPECT_TRUE(done);
            EXPECT_TRUE(perm.exhausted());
        } else {
            // We're not done yet, so these flag should still be false.
            EXPECT_FALSE(done);
            EXPECT_FALSE(perm.exhausted());
        }
        // Insert the address returned to the set.
        addrs.insert(next);
    }
    // We should have recorded 44335 unique addresses, including the zero address.
    EXPECT_EQ(44335, addrs.size());
    EXPECT_TRUE(addrs.begin()->isV6Zero());
}

// This test verifies that a permutation of delegated prefixes can be
// generated.
TEST(IPRangePermutationTest, pd) {
    PrefixRange range(IOAddress("3000::"), 112, 120);
    IPRangePermutation perm(range);

    std::set<IOAddress> addrs;
    bool done = false;
    for (auto i = 0; i < 257; ++i) {
        auto next = perm.next(done);
        if (!next.isV6Zero()) {
            // Make sure the prefix is within the range.
            EXPECT_LE(range.start_, next);
            EXPECT_LE(next, range.end_);
        }
        // If we went over all delegated prefixes in the range, the flags indicating
        // that the permutation is exhausted should be set to true.
        if (i >= 255) {
            EXPECT_TRUE(done);
            EXPECT_TRUE(perm.exhausted());
        } else {
            // We're not done yet, so these flag should still be false.
            EXPECT_FALSE(done);
            EXPECT_FALSE(perm.exhausted());
        }
        // Insert the prefix returned to the set.
        addrs.insert(next);
    }

    // We should have recorded 257 unique addresses, including the zero address.
    EXPECT_EQ(257, addrs.size());
    EXPECT_TRUE(addrs.begin()->isV6Zero());
}

} // end of anonymous namespace