diff options
Diffstat (limited to 'src/tpm2/BnMath.c')
-rw-r--r-- | src/tpm2/BnMath.c | 651 |
1 files changed, 651 insertions, 0 deletions
diff --git a/src/tpm2/BnMath.c b/src/tpm2/BnMath.c new file mode 100644 index 0000000..0154fb5 --- /dev/null +++ b/src/tpm2/BnMath.c @@ -0,0 +1,651 @@ +/********************************************************************************/ +/* */ +/* Simple Operations on Big Numbers */ +/* Written by Ken Goldman */ +/* IBM Thomas J. Watson Research Center */ +/* $Id: BnMath.c 1529 2019-11-21 23:29:01Z kgoldman $ */ +/* */ +/* Licenses and Notices */ +/* */ +/* 1. Copyright Licenses: */ +/* */ +/* - Trusted Computing Group (TCG) grants to the user of the source code in */ +/* this specification (the "Source Code") a worldwide, irrevocable, */ +/* nonexclusive, royalty free, copyright license to reproduce, create */ +/* derivative works, distribute, display and perform the Source Code and */ +/* derivative works thereof, and to grant others the rights granted herein. */ +/* */ +/* - The TCG grants to the user of the other parts of the specification */ +/* (other than the Source Code) the rights to reproduce, distribute, */ +/* display, and perform the specification solely for the purpose of */ +/* developing products based on such documents. */ +/* */ +/* 2. Source Code Distribution Conditions: */ +/* */ +/* - Redistributions of Source Code must retain the above copyright licenses, */ +/* this list of conditions and the following disclaimers. */ +/* */ +/* - Redistributions in binary form must reproduce the above copyright */ +/* licenses, this list of conditions and the following disclaimers in the */ +/* documentation and/or other materials provided with the distribution. */ +/* */ +/* 3. Disclaimers: */ +/* */ +/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */ +/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */ +/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */ +/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */ +/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */ +/* information on specification licensing rights available through TCG */ +/* membership agreements. */ +/* */ +/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */ +/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */ +/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */ +/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */ +/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */ +/* */ +/* - Without limitation, TCG and its members and licensors disclaim all */ +/* liability, including liability for infringement of any proprietary */ +/* rights, relating to use of information in this specification and to the */ +/* implementation of this specification, and TCG disclaims all liability for */ +/* cost of procurement of substitute goods or services, lost profits, loss */ +/* of use, loss of data or any incidental, consequential, direct, indirect, */ +/* or special damages, whether under contract, tort, warranty or otherwise, */ +/* arising in any way out of use or reliance upon this specification or any */ +/* information herein. */ +/* */ +/* (c) Copyright IBM Corp. and others, 2016 - 2019 */ +/* */ +/********************************************************************************/ + +/* 10.2.3 BnMath.c */ + +/* 10.2.3.1 Introduction */ +/* The simulator code uses the canonical form whenever possible in order to make the code in Part 3 + more accessible. The canonical data formats are simple and not well suited for complex big number + computations. When operating on big numbers, the data format is changed for easier + manipulation. The format is native words in little-endian format. As the magnitude of the number + decreases, the length of the array containing the number decreases but the starting address + doesn't change. */ +/* The functions in this file perform simple operations on these big numbers. Only the more complex + operations are passed to the underlying support library. Although the support library would have + most of these functions, the interface code to convert the format for the values is greater than + the size of the code to implement the functions here. So, rather than incur the overhead of + conversion, they are done here. */ +/* If an implementer would prefer, the underlying library can be used simply by making code + substitutions here. */ +/* NOTE: There is an intention to continue to augment these functions so that there would be no need + to use an external big number library. */ +/* Many of these functions have no error returns and will always return TRUE. This is to allow them + to be used in guarded sequences. That is: OK = OK || BnSomething(s); where the BnSomething() + function should not be called if OK isn't true. */ + +/* 10.2.3.2 Includes */ +#include "Tpm.h" +/* A constant value of zero as a stand in for NULL bigNum values */ +const bignum_t BnConstZero = {1, 0, {0}}; +/* 10.2.3.3 Functions */ +/* 10.2.3.3.1 AddSame() */ +/* Adds two values that are the same size. This function allows result to be the same as either of + the addends. This is a nice function to put into assembly because handling the carry for + multi-precision stuff is not as easy in C (unless there is a REALLY smart compiler). It would be + nice if there were idioms in a language that a compiler could recognize what is going on and + optimize loops like this. */ +/* Return Values Meaning */ +/* 0 no carry out */ +/* 1 carry out */ +static BOOL +AddSame( + crypt_uword_t *result, + const crypt_uword_t *op1, + const crypt_uword_t *op2, + int count + ) +{ + int carry = 0; + int i; + for(i = 0; i < count; i++) + { + crypt_uword_t a = op1[i]; + crypt_uword_t sum = a + op2[i]; + result[i] = sum + carry; + // generate a carry if the sum is less than either of the inputs + // propagate a carry if there was a carry and the sum + carry is zero + // do this using bit operations rather than logical operations so that + // the time is about the same. + // propagate term | generate term + carry = ((result[i] == 0) & carry) | (sum < a); + } + return carry; +} +/* 10.2.3.3.2 CarryProp() */ +/* Propagate a carry */ +static int +CarryProp( + crypt_uword_t *result, + const crypt_uword_t *op, + int count, + int carry + ) +{ + for(; count; count--) + carry = ((*result++ = *op++ + carry) == 0) & carry; + return carry; +} +static void +CarryResolve( + bigNum result, + int stop, + int carry + ) +{ + if(carry) + { + pAssert((unsigned)stop < result->allocated); + result->d[stop++] = 1; + } + BnSetTop(result, stop); +} +/* 10.2.3.3.3 BnAdd() */ +/* This function adds two bigNum values. Always returns TRUE */ +LIB_EXPORT BOOL +BnAdd( + bigNum result, + bigConst op1, + bigConst op2 + ) +{ + crypt_uword_t stop; + int carry; + const bignum_t *n1 = op1; + const bignum_t *n2 = op2; + // + if(n2->size > n1->size) + { + n1 = op2; + n2 = op1; + } + pAssert(result->allocated >= n1->size); + stop = MIN(n1->size, n2->allocated); + carry = (int)AddSame(result->d, n1->d, n2->d, (int)stop); + if(n1->size > stop) + carry = CarryProp(&result->d[stop], &n1->d[stop], (int)(n1->size - stop), carry); + CarryResolve(result, (int)n1->size, carry); + return TRUE; +} +/* 10.2.3.3.4 BnAddWord() */ +/* Adds a word value to a bigNum. */ +LIB_EXPORT BOOL +BnAddWord( + bigNum result, + bigConst op, + crypt_uword_t word + ) +{ + int carry; + // + carry = (result->d[0] = op->d[0] + word) < word; + carry = CarryProp(&result->d[1], &op->d[1], (int)(op->size - 1), carry); + CarryResolve(result, (int)op->size, carry); + return TRUE; +} +/* 10.2.3.3.5 SubSame() */ +/* Subtract two values that have the same size. */ +static int +SubSame( + crypt_uword_t *result, + const crypt_uword_t *op1, + const crypt_uword_t *op2, + int count + ) +{ + int borrow = 0; + int i; + for(i = 0; i < count; i++) + { + crypt_uword_t a = op1[i]; + crypt_uword_t diff = a - op2[i]; + result[i] = diff - borrow; + // generate | propagate + borrow = (diff > a) | ((diff == 0) & borrow); + } + return borrow; +} +/* 10.2.3.3.6 BorrowProp() */ +/* This propagates a borrow. If borrow is true when the end of the array is reached, then it means + that op2 was larger than op1 and we don't handle that case so an assert is generated. This design + choice was made because our only bigNum computations are on large positive numbers (primes) or on + fields. Propagate a borrow. */ +static int +BorrowProp( + crypt_uword_t *result, + const crypt_uword_t *op, + int size, + int borrow + ) +{ + for(; size > 0; size--) + borrow = ((*result++ = *op++ - borrow) == MAX_CRYPT_UWORD) && borrow; + return borrow; +} +/* 10.2.3.3.7 BnSub() */ +/* This function does subtraction of two bigNum values and returns result = op1 - op2 when op1 is + greater than op2. If op2 is greater than op1, then a fault is generated. This function always + returns TRUE. */ + +LIB_EXPORT BOOL +BnSub( + bigNum result, + bigConst op1, + bigConst op2 + ) +{ + int borrow; + int stop = (int)MIN(op1->size, op2->allocated); + // + // Make sure that op2 is not obviously larger than op1 + pAssert(op1->size >= op2->size); + borrow = SubSame(result->d, op1->d, op2->d, stop); + if(op1->size > (crypt_uword_t)stop) + borrow = BorrowProp(&result->d[stop], &op1->d[stop], (int)(op1->size - stop), + borrow); + pAssert(!borrow); + BnSetTop(result, op1->size); + return TRUE; +} +/* 10.2.3.3.8 BnSubWord() */ +/* This function subtracts a word value from a bigNum. This function always returns TRUE. */ +LIB_EXPORT BOOL +BnSubWord( + bigNum result, + bigConst op, + crypt_uword_t word + ) +{ + int borrow; + // + pAssert(op->size > 1 || word <= op->d[0]); + borrow = word > op->d[0]; + result->d[0] = op->d[0] - word; + borrow = BorrowProp(&result->d[1], &op->d[1], (int)(op->size - 1), borrow); + pAssert(!borrow); + BnSetTop(result, op->size); + return TRUE; +} +/* 10.2.3.3.9 BnUnsignedCmp() */ +/* This function performs a comparison of op1 to op2. The compare is approximately constant time if + the size of the values used in the compare is consistent across calls (from the same line in the + calling code). */ +/* Return Values Meaning */ +/* < 0 op1 is less than op2 */ +/* 0 op1 is equal to op2 */ +/* > 0 op1 is greater than op2 */ +LIB_EXPORT int +BnUnsignedCmp( + bigConst op1, + bigConst op2 + ) +{ + int retVal; + int diff; + int i; + // + pAssert((op1 != NULL) && (op2 != NULL)); + retVal = (int)(op1->size - op2->size); + if(retVal == 0) + { + for(i = (int)(op1->size - 1); i >= 0; i--) + { + diff = (op1->d[i] < op2->d[i]) ? -1 : (op1->d[i] != op2->d[i]); + retVal = retVal == 0 ? diff : retVal; + } + } + else + retVal = (retVal < 0) ? -1 : 1; + return retVal; +} +/* 10.2.3.3.10 BnUnsignedCmpWord() */ +/* Compare a bigNum to a crypt_uword_t. */ +/* Return Value Meaning */ +/* -1 op1 is less that word */ +/* 0 op1 is equal to word */ +/* 1 op1 is greater than word */ +LIB_EXPORT int +BnUnsignedCmpWord( + bigConst op1, + crypt_uword_t word + ) +{ + if(op1->size > 1) + return 1; + else if(op1->size == 1) + return (op1->d[0] < word) ? -1 : (op1->d[0] > word); + else // op1 is zero + // equal if word is zero + return (word == 0) ? 0 : -1; +} +/* 10.2.3.3.11 BnModWord() */ +/* This function does modular division of a big number when the modulus is a word value. */ +LIB_EXPORT crypt_word_t +BnModWord( + bigConst numerator, + crypt_word_t modulus + ) +{ + BN_MAX(remainder); + BN_VAR(mod, RADIX_BITS); + // + mod->d[0] = modulus; + mod->size = (modulus != 0); + BnDiv(NULL, remainder, numerator, mod); + return remainder->d[0]; +} +/* 10.2.3.3.12 Msb() */ +/* Returns the bit number of the most significant bit of a crypt_uword_t. The number for the least + significant bit of any bigNum value is 0. The maximum return value is RADIX_BITS - 1, */ +/* Return Values Meaning */ +/* -1 the word was zero */ +/* n the bit number of the most significant bit in the word */ +LIB_EXPORT int +Msb( + crypt_uword_t word + ) +{ + int retVal = -1; + // +#if RADIX_BITS == 64 + if(word & 0xffffffff00000000) { retVal += 32; word >>= 32; } +#endif + if(word & 0xffff0000) { retVal += 16; word >>= 16; } + if(word & 0x0000ff00) { retVal += 8; word >>= 8; } + if(word & 0x000000f0) { retVal += 4; word >>= 4; } + if(word & 0x0000000c) { retVal += 2; word >>= 2; } + if(word & 0x00000002) { retVal += 1; word >>= 1; } + return retVal + (int)word; +} +/* 10.2.3.3.13 BnMsb() */ +/* This function returns the number of the MSb() of a bigNum value. */ +/* Return Value Meaning */ +/* -1 the word was zero or bn was NULL */ +/* n the bit number of the most significant bit in the word */ + +LIB_EXPORT int +BnMsb( + bigConst bn + ) +{ + // If the value is NULL, or the size is zero then treat as zero and return -1 + if(bn != NULL && bn->size > 0) + { + int retVal = Msb(bn->d[bn->size - 1]); + retVal += (int)(bn->size - 1) * RADIX_BITS; + return retVal; + } + else + return -1; +} +/* 10.2.3.3.14 BnSizeInBits() */ +/* Returns the number of bits required to hold a number. It is one greater than the Msb. */ +LIB_EXPORT unsigned +BnSizeInBits( + bigConst n + ) +{ + int bits = BnMsb(n) + 1; + // + return bits < 0 ? 0 : (unsigned)bits; +} +/* 10.2.3.3.15 BnSetWord() */ +/* Change the value of a bignum_t to a word value. */ +LIB_EXPORT bigNum +BnSetWord( + bigNum n, + crypt_uword_t w + ) +{ + if(n != NULL) + { + pAssert(n->allocated > 1); + n->d[0] = w; + BnSetTop(n, (w != 0) ? 1 : 0); + } + return n; +} +/* 10.2.3.3.16 BnSetBit() */ +/* SET a bit in a bigNum. Bit 0 is the least-significant bit in the 0th digit_t. The function always + return TRUE */ +LIB_EXPORT BOOL +BnSetBit( + bigNum bn, // IN/OUT: big number to modify + unsigned int bitNum // IN: Bit number to SET + ) +{ + crypt_uword_t offset = bitNum / RADIX_BITS; + pAssert(bn->allocated * RADIX_BITS >= bitNum); + // Grow the number if necessary to set the bit. + while(bn->size <= offset) + bn->d[bn->size++] = 0; + bn->d[offset] |= (crypt_uword_t)(1 << RADIX_MOD(bitNum)); + return TRUE; +} +/* 10.2.3.3.17 BnTestBit() */ +/* Check to see if a bit is SET in a bignum_t. The 0th bit is the LSb() of d[0]. */ +/* Return Values Meaning */ +/* TRUE the bit is set */ +/* FALSE the bit is not set or the number is out of range */ +LIB_EXPORT BOOL +BnTestBit( + bigNum bn, // IN: number to check + unsigned int bitNum // IN: bit to test + ) +{ + crypt_uword_t offset = RADIX_DIV(bitNum); + // + if(bn->size > offset) + return ((bn->d[offset] & (((crypt_uword_t)1) << RADIX_MOD(bitNum))) != 0); + else + return FALSE; +} +/* 10.2.3.3.18 BnMaskBits() */ +/* Function to mask off high order bits of a big number. The returned value will have no more than + maskBit bits set. */ +/* NOTE: There is a requirement that unused words of a bignum_t are set to zero. */ +/* Return Values Meaning */ +/* TRUE result masked */ +/* FALSE the input was not as large as the mask */ +LIB_EXPORT BOOL +BnMaskBits( + bigNum bn, // IN/OUT: number to mask + crypt_uword_t maskBit // IN: the bit number for the mask. + ) +{ + crypt_uword_t finalSize; + BOOL retVal; + finalSize = BITS_TO_CRYPT_WORDS(maskBit); + retVal = (finalSize <= bn->allocated); + if(retVal && (finalSize > 0)) + { + crypt_uword_t mask; + mask = ~((crypt_uword_t)0) >> RADIX_MOD(maskBit); + bn->d[finalSize - 1] &= mask; + } + BnSetTop(bn, finalSize); + return retVal; +} +/* 10.2.3.3.19 BnShiftRight() */ +/* Function will shift a bigNum to the right by the shiftAmount. This function always returns + TRUE. */ +LIB_EXPORT BOOL +BnShiftRight( + bigNum result, + bigConst toShift, + uint32_t shiftAmount + ) +{ + uint32_t offset = (shiftAmount >> RADIX_LOG2); + uint32_t i; + uint32_t shiftIn; + crypt_uword_t finalSize; + // + shiftAmount = shiftAmount & RADIX_MASK; + shiftIn = RADIX_BITS - shiftAmount; + // The end size is toShift->size - offset less one additional + // word if the shiftAmount would make the upper word == 0 + if(toShift->size > offset) + { + finalSize = toShift->size - offset; + finalSize -= (toShift->d[toShift->size - 1] >> shiftAmount) == 0 ? 1 : 0; + } + else + finalSize = 0; + pAssert(finalSize <= result->allocated); + if(finalSize != 0) + { + for(i = 0; i < finalSize; i++) + { + result->d[i] = (toShift->d[i + offset] >> shiftAmount) + | (toShift->d[i + offset + 1] << shiftIn); + } + if(offset == 0) + result->d[i] = toShift->d[i] >> shiftAmount; + } + BnSetTop(result, finalSize); + return TRUE; +} +/* 10.2.3.3.20 BnGetRandomBits() */ +/* Return Value Meaning */ +/* TRUE(1) success */ +/* FALSE(0) failure */ +LIB_EXPORT BOOL +BnGetRandomBits( + bigNum n, + size_t bits, + RAND_STATE *rand + ) +{ + // Since this could be used for ECC key generation using the extra bits method, + // make sure that the value is large enough + TPM2B_TYPE(LARGEST, LARGEST_NUMBER + 8); + TPM2B_LARGEST large; + // + large.b.size = (UINT16)BITS_TO_BYTES(bits); + if(DRBG_Generate(rand, large.t.buffer, large.t.size) == large.t.size) + { + if(BnFrom2B(n, &large.b) != NULL) + { + if(BnMaskBits(n, (crypt_uword_t)bits)) + return TRUE; + } + } + return FALSE; +} +/* 10.2.3.3.21 BnGenerateRandomInRange() */ +/* Function to generate a random number r in the range 1 <= r < limit. The function gets a random + number of bits that is the size of limit. There is some some probability that the returned number + is going to be greater than or equal to the limit. If it is, try again. There is no more than 50% + chance that the next number is also greater, so try again. We keep trying until we get a value + that meets the criteria. Since limit is very often a number with a LOT of high order ones, this + rarely would need a second try. */ +/* Return Value Meaning */ +/* TRUE(1) success */ +/* FALSE(0) failure */ +LIB_EXPORT BOOL +BnGenerateRandomInRange( + bigNum dest, + bigConst limit, + RAND_STATE *rand + ) +{ + size_t bits = BnSizeInBits(limit); + // + if(bits < 2) + { + BnSetWord(dest, 0); + return FALSE; + } + else + { + while(BnGetRandomBits(dest, bits, rand) + && (BnEqualZero(dest) || (BnUnsignedCmp(dest, limit) >= 0))); + } + return !g_inFailureMode; +} + +// libtpms added begin + +// This version of BnSizeInBits skips any leading zero bytes in bigConst +// and thus calculates the bits that OpenSSL will work with after truncating +// the leading zeros +static LIB_EXPORT unsigned +BnSizeInBitsSkipLeadingZeros( + bigConst n + ) +{ + int firstByte; + unsigned bitSize = BnSizeInBits(n); + crypt_uword_t i; + + if (bitSize <= 8) + return bitSize; + + // search for the first limb that is non-zero + for (i = 0; i < n->size; i++) { + if (n->d[i] != 0) + break; + } + if (i >= n->size) + return 0; // should never happen + + // get the first byte in this limb that is non-zero + firstByte = (RADIX_BITS - 1 - Msb(n->d[i])) >> 3; + + return bitSize - i * sizeof(n->d[0]) - (firstByte << 3); +} + + +/* This is a version of BnGenerateRandomInRange that ensures that the upper most + byte is non-zero, so that the number will not be shortened and subsequent operations + will not have a timing-sidechannel + */ +LIB_EXPORT BOOL +BnGenerateRandomInRangeAllBytes( + bigNum dest, + bigConst limit, + RAND_STATE *rand + ) +{ + BOOL OK; + int repeats = 0; + int maxRepeats; + unsigned requestedBits; + unsigned requestedBytes; + unsigned numBytes; + + if (rand) + return BnGenerateRandomInRange(dest, limit, rand); + + // a 'limit' like 'BN_P638_n' has leading zeros and we only need 73 bytes not 80 + requestedBits = BnSizeInBitsSkipLeadingZeros(limit); + requestedBytes = BITS_TO_BYTES(requestedBits); + maxRepeats = 8; + if (requestedBits & 7) + maxRepeats += (9 - (requestedBits & 7)); + + while (true) { + OK = BnGenerateRandomInRange(dest, limit, rand); + if (!OK) + break; + if (repeats < maxRepeats) { + numBytes = BITS_TO_BYTES(BnSizeInBitsSkipLeadingZeros(dest)); + if (numBytes < requestedBytes) { + repeats++; + continue; + } + } + break; + } + + return OK; +} +// libtpms added end |