summaryrefslogtreecommitdiffstats
path: root/src/tpm2/crypto/openssl/CryptRand.c
blob: 5bf064373797d04cb2aff2833be5f4645e99e9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/********************************************************************************/
/*										*/
/*		DRBG with a behavior according to SP800-90A			*/
/*			     Written by Ken Goldman				*/
/*		       IBM Thomas J. Watson Research Center			*/
/*            $Id: CryptRand.c 1658 2021-01-22 23:14:01Z kgoldman $		*/
/*										*/
/*  Licenses and Notices							*/
/*										*/
/*  1. Copyright Licenses:							*/
/*										*/
/*  - Trusted Computing Group (TCG) grants to the user of the source code in	*/
/*    this specification (the "Source Code") a worldwide, irrevocable, 		*/
/*    nonexclusive, royalty free, copyright license to reproduce, create 	*/
/*    derivative works, distribute, display and perform the Source Code and	*/
/*    derivative works thereof, and to grant others the rights granted herein.	*/
/*										*/
/*  - The TCG grants to the user of the other parts of the specification 	*/
/*    (other than the Source Code) the rights to reproduce, distribute, 	*/
/*    display, and perform the specification solely for the purpose of 		*/
/*    developing products based on such documents.				*/
/*										*/
/*  2. Source Code Distribution Conditions:					*/
/*										*/
/*  - Redistributions of Source Code must retain the above copyright licenses, 	*/
/*    this list of conditions and the following disclaimers.			*/
/*										*/
/*  - Redistributions in binary form must reproduce the above copyright 	*/
/*    licenses, this list of conditions	and the following disclaimers in the 	*/
/*    documentation and/or other materials provided with the distribution.	*/
/*										*/
/*  3. Disclaimers:								*/
/*										*/
/*  - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF	*/
/*  LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH	*/
/*  RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)	*/
/*  THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.		*/
/*  Contact TCG Administration (admin@trustedcomputinggroup.org) for 		*/
/*  information on specification licensing rights available through TCG 	*/
/*  membership agreements.							*/
/*										*/
/*  - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED 	*/
/*    WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR 	*/
/*    FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR 		*/
/*    NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY 		*/
/*    OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.		*/
/*										*/
/*  - Without limitation, TCG and its members and licensors disclaim all 	*/
/*    liability, including liability for infringement of any proprietary 	*/
/*    rights, relating to use of information in this specification and to the	*/
/*    implementation of this specification, and TCG disclaims all liability for	*/
/*    cost of procurement of substitute goods or services, lost profits, loss 	*/
/*    of use, loss of data or any incidental, consequential, direct, indirect, 	*/
/*    or special damages, whether under contract, tort, warranty or otherwise, 	*/
/*    arising in any way out of use or reliance upon this specification or any 	*/
/*    information herein.							*/
/*										*/
/*  (c) Copyright IBM Corp. and others, 2016 - 2021				*/
/*										*/
/********************************************************************************/

#include "Tpm.h"
#include    "PRNG_TestVectors.h"
const BYTE DRBG_NistTestVector_Entropy[] = {DRBG_TEST_INITIATE_ENTROPY};
const BYTE DRBG_NistTestVector_GeneratedInterm[] =
    {DRBG_TEST_GENERATED_INTERM};
const BYTE DRBG_NistTestVector_EntropyReseed[] =
    {DRBG_TEST_RESEED_ENTROPY};
const BYTE DRBG_NistTestVector_Generated[] = {DRBG_TEST_GENERATED};

/* 10.2.16.2.2 Derivation Function Defines and Structures */
#define     DF_COUNT (DRBG_KEY_SIZE_WORDS / DRBG_IV_SIZE_WORDS + 1)
#if DRBG_KEY_SIZE_BITS != 128 && DRBG_KEY_SIZE_BITS != 256
#   error "CryptRand.c only written for AES with 128- or 256-bit keys."
#endif

typedef struct
{
    DRBG_KEY_SCHEDULE   keySchedule;
    DRBG_IV             iv[DF_COUNT];
    DRBG_IV             out1;
    DRBG_IV             buf;
    int                 contents;
} DF_STATE, *PDF_STATE;
/* 10.2.16.2.3 DfCompute() */
/* This function does the incremental update of the derivation function state. It encrypts the iv
   value and XOR's the results into each of the blocks of the output. This is equivalent to
   processing all of input data for each output block. */
static void
DfCompute(
	  PDF_STATE        dfState
	  )
{
    int              i;
    int              iv;
    crypt_uword_t   *pIv;
    crypt_uword_t    temp[DRBG_IV_SIZE_WORDS] = {0};
    //
    for(iv = 0; iv < DF_COUNT; iv++)
	{
	    pIv = (crypt_uword_t *)&dfState->iv[iv].words[0];
	    for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)
		{
		    temp[i] ^= pIv[i] ^ dfState->buf.words[i];
		}
	    DRBG_ENCRYPT(&dfState->keySchedule, &temp, pIv);
	}
    for(i = 0; i < DRBG_IV_SIZE_WORDS; i++)
	dfState->buf.words[i] = 0;
    dfState->contents = 0;
}
/* 10.2.16.2.4 DfStart() */
/* This initializes the output blocks with an encrypted counter value and initializes the key
   schedule. */
static void
DfStart(
	PDF_STATE        dfState,
	uint32_t         inputLength
	)
{
    BYTE            init[8];
    int             i;
    UINT32          drbgSeedSize = sizeof(DRBG_SEED);
    const BYTE dfKey[DRBG_KEY_SIZE_BYTES] = {
	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
#if DRBG_KEY_SIZE_BYTES > 16
	,0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
#endif
    };
    memset(dfState, 0, sizeof(DF_STATE));
    DRBG_ENCRYPT_SETUP(&dfKey[0], DRBG_KEY_SIZE_BITS, &dfState->keySchedule);
    // Create the first chaining values
    for(i = 0; i < DF_COUNT; i++)
	((BYTE *)&dfState->iv[i])[3] = (BYTE)i;
    DfCompute(dfState);
    // initialize the first 64 bits of the IV in a way that doesn't depend
    // on the size of the words used.
    UINT32_TO_BYTE_ARRAY(inputLength, init);
    UINT32_TO_BYTE_ARRAY(drbgSeedSize, &init[4]);
    memcpy(&dfState->iv[0], init, 8);
    dfState->contents = 4;
}
/* 10.2.16.2.5 DfUpdate() */
/* This updates the state with the input data. A byte at a time is moved into the state buffer until
   it is full and then that block is encrypted by DfCompute(). */
static void
DfUpdate(
	 PDF_STATE        dfState,
	 int              size,
	 const BYTE      *data
	 )
{
    while(size > 0)
	{
	    int         toFill = DRBG_IV_SIZE_BYTES - dfState->contents;
	    if(size < toFill)
		toFill = size;
	    // Copy as many bytes as there are or until the state buffer is full
	    memcpy(&dfState->buf.bytes[dfState->contents], data, toFill);
	    // Reduce the size left by the amount copied
	    size -= toFill;
	    // Advance the data pointer by the amount copied
	    data += toFill;
	    // increase the buffer contents count by the amount copied
	    dfState->contents += toFill;
	    pAssert(dfState->contents <= DRBG_IV_SIZE_BYTES);
	    // If we have a full buffer, do a computation pass.
	    if(dfState->contents == DRBG_IV_SIZE_BYTES)
		DfCompute(dfState);
	}
}
/* 10.2.16.2.6 DfEnd() */
/* This function is called to get the result of the derivation function computation. If the buffer
   is not full, it is padded with zeros. The output buffer is structured to be the same as a
   DRBG_SEED value so that the function can return a pointer to the DRBG_SEED value in the DF_STATE
   structure. */
static DRBG_SEED *
DfEnd(
      PDF_STATE        dfState
      )
{
    // Since DfCompute is always called when a buffer is full, there is always
    // space in the buffer for the terminator
    dfState->buf.bytes[dfState->contents++] = 0x80;
    // If the buffer is not full, pad with zeros
    while(dfState->contents < DRBG_IV_SIZE_BYTES)
	dfState->buf.bytes[dfState->contents++] = 0;
    // Do a final state update
    DfCompute(dfState);
    return (DRBG_SEED *)&dfState->iv;
}
/* 10.2.16.2.7 DfBuffer() */
/* Function to take an input buffer and do the derivation function to produce a DRBG_SEED value that
   can be used in DRBG_Reseed(); */
static DRBG_SEED *
DfBuffer(
	 DRBG_SEED       *output,        // OUT: receives the result
	 int              size,          // IN: size of the buffer to add
	 BYTE            *buf            // IN: address of the buffer
	 )
{
    DF_STATE        dfState;
    if(size == 0 || buf == NULL)
	return NULL;
    // Initialize the derivation function
    DfStart(&dfState, size);
    DfUpdate(&dfState, size, buf);
    DfEnd(&dfState);
    memcpy(output, &dfState.iv[0], sizeof(DRBG_SEED));
    return output;
}
/* 10.2.16.2.8 DRBG_GetEntropy() */
/* Even though this implementation never fails, it may get blocked indefinitely long in the call to
   get entropy from the platform (DRBG_GetEntropy32()). This function is only used during
   instantiation of the DRBG for manufacturing and on each start-up after an non-orderly
   shutdown. */
/* Return Values Meaning */
/* TRUE Requested entropy returned */
/* FALSE Entropy Failure */
BOOL
DRBG_GetEntropy(
		UINT32           requiredEntropy,   // IN: requested number of bytes of full
		//     entropy
		BYTE            *entropy            // OUT: buffer to return collected entropy
		)
{
#if !USE_DEBUG_RNG
    UINT32       obtainedEntropy;
    INT32        returnedEntropy;
    // If in debug mode, always use the self-test values for initialization
    if(IsSelfTest())
	{
#endif
	    // If doing simulated DRBG, then check to see if the
	    // entropyFailure condition is being tested
	    if(!IsEntropyBad())/* This function increments the IV value by 1. It is used by EncryptDRBG(). */
		{
		    // In self-test, the caller should be asking for exactly the seed
		    // size of entropy.
		    pAssert(requiredEntropy == sizeof(DRBG_NistTestVector_Entropy));
		    memcpy(entropy, DRBG_NistTestVector_Entropy,
			   sizeof(DRBG_NistTestVector_Entropy));
		}
#if !USE_DEBUG_RNG
	}
    else if(!IsEntropyBad())
	{
	    // Collect entropy
	    // Note: In debug mode, the only "entropy" value ever returned
	    // is the value of the self-test vector.
	    for(returnedEntropy = 1, obtainedEntropy = 0;
		obtainedEntropy < requiredEntropy && !IsEntropyBad();
		obtainedEntropy += returnedEntropy)
		{
		    returnedEntropy = _plat__GetEntropy(&entropy[obtainedEntropy],
							requiredEntropy - obtainedEntropy);
		    if(returnedEntropy <= 0)
			SetEntropyBad();
		}
	}
#endif
    return !IsEntropyBad();
}

void
IncrementIv(
	    DRBG_IV         *iv
	    )
{
    BYTE      *ivP = ((BYTE *)iv) + DRBG_IV_SIZE_BYTES;
    while((--ivP >= (BYTE *)iv) && ((*ivP = ((*ivP + 1) & 0xFF)) == 0));
}
/* 10.2.16.2.10 EncryptDRBG() */
/* This does the encryption operation for the DRBG. It will encrypt the input state counter (IV)
   using the state key. Into the output buffer for as many times as it takes to generate the
   required number of bytes. */
static BOOL
EncryptDRBG(
	    BYTE                *dOut,
	    UINT32               dOutBytes,
	    DRBG_KEY_SCHEDULE   *keySchedule,
	    DRBG_IV             *iv,
	    UINT32              *lastValue      // Points to the last output value
	    )
{
#if FIPS_COMPLIANT
    // For FIPS compliance, the DRBG has to do a continuous self-test to make sure that
    // no two consecutive values are the same. This overhead is not incurred if the TPM
    // is not required to be FIPS compliant
    //
    UINT32           temp[DRBG_IV_SIZE_BYTES / sizeof(UINT32)];
    int              i;
    BYTE            *p;
    for(; dOutBytes > 0;)
	{
	    // Increment the IV before each encryption (this is what makes this
	    // different from normal counter-mode encryption
	    IncrementIv(iv);
	    DRBG_ENCRYPT(keySchedule, iv, temp);
	    // Expect a 16 byte block
#if DRBG_IV_SIZE_BITS != 128
#error  "Unsuppored IV size in DRBG"
#endif
	    if((lastValue[0] == temp[0])
	       && (lastValue[1] == temp[1])
	       && (lastValue[2] == temp[2])
	       && (lastValue[3] == temp[3])
	       )
		{
		    LOG_FAILURE(FATAL_ERROR_ENTROPY);
		    return FALSE;
		}
	    lastValue[0] = temp[0];
	    lastValue[1] = temp[1];
	    lastValue[2] = temp[2];
	    lastValue[3] = temp[3];
	    i = MIN(dOutBytes, DRBG_IV_SIZE_BYTES);
	    dOutBytes -= i;
	    for(p = (BYTE *)temp; i > 0; i--)
		*dOut++ = *p++;
	}
#else // version without continuous self-test
    NOT_REFERENCED(lastValue);
    for(; dOutBytes >= DRBG_IV_SIZE_BYTES;
	dOut = &dOut[DRBG_IV_SIZE_BYTES], dOutBytes -= DRBG_IV_SIZE_BYTES)
	{
	    // Increment the IV
	    IncrementIv(iv);
	    DRBG_ENCRYPT(keySchedule, iv, dOut);
	}
    // If there is a partial, generate into a block-sized
    // temp buffer and copy to the output.
    if(dOutBytes != 0)
	{
	    BYTE        temp[DRBG_IV_SIZE_BYTES];
	    // Increment the IV
	    IncrementIv(iv);
	    DRBG_ENCRYPT(keySchedule, iv, temp);
	    memcpy(dOut, temp, dOutBytes);
	}
#endif
    return TRUE;
}
/* 10.2.16.2.11 DRBG_Update() */
/* This function performs the state update function. According to SP800-90A, a temp value is created
   by doing CTR mode encryption of providedData and replacing the key and IV with these values. The
   one difference is that, with counter mode, the IV is incremented after each block is encrypted
   and in this operation, the counter is incremented before each block is encrypted. This function
   implements an optimized version of the algorithm in that it does the update of the
   drbgState->seed in place and then providedData is XORed into drbgState->seed to complete the
   encryption of providedData. This works because the IV is the last thing that gets encrypted. */
static BOOL
DRBG_Update(
	    DRBG_STATE          *drbgState,     // IN:OUT state to update
	    DRBG_KEY_SCHEDULE   *keySchedule,   // IN: the key schedule (optional)
	    DRBG_SEED           *providedData   // IN: additional data
	    )
{
    UINT32               i;
    BYTE                *temp = (BYTE *)&drbgState->seed;
    DRBG_KEY            *key = pDRBG_KEY(&drbgState->seed);
    DRBG_IV             *iv = pDRBG_IV(&drbgState->seed);
    DRBG_KEY_SCHEDULE    localKeySchedule;
    memset(&localKeySchedule, 0, sizeof(localKeySchedule)); /* libtpms added: coverity */
    //
    pAssert(drbgState->magic == DRBG_MAGIC);
    // If an key schedule was not provided, make one
    if(keySchedule == NULL)
	{
	    if(DRBG_ENCRYPT_SETUP((BYTE *)key,
				  DRBG_KEY_SIZE_BITS, &localKeySchedule) != 0)
		{
		    LOG_FAILURE(FATAL_ERROR_INTERNAL);
		    return FALSE;
		}
	    keySchedule = &localKeySchedule;
	}
    // Encrypt the temp value
    EncryptDRBG(temp, sizeof(DRBG_SEED), keySchedule, iv,
		drbgState->lastValue);
    if(providedData != NULL)
	{
	    BYTE        *pP = (BYTE *)providedData;
	    for(i = DRBG_SEED_SIZE_BYTES; i != 0; i--)
		*temp++ ^= *pP++;
	}
    // Since temp points to the input key and IV, we are done and
    // don't need to copy the resulting 'temp' to drbgState->seed
    return TRUE;
}
/* 10.2.16.2.12 DRBG_Reseed() */
/* This function is used when reseeding of the DRBG is required. If entropy is provided, it is used
   in lieu of using hardware entropy. */
/* NOTE: the provided entropy must be the required size. */
/* Return Values Meaning */
/* TRUE reseed succeeded */
/* FALSE reseed failed, probably due to the entropy generation */
BOOL
DRBG_Reseed(
	    DRBG_STATE          *drbgState,         // IN: the state to update
	    DRBG_SEED           *providedEntropy,   // IN: entropy
	    DRBG_SEED           *additionalData     // IN:
	    )
{
    DRBG_SEED            seed;
    pAssert((drbgState != NULL) && (drbgState->magic == DRBG_MAGIC));
    if(providedEntropy == NULL)
	{
	    providedEntropy = &seed;
	    if(!DRBG_GetEntropy(sizeof(DRBG_SEED), (BYTE *)providedEntropy))
		return FALSE;
	}
    if(additionalData != NULL)
	{
	    unsigned int          i;
	    // XOR the provided data into the provided entropy
	    for(i = 0; i < sizeof(DRBG_SEED); i++)
		((BYTE *)providedEntropy)[i] ^= ((BYTE *)additionalData)[i];
	}
    DRBG_Update(drbgState, NULL, providedEntropy);
    drbgState->reseedCounter = 1;
    return TRUE;
}
/* 10.2.16.2.13 DRBG_SelfTest() */
/* This is run when the DRBG is instantiated and at startup */
/* Return Values Meaning */
/* FALSE test failed */
/* TRUE test OK */
BOOL
DRBG_SelfTest(
	      void
	      )
{
    BYTE             buf[sizeof(DRBG_NistTestVector_Generated)];
    DRBG_SEED        seed;
    UINT32           i;
    BYTE            *p;
    DRBG_STATE       testState;
    //
    pAssert(!IsSelfTest());
    SetSelfTest();
    SetDrbgTested();
    // Do an instantiate
    if(!DRBG_Instantiate(&testState, 0, NULL))
	return FALSE;
#if DRBG_DEBUG_PRINT
    dbgDumpMemBlock(pDRBG_KEY(&testState), DRBG_KEY_SIZE_BYTES,
		    "Key after Instantiate");
    dbgDumpMemBlock(pDRBG_IV(&testState), DRBG_IV_SIZE_BYTES,
		    "Value after Instantiate");
#endif
    if(DRBG_Generate((RAND_STATE *)&testState, buf, sizeof(buf)) == 0)
	return FALSE;
#if DRBG_DEBUG_PRINT
    dbgDumpMemBlock(pDRBG_KEY(&testState.seed), DRBG_KEY_SIZE_BYTES,
		    "Key after 1st Generate");
    dbgDumpMemBlock(pDRBG_IV(&testState.seed), DRBG_IV_SIZE_BYTES,
		    "Value after 1st Generate");
#endif
    if(memcmp(buf, DRBG_NistTestVector_GeneratedInterm, sizeof(buf)) != 0)
	return FALSE;
    memcpy(seed.bytes, DRBG_NistTestVector_EntropyReseed, sizeof(seed));
    DRBG_Reseed(&testState, &seed, NULL);
#if DRBG_DEBUG_PRINT
    dbgDumpMemBlock((BYTE *)pDRBG_KEY(&testState.seed), DRBG_KEY_SIZE_BYTES,
		    "Key after 2nd Generate");
    dbgDumpMemBlock((BYTE *)pDRBG_IV(&testState.seed), DRBG_IV_SIZE_BYTES,
		    "Value after 2nd Generate");
    dbgDumpMemBlock(buf, sizeof(buf), "2nd Generated");
#endif
    if(DRBG_Generate((RAND_STATE *)&testState, buf, sizeof(buf)) == 0)
	return FALSE;
    if(memcmp(buf, DRBG_NistTestVector_Generated, sizeof(buf)) != 0)
	return FALSE;
    ClearSelfTest();
    DRBG_Uninstantiate(&testState);
    for(p = (BYTE *)&testState, i = 0; i < sizeof(DRBG_STATE); i++)
	{
	    if(*p++)
		return FALSE;
	}
    // Simulate hardware failure to make sure that we get an error when
    // trying to instantiate
    SetEntropyBad();
    if(DRBG_Instantiate(&testState, 0, NULL))
	return FALSE;
    ClearEntropyBad();
    return TRUE;
}
/* 10.2.16.3 Public Interface */

/* 10.2.16.3.1 Description */
/* The functions in this section are the interface to the RNG. These are the functions that are used
   by TPM.lib. */

/* 10.2.16.3.2 CryptRandomStir() */
/* This function is used to cause a reseed. A DRBG_SEED amount of entropy is collected from the
   hardware and then additional data is added. */
/* Error Returns Meaning */
/* TPM_RC_NO_RESULT failure of the entropy generator */
LIB_EXPORT TPM_RC
CryptRandomStir(
		UINT16           additionalDataSize,
		BYTE            *additionalData
		)
{
#if !USE_DEBUG_RNG
    DRBG_SEED        tmpBuf;
    DRBG_SEED        dfResult;
    //
    // All reseed with outside data starts with a buffer full of entropy
    if(!DRBG_GetEntropy(sizeof(tmpBuf), (BYTE *)&tmpBuf))
	return TPM_RC_NO_RESULT;
    DRBG_Reseed(&drbgDefault, &tmpBuf,
		DfBuffer(&dfResult, additionalDataSize, additionalData));
    drbgDefault.reseedCounter = 1;
    return TPM_RC_SUCCESS;
#else
    // If doing debug, use the input data as the initial setting for the RNG state
    // so that the test can be reset at any time.
    // Note: If this is called with a data size of 0 or less, nothing happens. The
    // presumption is that, in a debug environment, the caller will have specific
    // values for initialization, so this check is just a simple way to prevent
    // inadvertent programming errors from screwing things up. This doesn't use an
    // pAssert() because the non-debug version of this function will accept these
    // parameters as meaning that there is no additionalData and only hardware
    // entropy is used.
    if((additionalDataSize > 0) && (additionalData != NULL))
	{
	    memset(drbgDefault.seed.bytes, 0, sizeof(drbgDefault.seed.bytes));
	    memcpy(drbgDefault.seed.bytes, additionalData,
		   MIN(additionalDataSize, sizeof(drbgDefault.seed.bytes)));
	}
    drbgDefault.reseedCounter = 1;
    return TPM_RC_SUCCESS;
#endif
}
/* 10.2.16.3.3 CryptRandomGenerate() */
/* Generate a randomSize number or random bytes. */
LIB_EXPORT UINT16
CryptRandomGenerate(
		    UINT16           randomSize,
		    BYTE            *buffer
		    )
{
    return DRBG_Generate((RAND_STATE *)&drbgDefault, buffer, randomSize);
}
/* 10.2.16.3.4 DRBG_InstantiateSeededKdf() */
/* Function used to instantiate a KDF-based RNG. This is used for derivations. This function always
   returns TRUE. */
LIB_EXPORT BOOL
DRBG_InstantiateSeededKdf(
			  KDF_STATE       *state,         // OUT: buffer to hold the state
			  TPM_ALG_ID       hashAlg,       // IN: hash algorithm
			  TPM_ALG_ID       kdf,           // IN: the KDF to use
			  TPM2B           *seed,          // IN: the seed to use
			  const TPM2B     *label,         // IN: a label for the generation process.
			  TPM2B           *context,       // IN: the context value
			  UINT32           limit          // IN: Maximum number of bits from the KDF
			  )
{
    state->magic = KDF_MAGIC;
    state->limit = limit;
    state->seed = seed;
    state->hash = hashAlg;
    state->kdf = kdf;
    state->label = label;
    state->context = context;
    state->digestSize = CryptHashGetDigestSize(hashAlg);
    state->counter = 0;
    state->residual.t.size = 0;
    return TRUE;
}
/* 10.2.16.3.5 DRBG_AdditionalData() */
/* Function to reseed the DRBG with additional entropy. This is normally called before computing the
   protection value of a primary key in the Endorsement hierarchy. */
LIB_EXPORT void
DRBG_AdditionalData(
		    DRBG_STATE      *drbgState,     // IN:OUT state to update
		    TPM2B           *additionalData // IN: value to incorporate
		    )
{
    DRBG_SEED        dfResult;
    if(drbgState->magic == DRBG_MAGIC)
	{
	    DfBuffer(&dfResult, additionalData->size, additionalData->buffer);
	    DRBG_Reseed(drbgState, &dfResult, NULL);
	}
}
/* 10.2.16.3.6 DRBG_InstantiateSeeded() */
/* This function is used to instantiate a random number generator from seed values. The nominal use
   of this generator is to create sequences of pseudo-random numbers from a seed value. */
/* Returns
   TPM_RC_FAILURE	DRBG self-test failure
*/
LIB_EXPORT TPM_RC
DRBG_InstantiateSeeded(
		       DRBG_STATE      *drbgState,     // IN/OUT: buffer to hold the state
		       const TPM2B     *seed,          // IN: the seed to use
		       const TPM2B     *purpose,       // IN: a label for the generation process.
		       const TPM2B     *name,          // IN: name of the object
		       const TPM2B     *additional,    // IN: additional data
		       SEED_COMPAT_LEVEL seedCompatLevel // IN: compatibility level; libtpms added
		       )
{
    DF_STATE         dfState;
    int              totalInputSize;
    // DRBG should have been tested, but...
    if(!IsDrbgTested() && !DRBG_SelfTest())
	{
	    LOG_FAILURE(FATAL_ERROR_SELF_TEST);
	    return TPM_RC_FAILURE;
	}
    // Initialize the DRBG state
    memset(drbgState, 0, sizeof(DRBG_STATE));
    drbgState->magic = DRBG_MAGIC;
    drbgState->seedCompatLevel = seedCompatLevel; // libtpms added
    // Size all of the values
    totalInputSize = (seed != NULL) ? seed->size : 0;
    totalInputSize += (purpose != NULL) ? purpose->size : 0;
    totalInputSize += (name != NULL) ? name->size : 0;
    totalInputSize += (additional != NULL) ? additional->size : 0;
    // Initialize the derivation
    DfStart(&dfState, totalInputSize);
    // Run all the input strings through the derivation function
    if(seed != NULL)
	DfUpdate(&dfState, seed->size, seed->buffer);
    if(purpose != NULL)
	DfUpdate(&dfState, purpose->size, purpose->buffer);
    if(name != NULL)
	DfUpdate(&dfState, name->size, name->buffer);
    if(additional != NULL)
	DfUpdate(&dfState, additional->size, additional->buffer);
    // Used the derivation function output as the "entropy" input. This is not
    // how it is described in SP800-90A but this is the equivalent function
    DRBG_Reseed(((DRBG_STATE *)drbgState), DfEnd(&dfState), NULL);
    return TPM_RC_SUCCESS;
}
/* 10.2.16.3.7 CryptRandStartup() */
/* This function is called when TPM_Startup() is executed. */
/* TRUE instantiation succeeded */	/* kgold */
/* FALSE instantiation failed */
LIB_EXPORT BOOL
CryptRandStartup(
		 void
		 )
{
#if ! _DRBG_STATE_SAVE
    // If not saved in NV, re-instantiate on each startup
    return DRBG_Instantiate(&drbgDefault, 0, NULL);
#else
    // If the running state is saved in NV, NV has to be loaded before it can
    // be updated
    if(go.drbgState.magic == DRBG_MAGIC)
	return DRBG_Reseed(&go.drbgState, NULL, NULL);
    else
	return DRBG_Instantiate(&go.drbgState, 0, NULL);
#endif
}
/* 10.2.16.3.8 CryptRandInit() */
/* This function is called when _TPM_Init() is being processed */
LIB_EXPORT BOOL
CryptRandInit(
	      void
	      )
{
#if !USE_DEBUG_RNG
    _plat__GetEntropy(NULL, 0);
#endif
    return DRBG_SelfTest();
}
// libtpms added begin
LIB_EXPORT SEED_COMPAT_LEVEL
DRBG_GetSeedCompatLevel(
               RAND_STATE     *state
	      )
{
    if(state == NULL)
        {
	    return SEED_COMPAT_LEVEL_LAST;
	}
    else if(state->drbg.magic == DRBG_MAGIC)
	{
	    DRBG_STATE          *drbgState = (DRBG_STATE *)state;

	    return drbgState->seedCompatLevel;
	}
    else
	{
	    return SEED_COMPAT_LEVEL_LAST;
	}
}
// libtpms added end
/* 10.2.16.5 DRBG_Generate() */
/* This function generates a random sequence according SP800-90A. If random is not NULL, then
   randomSize bytes of random values are generated. If random is NULL or randomSize is zero, then
   the function returns TRUE without generating any bits or updating the reseed counter. This
   function returns 0 if a reseed is required. Otherwise, it returns the number of bytes produced
   which could be less than the number requested if the request is too large.("too large" is
   implementation dependent.) */
LIB_EXPORT UINT16
DRBG_Generate(
	      RAND_STATE      *state,
	      BYTE            *random,        // OUT: buffer to receive the random values
	      UINT16           randomSize     // IN: the number of bytes to generate
	      )
{
    if(state == NULL)
	state = (RAND_STATE *)&drbgDefault;
    if(random == NULL)
	return 0;

    // If the caller used a KDF state, generate a sequence from the KDF not to
    // exceed the limit.
    if(state->kdf.magic == KDF_MAGIC)
	{
	    KDF_STATE       *kdf = (KDF_STATE *)state;
	    UINT32           counter = (UINT32)kdf->counter;
	    INT32            bytesLeft = randomSize;

	    // If the number of bytes to be returned would put the generator
	    // over the limit, then return 0
	    if((((kdf->counter * kdf->digestSize) + randomSize) * 8) > kdf->limit)
		return 0;
	    // Process partial and full blocks until all requested bytes provided
	    while(bytesLeft > 0)
		{
		    // If there is any residual data in the buffer, copy it to the output
		    // buffer
		    if(kdf->residual.t.size > 0)
			{
			    INT32      size;
			    //
			    // Don't use more of the residual than will fit or more than are
			    // available
			    size = MIN(kdf->residual.t.size, bytesLeft);
			    // Copy some or all of the residual to the output. The residual is
			    // at the end of the buffer. The residual might be a full buffer.
			    MemoryCopy(random,
				       &kdf->residual.t.buffer
				       [kdf->digestSize - kdf->residual.t.size], size);
			    // Advance the buffer pointer
			    random += size;
			    // Reduce the number of bytes left to get
			    bytesLeft -= size;
			    // And reduce the residual size appropriately
			    kdf->residual.t.size -= (UINT16)size;
			}
		    else
			{
			    UINT16           blocks = (UINT16)(bytesLeft / kdf->digestSize);
			    //
			    // Get the number of required full blocks
			    if(blocks > 0)
				{
				    UINT16      size = blocks * kdf->digestSize;
				    // Get some number of full blocks and put them in the return buffer
				    CryptKDFa(kdf->hash, kdf->seed, kdf->label, kdf->context, NULL,
					      kdf->limit, random, &counter, blocks);
				    // reduce the size remaining to be moved and advance the pointer
				    bytesLeft -= size;
				    random += size;
				}
			    else
				{
				    // Fill the residual buffer with a full block and then loop to
				    // top to get part of it copied to the output.
				    kdf->residual.t.size = CryptKDFa(kdf->hash, kdf->seed,
								     kdf->label, kdf->context, NULL,
								     kdf->limit,
								     kdf->residual.t.buffer,
								     &counter, 1);
				}
			}
		}
	    kdf->counter = counter;
	    return randomSize;
	}
    else if(state->drbg.magic == DRBG_MAGIC)
	{
	    DRBG_STATE          *drbgState = (DRBG_STATE *)state;
	    DRBG_KEY_SCHEDULE    keySchedule;
	    DRBG_SEED           *seed = &drbgState->seed;
	    memset(&keySchedule, 0, sizeof(keySchedule)); /* libtpms added: coverity */
	    if(drbgState->reseedCounter >= CTR_DRBG_MAX_REQUESTS_PER_RESEED)
		{
		    if(drbgState == &drbgDefault)
			{
			    DRBG_Reseed(drbgState, NULL, NULL);
			    if(IsEntropyBad() && !IsSelfTest())
				return 0;
			}
		    else
			{
			    // If this is a PRNG then the only way to get
			    // here is if the SW has run away.
			    LOG_FAILURE(FATAL_ERROR_INTERNAL);
			    return 0;
			}
		}
	    // if the allowed number of bytes in a request is larger than the
	    // less than the number of bytes that can be requested, then check
#if UINT16_MAX >=  CTR_DRBG_MAX_BYTES_PER_REQUEST
	    if(randomSize > CTR_DRBG_MAX_BYTES_PER_REQUEST)
		randomSize = CTR_DRBG_MAX_BYTES_PER_REQUEST;
#endif
	    // Create  encryption schedule
	    if(DRBG_ENCRYPT_SETUP((BYTE *)pDRBG_KEY(seed),
				  DRBG_KEY_SIZE_BITS, &keySchedule) != 0)
		{
		    LOG_FAILURE(FATAL_ERROR_INTERNAL);
		    return 0;
		}
	    // Generate the random data
	    EncryptDRBG(random, randomSize, &keySchedule, pDRBG_IV(seed),
			drbgState->lastValue);
	    // Do a key update
	    DRBG_Update(drbgState, &keySchedule, NULL);
	    // Increment the reseed counter
	    drbgState->reseedCounter += 1;
	}
    else
	{
	    LOG_FAILURE(FATAL_ERROR_INTERNAL);
	    return 0; // libtpms changed from FALSE
	}
    return randomSize;
}
/* 10.2.16.6 DRBG_Instantiate() */
/* This is CTR_DRBG_Instantiate_algorithm() from [SP 800-90A 10.2.1.3.1]. This is called when a the
   TPM DRBG is to be instantiated. This is called to instantiate a DRBG used by the TPM for normal
   operations. */
/* Return Values Meaning */
/* TRUE instantiation succeeded */
/* FALSE instantiation failed */
LIB_EXPORT BOOL
DRBG_Instantiate(
		 DRBG_STATE      *drbgState,         // OUT: the instantiated value
		 UINT16           pSize,             // IN: Size of personalization string
		 BYTE            *personalization    // IN: The personalization string
		 )
{
    DRBG_SEED        seed;
    DRBG_SEED        dfResult;
    //
    pAssert((pSize == 0) || (pSize <= sizeof(seed)) || (personalization != NULL));
    // If the DRBG has not been tested, test when doing an instantiation. Since
    // Instantiation is called during self test, make sure we don't get stuck in a
    // loop.
    if(!IsDrbgTested() && !IsSelfTest() && !DRBG_SelfTest())
	return FALSE;
    // If doing a self test, DRBG_GetEntropy will return the NIST
    // test vector value.
    if(!DRBG_GetEntropy(sizeof(seed), (BYTE *)&seed))
	return FALSE;
    // set everything to zero
    memset(drbgState, 0, sizeof(DRBG_STATE));
    drbgState->magic = DRBG_MAGIC;
    // Steps 1, 2, 3, 6, 7 of SP 800-90A 10.2.1.3.1 are exactly what
    // reseeding does. So, do a reduction on the personalization value (if any)
    // and do a reseed.
    DRBG_Reseed(drbgState, &seed, DfBuffer(&dfResult, pSize, personalization));
    return TRUE;
}
/* 10.2.16.7 DRBG_Uninstantiate() */
/* This is Uninstantiate_function() from [SP 800-90A 9.4]. */
/* Error Returns	Meaning */
/* TPM_RC_VALUE	not a valid state */
LIB_EXPORT TPM_RC
DRBG_Uninstantiate(
		   DRBG_STATE      *drbgState      // IN/OUT: working state to erase
		   )
{
    if((drbgState == NULL) || (drbgState->magic != DRBG_MAGIC))
	return TPM_RC_VALUE;
    memset(drbgState, 0, sizeof(DRBG_STATE));
    return TPM_RC_SUCCESS;
}