summaryrefslogtreecommitdiffstats
path: root/src/tpm2/crypto/openssl/CryptEccMain.c
blob: be92831b7f20acdd3a7ebb9ab12f37bf87780646 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/********************************************************************************/
/*										*/
/*			     	ECC Main					*/
/*			     Written by Ken Goldman				*/
/*		       IBM Thomas J. Watson Research Center			*/
/*            $Id: CryptEccMain.c 1519 2019-11-15 20:43:51Z kgoldman $		*/
/*										*/
/*  Licenses and Notices							*/
/*										*/
/*  1. Copyright Licenses:							*/
/*										*/
/*  - Trusted Computing Group (TCG) grants to the user of the source code in	*/
/*    this specification (the "Source Code") a worldwide, irrevocable, 		*/
/*    nonexclusive, royalty free, copyright license to reproduce, create 	*/
/*    derivative works, distribute, display and perform the Source Code and	*/
/*    derivative works thereof, and to grant others the rights granted herein.	*/
/*										*/
/*  - The TCG grants to the user of the other parts of the specification 	*/
/*    (other than the Source Code) the rights to reproduce, distribute, 	*/
/*    display, and perform the specification solely for the purpose of 		*/
/*    developing products based on such documents.				*/
/*										*/
/*  2. Source Code Distribution Conditions:					*/
/*										*/
/*  - Redistributions of Source Code must retain the above copyright licenses, 	*/
/*    this list of conditions and the following disclaimers.			*/
/*										*/
/*  - Redistributions in binary form must reproduce the above copyright 	*/
/*    licenses, this list of conditions	and the following disclaimers in the 	*/
/*    documentation and/or other materials provided with the distribution.	*/
/*										*/
/*  3. Disclaimers:								*/
/*										*/
/*  - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF	*/
/*  LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH	*/
/*  RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)	*/
/*  THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.		*/
/*  Contact TCG Administration (admin@trustedcomputinggroup.org) for 		*/
/*  information on specification licensing rights available through TCG 	*/
/*  membership agreements.							*/
/*										*/
/*  - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED 	*/
/*    WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR 	*/
/*    FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR 		*/
/*    NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY 		*/
/*    OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.		*/
/*										*/
/*  - Without limitation, TCG and its members and licensors disclaim all 	*/
/*    liability, including liability for infringement of any proprietary 	*/
/*    rights, relating to use of information in this specification and to the	*/
/*    implementation of this specification, and TCG disclaims all liability for	*/
/*    cost of procurement of substitute goods or services, lost profits, loss 	*/
/*    of use, loss of data or any incidental, consequential, direct, indirect, 	*/
/*    or special damages, whether under contract, tort, warranty or otherwise, 	*/
/*    arising in any way out of use or reliance upon this specification or any 	*/
/*    information herein.							*/
/*										*/
/*  (c) Copyright IBM Corp. and others, 2016 - 2019				*/
/*										*/
/********************************************************************************/

/* 10.2.11 CryptEccMain.c */
/* 10.2.11.1 Includes and Defines */
#include "Tpm.h"
#include "Helpers_fp.h"                // libtpms added
#include "TpmToOsslMath_fp.h"          // libtpms added
#if ALG_ECC
/* This version requires that the new format for ECC data be used */
#if !USE_BN_ECC_DATA
#error "Need to SET USE_BN_ECC_DATA to YES in TpmBuildSwitches.h"
#endif
/* 10.2.11.2 Functions */
#if SIMULATION
void
EccSimulationEnd(
		 void
		 )
{
#if SIMULATION
    // put things to be printed at the end of the simulation here
#endif
}
#endif // SIMULATION
/* 10.2.11.2.1 CryptEccInit() */
/* This function is called at _TPM_Init() */
BOOL
CryptEccInit(
	     void
	     )
{
    return TRUE;
}
/* 10.2.11.2.2 CryptEccStartup() */
/* This function is called at TPM2_Startup(). */
BOOL
CryptEccStartup(
		void
		)
{
    return TRUE;
}
/* 10.2.11.2.3 ClearPoint2B(generic */
/* Initialize the size values of a TPMS_ECC_POINT structure. */
void
ClearPoint2B(
	     TPMS_ECC_POINT      *p          // IN: the point
	     )
{
    if(p != NULL)
	{
	    p->x.t.size = 0;
	    p->y.t.size = 0;
	}
}
/* 10.2.11.2.4 CryptEccGetParametersByCurveId() */
/* This function returns a pointer to the curve data that is associated with the indicated
   curveId. If there is no curve with the indicated ID, the function returns NULL. This function is
   in this module so that it can be called by GetCurve() data. */
/* Return Values Meaning */
/* NULL curve with the indicated TPM_ECC_CURVE is not implemented */
/* non-NULL pointer to the curve data */
LIB_EXPORT const ECC_CURVE *
CryptEccGetParametersByCurveId(
			       TPM_ECC_CURVE       curveId     // IN: the curveID
			       )
{
    int          i;
    for(i = 0; i < ECC_CURVE_COUNT; i++)
	{
	    if(eccCurves[i].curveId == curveId)
		return &eccCurves[i];
	}
    return NULL;
}
/*  10.2.11.2.5 CryptEccGetKeySizeForCurve() */
/* This function returns the key size in bits of the indicated curve */
LIB_EXPORT UINT16
CryptEccGetKeySizeForCurve(
			   TPM_ECC_CURVE            curveId    // IN: the curve
			   )
{
    const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId);
    UINT16           keySizeInBits;
    //
    keySizeInBits = (curve != NULL) ? curve->keySizeBits : 0;
    return keySizeInBits;
}
/* 10.2.11.2.6 GetCurveData() */
/* This function returns the a pointer for the parameter data associated with a curve. */
const ECC_CURVE_DATA *
GetCurveData(
	     TPM_ECC_CURVE        curveId     // IN: the curveID
	     )
{
    const ECC_CURVE      *curve = CryptEccGetParametersByCurveId(curveId);
    return (curve != NULL) ? curve->curveData : NULL;
}
/* 10.2.11.2.7	CryptEccGetOID() */
const BYTE *
CryptEccGetOID(
	       TPM_ECC_CURVE       curveId
	       )
{
    const ECC_CURVE         *curve = CryptEccGetParametersByCurveId(curveId);
    return (curve != NULL) ? curve->OID : NULL;
}
/* 10.2.11.2.7 CryptEccGetCurveByIndex() */
/* This function returns the number of the i-th implemented curve. The normal use would be to call
   this function with i starting at 0. When the i is greater than or equal to the number of
   implemented curves, TPM_ECC_NONE is returned. */
LIB_EXPORT TPM_ECC_CURVE
CryptEccGetCurveByIndex(
			UINT16               i
			)
{
    if(i >= ECC_CURVE_COUNT)
	return TPM_ECC_NONE;
    return eccCurves[i].curveId;
}
/* 10.2.11.2.8 CryptEccGetParameter() */
/* This function returns an ECC curve parameter. The parameter is selected by a single character
   designator from the set of {PNABXYH}. */
/* Return Values Meaning */
/* TRUE curve exists and parameter returned */
/* FALSE curve does not exist or parameter selector */
LIB_EXPORT BOOL
CryptEccGetParameter(
		     TPM2B_ECC_PARAMETER     *out,       // OUT: place to put parameter
		     char                     p,         // IN: the parameter selector
		     TPM_ECC_CURVE            curveId    // IN: the curve id
		     )
{
    const ECC_CURVE_DATA    *curve = GetCurveData(curveId);
    bigConst                 parameter = NULL;
    if(curve != NULL)
	{
	    switch(p)
		{
		  case 'p':
		    parameter = CurveGetPrime(curve);
		    break;
		  case 'n':
		    parameter = CurveGetOrder(curve);
		    break;
		  case 'a':
		    parameter = CurveGet_a(curve);
		    break;
		  case 'b':
		    parameter = CurveGet_b(curve);
		    break;
		  case 'x':
		    parameter = CurveGetGx(curve);
		    break;
		  case 'y':
		    parameter = CurveGetGy(curve);
		    break;
		  case 'h':
		    parameter = CurveGetCofactor(curve);
		    break;
		  default:
		    FAIL(FATAL_ERROR_INTERNAL);
		    break;
		}
	}
    // If not debugging and we get here with parameter still NULL, had better
    // not try to convert so just return FALSE instead.
    return (parameter != NULL) ? BnTo2B(parameter, &out->b, 0) : 0;
}
/* 10.2.11.2.9 CryptCapGetECCCurve() */
/* This function returns the list of implemented ECC curves. */
/* Return Values Meaning */
/* YES if no more ECC curve is available */
/* NO if there are more ECC curves not reported */
TPMI_YES_NO
CryptCapGetECCCurve(
		    TPM_ECC_CURVE    curveID,       // IN: the starting ECC curve
		    UINT32           maxCount,      // IN: count of returned curves
		    TPML_ECC_CURVE  *curveList      // OUT: ECC curve list
		    )
{
    TPMI_YES_NO       more = NO;
    UINT16            i;
    UINT32            count = ECC_CURVE_COUNT;
    TPM_ECC_CURVE     curve;
    // Initialize output property list
    curveList->count = 0;
    // The maximum count of curves we may return is MAX_ECC_CURVES
    if(maxCount > MAX_ECC_CURVES) maxCount = MAX_ECC_CURVES;
    // Scan the eccCurveValues array
    for(i = 0; i < count; i++)
	{
	    curve = CryptEccGetCurveByIndex(i);
	    // If curveID is less than the starting curveID, skip it
	    if(curve < curveID)
		continue;
            if (!CryptEccIsCurveRuntimeUsable(curve)) // libtpms added: runtime filter supported curves
                continue;
	    if(curveList->count < maxCount)
		{
		    // If we have not filled up the return list, add more curves to
		    // it
		    curveList->eccCurves[curveList->count] = curve;
		    curveList->count++;
		}
	    else
		{
		    // If the return list is full but we still have curves
		    // available, report this and stop iterating
		    more = YES;
		    break;
		}
	}
    return more;
}
/* 10.2.11.2.10 CryptGetCurveSignScheme() */
/* This function will return a pointer to the scheme of the curve. */
const TPMT_ECC_SCHEME *
CryptGetCurveSignScheme(
			TPM_ECC_CURVE    curveId        // IN: The curve selector
			)
{
    const ECC_CURVE         *curve = CryptEccGetParametersByCurveId(curveId);
    if(curve != NULL)
	return &(curve->sign);
    else
	return NULL;
}
/* 10.2.11.2.11 CryptGenerateR() */
/* This function computes the commit random value for a split signing scheme. */
/* If c is NULL, it indicates that r is being generated for TPM2_Commit(). If c is not NULL, the TPM
   will validate that the gr.commitArray bit associated with the input value of c is SET. If not,
   the TPM returns FALSE and no r value is generated. */
/* Return Values Meaning */
/* TRUE r value computed */
/* FALSE no r value computed */
BOOL
CryptGenerateR(
	       TPM2B_ECC_PARAMETER     *r,             // OUT: the generated random value
	       UINT16                  *c,             // IN/OUT: count value.
	       TPMI_ECC_CURVE           curveID,       // IN: the curve for the value
	       TPM2B_NAME              *name           // IN: optional name of a key to
	       //     associate with 'r'
	       )
{
    // This holds the marshaled g_commitCounter.
    TPM2B_TYPE(8B, 8);
    TPM2B_8B                 cntr = {{8,{0}}};
    UINT32                   iterations;
    TPM2B_ECC_PARAMETER      n;
    UINT64                   currentCount = gr.commitCounter;
    UINT16                   t1;
    //
    if(!CryptEccGetParameter(&n, 'n', curveID))
	return FALSE;
    // If this is the commit phase, use the current value of the commit counter
    if(c != NULL)
	{
	    // if the array bit is not set, can't use the value.
	    if(!TEST_BIT((*c & COMMIT_INDEX_MASK), gr.commitArray))
		return FALSE;
	    // If it is the sign phase, figure out what the counter value was
	    // when the commitment was made.
	    //
	    // When gr.commitArray has less than 64K bits, the extra
	    // bits of 'c' are used as a check to make sure that the
	    // signing operation is not using an out of range count value
	    t1 = (UINT16)currentCount;
	    // If the lower bits of c are greater or equal to the lower bits of t1
	    // then the upper bits of t1 must be one more than the upper bits
	    // of c
	    if((*c & COMMIT_INDEX_MASK) >= (t1 & COMMIT_INDEX_MASK))
		// Since the counter is behind, reduce the current count
		currentCount = currentCount - (COMMIT_INDEX_MASK + 1);
	    t1 = (UINT16)currentCount;
	    if((t1 & ~COMMIT_INDEX_MASK) != (*c & ~COMMIT_INDEX_MASK))
		return FALSE;
	    // set the counter to the value that was
	    // present when the commitment was made
	    currentCount = (currentCount & 0xffffffffffff0000ULL) | *c; /* libtpms changed */
	}
    // Marshal the count value to a TPM2B buffer for the KDF
    cntr.t.size = sizeof(currentCount);
    UINT64_TO_BYTE_ARRAY(currentCount, cntr.t.buffer);
    // Now can do the KDF to create the random value for the signing operation
    // During the creation process, we may generate an r that does not meet the
    // requirements of the random value.
    // want to generate a new r.
    r->t.size = n.t.size;
    for(iterations = 1; iterations < 1000000;)
	{
	    int     i;

	    CryptKDFa(CONTEXT_INTEGRITY_HASH_ALG, &gr.commitNonce.b, COMMIT_STRING,
		      (TPM2B *)name, &cntr.b, n.t.size * 8,	// libtpms ubsan
		      r->t.buffer, &iterations, FALSE);		// libtpms changed

	    // "random" value must be less than the prime
	    if(UnsignedCompareB(r->b.size, r->b.buffer, n.t.size, n.t.buffer) >= 0)
		continue;

	    // in this implementation it is required that at least bit
	    // in the upper half of the number be set
	    for(i = n.t.size / 2; i >= 0; i--)
		if(r->b.buffer[i] != 0)
		    return TRUE;
	}
    return FALSE;
}
/* 10.2.11.2.12 CryptCommit() */
/* This function is called when the count value is committed. The gr.commitArray value associated
   with the current count value is SET and g_commitCounter is incremented. The low-order 16 bits of
   old value of the counter is returned. */
UINT16
CryptCommit(
	    void
	    )
{
    UINT16      oldCount = (UINT16)gr.commitCounter;
    gr.commitCounter++;
    SET_BIT(oldCount & COMMIT_INDEX_MASK, gr.commitArray);
    return oldCount;
}
/* 10.2.11.2.13 CryptEndCommit() */
/* This function is called when the signing operation using the committed value is completed. It
   clears the gr.commitArray bit associated with the count value so that it can't be used again. */
void
CryptEndCommit(
	       UINT16           c              // IN: the counter value of the commitment
	       )
{
    ClearBit((c & COMMIT_INDEX_MASK), gr.commitArray, sizeof(gr.commitArray));
}
/* 10.2.11.2.14 CryptEccGetParameters() */
/* This function returns the ECC parameter details of the given curve */
/* Return Values Meaning */
/* TRUE success */
/* FALSE unsupported ECC curve ID */
BOOL
CryptEccGetParameters(
		      TPM_ECC_CURVE                curveId,       // IN: ECC curve ID
		      TPMS_ALGORITHM_DETAIL_ECC   *parameters     // OUT: ECC parameters
		      )
{
    const ECC_CURVE             *curve = CryptEccGetParametersByCurveId(curveId);
    const ECC_CURVE_DATA        *data;
    BOOL                         found = curve != NULL;
    if(found)
	{
	    data = curve->curveData;
	    parameters->curveID = curve->curveId;
	    parameters->keySize = curve->keySizeBits;
	    parameters->kdf = curve->kdf;
	    parameters->sign = curve->sign;
	    /* BnTo2B(data->prime, &parameters->p.b, 0); */
	    BnTo2B(data->prime, &parameters->p.b, parameters->p.t.size);
	    BnTo2B(data->a, &parameters->a.b, parameters->p.t.size /* libtpms changed for HLK */);
	    BnTo2B(data->b, &parameters->b.b, parameters->p.t.size /* libtpms changed for HLK */);
	    BnTo2B(data->base.x, &parameters->gX.b, parameters->p.t.size);
	    BnTo2B(data->base.y, &parameters->gY.b, parameters->p.t.size);
	    BnTo2B(data->order, &parameters->n.b, 0);
	    BnTo2B(data->h, &parameters->h.b, 0);
	}
    return found;
}
/* 10.2.11.2.15 BnGetCurvePrime() */
/* This function is used to get just the prime modulus associated with a curve */
const bignum_t *
BnGetCurvePrime(
		TPM_ECC_CURVE            curveId
		)
{
    const ECC_CURVE_DATA    *C = GetCurveData(curveId);
    return (C != NULL) ? CurveGetPrime(C) : NULL;
}
/* 10.2.11.2.16 BnGetCurveOrder() */
/* This function is used to get just the curve order */
const bignum_t *
BnGetCurveOrder(
		TPM_ECC_CURVE            curveId
		)
{
    const ECC_CURVE_DATA    *C = GetCurveData(curveId);
    return (C != NULL) ? CurveGetOrder(C) : NULL;
}
/* 10.2.11.2.17 BnIsOnCurve() */
/* This function checks if a point is on the curve. */
BOOL
BnIsOnCurve(
	    pointConst                   Q,
	    const ECC_CURVE_DATA        *C
	    )
{
    BN_VAR(right, (MAX_ECC_KEY_BITS * 3));
    BN_VAR(left, (MAX_ECC_KEY_BITS * 2));
    bigConst                   prime = CurveGetPrime(C);
    //
    // Show that point is on the curve y^2 = x^3 + ax + b;
    // Or y^2 = x(x^2 + a) + b
    // y^2
    BnMult(left, Q->y, Q->y);
    BnMod(left, prime);
    // x^2
    BnMult(right, Q->x, Q->x);
    // x^2 + a
    BnAdd(right, right, CurveGet_a(C));
    //    BnMod(right, CurveGetPrime(C));
    // x(x^2 + a)
    BnMult(right, right, Q->x);
    // x(x^2 + a) + b
    BnAdd(right, right, CurveGet_b(C));
    BnMod(right, prime);
    if(BnUnsignedCmp(left, right) == 0)
	return TRUE;
    else
	return FALSE;
}
/* 10.2.11.2.18 BnIsValidPrivateEcc() */
/* Checks that 0 < x < q */
BOOL
BnIsValidPrivateEcc(
		    bigConst                 x,         // IN: private key to check
		    bigCurve                 E          // IN: the curve to check
		    )
{
    BOOL        retVal;
    retVal = (!BnEqualZero(x)
	      && (BnUnsignedCmp(x, CurveGetOrder(AccessCurveData(E))) < 0));
    return retVal;
}
LIB_EXPORT BOOL
CryptEccIsValidPrivateKey(
			  TPM2B_ECC_PARAMETER     *d,
			  TPM_ECC_CURVE            curveId
			  )
{
    BN_INITIALIZED(bnD, MAX_ECC_PARAMETER_BYTES * 8, d);
    return !BnEqualZero(bnD) && (BnUnsignedCmp(bnD, BnGetCurveOrder(curveId)) < 0);
}
/* 10.2.11.2.19 BnPointMul() */
/* This function does a point multiply of the form R = [d]S + [u]Q where the parameters are bigNum
   values. If S is NULL and d is not NULL, then it computes R = [d]G + [u]Q or just R = [d]G if u
   and Q are NULL. If skipChecks is TRUE, then the function will not verify that the inputs are
   correct for the domain. This would be the case when the values were created by the CryptoEngine()
   code. It will return TPM_RC_NO_RESULT if the resulting point is the point at infinity. */
/* Error Returns Meaning */
/* TPM_RC_NO_RESULT result of multiplication is a point at infinity */
/* TPM_RC_ECC_POINT S or Q is not on the curve */
/* TPM_RC_VALUE d or u is not < n */
TPM_RC
BnPointMult(
	    bigPoint             R,         // OUT: computed point
	    pointConst           S,         // IN: optional point to multiply by 'd'
	    bigConst             d,         // IN: scalar for [d]S or [d]G
	    pointConst           Q,         // IN: optional second point
	    bigConst             u,         // IN: optional second scalar
	    bigCurve             E          // IN: curve parameters
	    )
{
    BOOL                 OK;
    //
    TEST(TPM_ALG_ECDH);
    // Need one scalar
    OK = (d != NULL || u != NULL);
    // If S is present, then d has to be present. If S is not
    // present, then d may or may not be present
    OK = OK && (((S == NULL) == (d == NULL)) || (d != NULL));
    // either both u and Q have to be provided or neither can be provided (don't
    // know what to do if only one is provided.
    OK = OK && ((u == NULL) == (Q == NULL));
    OK = OK && (E != NULL);
    if(!OK)
	return TPM_RC_VALUE;
    OK = (S == NULL) || BnIsOnCurve(S, AccessCurveData(E));
    OK = OK && ((Q == NULL) || BnIsOnCurve(Q, AccessCurveData(E)));
    if(!OK)
	return TPM_RC_ECC_POINT;
    if((d != NULL) && (S == NULL))
	S = CurveGetG(AccessCurveData(E));
    // If only one scalar, don't need Shamir's trick
    if((d == NULL) || (u == NULL))
	{
	    if(d == NULL)
		OK = BnEccModMult(R, Q, u, E);
	    else
		OK = BnEccModMult(R, S, d, E);
	}
    else
	{
	    OK = BnEccModMult2(R, S, d, Q, u, E);
	}
    return  (OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT);
}
/* 10.2.11.2.20	BnEccGetPrivate() */
/* This function gets random values that are the size of the key plus 64 bits. The value is reduced
   (mod (q - 1)) and incremented by 1 (q is the order of the curve. This produces a value (d) such
   that 1 <= d < q. This is the method of FIPS 186-4 Section B.4.1 'Key Pair Generation Using Extra
   Random Value Meaning */
/* TRUE		success */
/* FALSE	failure generating private key */
#if !USE_OPENSSL_FUNCTIONS_EC          // libtpms added
BOOL
BnEccGetPrivate(
		bigNum                   dOut,      // OUT: the qualified random value
		const ECC_CURVE_DATA    *C,         // IN: curve for which the private key
		//     needs to be appropriate
		RAND_STATE              *rand       // IN: state for DRBG
		)
{
    bigConst                 order = CurveGetOrder(C);
    BOOL                     OK;
    UINT32                   orderBits = BnSizeInBits(order);
    UINT32                   orderBytes = BITS_TO_BYTES(orderBits);
    BN_VAR(bnExtraBits, MAX_ECC_KEY_BITS + 64);
    BN_VAR(nMinus1, MAX_ECC_KEY_BITS);
    //
    OK = BnGetRandomBits(bnExtraBits, (orderBytes * 8) + 64, rand);
    OK = OK && BnSubWord(nMinus1, order, 1);
    OK = OK && BnMod(bnExtraBits, nMinus1);
    OK = OK && BnAddWord(dOut, bnExtraBits, 1);
    return OK && !g_inFailureMode;
}
#else                                  // libtpms added begin
BOOL
BnEccGetPrivate(
		bigNum                   dOut,      // OUT: the qualified random value
		const ECC_CURVE_DATA    *C,         // IN: curve for which the private key
		const EC_GROUP          *G,         // IN: the EC_GROUP to use; must be != NULL for rand == NULL
		BOOL                     noLeadingZeros, // IN: require that all bytes in the private key be set
		                                         //     result may not have leading zero bytes
		//     needs to be appropriate
		RAND_STATE              *rand       // IN: state for DRBG
		)
{
    bigConst                 order = CurveGetOrder(C);
    BOOL                     OK;
    UINT32                   orderBits = BnSizeInBits(order);
    UINT32                   orderBytes = BITS_TO_BYTES(orderBits);
    UINT32                   requestedBits = 0;
    BN_VAR(bnExtraBits, MAX_ECC_KEY_BITS + 64);
    BN_VAR(nMinus1, MAX_ECC_KEY_BITS);

    if (rand == NULL) {
        if (noLeadingZeros)
            requestedBits = orderBits;

        return OpenSSLEccGetPrivate(dOut, G, requestedBits);
    }

    //
    OK = BnGetRandomBits(bnExtraBits, (orderBytes * 8) + 64, rand);
    OK = OK && BnSubWord(nMinus1, order, 1);
    OK = OK && BnMod(bnExtraBits, nMinus1);
    OK = OK && BnAddWord(dOut, bnExtraBits, 1);
    return OK && !g_inFailureMode;
}
#endif // USE_OPENSSL_FUNCTIONS_EC        libtpms added end
/* 10.2.11.2.21 BnEccGenerateKeyPair() */
/* This function gets a private scalar from the source of random bits and does the point multiply to
   get the public key. */
#if !USE_OPENSSL_FUNCTIONS_EC // libtpms added

BOOL
BnEccGenerateKeyPair(
		     bigNum               bnD,            // OUT: private scalar
		     bn_point_t          *ecQ,            // OUT: public point
		     bigCurve             E,              // IN: curve for the point
		     RAND_STATE          *rand            // IN: DRBG state to use
		     )
{
    BOOL                 OK = FALSE;
    // Get a private scalar
    OK = BnEccGetPrivate(bnD, AccessCurveData(E), rand);
    // Do a point multiply
    OK = OK && BnEccModMult(ecQ, NULL, bnD, E);
    if(!OK)
	BnSetWord(ecQ->z, 0);
    else
	BnSetWord(ecQ->z, 1);
    return OK;
}

#else // libtpms added begin

/* In this version of BnEccGenerateKeyPair we take a dual approach to constant
   time requirements: For curves whose order is at the byte boundary, e.g.
   NIST P224/P256/P384, we make sure that bnD has all bytes set (no leading zeros)
   so that OpenSSL BIGNUM code will not reduce the number of bytes and the
   subsequent BnEccModMult() would run faster for a shoter value. For all other
   curves whose order is not at the byte boundary, e.g. NIST P521, we simply
   always add the order of the curve to bnD and call BnEccModMult() with the
   result bnD1, which leads to the same result. */
BOOL
BnEccGenerateKeyPair(
		     bigNum               bnD,            // OUT: private scalar
		     bn_point_t          *ecQ,            // OUT: public point
		     bigCurve             E,              // IN: curve for the point
		     RAND_STATE          *rand            // IN: DRBG state to use
		     )
{
    BOOL                 OK = FALSE;
    bigConst             order = CurveGetOrder(AccessCurveData(E));
    UINT32               orderBits = BnSizeInBits(order);
    BOOL                 atByteBoundary = (orderBits & 7) == 0;
    BOOL                 noLeadingZeros = atByteBoundary;
    ECC_NUM(bnD1);

    // We request that bnD not have leading zeros if it is at byte-boundary,
    // like for example it is the case for NIST P256.
    OK = BnEccGetPrivate(bnD, AccessCurveData(E), E->G, noLeadingZeros, rand);
    if (!atByteBoundary) {
        // for NIST P521 we can add the order to bnD to ensure we have
        // a constant amount of bytes; the result is the same as if we
        // were doing the BnEccModMult() calculation with bnD.
        OK = OK && BnAdd(bnD1, bnD, order);
        OK = OK && BnEccModMult(ecQ, NULL, bnD1, E);
    } else {
        OK = OK && BnEccModMult(ecQ, NULL, bnD, E);
    }

    if(!OK)
	BnSetWord(ecQ->z, 0);
    else
	BnSetWord(ecQ->z, 1);
    return OK;
}

#endif // libtpms added end

/* 10.2.11.2.21 CryptEccNewKeyPair */
/* This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part
   of the key will be discarded */
LIB_EXPORT TPM_RC
CryptEccNewKeyPair(
		   TPMS_ECC_POINT          *Qout,      // OUT: the public point
		   TPM2B_ECC_PARAMETER     *dOut,      // OUT: the private scalar
		   TPM_ECC_CURVE            curveId    // IN: the curve for the key
		   )
{
    CURVE_INITIALIZED(E, curveId);
    POINT(ecQ);
    ECC_NUM(bnD);
    BOOL                    OK;
    if(E == NULL)
	return TPM_RC_CURVE;
    TEST(TPM_ALG_ECDH);
    OK = BnEccGenerateKeyPair(bnD, ecQ, E, NULL);
    if(OK)
	{
	    BnPointTo2B(Qout, ecQ, E);
	    BnTo2B(bnD, &dOut->b, Qout->x.t.size);
	}
    else
	{
	    Qout->x.t.size = Qout->y.t.size = dOut->t.size = 0;
	}
    CURVE_FREE(E);
    return OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT;
}
/* 10.2.11.2.22 CryptEccPointMultiply() */
/* This function computes 'R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are
   points on the specified curve and G is the default generator of the curve. */
/* The xOut and yOut parameters are optional and may be set to NULL if not used. */
/* It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be
   provided. If dIn and QIn are specified but uIn is not provided, then R = [dIn]QIn. */
/* If the multiply produces the point at infinity, the TPM_RC_NO_RESULT is returned. */
/* The sizes of xOut and yOut' will be set to be the size of the degree of the curve */
/* It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is
   unspecified. */
/* Error Returns Meaning */
/* TPM_RC_ECC_POINT the point Pin or Qin is not on the curve */
/* TPM_RC_NO_RESULT the product point is at infinity */
/* TPM_RC_CURVE bad curve */
/* TPM_RC_VALUE dIn or uIn out of range */
LIB_EXPORT TPM_RC
CryptEccPointMultiply(
		      TPMS_ECC_POINT      *Rout,              // OUT: the product point R
		      TPM_ECC_CURVE        curveId,           // IN: the curve to use
		      TPMS_ECC_POINT      *Pin,               // IN: first point (can be null)
		      TPM2B_ECC_PARAMETER *dIn,               // IN: scalar value for [dIn]Qin
		      //     the Pin
		      TPMS_ECC_POINT      *Qin,               // IN: point Q
		      TPM2B_ECC_PARAMETER *uIn                // IN: scalar value for the multiplier
		      //     of Q
		      )
{
    CURVE_INITIALIZED(E, curveId);
    POINT_INITIALIZED(ecP, Pin);
    ECC_INITIALIZED(bnD, dIn);      // If dIn is null, then bnD is null
    ECC_INITIALIZED(bnU, uIn);
    POINT_INITIALIZED(ecQ, Qin);
    POINT(ecR);
    TPM_RC             retVal;
    //
    retVal = BnPointMult(ecR, ecP, bnD, ecQ, bnU, E);
    if(retVal == TPM_RC_SUCCESS)
	BnPointTo2B(Rout, ecR, E);
    else
	ClearPoint2B(Rout);
    CURVE_FREE(E);
    return retVal;
}
/* 10.2.11.2.23 CryptEccIsPointOnCurve() */
/* This function is used to test if a point is on a defined curve. It does this by checking that y^2
   mod p = x^3 + a*x + b mod p */
/* It is a fatal error if Q is not specified (is NULL). */
/* Return Values Meaning */
/* TRUE point is on curve */
/* FALSE point is not on curve or curve is not supported */
LIB_EXPORT BOOL
CryptEccIsPointOnCurve(
		       TPM_ECC_CURVE            curveId,       // IN: the curve selector
		       TPMS_ECC_POINT          *Qin            // IN: the point.
		       )
{
    const ECC_CURVE_DATA    *C = GetCurveData(curveId);
    POINT_INITIALIZED(ecQ, Qin);
    BOOL            OK;
    //
    pAssert(Qin != NULL);
    OK = (C != NULL && (BnIsOnCurve(ecQ, C)));
    return OK;
}
/* 10.2.11.2.24 CryptEccGenerateKey() */
/* This function generates an ECC key pair based on the input parameters. This routine uses KDFa()
   to produce candidate numbers. The method is according to FIPS 186-3, section B.1.2 "Key Pair
   Generation by Testing Candidates." According to the method in FIPS 186-3, the resulting private
   value d should be 1 <= d < n where n is the order of the base point. */
/* It is a fatal error if Qout, dOut, is not provided (is NULL). */
/* If the curve is not supported If seed is not provided, then a random number will be used for the
   key */
/* Error Returns Meaning */
/* TPM_RC_CURVE curve is not supported */
/* TPM_RC_NO_RESULT could not verify key with signature (FIPS only) */
LIB_EXPORT TPM_RC
CryptEccGenerateKey(
		    TPMT_PUBLIC         *publicArea,        // IN/OUT: The public area template for
		    //      the new key. The public key
		    //      area will be replaced computed
		    //      ECC public key
		    TPMT_SENSITIVE      *sensitive,         // OUT: the sensitive area will be
		    //      updated to contain the private
		    //      ECC key and the symmetric
		    //      encryption key
		    RAND_STATE          *rand               // IN: if not NULL, the deterministic
		    //     RNG state
		    )
{
    CURVE_INITIALIZED(E, publicArea->parameters.eccDetail.curveID);
    ECC_NUM(bnD);
    POINT(ecQ);
    BOOL                     OK;
    TPM_RC                   retVal;
    TEST(TPM_ALG_ECDSA); // ECDSA is used to verify each key
    // Validate parameters
    if(E == NULL)
	ERROR_RETURN(TPM_RC_CURVE);
    publicArea->unique.ecc.x.t.size = 0;
    publicArea->unique.ecc.y.t.size = 0;
    sensitive->sensitive.ecc.t.size = 0;
    OK = BnEccGenerateKeyPair(bnD, ecQ, E, rand);
    if(OK)
	{
	    BnPointTo2B(&publicArea->unique.ecc, ecQ, E);
	    BnTo2B(bnD, &sensitive->sensitive.ecc.b, publicArea->unique.ecc.x.t.size);
	}
#if FIPS_COMPLIANT
    // See if PWCT is required
    if(OK && (IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign)))
	{
	    ECC_NUM(bnT);
	    ECC_NUM(bnS);
	    TPM2B_DIGEST    digest;
	    TEST(TPM_ALG_ECDSA);
	    digest.t.size = MIN(sensitive->sensitive.ecc.t.size, sizeof(digest.t.buffer));
	    // Get a random value to sign using the built in DRBG state
	    DRBG_Generate(NULL, digest.t.buffer, digest.t.size);
	    if(g_inFailureMode)
		return TPM_RC_FAILURE;
	    BnSignEcdsa(bnT, bnS, E, bnD, &digest, NULL);
	    // and make sure that we can validate the signature
	    OK = BnValidateSignatureEcdsa(bnT, bnS, E, ecQ, &digest) == TPM_RC_SUCCESS;
	}
#endif
    retVal = (OK) ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT;
 Exit:
    CURVE_FREE(E);
    return retVal;
}

//		libtpms added begin
// Support for some curves may be compiled in but they may not be
// supported by openssl's crypto library.
LIB_EXPORT BOOL
CryptEccIsCurveRuntimeUsable(
			     TPMI_ECC_CURVE curveId
			    )
{
    CURVE_INITIALIZED(E, curveId);
    if (E == NULL)
	return FALSE;
    CURVE_FREE(E);
    return TRUE;
}
//		libtpms added end

#endif  // TPM_ALG_ECC