1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
|
/********************************************************************************/
/* */
/* ECC Signatures */
/* Written by Ken Goldman */
/* IBM Thomas J. Watson Research Center */
/* $Id: CryptEccSignature.c 1658 2021-01-22 23:14:01Z kgoldman $ */
/* */
/* Licenses and Notices */
/* */
/* 1. Copyright Licenses: */
/* */
/* - Trusted Computing Group (TCG) grants to the user of the source code in */
/* this specification (the "Source Code") a worldwide, irrevocable, */
/* nonexclusive, royalty free, copyright license to reproduce, create */
/* derivative works, distribute, display and perform the Source Code and */
/* derivative works thereof, and to grant others the rights granted herein. */
/* */
/* - The TCG grants to the user of the other parts of the specification */
/* (other than the Source Code) the rights to reproduce, distribute, */
/* display, and perform the specification solely for the purpose of */
/* developing products based on such documents. */
/* */
/* 2. Source Code Distribution Conditions: */
/* */
/* - Redistributions of Source Code must retain the above copyright licenses, */
/* this list of conditions and the following disclaimers. */
/* */
/* - Redistributions in binary form must reproduce the above copyright */
/* licenses, this list of conditions and the following disclaimers in the */
/* documentation and/or other materials provided with the distribution. */
/* */
/* 3. Disclaimers: */
/* */
/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */
/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */
/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */
/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */
/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */
/* information on specification licensing rights available through TCG */
/* membership agreements. */
/* */
/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */
/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */
/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */
/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */
/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */
/* */
/* - Without limitation, TCG and its members and licensors disclaim all */
/* liability, including liability for infringement of any proprietary */
/* rights, relating to use of information in this specification and to the */
/* implementation of this specification, and TCG disclaims all liability for */
/* cost of procurement of substitute goods or services, lost profits, loss */
/* of use, loss of data or any incidental, consequential, direct, indirect, */
/* or special damages, whether under contract, tort, warranty or otherwise, */
/* arising in any way out of use or reliance upon this specification or any */
/* information herein. */
/* */
/* (c) Copyright IBM Corp. and others, 2016 - 2021 */
/* */
/********************************************************************************/
/* 10.2.12 CryptEccSignature.c */
/* 10.2.12.1 Includes and Defines */
#include "Tpm.h"
#include "CryptEccSignature_fp.h"
#include "TpmToOsslMath_fp.h" // libtpms added
#if ALG_ECC
/* 10.2.12.2 Utility Functions */
/* 10.2.12.2.1 EcdsaDigest() */
/* Function to adjust the digest so that it is no larger than the order of the curve. This is used
for ECDSA sign and verification. */
#if !USE_OPENSSL_FUNCTIONS_ECDSA // libtpms added
static bigNum
EcdsaDigest(
bigNum bnD, // OUT: the adjusted digest
const TPM2B_DIGEST *digest, // IN: digest to adjust
bigConst max // IN: value that indicates the maximum
// number of bits in the results
)
{
int bitsInMax = BnSizeInBits(max);
int shift;
//
if(digest == NULL)
BnSetWord(bnD, 0);
else
{
BnFromBytes(bnD, digest->t.buffer,
(NUMBYTES)MIN(digest->t.size, BITS_TO_BYTES(bitsInMax)));
shift = BnSizeInBits(bnD) - bitsInMax;
if(shift > 0)
BnShiftRight(bnD, bnD, shift);
}
return bnD;
}
#endif // libtpms added
/* 10.2.12.2.2 BnSchnorrSign() */
/* This contains the Schnorr signature computation. It is used by both ECDSA and Schnorr
signing. The result is computed as: [s = k + r * d (mod n)] where */
/* a) s is the signature */
/* b) k is a random value */
/* c) r is the value to sign */
/* d) d is the private EC key */
/* e) n is the order of the curve */
/* Error Returns Meaning */
/* TPM_RC_NO_RESULT the result of the operation was zero or r (mod n) is zero */
static TPM_RC
BnSchnorrSign(
bigNum bnS, // OUT: s component of the signature
bigConst bnK, // IN: a random value
bigNum bnR, // IN: the signature 'r' value
bigConst bnD, // IN: the private key
bigConst bnN // IN: the order of the curve
)
{
// Need a local temp value to store the intermediate computation because product
// size can be larger than will fit in bnS.
BN_VAR(bnT1, MAX_ECC_PARAMETER_BYTES * 2 * 8);
//
// Reduce bnR without changing the input value
BnDiv(NULL, bnT1, bnR, bnN);
if(BnEqualZero(bnT1))
return TPM_RC_NO_RESULT;
// compute s = (k + r * d)(mod n)
// r * d
BnMult(bnT1, bnT1, bnD);
// k * r * d
BnAdd(bnT1, bnT1, bnK);
// k + r * d (mod n)
BnDiv(NULL, bnS, bnT1, bnN);
return (BnEqualZero(bnS)) ? TPM_RC_NO_RESULT : TPM_RC_SUCCESS;
}
/* 10.2.12.3 Signing Functions */
/* 10.2.12.3.1 BnSignEcdsa() */
/* This function implements the ECDSA signing algorithm. The method is described in the comments
below. This version works with internal numbers. */
#if !USE_OPENSSL_FUNCTIONS_ECDSA // libtpms added
TPM_RC
BnSignEcdsa(
bigNum bnR, // OUT: r component of the signature
bigNum bnS, // OUT: s component of the signature
bigCurve E, // IN: the curve used in the signature
// process
bigNum bnD, // IN: private signing key
const TPM2B_DIGEST *digest, // IN: the digest to sign
RAND_STATE *rand // IN: used in debug of signing
)
{
ECC_NUM(bnK);
ECC_NUM(bnIk);
BN_VAR(bnE, MAX(MAX_ECC_KEY_BYTES, MAX_DIGEST_SIZE) * 8);
POINT(ecR);
bigConst order = CurveGetOrder(AccessCurveData(E));
TPM_RC retVal = TPM_RC_SUCCESS;
INT32 tries = 10;
BOOL OK = FALSE;
//
pAssert(digest != NULL);
// The algorithm as described in "Suite B Implementer's Guide to FIPS
// 186-3(ECDSA)"
// 1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a
// per-message secret number and its inverse modulo n. Since n is prime,
// the output will be invalid only if there is a failure in the RBG.
// 2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar
// multiplication (see [Routines]), where G is the base point included in
// the set of domain parameters.
// 3. Compute r = xR mod n. If r = 0, then return to Step 1. 1.
// 4. Use the selected hash function to compute H = Hash(M).
// 5. Convert the bit string H to an integer e as described in Appendix B.2.
// 6. Compute s = (k^-1 * (e + d * r)) mod q. If s = 0, return to Step 1.2.
// 7. Return (r, s).
// In the code below, q is n (that it, the order of the curve is p)
do // This implements the loop at step 6. If s is zero, start over.
{
for(; tries > 0; tries--)
{
// Step 1 and 2 -- generate an ephemeral key and the modular inverse
// of the private key.
if(!BnEccGenerateKeyPair(bnK, ecR, E, rand))
continue;
// x coordinate is mod p. Make it mod q
BnMod(ecR->x, order);
// Make sure that it is not zero;
if(BnEqualZero(ecR->x))
continue;
// write the modular reduced version of r as part of the signature
BnCopy(bnR, ecR->x);
// Make sure that a modular inverse exists and try again if not
OK = (BnModInverse(bnIk, bnK, order));
if(OK)
break;
}
if(!OK)
goto Exit;
EcdsaDigest(bnE, digest, order);
// now have inverse of K (bnIk), e (bnE), r (bnR), d (bnD) and
// CurveGetOrder(E)
// Compute s = k^-1 (e + r*d)(mod q)
// first do s = r*d mod q
BnModMult(bnS, bnR, bnD, order);
// s = e + s = e + r * d
BnAdd(bnS, bnE, bnS);
// s = k^(-1)s (mod n) = k^(-1)(e + r * d)(mod n)
BnModMult(bnS, bnIk, bnS, order);
// If S is zero, try again
} while(BnEqualZero(bnS));
Exit:
return retVal;
}
#else // !USE_OPENSSL_FUNCTIONS_ECDSA libtpms added begin
TPM_RC
BnSignEcdsa(
bigNum bnR, // OUT: r component of the signature
bigNum bnS, // OUT: s component of the signature
bigCurve E, // IN: the curve used in the signature
// process
bigNum bnD, // IN: private signing key
const TPM2B_DIGEST *digest, // IN: the digest to sign
RAND_STATE *rand // IN: used in debug of signing
)
{
ECDSA_SIG *sig = NULL;
EC_KEY *eckey;
int retVal;
const BIGNUM *r;
const BIGNUM *s;
BIGNUM *d = BN_new();
d = BigInitialized(d, bnD);
eckey = EC_KEY_new();
if (d == NULL || eckey == NULL)
ERROR_RETURN(TPM_RC_FAILURE);
if (EC_KEY_set_group(eckey, E->G) != 1)
ERROR_RETURN(TPM_RC_FAILURE);
if (EC_KEY_set_private_key(eckey, d) != 1)
ERROR_RETURN(TPM_RC_FAILURE);
sig = ECDSA_do_sign(digest->b.buffer, digest->b.size, eckey);
if (sig == NULL)
ERROR_RETURN(TPM_RC_FAILURE);
ECDSA_SIG_get0(sig, &r, &s);
OsslToTpmBn(bnR, r);
OsslToTpmBn(bnS, s);
retVal = TPM_RC_SUCCESS;
Exit:
BN_clear_free(d);
EC_KEY_free(eckey);
ECDSA_SIG_free(sig);
return retVal;
}
#endif // USE_OPENSSL_FUNCTIONS_ECDSA libtpms added end
#if ALG_ECDAA
/* 10.2.12.3.2 BnSignEcdaa() */
/* This function performs s = r + T * d mod q where */
/* a) 'r is a random, or pseudo-random value created in the commit phase */
/* b) nonceK is a TPM-generated, random value 0 < nonceK < n */
/* c) T is mod q of Hash(nonceK || digest), and */
/* d) d is a private key. */
/* The signature is the tuple (nonceK, s) */
/* Regrettably, the parameters in this function kind of collide with the parameter names used in
ECSCHNORR making for a lot of confusion. In particular, the k value in this function is value in
this function u */
/* Error Returns Meaning */
/* TPM_RC_SCHEME unsupported hash algorithm */
/* TPM_RC_NO_RESULT cannot get values from random number generator */
static TPM_RC
BnSignEcdaa(
TPM2B_ECC_PARAMETER *nonceK, // OUT: nonce component of the signature
bigNum bnS, // OUT: s component of the signature
bigCurve E, // IN: the curve used in signing
bigNum bnD, // IN: the private key
const TPM2B_DIGEST *digest, // IN: the value to sign (mod q)
TPMT_ECC_SCHEME *scheme, // IN: signing scheme (contains the
// commit count value).
OBJECT *eccKey, // IN: The signing key
RAND_STATE *rand // IN: a random number state
)
{
TPM_RC retVal;
TPM2B_ECC_PARAMETER r;
HASH_STATE state;
TPM2B_DIGEST T;
BN_MAX(bnT);
//
NOT_REFERENCED(rand);
if(!CryptGenerateR(&r, &scheme->details.ecdaa.count,
eccKey->publicArea.parameters.eccDetail.curveID,
&eccKey->name))
retVal = TPM_RC_VALUE;
else
{
// This allocation is here because 'r' doesn't have a value until
// CrypGenerateR() is done.
ECC_INITIALIZED(bnR, &r);
do
{
// generate nonceK such that 0 < nonceK < n
// use bnT as a temp.
#if USE_OPENSSL_FUNCTIONS_EC // libtpms added begin
if(!BnEccGetPrivate(bnT, AccessCurveData(E), E->G, false, rand))
#else // libtpms added end
if(!BnEccGetPrivate(bnT, AccessCurveData(E), rand))
#endif // libtpms added
{
retVal = TPM_RC_NO_RESULT;
break;
}
BnTo2B(bnT, &nonceK->b, 0);
T.t.size = CryptHashStart(&state, scheme->details.ecdaa.hashAlg);
if(T.t.size == 0)
{
retVal = TPM_RC_SCHEME;
}
else
{
CryptDigestUpdate2B(&state, &nonceK->b);
CryptDigestUpdate2B(&state, &digest->b);
CryptHashEnd2B(&state, &T.b);
BnFrom2B(bnT, &T.b);
// libtpms: Note: T is NOT a concern for constant-timeness
// Watch out for the name collisions in this call!!
retVal = BnSchnorrSign(bnS, bnR, bnT, bnD,
AccessCurveData(E)->order);
}
} while(retVal == TPM_RC_NO_RESULT);
// Because the rule is that internal state is not modified if the command
// fails, only end the commit if the command succeeds.
// NOTE that if the result of the Schnorr computation was zero
// it will probably not be worthwhile to run the same command again because
// the result will still be zero. This means that the Commit command will
// need to be run again to get a new commit value for the signature.
if(retVal == TPM_RC_SUCCESS)
CryptEndCommit(scheme->details.ecdaa.count);
}
return retVal;
}
#endif // ALG_ECDAA
#if ALG_ECSCHNORR
/* 10.2.12.3.3 SchnorrReduce() */
/* Function to reduce a hash result if it's magnitude is to large. The size of number is set so that
it has no more bytes of significance than the reference value. If the resulting number can have
more bits of significance than the reference. */
static void
SchnorrReduce(
TPM2B *number, // IN/OUT: Value to reduce
bigConst reference // IN: the reference value
)
{
UINT16 maxBytes = (UINT16)BITS_TO_BYTES(BnSizeInBits(reference));
if(number->size > maxBytes)
number->size = maxBytes;
}
/* 10.2.12.3.4 SchnorrEcc() */
/* This function is used to perform a modified Schnorr signature. */
/* This function will generate a random value k and compute */
/* a) (xR, yR) = [k]G */
/* b) r = hash(xR || P)(mod q) */
/* c) rT = truncated r */
/* d) s= k + rT * ds (mod q) */
/* e) return the tuple rT, s */
/* Error Returns Meaning */
/* TPM_RC_NO_RESULT failure in the Schnorr sign process */
/* TPM_RC_SCHEME hashAlg can't produce zero-length digest */
static TPM_RC
BnSignEcSchnorr(
bigNum bnR, // OUT: r component of the signature
bigNum bnS, // OUT: s component of the signature
bigCurve E, // IN: the curve used in signing
bigNum bnD, // IN: the signing key
const TPM2B_DIGEST *digest, // IN: the digest to sign
TPM_ALG_ID hashAlg, // IN: signing scheme (contains a hash)
RAND_STATE *rand // IN: non-NULL when testing
)
{
HASH_STATE hashState;
UINT16 digestSize
= CryptHashGetDigestSize(hashAlg);
TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_KEY_BYTES));
TPM2B_T T2b;
TPM2B *e = &T2b.b;
TPM_RC retVal = TPM_RC_NO_RESULT;
const ECC_CURVE_DATA *C;
bigConst order;
bigConst prime;
ECC_NUM(bnK);
POINT(ecR);
//
// Parameter checks
if(E == NULL)
ERROR_RETURN(TPM_RC_VALUE);
C = AccessCurveData(E);
order = CurveGetOrder(C);
prime = CurveGetOrder(C);
// If the digest does not produce a hash, then null the signature and return
// a failure.
if(digestSize == 0)
{
BnSetWord(bnR, 0);
BnSetWord(bnS, 0);
ERROR_RETURN(TPM_RC_SCHEME);
}
do
{
// Generate a random key pair
if(!BnEccGenerateKeyPair(bnK, ecR, E, rand))
break;
// Convert R.x to a string
BnTo2B(ecR->x, e, (NUMBYTES)BITS_TO_BYTES(BnSizeInBits(prime)));
// f) compute r = Hash(e || P) (mod n)
CryptHashStart(&hashState, hashAlg);
CryptDigestUpdate2B(&hashState, e);
CryptDigestUpdate2B(&hashState, &digest->b);
e->size = CryptHashEnd(&hashState, digestSize, e->buffer);
// Reduce the hash size if it is larger than the curve order
SchnorrReduce(e, order);
// Convert hash to number
BnFrom2B(bnR, e);
// libtpms: Note: e is NOT a concern for constant-timeness
// Do the Schnorr computation
retVal = BnSchnorrSign(bnS, bnK, bnR, bnD, CurveGetOrder(C));
} while(retVal == TPM_RC_NO_RESULT);
Exit:
return retVal;
}
#endif // ALG_ECSCHNORR
#if ALG_SM2
#ifdef _SM2_SIGN_DEBUG
/* 10.2.12.3.5 BnHexEqual() */
/* This function compares a bignum value to a hex string. */
/* Return Value Meaning */
/* TRUE(1) values equal */
/* FALSE(0) values not equal */
static BOOL
BnHexEqual(
bigNum bn, //IN: big number value
const char *c //IN: character string number
)
{
ECC_NUM(bnC);
BnFromHex(bnC, c);
return (BnUnsignedCmp(bn, bnC) == 0);
}
#endif // _SM2_SIGN_DEBUG
/* 10.2.12.3.5 BnSignEcSm2() */
/* This function signs a digest using the method defined in SM2 Part 2. The method in the standard
will add a header to the message to be signed that is a hash of the values that define the
key. This then hashed with the message to produce a digest (e) that is signed. This function
signs e. */
/* Error Returns Meaning */
/* TPM_RC_VALUE bad curve */
static TPM_RC
BnSignEcSm2(
bigNum bnR, // OUT: r component of the signature
bigNum bnS, // OUT: s component of the signature
bigCurve E, // IN: the curve used in signing
bigNum bnD, // IN: the private key
const TPM2B_DIGEST *digest, // IN: the digest to sign
RAND_STATE *rand // IN: random number generator (mostly for
// debug)
)
{
BN_MAX_INITIALIZED(bnE, digest); // Don't know how big digest might be
ECC_NUM(bnN);
ECC_NUM(bnK);
ECC_NUM(bnT); // temp
POINT(Q1);
bigConst order = (E != NULL)
? CurveGetOrder(AccessCurveData(E)) : NULL;
// libtpms added begin
UINT32 orderBits = BnSizeInBits(order);
BOOL atByteBoundary = (orderBits & 7) == 0;
ECC_NUM(bnK1);
// libtpms added end
//
#ifdef _SM2_SIGN_DEBUG
BnFromHex(bnE, "B524F552CD82B8B028476E005C377FB1"
"9A87E6FC682D48BB5D42E3D9B9EFFE76");
BnFromHex(bnD, "128B2FA8BD433C6C068C8D803DFF7979"
"2A519A55171B1B650C23661D15897263");
#endif
// A3: Use random number generator to generate random number 1 <= k <= n-1;
// NOTE: Ax: numbers are from the SM2 standard
loop:
{
// Get a random number 0 < k < n
// libtpms modified begin
//
// We take a dual approach here. One for curves whose order is not at
// the byte boundary, e.g. NIST P521, we get a random number bnK and add
// the order to that number to have bnK1. This will not spill over into
// a new byte and we can then use bnK1 to do the do the BnEccModMult
// with a constant number of bytes. For curves whose order is at the
// byte boundary we require that the random number bnK comes back with
// a requested number of bytes.
if (!atByteBoundary) {
BnGenerateRandomInRange(bnK, order, rand);
BnAdd(bnK1, bnK, order);
#ifdef _SM2_SIGN_DEBUG
BnFromHex(bnK1, "6CB28D99385C175C94F94E934817663F"
"C176D925DD72B727260DBAAE1FB2F96F");
#endif
// A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according
// to details specified in 4.2.7 in Part 1 of this document, transform the
// data type of x1 into an integer;
if(!BnEccModMult(Q1, NULL, bnK1, E))
goto loop;
} else {
BnGenerateRandomInRangeAllBytes(bnK, order, rand);
#ifdef _SM2_SIGN_DEBUG
BnFromHex(bnK, "6CB28D99385C175C94F94E934817663F"
"C176D925DD72B727260DBAAE1FB2F96F");
#endif
if(!BnEccModMult(Q1, NULL, bnK, E))
goto loop;
} // libtpms modified end
// A5: Figure out r = (e + x1) mod n,
BnAdd(bnR, bnE, Q1->x);
BnMod(bnR, order);
#ifdef _SM2_SIGN_DEBUG
pAssert(BnHexEqual(bnR, "40F1EC59F793D9F49E09DCEF49130D41"
"94F79FB1EED2CAA55BACDB49C4E755D1"));
#endif
// if r=0 or r+k=n, return to A3;
if(BnEqualZero(bnR))
goto loop;
BnAdd(bnT, bnK, bnR);
if(BnUnsignedCmp(bnT, bnN) == 0)
goto loop;
// A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n,
// if s=0, return to A3;
// compute t = (1+dA)^-1
BnAddWord(bnT, bnD, 1);
BnModInverse(bnT, bnT, order);
#ifdef _SM2_SIGN_DEBUG
pAssert(BnHexEqual(bnT, "79BFCF3052C80DA7B939E0C6914A18CB"
"B2D96D8555256E83122743A7D4F5F956"));
#endif
// compute s = t * (k - r * dA) mod n
BnModMult(bnS, bnR, bnD, order);
// k - r * dA mod n = k + n - ((r * dA) mod n)
BnSub(bnS, order, bnS);
BnAdd(bnS, bnK, bnS);
BnModMult(bnS, bnS, bnT, order);
#ifdef _SM2_SIGN_DEBUG
pAssert(BnHexEqual(bnS, "6FC6DAC32C5D5CF10C77DFB20F7C2EB6"
"67A457872FB09EC56327A67EC7DEEBE7"));
#endif
if(BnEqualZero(bnS))
goto loop;
}
// A7: According to details specified in 4.2.1 in Part 1 of this document,
// transform the data type of r, s into bit strings, signature of message M
// is (r, s).
// This is handled by the common return code
#ifdef _SM2_SIGN_DEBUG
pAssert(BnHexEqual(bnR, "40F1EC59F793D9F49E09DCEF49130D41"
"94F79FB1EED2CAA55BACDB49C4E755D1"));
pAssert(BnHexEqual(bnS, "6FC6DAC32C5D5CF10C77DFB20F7C2EB6"
"67A457872FB09EC56327A67EC7DEEBE7"));
#endif
return TPM_RC_SUCCESS;
}
#endif // ALG_SM2
/* 10.2.12.3.6 CryptEccSign() */
/* This function is the dispatch function for the various ECC-based signing schemes. There is a bit
of ugliness to the parameter passing. In order to test this, we sometime would like to use a
deterministic RNG so that we can get the same signatures during testing. The easiest way to do
this for most schemes is to pass in a deterministic RNG and let it return canned values during
testing. There is a competing need for a canned parameter to use in ECDAA. To accommodate both
needs with minimal fuss, a special type of RAND_STATE is defined to carry the address of the
commit value. The setup and handling of this is not very different for the caller than what was
in previous versions of the code. */
/* Error Returns Meaning */
/* TPM_RC_SCHEME scheme is not supported */
LIB_EXPORT TPM_RC
CryptEccSign(
TPMT_SIGNATURE *signature, // OUT: signature
OBJECT *signKey, // IN: ECC key to sign the hash
const TPM2B_DIGEST *digest, // IN: digest to sign
TPMT_ECC_SCHEME *scheme, // IN: signing scheme
RAND_STATE *rand
)
{
CURVE_INITIALIZED(E, signKey->publicArea.parameters.eccDetail.curveID);
ECC_INITIALIZED(bnD, &signKey->sensitive.sensitive.ecc.b);
ECC_NUM(bnR);
ECC_NUM(bnS);
const ECC_CURVE_DATA *C;
TPM_RC retVal = TPM_RC_SCHEME;
//
NOT_REFERENCED(scheme);
if(E == NULL)
ERROR_RETURN(TPM_RC_VALUE);
C = AccessCurveData(E);
signature->signature.ecdaa.signatureR.t.size
= sizeof(signature->signature.ecdaa.signatureR.t.buffer);
signature->signature.ecdaa.signatureS.t.size
= sizeof(signature->signature.ecdaa.signatureS.t.buffer);
TEST(signature->sigAlg);
switch(signature->sigAlg)
{
case TPM_ALG_ECDSA:
retVal = BnSignEcdsa(bnR, bnS, E, bnD, digest, rand);
break;
#if ALG_ECDAA
case TPM_ALG_ECDAA:
retVal = BnSignEcdaa(&signature->signature.ecdaa.signatureR, bnS, E,
bnD, digest, scheme, signKey, rand);
bnR = NULL;
break;
#endif
#if ALG_ECSCHNORR
case TPM_ALG_ECSCHNORR:
retVal = BnSignEcSchnorr(bnR, bnS, E, bnD, digest,
signature->signature.ecschnorr.hash,
rand);
break;
#endif
#if ALG_SM2
case TPM_ALG_SM2:
retVal = BnSignEcSm2(bnR, bnS, E, bnD, digest, rand);
break;
#endif
default:
break;
}
// If signature generation worked, convert the results.
if(retVal == TPM_RC_SUCCESS)
{
NUMBYTES orderBytes =
(NUMBYTES)BITS_TO_BYTES(BnSizeInBits(CurveGetOrder(C)));
if(bnR != NULL)
BnTo2B(bnR, &signature->signature.ecdaa.signatureR.b, orderBytes);
if(bnS != NULL)
BnTo2B(bnS, &signature->signature.ecdaa.signatureS.b, orderBytes);
}
Exit:
CURVE_FREE(E);
return retVal;
}
#if ALG_ECDSA
/* 10.2.12.3.7 BnValidateSignatureEcdsa() */
/* This function validates an ECDSA signature. rIn and sIn should have been checked to make sure
that they are in the range 0 < v < n */
/* Error Returns Meaning */
/* TPM_RC_SIGNATURE signature not valid */
#if !USE_OPENSSL_FUNCTIONS_ECDSA // libtpms added
TPM_RC
BnValidateSignatureEcdsa(
bigNum bnR, // IN: r component of the signature
bigNum bnS, // IN: s component of the signature
bigCurve E, // IN: the curve used in the signature
// process
bn_point_t *ecQ, // IN: the public point of the key
const TPM2B_DIGEST *digest // IN: the digest that was signed
)
{
// Make sure that the allocation for the digest is big enough for a maximum
// digest
BN_VAR(bnE, MAX(MAX_ECC_KEY_BYTES, MAX_DIGEST_SIZE) * 8);
POINT(ecR);
ECC_NUM(bnU1);
ECC_NUM(bnU2);
ECC_NUM(bnW);
bigConst order = CurveGetOrder(AccessCurveData(E));
TPM_RC retVal = TPM_RC_SIGNATURE;
// Get adjusted digest
EcdsaDigest(bnE, digest, order);
// 1. If r and s are not both integers in the interval [1, n - 1], output
// INVALID.
// bnR and bnS were validated by the caller
// 2. Use the selected hash function to compute H0 = Hash(M0).
// This is an input parameter
// 3. Convert the bit string H0 to an integer e as described in Appendix B.2.
// Done at entry
// 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1.
if(!BnModInverse(bnW, bnS, order))
goto Exit;
// 5. Compute u1 = (e' * w) mod n, and compute u2 = (r' * w) mod n.
BnModMult(bnU1, bnE, bnW, order);
BnModMult(bnU2, bnR, bnW, order);
// 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC
// scalar multiplication and EC addition (see [Routines]). If R is equal to
// the point at infinity O, output INVALID.
if(BnPointMult(ecR, CurveGetG(AccessCurveData(E)), bnU1, ecQ, bnU2, E)
!= TPM_RC_SUCCESS)
goto Exit;
// 7. Compute v = Rx mod n.
BnMod(ecR->x, order);
// 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID
if(BnUnsignedCmp(ecR->x, bnR) != 0)
goto Exit;
retVal = TPM_RC_SUCCESS;
Exit:
return retVal;
}
#else // USE_OPENSSL_FUNCTIONS_ECDSA libtpms added begin
TPM_RC
BnValidateSignatureEcdsa(
bigNum bnR, // IN: r component of the signature
bigNum bnS, // IN: s component of the signature
bigCurve E, // IN: the curve used in the signature
// process
bn_point_t *ecQ, // IN: the public point of the key
const TPM2B_DIGEST *digest // IN: the digest that was signed
)
{
int retVal;
int rc;
ECDSA_SIG *sig = NULL;
EC_KEY *eckey = NULL;
BIGNUM *r = BN_new();
BIGNUM *s = BN_new();
EC_POINT *q = EcPointInitialized(ecQ, E);
r = BigInitialized(r, bnR);
s = BigInitialized(s, bnS);
sig = ECDSA_SIG_new();
eckey = EC_KEY_new();
if (r == NULL || s == NULL || q == NULL || sig == NULL || eckey == NULL)
ERROR_RETURN(TPM_RC_FAILURE);
if (EC_KEY_set_group(eckey, E->G) != 1)
ERROR_RETURN(TPM_RC_FAILURE);
if (EC_KEY_set_public_key(eckey, q) != 1)
ERROR_RETURN(TPM_RC_FAILURE);
if (ECDSA_SIG_set0(sig, r, s) != 1)
ERROR_RETURN(TPM_RC_FAILURE);
/* sig now owns r and s */
r = NULL;
s = NULL;
rc = ECDSA_do_verify(digest->b.buffer, digest->b.size, sig, eckey);
switch (rc) {
case 1:
retVal = TPM_RC_SUCCESS;
break;
case 0:
retVal = TPM_RC_SIGNATURE;
break;
default:
retVal = TPM_RC_FAILURE;
break;
}
Exit:
EC_KEY_free(eckey);
ECDSA_SIG_free(sig);
EC_POINT_clear_free(q);
BN_clear_free(r);
BN_clear_free(s);
return retVal;
}
#endif // USE_OPENSSL_FUNCTIONS_ECDSA libtpms added end
#endif // ALG_ECDSA
#if ALG_SM2
/* 10.2.12.3.8 BnValidateSignatureEcSm2() */
/* This function is used to validate an SM2 signature. */
/* Error Returns Meaning */
/* TPM_RC_SIGNATURE signature not valid */
static TPM_RC
BnValidateSignatureEcSm2(
bigNum bnR, // IN: r component of the signature
bigNum bnS, // IN: s component of the signature
bigCurve E, // IN: the curve used in the signature
// process
bigPoint ecQ, // IN: the public point of the key
const TPM2B_DIGEST *digest // IN: the digest that was signed
)
{
POINT(P);
ECC_NUM(bnRp);
ECC_NUM(bnT);
BN_MAX_INITIALIZED(bnE, digest);
BOOL OK;
bigConst order = CurveGetOrder(AccessCurveData(E));
#ifdef _SM2_SIGN_DEBUG
// Make sure that the input signature is the test signature
pAssert(BnHexEqual(bnR,
"40F1EC59F793D9F49E09DCEF49130D41"
"94F79FB1EED2CAA55BACDB49C4E755D1"));
pAssert(BnHexEqual(bnS,
"6FC6DAC32C5D5CF10C77DFB20F7C2EB6"
"67A457872FB09EC56327A67EC7DEEBE7"));
#endif
// b) compute t := (r + s) mod n
BnAdd(bnT, bnR, bnS);
BnMod(bnT, order);
#ifdef _SM2_SIGN_DEBUG
pAssert(BnHexEqual(bnT,
"2B75F07ED7ECE7CCC1C8986B991F441A"
"D324D6D619FE06DD63ED32E0C997C801"));
#endif
// c) verify that t > 0
OK = !BnEqualZero(bnT);
if(!OK)
// set T to a value that should allow rest of the computations to run
// without trouble
BnCopy(bnT, bnS);
// d) compute (x, y) := [s]G + [t]Q
OK = BnEccModMult2(P, NULL, bnS, ecQ, bnT, E);
#ifdef _SM2_SIGN_DEBUG
pAssert(OK && BnHexEqual(P->x,
"110FCDA57615705D5E7B9324AC4B856D"
"23E6D9188B2AE47759514657CE25D112"));
#endif
// e) compute r' := (e + x) mod n (the x coordinate is in bnT)
OK = OK && BnAdd(bnRp, bnE, P->x);
OK = OK && BnMod(bnRp, order);
// f) verify that r' = r
OK = OK && (BnUnsignedCmp(bnR, bnRp) == 0);
if(!OK)
return TPM_RC_SIGNATURE;
else
return TPM_RC_SUCCESS;
}
#endif // ALG_SM2
#if ALG_ECSCHNORR
/* 10.2.12.3.9 BnValidateSignatureEcSchnorr() */
/* This function is used to validate an EC Schnorr signature. */
/* Error Returns Meaning */
/* TPM_RC_SIGNATURE signature not valid */
static TPM_RC
BnValidateSignatureEcSchnorr(
bigNum bnR, // IN: r component of the signature
bigNum bnS, // IN: s component of the signature
TPM_ALG_ID hashAlg, // IN: hash algorithm of the signature
bigCurve E, // IN: the curve used in the signature
// process
bigPoint ecQ, // IN: the public point of the key
const TPM2B_DIGEST *digest // IN: the digest that was signed
)
{
BN_MAX(bnRn);
POINT(ecE);
BN_MAX(bnEx);
const ECC_CURVE_DATA *C = AccessCurveData(E);
bigConst order = CurveGetOrder(C);
UINT16 digestSize = CryptHashGetDigestSize(hashAlg);
HASH_STATE hashState;
TPM2B_TYPE(BUFFER, MAX(MAX_ECC_PARAMETER_BYTES, MAX_DIGEST_SIZE));
TPM2B_BUFFER Ex2 = {{sizeof(Ex2.t.buffer),{ 0 }}};
BOOL OK;
//
// E = [s]G - [r]Q
BnMod(bnR, order);
// Make -r = n - r
BnSub(bnRn, order, bnR);
// E = [s]G + [-r]Q
OK = BnPointMult(ecE, CurveGetG(C), bnS, ecQ, bnRn, E) == TPM_RC_SUCCESS;
// // reduce the x portion of E mod q
// OK = OK && BnMod(ecE->x, order);
// Convert to byte string
OK = OK && BnTo2B(ecE->x, &Ex2.b,
(NUMBYTES)(BITS_TO_BYTES(BnSizeInBits(order))));
if(OK)
{
// Ex = h(pE.x || digest)
CryptHashStart(&hashState, hashAlg);
CryptDigestUpdate(&hashState, Ex2.t.size, Ex2.t.buffer);
CryptDigestUpdate(&hashState, digest->t.size, digest->t.buffer);
Ex2.t.size = CryptHashEnd(&hashState, digestSize, Ex2.t.buffer);
SchnorrReduce(&Ex2.b, order);
BnFrom2B(bnEx, &Ex2.b);
// see if Ex matches R
OK = BnUnsignedCmp(bnEx, bnR) == 0;
}
return (OK) ? TPM_RC_SUCCESS : TPM_RC_SIGNATURE;
}
#endif // ALG_ECSCHNORR
/* 10.2.12.3.10 CryptEccValidateSignature() */
/* This function validates an EcDsa() or EcSchnorr() signature. The point Qin needs to have been
validated to be on the curve of curveId. */
/* Error Returns Meaning */
/* TPM_RC_SIGNATURE not a valid signature */
LIB_EXPORT TPM_RC
CryptEccValidateSignature(
TPMT_SIGNATURE *signature, // IN: signature to be verified
OBJECT *signKey, // IN: ECC key signed the hash
const TPM2B_DIGEST *digest // IN: digest that was signed
)
{
CURVE_INITIALIZED(E, signKey->publicArea.parameters.eccDetail.curveID);
ECC_NUM(bnR);
ECC_NUM(bnS);
POINT_INITIALIZED(ecQ, &signKey->publicArea.unique.ecc);
bigConst order;
TPM_RC retVal;
if(E == NULL)
ERROR_RETURN(TPM_RC_VALUE);
order = CurveGetOrder(AccessCurveData(E));
// // Make sure that the scheme is valid
switch(signature->sigAlg)
{
case TPM_ALG_ECDSA:
#if ALG_ECSCHNORR
case TPM_ALG_ECSCHNORR:
#endif
#if ALG_SM2
case TPM_ALG_SM2:
#endif
break;
default:
ERROR_RETURN(TPM_RC_SCHEME);
break;
}
// Can convert r and s after determining that the scheme is an ECC scheme. If
// this conversion doesn't work, it means that the unmarshaling code for
// an ECC signature is broken.
BnFrom2B(bnR, &signature->signature.ecdsa.signatureR.b);
BnFrom2B(bnS, &signature->signature.ecdsa.signatureS.b);
// r and s have to be greater than 0 but less than the curve order
if(BnEqualZero(bnR) || BnEqualZero(bnS))
ERROR_RETURN(TPM_RC_SIGNATURE);
if((BnUnsignedCmp(bnS, order) >= 0)
|| (BnUnsignedCmp(bnR, order) >= 0))
ERROR_RETURN(TPM_RC_SIGNATURE);
switch(signature->sigAlg)
{
case TPM_ALG_ECDSA:
retVal = BnValidateSignatureEcdsa(bnR, bnS, E, ecQ, digest);
break;
#if ALG_ECSCHNORR
case TPM_ALG_ECSCHNORR:
retVal = BnValidateSignatureEcSchnorr(bnR, bnS,
signature->signature.any.hashAlg,
E, ecQ, digest);
break;
#endif
#if ALG_SM2
case TPM_ALG_SM2:
retVal = BnValidateSignatureEcSm2(bnR, bnS, E, ecQ, digest);
break;
#endif
default:
FAIL(FATAL_ERROR_INTERNAL);
}
Exit:
CURVE_FREE(E);
return retVal;
}
/* 10.2.12.3.11 CryptEccCommitCompute() */
/* This function performs the point multiply operations required by TPM2_Commit(). */
/* If B or M is provided, they must be on the curve defined by curveId. This routine does not check
that they are on the curve and results are unpredictable if they are not. */
/* It is a fatal error if r is NULL. If B is not NULL, then it is a fatal error if d is NULL or if K
and L are both NULL. If M is not NULL, then it is a fatal error if E is NULL. */
/* Error Returns Meaning */
/* TPM_RC_NO_RESULT if K, L or E was computed to be the point at infinity */
/* TPM_RC_CANCELED a cancel indication was asserted during this function */
LIB_EXPORT TPM_RC
CryptEccCommitCompute(
TPMS_ECC_POINT *K, // OUT: [d]B or [r]Q
TPMS_ECC_POINT *L, // OUT: [r]B
TPMS_ECC_POINT *E, // OUT: [r]M
TPM_ECC_CURVE curveId, // IN: the curve for the computations
TPMS_ECC_POINT *M, // IN: M (optional)
TPMS_ECC_POINT *B, // IN: B (optional)
TPM2B_ECC_PARAMETER *d, // IN: d (optional)
TPM2B_ECC_PARAMETER *r // IN: the computed r value (required)
)
{
CURVE_INITIALIZED(curve, curveId); // Normally initialize E as the curve, but E means
// something else in this function
ECC_INITIALIZED(bnR, r);
TPM_RC retVal = TPM_RC_SUCCESS;
//
// Validate that the required parameters are provided.
// Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do
// E := [r]Q if both M and B are NULL.
pAssert(r != NULL && E != NULL);
// Initialize the output points in case they are not computed
ClearPoint2B(K);
ClearPoint2B(L);
ClearPoint2B(E);
// Sizes of the r parameter may not be zero
pAssert(r->t.size > 0);
// If B is provided, compute K=[d]B and L=[r]B
if(B != NULL)
{
ECC_INITIALIZED(bnD, d);
POINT_INITIALIZED(pB, B);
POINT(pK);
POINT(pL);
//
pAssert(d != NULL && K != NULL && L != NULL);
if(!BnIsOnCurve(pB, AccessCurveData(curve)))
ERROR_RETURN(TPM_RC_VALUE);
// do the math for K = [d]B
if((retVal = BnPointMult(pK, pB, bnD, NULL, NULL, curve)) != TPM_RC_SUCCESS)
goto Exit;
// Convert BN K to TPM2B K
BnPointTo2B(K, pK, curve);
// compute L= [r]B after checking for cancel
if(_plat__IsCanceled())
ERROR_RETURN(TPM_RC_CANCELED);
// compute L = [r]B
if(!BnIsValidPrivateEcc(bnR, curve))
ERROR_RETURN(TPM_RC_VALUE);
if((retVal = BnPointMult(pL, pB, bnR, NULL, NULL, curve)) != TPM_RC_SUCCESS)
goto Exit;
// Convert BN L to TPM2B L
BnPointTo2B(L, pL, curve);
}
if((M != NULL) || (B == NULL))
{
POINT_INITIALIZED(pM, M);
POINT(pE);
//
// Make sure that a place was provided for the result
pAssert(E != NULL);
// if this is the third point multiply, check for cancel first
if((B != NULL) && _plat__IsCanceled())
ERROR_RETURN(TPM_RC_CANCELED);
// If M provided, then pM will not be NULL and will compute E = [r]M.
// However, if M was not provided, then pM will be NULL and E = [r]G
// will be computed
if((retVal = BnPointMult(pE, pM, bnR, NULL, NULL, curve)) != TPM_RC_SUCCESS)
goto Exit;
// Convert E to 2B format
BnPointTo2B(E, pE, curve);
}
Exit:
CURVE_FREE(curve);
return retVal;
}
#endif // TPM_ALG_ECC
|