diff options
Diffstat (limited to '')
-rw-r--r-- | src/tpm2/crypto/openssl/Helpers.c | 625 |
1 files changed, 625 insertions, 0 deletions
diff --git a/src/tpm2/crypto/openssl/Helpers.c b/src/tpm2/crypto/openssl/Helpers.c new file mode 100644 index 0000000..f47cdbf --- /dev/null +++ b/src/tpm2/crypto/openssl/Helpers.c @@ -0,0 +1,625 @@ +/********************************************************************************/ +/* */ +/* OpenSSL helper functions */ +/* Written by Stefan Berger */ +/* IBM Thomas J. Watson Research Center */ +/* */ +/* Licenses and Notices */ +/* */ +/* 1. Copyright Licenses: */ +/* */ +/* - Trusted Computing Group (TCG) grants to the user of the source code in */ +/* this specification (the "Source Code") a worldwide, irrevocable, */ +/* nonexclusive, royalty free, copyright license to reproduce, create */ +/* derivative works, distribute, display and perform the Source Code and */ +/* derivative works thereof, and to grant others the rights granted herein. */ +/* */ +/* - The TCG grants to the user of the other parts of the specification */ +/* (other than the Source Code) the rights to reproduce, distribute, */ +/* display, and perform the specification solely for the purpose of */ +/* developing products based on such documents. */ +/* */ +/* 2. Source Code Distribution Conditions: */ +/* */ +/* - Redistributions of Source Code must retain the above copyright licenses, */ +/* this list of conditions and the following disclaimers. */ +/* */ +/* - Redistributions in binary form must reproduce the above copyright */ +/* licenses, this list of conditions and the following disclaimers in the */ +/* documentation and/or other materials provided with the distribution. */ +/* */ +/* 3. Disclaimers: */ +/* */ +/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */ +/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */ +/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */ +/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */ +/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */ +/* information on specification licensing rights available through TCG */ +/* membership agreements. */ +/* */ +/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */ +/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */ +/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */ +/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */ +/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */ +/* */ +/* - Without limitation, TCG and its members and licensors disclaim all */ +/* liability, including liability for infringement of any proprietary */ +/* rights, relating to use of information in this specification and to the */ +/* implementation of this specification, and TCG disclaims all liability for */ +/* cost of procurement of substitute goods or services, lost profits, loss */ +/* of use, loss of data or any incidental, consequential, direct, indirect, */ +/* or special damages, whether under contract, tort, warranty or otherwise, */ +/* arising in any way out of use or reliance upon this specification or any */ +/* information herein. */ +/* */ +/* (c) Copyright IBM Corp. and others, 2019 */ +/* */ +/********************************************************************************/ + +#include "Tpm.h" +#include "ExpDCache_fp.h" +#include "Helpers_fp.h" +#include "TpmToOsslMath_fp.h" + +#include "config.h" + +#include <openssl/evp.h> +#include <openssl/rsa.h> + +/* to enable RSA_check_key() on private keys set to != 0 */ +#ifndef DO_RSA_CHECK_KEY +#define DO_RSA_CHECK_KEY 0 +#endif + +#if USE_OPENSSL_FUNCTIONS_SYMMETRIC + +TPM_RC +OpenSSLCryptGenerateKeyDes( + TPMT_SENSITIVE *sensitive // OUT: sensitive area + ) +{ + DES_cblock *key; + size_t offset; + size_t limit; + + limit = MIN(sizeof(sensitive->sensitive.sym.t.buffer), + sensitive->sensitive.sym.t.size); + limit = TPM2_ROUNDUP(limit, sizeof(*key)); + pAssert(limit < sizeof(sensitive->sensitive.sym.t.buffer)); + + for (offset = 0; offset < limit; offset += sizeof(*key)) { + key = (DES_cblock *)&sensitive->sensitive.sym.t.buffer[offset]; + if (DES_random_key(key) != 1) + return TPM_RC_NO_RESULT; + } + return TPM_RC_SUCCESS; +} + +evpfunc GetEVPCipher(TPM_ALG_ID algorithm, // IN + UINT16 keySizeInBits, // IN + TPM_ALG_ID mode, // IN + const BYTE *key, // IN + BYTE *keyToUse, // OUT same as key or stretched key + UINT16 *keyToUseLen // IN/OUT + ) +{ + int i; + UINT16 keySizeInBytes = keySizeInBits / 8; + evpfunc evpfn = NULL; + + // key size to array index: 128 -> 0, 192 -> 1, 256 -> 2 + i = (keySizeInBits >> 6) - 2; + if (i < 0 || i > 2) + return NULL; + + pAssert(*keyToUseLen >= keySizeInBytes) + memcpy(keyToUse, key, keySizeInBytes); + + switch (algorithm) { +#if ALG_AES + case TPM_ALG_AES: + *keyToUseLen = keySizeInBytes; + switch (mode) { +#if ALG_CTR + case TPM_ALG_CTR: + evpfn = (evpfunc []){EVP_aes_128_ctr, EVP_aes_192_ctr, + EVP_aes_256_ctr}[i]; + break; +#endif +#if ALG_OFB + case TPM_ALG_OFB: + evpfn = (evpfunc[]){EVP_aes_128_ofb, EVP_aes_192_ofb, + EVP_aes_256_ofb}[i]; + break; +#endif +#if ALG_CBC + case TPM_ALG_CBC: + evpfn = (evpfunc[]){EVP_aes_128_cbc, EVP_aes_192_cbc, + EVP_aes_256_cbc}[i]; + break; +#endif +#if ALG_CFB + case TPM_ALG_CFB: + evpfn = (evpfunc[]){EVP_aes_128_cfb, EVP_aes_192_cfb, + EVP_aes_256_cfb}[i]; + break; +#endif +#if ALG_ECB + case TPM_ALG_ECB: + evpfn = (evpfunc[]){EVP_aes_128_ecb, EVP_aes_192_ecb, + EVP_aes_256_ecb}[i]; + break; +#endif + } + break; +#endif +#if ALG_TDES + case TPM_ALG_TDES: + if (keySizeInBits == 128) { + pAssert(*keyToUseLen >= BITS_TO_BYTES(192)) + // stretch the key + memcpy(&keyToUse[16], &keyToUse[0], 8); + *keyToUseLen = BITS_TO_BYTES(192); + } + + switch (mode) { +#if ALG_CTR + case TPM_ALG_CTR: + evpfn = (evpfunc[]){EVP_des_ede3, EVP_des_ede3, NULL}[i]; + break; +#endif +#if ALG_OFB + case TPM_ALG_OFB: + evpfn = (evpfunc[]){EVP_des_ede3_ofb, EVP_des_ede3_ofb, NULL}[i]; + break; +#endif +#if ALG_CBC + case TPM_ALG_CBC: + evpfn = (evpfunc[]){EVP_des_ede3_cbc, EVP_des_ede3_cbc, NULL}[i]; + break; +#endif +#if ALG_CFB + case TPM_ALG_CFB: + evpfn = (evpfunc[]){EVP_des_ede3_cfb64, EVP_des_ede3_cfb64, NULL}[i]; + break; +#endif +#if ALG_ECB + case TPM_ALG_ECB: + evpfn = (evpfunc[]){EVP_des_ede3_ecb, EVP_des_ede3_ecb, NULL}[i]; + break; +#endif + } + break; +#endif + +#if ALG_SM4 + case TPM_ALG_SM4: + *keyToUseLen = keySizeInBytes; + switch (mode) { +#if ALG_CTR + case TPM_ALG_CTR: + evpfn = (evpfunc[]){EVP_sm4_ctr, NULL, NULL}[i]; + break; +#endif +#if ALG_OFB + case TPM_ALG_OFB: + evpfn = (evpfunc[]){EVP_sm4_ofb, NULL, NULL}[i]; + break; +#endif +#if ALG_CBC + case TPM_ALG_CBC: + evpfn = (evpfunc[]){EVP_sm4_cbc, NULL, NULL}[i]; + break; +#endif +#if ALG_CFB + case TPM_ALG_CFB: + evpfn = (evpfunc[]){EVP_sm4_cfb, NULL, NULL}[i]; + break; +#endif +#if ALG_ECB + case TPM_ALG_ECB: + evpfn = (evpfunc[]){EVP_sm4_ecb, NULL, NULL}[i]; + break; +#endif + } + break; +#endif + +#if ALG_CAMELLIA + case TPM_ALG_CAMELLIA: + *keyToUseLen = keySizeInBytes; + switch (mode) { +#if ALG_CTR + case TPM_ALG_CTR: + evpfn = (evpfunc []){EVP_camellia_128_ctr, EVP_camellia_192_ctr, + EVP_camellia_256_ctr}[i]; + break; +#endif +#if ALG_OFB + case TPM_ALG_OFB: + evpfn = (evpfunc[]){EVP_camellia_128_ofb, EVP_camellia_192_ofb, + EVP_camellia_256_ofb}[i]; + break; +#endif +#if ALG_CBC + case TPM_ALG_CBC: + evpfn = (evpfunc[]){EVP_camellia_128_cbc, EVP_camellia_192_cbc, + EVP_camellia_256_cbc}[i]; + break; +#endif +#if ALG_CFB + case TPM_ALG_CFB: + evpfn = (evpfunc[]){EVP_camellia_128_cfb, EVP_camellia_192_cfb, + EVP_camellia_256_cfb}[i]; + break; +#endif +#if ALG_ECB + case TPM_ALG_ECB: + evpfn = (evpfunc[]){EVP_camellia_128_ecb, EVP_camellia_192_ecb, + EVP_camellia_256_ecb}[i]; + break; +#endif + } + break; +#endif + } + + if (evpfn == NULL) + MemorySet(keyToUse, 0, *keyToUseLen); + + return evpfn; +} + +#endif // USE_OPENSSL_FUNCTIONS_SYMMETRIC + +#if USE_OPENSSL_FUNCTIONS_EC +BOOL +OpenSSLEccGetPrivate( + bigNum dOut, // OUT: the qualified random value + const EC_GROUP *G, // IN: the EC_GROUP to use + const UINT32 requestedBits // IN: if not 0, then dOut must have that many bits + ) +{ + BOOL OK = FALSE; + const BIGNUM *D; + EC_KEY *eckey = EC_KEY_new(); + UINT32 requestedBytes = BITS_TO_BYTES(requestedBits); + int repeats = 0; + int maxRepeats; + int numBytes; + + pAssert(G != NULL); + + if (!eckey) + return FALSE; + + if (EC_KEY_set_group(eckey, G) != 1) + goto Exit; + + maxRepeats = 8; + // non-byte boundary order'ed curves, like NIST P521, need more loops to + // have a result with topmost byte != 0 + if (requestedBits & 7) + maxRepeats += (9 - (requestedBits & 7)); + + while (true) { + if (EC_KEY_generate_key(eckey) == 1) { + D = EC_KEY_get0_private_key(eckey); + // if we need a certain amount of bytes and we are below a threshold + // of loops, check the number of bytes we have, otherwise take the + // result + if ((requestedBytes != 0) && (repeats < maxRepeats)) { + numBytes = BN_num_bytes(D); + if ((int)requestedBytes != numBytes) { + // result does not have enough bytes + repeats++; + continue; + } + // result is sufficient + } + OK = TRUE; + OsslToTpmBn(dOut, D); + } + break; + } + + Exit: + EC_KEY_free(eckey); + + return OK; +} +#endif // USE_OPENSSL_FUNCTIONS_EC + +#if USE_OPENSSL_FUNCTIONS_RSA + +static const struct hnames { + const char *name; + TPM_ALG_ID hashAlg; +} hnames[HASH_COUNT + 1] = { + { +#if ALG_SHA1 + .name = "sha1", + .hashAlg = ALG_SHA1_VALUE, + }, { +#endif +#if ALG_SHA256 + .name = "sha256", + .hashAlg = ALG_SHA256_VALUE, + }, { +#endif +#if ALG_SHA384 + .name = "sha384", + .hashAlg = ALG_SHA384_VALUE, + }, { +#endif +#if ALG_SHA512 + .name = "sha512", + .hashAlg = ALG_SHA512_VALUE, + }, { +#endif + .name = NULL, + } +}; +#if HASH_COUNT != ALG_SHA1 + ALG_SHA256 + ALG_SHA384 + ALG_SHA512 +# error Missing entry in hnames array! +#endif + +LIB_EXPORT const char * +GetDigestNameByHashAlg(const TPM_ALG_ID hashAlg) +{ + unsigned i; + + for (i = 0; i < HASH_COUNT; i++) { + if (hashAlg == hnames[i].hashAlg) + return hnames[i].name; + } + return NULL; +} + +static BOOL +ComputePrivateExponentD( + const BIGNUM *P, // IN: first prime (size is 1/2 of bnN) + const BIGNUM *Q, // IN: second prime (size is 1/2 of bnN) + const BIGNUM *E, // IN: the public exponent + const BIGNUM *N, // IN: the public modulus + BIGNUM **D // OUT: + ) +{ + BOOL pOK = FALSE; + BIGNUM *phi; + BN_CTX *ctx; + // + // compute Phi = (p - 1)(q - 1) = pq - p - q + 1 = n - p - q + 1 + phi = BN_dup(N); + ctx = BN_CTX_new(); + if (phi && ctx) { + pOK = BN_sub(phi, phi, P); + pOK = pOK && BN_sub(phi, phi, Q); + pOK = pOK && BN_add_word(phi, 1); + // Compute the multiplicative inverse d = 1/e mod Phi + BN_set_flags(phi, BN_FLG_CONSTTIME); // phi is secret + pOK = pOK && (*D = BN_mod_inverse(NULL, E, phi, ctx)) != NULL; + } + BN_CTX_free(ctx); + BN_clear_free(phi); + + return pOK; +} + +LIB_EXPORT TPM_RC +InitOpenSSLRSAPublicKey(OBJECT *key, // IN + EVP_PKEY **pkey // OUT + ) +{ + TPM_RC retVal; + RSA *rsakey = RSA_new(); + BIGNUM *N = NULL; + BIGNUM *E = BN_new(); + BN_ULONG eval; + + *pkey = EVP_PKEY_new(); + + if (rsakey == NULL || *pkey == NULL || E == NULL) + ERROR_RETURN(TPM_RC_FAILURE); + + if(key->publicArea.parameters.rsaDetail.exponent != 0) + eval = key->publicArea.parameters.rsaDetail.exponent; + else + eval = RSA_DEFAULT_PUBLIC_EXPONENT; + + if (BN_set_word(E, eval) != 1) + ERROR_RETURN(TPM_RC_FAILURE); + + N = BN_bin2bn(key->publicArea.unique.rsa.b.buffer, + key->publicArea.unique.rsa.b.size, NULL); + if (N == NULL || + RSA_set0_key(rsakey, N, E, NULL) != 1 || + EVP_PKEY_assign_RSA(*pkey, rsakey) == 0) + ERROR_RETURN(TPM_RC_FAILURE) + + RSA_set_flags(rsakey, RSA_FLAG_NO_BLINDING); + + retVal = TPM_RC_SUCCESS; + + Exit: + if (retVal != TPM_RC_SUCCESS) { + RSA_free(rsakey); + EVP_PKEY_free(*pkey); + *pkey = NULL; + } + + return retVal; +} + +static void DoRSACheckKey(const BIGNUM *P, const BIGNUM *Q, const BIGNUM *N, + const BIGNUM *E, const BIGNUM *D) +{ + RSA *mykey; + static int disp; + + if (!DO_RSA_CHECK_KEY) + return; + if (!disp) { + fprintf(stderr, "RSA key checking is enabled\n"); + disp = 1; + } + + mykey = RSA_new(); + RSA_set0_factors(mykey, BN_dup(P), BN_dup(Q)); + RSA_set0_key(mykey, BN_dup(N), BN_dup(E), BN_dup(D)); + if (RSA_check_key(mykey) != 1) { + fprintf(stderr, "Detected bad RSA key. STOP.\n"); + while (1); + } + RSA_free(mykey); +} + +LIB_EXPORT TPM_RC +InitOpenSSLRSAPrivateKey(OBJECT *rsaKey, // IN + EVP_PKEY **pkey // OUT + ) +{ + const BIGNUM *N = NULL; + const BIGNUM *E = NULL; + BIGNUM *P = NULL; + BIGNUM *Q = NULL; + BIGNUM *Qr = NULL; + BIGNUM *D = NULL; +#if CRT_FORMAT_RSA == YES + BIGNUM *dP = BN_new(); + BIGNUM *dQ = BN_new(); + BIGNUM *qInv = BN_new(); +#endif + RSA *key = NULL; + BN_CTX *ctx = NULL; + TPM_RC retVal = InitOpenSSLRSAPublicKey(rsaKey, pkey); + + if (retVal != TPM_RC_SUCCESS) + return retVal; + + if(!rsaKey->attributes.privateExp) + CryptRsaLoadPrivateExponent(rsaKey); + + P = BN_bin2bn(rsaKey->sensitive.sensitive.rsa.t.buffer, + rsaKey->sensitive.sensitive.rsa.t.size, NULL); + if (P == NULL) + ERROR_RETURN(TPM_RC_FAILURE) + + key = EVP_PKEY_get1_RSA(*pkey); + if (key == NULL) + ERROR_RETURN(TPM_RC_FAILURE); + RSA_get0_key(key, &N, &E, NULL); + + D = ExpDCacheFind(P, N, E, &Q); + if (D == NULL) { + ctx = BN_CTX_new(); + Q = BN_new(); + Qr = BN_new(); + if (ctx == NULL || Q == NULL || Qr == NULL) + ERROR_RETURN(TPM_RC_FAILURE); + /* Q = N/P; no remainder */ + BN_set_flags(P, BN_FLG_CONSTTIME); // P is secret + BN_div(Q, Qr, N, P, ctx); + if(!BN_is_zero(Qr)) + ERROR_RETURN(TPM_RC_BINDING); + BN_set_flags(Q, BN_FLG_CONSTTIME); // Q is secret + + if (ComputePrivateExponentD(P, Q, E, N, &D) == FALSE) + ERROR_RETURN(TPM_RC_FAILURE); + ExpDCacheAdd(P, N, E, Q, D); + } + if (RSA_set0_key(key, NULL, NULL, D) != 1) + ERROR_RETURN(TPM_RC_FAILURE); + + DoRSACheckKey(P, Q, N, E, D); + + D = NULL; + +#if CRT_FORMAT_RSA == YES + /* CRT parameters are not absolutely needed but may speed up ops */ + dP = BigInitialized(dP, (bigConst)&rsaKey->privateExponent.dP); + dQ = BigInitialized(dQ, (bigConst)&rsaKey->privateExponent.dQ); + qInv = BigInitialized(qInv, (bigConst)&rsaKey->privateExponent.qInv); + if (dP == NULL || dQ == NULL || qInv == NULL || + RSA_set0_crt_params(key, dP, dQ, qInv) != 1) + ERROR_RETURN(TPM_RC_FAILURE); +#endif + + retVal = TPM_RC_SUCCESS; + + Exit: + BN_CTX_free(ctx); + BN_clear_free(P); + BN_clear_free(Q); + BN_free(Qr); + RSA_free(key); // undo reference from EVP_PKEY_get1_RSA() + + if (retVal != TPM_RC_SUCCESS) { + BN_clear_free(D); +#if CRT_FORMAT_RSA == YES + BN_clear_free(dP); + BN_clear_free(dQ); + BN_clear_free(qInv); +#endif + EVP_PKEY_free(*pkey); + *pkey = NULL; + } + + return retVal; +} + +LIB_EXPORT TPM_RC +OpenSSLCryptRsaGenerateKey( + OBJECT *rsaKey, // IN/OUT: The object structure in which + // the key is created. + UINT32 e, + int keySizeInBits + ) +{ + TPMT_PUBLIC *publicArea = &rsaKey->publicArea; + TPMT_SENSITIVE *sensitive = &rsaKey->sensitive; + TPM_RC retVal = TPM_RC_SUCCESS; + int rc; + RSA *rsa = NULL; + const BIGNUM *bnP = NULL; + const BIGNUM *bnN = NULL; + BIGNUM *bnE = BN_new(); + BN_RSA(tmp); + + if (bnE == NULL || BN_set_word(bnE, e) != 1) + ERROR_RETURN(TPM_RC_FAILURE); + + // Need to initialize the privateExponent structure + RsaInitializeExponent(&rsaKey->privateExponent); + + rsa = RSA_new(); + if (rsa == NULL) + ERROR_RETURN(TPM_RC_FAILURE); + + rc = RSA_generate_key_ex(rsa, keySizeInBits, bnE, NULL); + if (rc == 0) + ERROR_RETURN(TPM_RC_NO_RESULT); + + RSA_get0_key(rsa, &bnN, NULL, NULL); + RSA_get0_factors(rsa, &bnP, NULL); + + OsslToTpmBn(tmp, bnN); + BnTo2B((bigNum)tmp, &publicArea->unique.rsa.b, 0); + + OsslToTpmBn(tmp, bnP); + BnTo2B((bigNum)tmp, &sensitive->sensitive.rsa.b, 0); + + // CryptRsaGenerateKey calls ComputePrivateExponent; we have to call + // it via CryptRsaLoadPrivateExponent + retVal = CryptRsaLoadPrivateExponent(rsaKey); + + Exit: + BN_free(bnE); + RSA_free(rsa); + + return retVal; +} + +#endif // USE_OPENSSL_FUNCTIONS_RSA |