summaryrefslogtreecommitdiffstats
path: root/src/tpm2/BnConvert.c
blob: 49cd6d551d4e52d470d8f663e83d048d99ac206c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/********************************************************************************/
/*										*/
/*	conversion functions that will convert TPM2B to/from internal format	*/
/*			     Written by Ken Goldman				*/
/*		       IBM Thomas J. Watson Research Center			*/
/*            $Id: BnConvert.c 1519 2019-11-15 20:43:51Z kgoldman $		*/
/*										*/
/*  Licenses and Notices							*/
/*										*/
/*  1. Copyright Licenses:							*/
/*										*/
/*  - Trusted Computing Group (TCG) grants to the user of the source code in	*/
/*    this specification (the "Source Code") a worldwide, irrevocable, 		*/
/*    nonexclusive, royalty free, copyright license to reproduce, create 	*/
/*    derivative works, distribute, display and perform the Source Code and	*/
/*    derivative works thereof, and to grant others the rights granted herein.	*/
/*										*/
/*  - The TCG grants to the user of the other parts of the specification 	*/
/*    (other than the Source Code) the rights to reproduce, distribute, 	*/
/*    display, and perform the specification solely for the purpose of 		*/
/*    developing products based on such documents.				*/
/*										*/
/*  2. Source Code Distribution Conditions:					*/
/*										*/
/*  - Redistributions of Source Code must retain the above copyright licenses, 	*/
/*    this list of conditions and the following disclaimers.			*/
/*										*/
/*  - Redistributions in binary form must reproduce the above copyright 	*/
/*    licenses, this list of conditions	and the following disclaimers in the 	*/
/*    documentation and/or other materials provided with the distribution.	*/
/*										*/
/*  3. Disclaimers:								*/
/*										*/
/*  - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF	*/
/*  LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH	*/
/*  RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)	*/
/*  THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.		*/
/*  Contact TCG Administration (admin@trustedcomputinggroup.org) for 		*/
/*  information on specification licensing rights available through TCG 	*/
/*  membership agreements.							*/
/*										*/
/*  - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED 	*/
/*    WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR 	*/
/*    FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR 		*/
/*    NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY 		*/
/*    OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.		*/
/*										*/
/*  - Without limitation, TCG and its members and licensors disclaim all 	*/
/*    liability, including liability for infringement of any proprietary 	*/
/*    rights, relating to use of information in this specification and to the	*/
/*    implementation of this specification, and TCG disclaims all liability for	*/
/*    cost of procurement of substitute goods or services, lost profits, loss 	*/
/*    of use, loss of data or any incidental, consequential, direct, indirect, 	*/
/*    or special damages, whether under contract, tort, warranty or otherwise, 	*/
/*    arising in any way out of use or reliance upon this specification or any 	*/
/*    information herein.							*/
/*										*/
/*  (c) Copyright IBM Corp. and others, 2016 - 2019				*/
/*										*/
/********************************************************************************/

/* 10.2.2 BnConvert.c */
/* 10.2.2.1 Introduction */
/* This file contains the basic conversion functions that will convert TPM2B to/from the internal
   format. The internal format is a bigNum, */
/* 10.2.2.2 Includes */
#include "Tpm.h"
/* 10.2.2.3 Functions */
/* 10.2.2.3.1 BnFromBytes() */
/* This function will convert a big-endian byte array to the internal number format. If bn is NULL,
   then the output is NULL. If bytes is null or the required size is 0, then the output is set to
   zero */
LIB_EXPORT bigNum
BnFromBytes(
	    bigNum           bn,
	    const BYTE      *bytes,
	    NUMBYTES         nBytes
	    )
{
    const BYTE      *pFrom; // 'p' points to the least significant bytes of source
    BYTE            *pTo;   // points to least significant bytes of destination
    crypt_uword_t    size;
    //
    size = (bytes != NULL) ? BYTES_TO_CRYPT_WORDS(nBytes) : 0;
    // If nothing in, nothing out
    if(bn == NULL)
	return NULL;
    // make sure things fit
    pAssert(BnGetAllocated(bn) >= size);
    if(size > 0)
	{
	    // Clear the topmost word in case it is not filled with data
	    bn->d[size - 1] = 0;
	    // Moving the input bytes from the end of the list (LSB) end
	    pFrom = bytes + nBytes - 1;
	    // To the LS0 of the LSW of the bigNum.
	    pTo = (BYTE *)bn->d;
	    for(; nBytes != 0; nBytes--)
		*pTo++ = *pFrom--;
	    // For a little-endian machine, the conversion is a straight byte
	    // reversal. For a big-endian machine, we have to put the words in
	    // big-endian byte order
#if BIG_ENDIAN_TPM
	    {
		crypt_word_t   t;
		for(t = (crypt_word_t)size - 1; t >= 0; t--)
		    bn->d[t] = SWAP_CRYPT_WORD(bn->d[t]);
	    }
#endif
	}
    BnSetTop(bn, size);
    return bn;
}
/* 10.2.2.3.2 BnFrom2B() */
/* Convert an TPM2B to a BIG_NUM. If the input value does not exist, or the output does not exist,
   or the input will not fit into the output the function returns NULL */
LIB_EXPORT bigNum
BnFrom2B(
	 bigNum           bn,         // OUT:
	 const TPM2B     *a2B         // IN: number to convert
	 )
{
    if(a2B != NULL)
	return BnFromBytes(bn, a2B->buffer, a2B->size);
    // Make sure that the number has an initialized value rather than whatever
    // was there before
    BnSetTop(bn, 0);    // Function accepts NULL
    return NULL;
}
/* 10.2.2.3.3 BnFromHex() */
/* Convert a hex string into a bigNum. This is primarily used in debugging. */
#ifdef _SM2_SIGN_DEBUG                 // libtpms added
LIB_EXPORT bigNum
BnFromHex(
	  bigNum          bn,         // OUT:
	  const char      *hex        // IN:
	  )
{
#define FromHex(a)  ((a) - (((a) > 'a') ? ('a' + 10)			\
			    : ((a) > 'A') ? ('A' - 10) : '0'))
    unsigned             i;
    unsigned             wordCount;
    const char          *p;
    BYTE                *d = (BYTE *)&(bn->d[0]);
    //
    pAssert(bn && hex);
    i = (unsigned)strlen(hex);
    wordCount = BYTES_TO_CRYPT_WORDS((i + 1) / 2);
    if((i == 0) || (wordCount >= BnGetAllocated(bn)))
	BnSetWord(bn, 0);
    else
	{
	    bn->d[wordCount - 1] = 0;
	    p = hex + i - 1;
	    for(;i > 1; i -= 2)
		{
		    BYTE a;
		    a = FromHex(*p);
		    p--;
		    *d++ = a + (FromHex(*p) << 4);
		    p--;
		}
	    if(i == 1)
		*d = FromHex(*p);
	}
#if !BIG_ENDIAN_TPM
    for(i = 0; i < wordCount; i++)
	bn->d[i] = SWAP_CRYPT_WORD(bn->d[i]);
#endif // BIG_ENDIAN_TPM
    BnSetTop(bn, wordCount);
    return bn;
}
#endif                                 // libtpms added
/* 10.2.2.3.4 BnToBytes() */
/* This function converts a BIG_NUM to a byte array. It converts the bigNum to a big-endian byte
   string and sets size to the normalized value. If size is an input 0, then the receiving buffer is
   guaranteed to be large enough for the result and the size will be set to the size required for
   bigNum (leading zeros suppressed). */
/* The conversion for a little-endian machine simply requires that all significant bytes of the
   bigNum be reversed. For a big-endian machine, rather than unpack each word individually,
   the bigNum is converted to little-endian words, copied, and then converted back to big-endian. */
LIB_EXPORT BOOL
BnToBytes(
	  bigConst             bn,
	  BYTE                *buffer,
	  NUMBYTES            *size           // This the number of bytes that are
	  // available in the buffer. The result
	  // should be this big.
	  )
{
    crypt_uword_t        requiredSize;
    BYTE                *pFrom;
    BYTE                *pTo;
    crypt_uword_t        count;
    //
    // validate inputs
    pAssert(bn && buffer && size);
    requiredSize = (BnSizeInBits(bn) + 7) / 8;
    if(requiredSize == 0)
	{
	    // If the input value is 0, return a byte of zero
	    *size = 1;
	    *buffer = 0;
	}
    else
	{
#if BIG_ENDIAN_TPM
	    // Copy the constant input value into a modifiable value
	    BN_VAR(bnL, LARGEST_NUMBER_BITS * 2);
	    BnCopy(bnL, bn);
	    // byte swap the words in the local value to make them little-endian
	    for(count = 0; count < bnL->size; count++)
		bnL->d[count] = SWAP_CRYPT_WORD(bnL->d[count]);
	    bn = (bigConst)bnL;
#endif
	    if(*size == 0)
		*size = (NUMBYTES)requiredSize;
	    pAssert(requiredSize <= *size);
	    // Byte swap the number (not words but the whole value)
	    count = *size;
	    // Start from the least significant word and offset to the most significant
	    // byte which is in some high word
	    pFrom = (BYTE *)(&bn->d[0]) + requiredSize - 1;
	    pTo = buffer;
	    // If the number of output bytes is larger than the number bytes required
	    // for the input number, pad with zeros
	    for(count = *size; count > requiredSize; count--)
		*pTo++ = 0;
	    // Move the most significant byte at the end of the BigNum to the next most
	    // significant byte position of the 2B and repeat for all significant bytes.
	    for(; requiredSize > 0; requiredSize--)
		*pTo++ = *pFrom--;
	}
    return TRUE;
}
/* 10.2.2.3.5 BnTo2B() */
/* Function to convert a BIG_NUM to TPM2B. The TPM2B size is set to the requested size which may
   require padding. If size is non-zero and less than required by the value in bn then an error is
   returned. If size is zero, then the TPM2B is assumed to be large enough for the data and
   a2b->size will be adjusted accordingly. */
LIB_EXPORT BOOL
BnTo2B(
       bigConst         bn,                // IN:
       TPM2B           *a2B,               // OUT:
       NUMBYTES         size               // IN: the desired size
       )
{
    // Set the output size
    if(bn && a2B)
	{
	    a2B->size = size;
	    return BnToBytes(bn, a2B->buffer, &a2B->size);
	}
    return FALSE;
}
#if ALG_ECC
/* 10.2.2.3.6 BnPointFrom2B() */
/* Function to create a BIG_POINT structure from a 2B point. A point is going to be two ECC values
   in the same buffer. The values are going to be the size of the modulus.  They are in modular
   form. */
LIB_EXPORT bn_point_t   *
BnPointFrom2B(
	      bigPoint             ecP,         // OUT: the preallocated point structure
	      TPMS_ECC_POINT      *p            // IN: the number to convert
	      )
{
    if(p == NULL)
	return NULL;
    if(NULL != ecP)
	{
	    BnFrom2B(ecP->x, &p->x.b);
	    BnFrom2B(ecP->y, &p->y.b);
	    BnSetWord(ecP->z, 1);
	}
    return ecP;
}
/* 10.2.2.3.7 BnPointTo2B() */
/* This function converts a BIG_POINT into a TPMS_ECC_POINT. A TPMS_ECC_POINT contains two
   TPM2B_ECC_PARAMETER values. The maximum size of the parameters is dependent on the maximum EC key
   size used in an implementation. The presumption is that the TPMS_ECC_POINT is large enough to
   hold 2 TPM2B values, each as large as a MAX_ECC_PARAMETER_BYTES */
LIB_EXPORT BOOL
BnPointTo2B(
	    TPMS_ECC_POINT  *p,             // OUT: the converted 2B structure
	    bigPoint         ecP,           // IN: the values to be converted
	    bigCurve         E              // IN: curve descriptor for the point
	    )
{
    UINT16           size;
    //
    pAssert(p && ecP && E);
    pAssert(BnEqualWord(ecP->z, 1));
    // BnMsb is the bit number of the MSB. This is one less than the number of bits
    size = (UINT16)BITS_TO_BYTES(BnSizeInBits(CurveGetOrder(AccessCurveData(E))));
    BnTo2B(ecP->x, &p->x.b, size);
    BnTo2B(ecP->y, &p->y.b, size);
    return TRUE;
}
#endif // TPM_ALG_ECC