summaryrefslogtreecommitdiffstats
path: root/src/tpm2/crypto/openssl/CryptRsa.c
blob: 4ed04384feb0f69c0d9affec47266946a0dc4336 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
/********************************************************************************/
/*										*/
/*		Implementation of cryptographic primitives for RSA		*/
/*			     Written by Ken Goldman				*/
/*		       IBM Thomas J. Watson Research Center			*/
/*            $Id: CryptRsa.c 1658 2021-01-22 23:14:01Z kgoldman $		*/
/*										*/
/*  Licenses and Notices							*/
/*										*/
/*  1. Copyright Licenses:							*/
/*										*/
/*  - Trusted Computing Group (TCG) grants to the user of the source code in	*/
/*    this specification (the "Source Code") a worldwide, irrevocable, 		*/
/*    nonexclusive, royalty free, copyright license to reproduce, create 	*/
/*    derivative works, distribute, display and perform the Source Code and	*/
/*    derivative works thereof, and to grant others the rights granted herein.	*/
/*										*/
/*  - The TCG grants to the user of the other parts of the specification 	*/
/*    (other than the Source Code) the rights to reproduce, distribute, 	*/
/*    display, and perform the specification solely for the purpose of 		*/
/*    developing products based on such documents.				*/
/*										*/
/*  2. Source Code Distribution Conditions:					*/
/*										*/
/*  - Redistributions of Source Code must retain the above copyright licenses, 	*/
/*    this list of conditions and the following disclaimers.			*/
/*										*/
/*  - Redistributions in binary form must reproduce the above copyright 	*/
/*    licenses, this list of conditions	and the following disclaimers in the 	*/
/*    documentation and/or other materials provided with the distribution.	*/
/*										*/
/*  3. Disclaimers:								*/
/*										*/
/*  - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF	*/
/*  LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH	*/
/*  RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)	*/
/*  THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.		*/
/*  Contact TCG Administration (admin@trustedcomputinggroup.org) for 		*/
/*  information on specification licensing rights available through TCG 	*/
/*  membership agreements.							*/
/*										*/
/*  - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED 	*/
/*    WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR 	*/
/*    FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR 		*/
/*    NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY 		*/
/*    OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.		*/
/*										*/
/*  - Without limitation, TCG and its members and licensors disclaim all 	*/
/*    liability, including liability for infringement of any proprietary 	*/
/*    rights, relating to use of information in this specification and to the	*/
/*    implementation of this specification, and TCG disclaims all liability for	*/
/*    cost of procurement of substitute goods or services, lost profits, loss 	*/
/*    of use, loss of data or any incidental, consequential, direct, indirect, 	*/
/*    or special damages, whether under contract, tort, warranty or otherwise, 	*/
/*    arising in any way out of use or reliance upon this specification or any 	*/
/*    information herein.							*/
/*										*/
/*  (c) Copyright IBM Corp. and others, 2016 - 2021				*/
/*										*/
/********************************************************************************/

/* 10.2.17 CryptRsa.c */
/* 10.2.17.1 Introduction */
/* This file contains implementation of cryptographic primitives for RSA. Vendors may replace the
   implementation in this file with their own library functions. */
/* 10.2.17.2 Includes */
/* Need this define to get the private defines for this function */
#define CRYPT_RSA_C
#include "Tpm.h"
#include "Helpers_fp.h"  // libtpms added

#include <openssl/rsa.h> // libtpms added

#if ALG_RSA
/* 10.2.17.3 Obligatory Initialization Functions */
/* 10.2.17.3.1 CryptRsaInit() */
/* Function called at _TPM_Init(). */
BOOL
CryptRsaInit(
	     void
	     )
{
    return TRUE;
}
/* 10.2.17.3.2 CryptRsaStartup() */
/* Function called at TPM2_Startup() */
BOOL
CryptRsaStartup(
		void
		)
{
    return TRUE;
}
/* 10.2.17.4 Internal Functions */
void
RsaInitializeExponent(
		      privateExponent_t      *pExp
		      )
{
#if CRT_FORMAT_RSA == NO
    BN_INIT(pExp->D);
#else
    BN_INIT(pExp->Q);
    BN_INIT(pExp->dP);
    BN_INIT(pExp->dQ);
    BN_INIT(pExp->qInv);
#endif
}
/* 10.2.17.4.1 ComputePrivateExponent() */
/* This function computes the private exponent from the primes. */
/* Return Value	Meaning */
/* TRUE(1)	success */
/* FALSE(0)	failure */
static BOOL
ComputePrivateExponent(
		       bigNum               P,             // IN: first prime (size is 1/2 of bnN)
		       bigNum               Q,             // IN: second prime (size is 1/2 of bnN)
		       bigNum               E,             // IN: the public exponent
		       bigNum               N,             // IN: the public modulus
		       privateExponent_t   *pExp           // OUT:
		       )
{
    BOOL                pOK;
    BOOL                qOK;
#if CRT_FORMAT_RSA == NO
    BN_RSA(bnPhi);
    //
    RsaInitializeExponent(pExp);
    // Get compute Phi = (p - 1)(q - 1) = pq - p - q + 1 = n - p - q + 1
    pOK = BnCopy(bnPhi, N);
    pOK = pOK && BnSub(bnPhi, bnPhi, P);
    pOK = pOK && BnSub(bnPhi, bnPhi, Q);
    pOK = pOK && BnAddWord(bnPhi, bnPhi, 1);
    // Compute the multiplicative inverse d = 1/e mod Phi
    pOK = pOK && BnModInverse((bigNum)&pExp->D, E, bnPhi);
    qOK = pOK;
#else
    BN_PRIME(temp);
    bigNum              pT;
    //
    NOT_REFERENCED(N);
    RsaInitializeExponent(pExp);
    BnCopy((bigNum)&pExp->Q, Q);
    // make p the larger value so that m2 is always less than p
    if(BnUnsignedCmp(P, Q) < 0)
	{
	    pT = P;
	    P = Q;
	    Q = pT;
	}
    //dP = (1/e) mod (p-1) = d mod (p-1)
    pOK = BnSubWord(temp, P, 1);
    pOK = pOK && BnModInverse((bigNum)&pExp->dP, E, temp);
    //dQ = (1/e) mod (q-1) = d mod (q-1)
    qOK = BnSubWord(temp, Q, 1);
    qOK = qOK && BnModInverse((bigNum)&pExp->dQ, E, temp);
    // qInv = (1/q) mod p
    if(pOK && qOK)
	pOK = qOK = BnModInverse((bigNum)&pExp->qInv, Q, P);
#endif
    if(!pOK)
	BnSetWord(P, 0);
    if(!qOK)
	BnSetWord(Q, 0);
    return pOK && qOK;
}
/* 10.2.17.4.2 RsaPrivateKeyOp() */
/* This function is called to do the exponentiation with the private key. Compile options allow use
   of the simple (but slow) private exponent, or the more complex but faster CRT method. */
/* Return Value	Meaning */
/* TRUE(1)	success */
/* FALSE(0)	failure */
static BOOL
RsaPrivateKeyOp(
		bigNum               inOut, // IN/OUT: number to be exponentiated
		bigNum               N,     // IN: public modulus (can be NULL if CRT)
		bigNum               P,     // IN: one of the primes (can be NULL if not CRT)
		privateExponent_t   *pExp
		)
{
    BOOL                 OK;
#if CRT_FORMAT_RSA == NO
    (P);
    OK = BnModExp(inOut, inOut, (bigNum)&pExp->D, N);
#else
    BN_RSA(M1);
    BN_RSA(M2);
    BN_RSA(M);
    BN_RSA(H);
    bigNum              Q = (bigNum)&pExp->Q;
    NOT_REFERENCED(N);
    // Make P the larger prime.
    // NOTE that when the CRT form of the private key is created, dP will always
    // be computed using the larger of p and q so the only thing needed here is that
    // the primes be selected so that they agree with dP.
    if(BnUnsignedCmp(P, Q) < 0)
	{
	    bigNum      T = P;
	    P = Q;
	    Q = T;
	}
    // m1 = cdP mod p
    OK = BnModExp(M1, inOut, (bigNum)&pExp->dP, P);
    // m2 = cdQ mod q
    OK = OK && BnModExp(M2, inOut, (bigNum)&pExp->dQ, Q);
    // h = qInv * (m1 - m2) mod p = qInv * (m1 + P - m2) mod P because Q < P
    // so m2 < P
    OK = OK && BnSub(H, P, M2);
    OK = OK && BnAdd(H, H, M1);
    OK = OK && BnModMult(H, H, (bigNum)&pExp->qInv, P);
    // m = m2 + h * q
    OK = OK && BnMult(M, H, Q);
    OK = OK && BnAdd(inOut, M2, M);
#endif
    return OK;
}
/* 10.2.17.4.3 RSAEP() */
/* This function performs the RSAEP operation defined in PKCS#1v2.1. It is an exponentiation of a
   value (m) with the public exponent (e), modulo the public (n). */
/* Error Returns Meaning */
/* TPM_RC_VALUE number to exponentiate is larger than the modulus */
#if !USE_OPENSSL_FUNCTIONS_RSA         // libtpms added
static TPM_RC
RSAEP(
      TPM2B       *dInOut,        // IN: size of the encrypted block and the size of
      //     the encrypted value. It must be the size of
      //     the modulus.
      // OUT: the encrypted data. Will receive the
      //      decrypted value
      OBJECT      *key            // IN: the key to use
      )
{
    TPM2B_TYPE(4BYTES, 4);
    TPM2B_4BYTES(e) = {{4, {(BYTE)((RSA_DEFAULT_PUBLIC_EXPONENT >> 24) & 0xff),
			    (BYTE)((RSA_DEFAULT_PUBLIC_EXPONENT >> 16) & 0xff),
			    (BYTE)((RSA_DEFAULT_PUBLIC_EXPONENT >> 8) & 0xff),
			    (BYTE)((RSA_DEFAULT_PUBLIC_EXPONENT)& 0xff)}}};
    //
    if(key->publicArea.parameters.rsaDetail.exponent != 0)
	UINT32_TO_BYTE_ARRAY(key->publicArea.parameters.rsaDetail.exponent,
			     e.t.buffer);
    return ModExpB(dInOut->size, dInOut->buffer, dInOut->size, dInOut->buffer,
		   e.t.size, e.t.buffer, key->publicArea.unique.rsa.t.size,
		   key->publicArea.unique.rsa.t.buffer);
}
/* 10.2.17.4.4 RSADP() */
/* This function performs the RSADP operation defined in PKCS#1v2.1. It is an exponentiation of a
   value (c) with the private exponent (d), modulo the public modulus (n). The decryption is in
   place. */
/* This function also checks the size of the private key. If the size indicates that only a prime
   value is present, the key is converted to being a private exponent. */
/* Error Returns Meaning */
/* TPM_RC_SIZE the value to decrypt is larger than the modulus */
static TPM_RC
RSADP(
      TPM2B           *inOut,        // IN/OUT: the value to encrypt
      OBJECT          *key           // IN: the key
      )
{
    BN_RSA_INITIALIZED(bnM, inOut);
    BN_RSA_INITIALIZED(bnN, &key->publicArea.unique.rsa);
    BN_RSA_INITIALIZED(bnP, &key->sensitive.sensitive.rsa);
    if(BnUnsignedCmp(bnM, bnN) >= 0)
	return TPM_RC_SIZE;
    // private key operation requires that private exponent be loaded
    // During self-test, this might not be the case so load it up if it hasn't
    // already done
    // been done
    if(!key->attributes.privateExp)
	CryptRsaLoadPrivateExponent(key);
    if(!RsaPrivateKeyOp(bnM, bnN, bnP, &key->privateExponent))
	FAIL(FATAL_ERROR_INTERNAL);
    BnTo2B(bnM, inOut, inOut->size);
    return TPM_RC_SUCCESS;
}
/* 10.2.17.4.5 OaepEncode() */
/* This function performs OAEP padding. The size of the buffer to receive the OAEP padded data must
   equal the size of the modulus */
/* Error Returns Meaning */
/* TPM_RC_VALUE hashAlg is not valid or message size is too large */
static TPM_RC
OaepEncode(
	   TPM2B       *padded,        // OUT: the pad data
	   TPM_ALG_ID   hashAlg,       // IN: algorithm to use for padding
	   const TPM2B *label,         // IN: null-terminated string (may be NULL)
	   TPM2B       *message,       // IN: the message being padded
	   RAND_STATE  *rand           // IN: the random number generator to use
	   )
{
    INT32        padLen;
    INT32        dbSize;
    INT32        i;
    BYTE         mySeed[MAX_DIGEST_SIZE];
    BYTE        *seed = mySeed;
    UINT16       hLen = CryptHashGetDigestSize(hashAlg);
    BYTE         mask[MAX_RSA_KEY_BYTES];
    BYTE        *pp;
    BYTE        *pm;
    TPM_RC       retVal = TPM_RC_SUCCESS;
    pAssert(padded != NULL && message != NULL);
    // A value of zero is not allowed because the KDF can't produce a result
    // if the digest size is zero.
    if(hLen == 0)
	return TPM_RC_VALUE;
    // Basic size checks
    //  make sure digest isn't too big for key size
    if(padded->size < (2 * hLen) + 2)
	ERROR_RETURN(TPM_RC_HASH);
    // and that message will fit messageSize <= k - 2hLen - 2
    if(message->size > (padded->size - (2 * hLen) - 2))
	ERROR_RETURN(TPM_RC_VALUE);
    // Hash L even if it is null
    // Offset into padded leaving room for masked seed and byte of zero
    pp = &padded->buffer[hLen + 1];
    if(CryptHashBlock(hashAlg, label->size, (BYTE *)label->buffer,
		      hLen, pp) != hLen)
	ERROR_RETURN(TPM_RC_FAILURE);
    // concatenate PS of k  mLen  2hLen  2
    padLen = padded->size - message->size - (2 * hLen) - 2;
    MemorySet(&pp[hLen], 0, padLen);
    pp[hLen + padLen] = 0x01;
    padLen += 1;
    memcpy(&pp[hLen + padLen], message->buffer, message->size);
    // The total size of db = hLen + pad + mSize;
    dbSize = hLen + padLen + message->size;
    // If testing, then use the provided seed. Otherwise, use values
    // from the RNG
    CryptRandomGenerate(hLen, mySeed);
    DRBG_Generate(rand, mySeed, (UINT16)hLen);
    // mask = MGF1 (seed, nSize  hLen  1)
    CryptMGF_KDF(dbSize, mask, hashAlg, hLen, seed, 0);
    // Create the masked db
    pm = mask;
    for(i = dbSize; i > 0; i--)
	*pp++ ^= *pm++;
    pp = &padded->buffer[hLen + 1];
    // Run the masked data through MGF1
    if(CryptMGF_KDF(hLen, &padded->buffer[1], hashAlg, dbSize, pp, 0) != (unsigned)hLen)
	ERROR_RETURN(TPM_RC_VALUE);
    // Now XOR the seed to create masked seed
    pp = &padded->buffer[1];
    pm = seed;
    for(i = hLen; i > 0; i--)
	*pp++ ^= *pm++;
    // Set the first byte to zero
    padded->buffer[0] = 0x00;
 Exit:
    return retVal;
}
/* 10.2.17.4.6 OaepDecode() */
/* This function performs OAEP padding checking. The size of the buffer to receive the recovered
   data. If the padding is not valid, the dSize size is set to zero and the function returns
   TPM_RC_VALUE. */
/* The dSize parameter is used as an input to indicate the size available in the buffer. If
   insufficient space is available, the size is not changed and the return code is TPM_RC_VALUE. */
/* Error Returns Meaning */
/* TPM_RC_VALUE the value to decode was larger than the modulus, or the padding is wrong or the
   buffer to receive the results is too small */
static TPM_RC
OaepDecode(
	   TPM2B           *dataOut,       // OUT: the recovered data
	   TPM_ALG_ID       hashAlg,       // IN: algorithm to use for padding
	   const TPM2B     *label,         // IN: null-terminated string (may be NULL)
	   TPM2B           *padded         // IN: the padded data
	   )
{
    UINT32       i;
    BYTE         seedMask[MAX_DIGEST_SIZE];
    UINT32       hLen = CryptHashGetDigestSize(hashAlg);
    BYTE         mask[MAX_RSA_KEY_BYTES];
    BYTE        *pp;
    BYTE        *pm;
    TPM_RC       retVal = TPM_RC_SUCCESS;
    // Strange size (anything smaller can't be an OAEP padded block)
    // Also check for no leading 0
    if((padded->size < (unsigned)((2 * hLen) + 2)) || (padded->buffer[0] != 0))
	ERROR_RETURN(TPM_RC_VALUE);
    // Use the hash size to determine what to put through MGF1 in order
    // to recover the seedMask
    CryptMGF_KDF(hLen, seedMask, hashAlg, padded->size - hLen - 1,
		 &padded->buffer[hLen + 1], 0);
    // Recover the seed into seedMask
    pAssert(hLen <= sizeof(seedMask));
    pp = &padded->buffer[1];
    pm = seedMask;
    for(i = hLen; i > 0; i--)
	*pm++ ^= *pp++;
    // Use the seed to generate the data mask
    CryptMGF_KDF(padded->size - hLen - 1, mask, hashAlg, hLen, seedMask, 0);
    // Use the mask generated from seed to recover the padded data
    pp = &padded->buffer[hLen + 1];
    pm = mask;
    for(i = (padded->size - hLen - 1); i > 0; i--)
	*pm++ ^= *pp++;
    // Make sure that the recovered data has the hash of the label
    // Put trial value in the seed mask
    if((CryptHashBlock(hashAlg, label->size, (BYTE *)label->buffer,
		       hLen, seedMask)) != hLen)
	FAIL(FATAL_ERROR_INTERNAL);
    if(memcmp(seedMask, mask, hLen) != 0)
	ERROR_RETURN(TPM_RC_VALUE);
    // find the start of the data
    pm = &mask[hLen];
    for(i = (UINT32)padded->size - (2 * hLen) - 1; i > 0; i--)
	{
	    if(*pm++ != 0)
		break;
	}
    // If we ran out of data or didn't end with 0x01, then return an error
    if(i == 0 || pm[-1] != 0x01)
	ERROR_RETURN(TPM_RC_VALUE);
    // pm should be pointing at the first part of the data
    // and i is one greater than the number of bytes to move
    i--;
    if(i > dataOut->size)
	// Special exit to preserve the size of the output buffer
	return TPM_RC_VALUE;
    memcpy(dataOut->buffer, pm, i);
    dataOut->size = (UINT16)i;
 Exit:
    if(retVal != TPM_RC_SUCCESS)
	dataOut->size = 0;
    return retVal;
}
/* 10.2.17.4.7 PKCS1v1_5Encode() */
/* This function performs the encoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1 */
/* Error Returns Meaning */
/* TPM_RC_VALUE message size is too large */
static TPM_RC
RSAES_PKCS1v1_5Encode(
		      TPM2B       *padded,        // OUT: the pad data
		      TPM2B       *message,       // IN: the message being padded
		      RAND_STATE  *rand
		      )
{
    UINT32      ps = padded->size - message->size - 3;
    //
    if(message->size > padded->size - 11)
	return TPM_RC_VALUE;
    // move the message to the end of the buffer
    memcpy(&padded->buffer[padded->size - message->size], message->buffer,
	   message->size);
    // Set the first byte to 0x00 and the second to 0x02
    padded->buffer[0] = 0;
    padded->buffer[1] = 2;
    // Fill with random bytes
    DRBG_Generate(rand, &padded->buffer[2], (UINT16)ps);
    // Set the delimiter for the random field to 0
    padded->buffer[2 + ps] = 0;
    // Now, the only messy part. Make sure that all the 'ps' bytes are non-zero
    // In this implementation, use the value of the current index
    for(ps++; ps > 1; ps--)
	{
	    if(padded->buffer[ps] == 0)
		padded->buffer[ps] = 0x55;  // In the < 0.5% of the cases that the
	    // random value is 0, just pick a value to
	    // put into the spot.
	}
    return TPM_RC_SUCCESS;
}
/* 10.2.17.4.8 RSAES_Decode() */
/* This function performs the decoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1 */
/* Error Returns Meaning */
/* TPM_RC_FAIL decoding error or results would no fit into provided buffer */
static TPM_RC
RSAES_Decode(
	     TPM2B       *message,       // OUT: the recovered message
	     TPM2B       *coded          // IN: the encoded message
	     )
{
    BOOL        fail = FALSE;
    UINT16      pSize;
    fail = (coded->size < 11);
    fail = (coded->buffer[0] != 0x00) | fail;
    fail = (coded->buffer[1] != 0x02) | fail;
    for(pSize = 2; pSize < coded->size; pSize++)
	{
	    if(coded->buffer[pSize] == 0)
		break;
	}
    pSize++;
    // Make sure that pSize has not gone over the end and that there are at least 8
    // bytes of pad data.
    fail = (pSize > coded->size) | fail;
    fail = ((pSize - 2) <= 8) | fail;
    if((message->size < (UINT16)(coded->size - pSize)) || fail)
	return TPM_RC_VALUE;
    message->size = coded->size - pSize;
    memcpy(message->buffer, &coded->buffer[pSize], coded->size - pSize);
    return TPM_RC_SUCCESS;
}
#endif                                  // libtpms added
/* 10.2.17.4.13	CryptRsaPssSaltSize() */
/* This function computes the salt size used in PSS. It is broken out so that the X509 code can get
   the same value that is used by the encoding function in this module. */
INT16
CryptRsaPssSaltSize(
    INT16              hashSize,
    INT16               outSize
)
{
    INT16               saltSize;
    //
    // (Mask Length) = (outSize - hashSize - 1);
    // Max saltSize is (Mask Length) - 1
    saltSize = (outSize - hashSize - 1) - 1;
    // Use the maximum salt size allowed by FIPS 186-4
    if (saltSize > hashSize)
	saltSize = hashSize;
    else if (saltSize < 0)
	saltSize = 0;
    return saltSize;
}

#if !USE_OPENSSL_FUNCTIONS_RSA         // libtpms added
/* 10.2.17.4.9 PssEncode() */
/* This function creates an encoded block of data that is the size of modulus. The function uses the
   maximum salt size that will fit in the encoded block. */
/* Returns TPM_RC_SUCCESS or goes into failure mode. */
static TPM_RC
PssEncode(
	  TPM2B           *out,       // OUT: the encoded buffer
	  TPM_ALG_ID       hashAlg,   // IN: hash algorithm for the encoding
	  TPM2B           *digest,    // IN: the digest
	  RAND_STATE      *rand       // IN: random number source
	  )
{
    UINT32               hLen = CryptHashGetDigestSize(hashAlg);
    BYTE                 salt[MAX_RSA_KEY_BYTES - 1];
    UINT16               saltSize;
    BYTE                *ps = salt;
    BYTE                *pOut;
    UINT16               mLen;
    HASH_STATE           hashState;
    // These are fatal errors indicating bad TPM firmware
    pAssert(out != NULL && hLen > 0 && digest != NULL);
    // Get the size of the mask
    mLen = (UINT16)(out->size - hLen - 1);
    // Maximum possible salt size is mask length - 1
    saltSize = mLen - 1;
    // Use the maximum salt size allowed by FIPS 186-4
    if(saltSize > hLen)
	saltSize = (UINT16)hLen;
    //using eOut for scratch space
    // Set the first 8 bytes to zero
    pOut = out->buffer;
    memset(pOut, 0, 8);
    // Get set the salt
    DRBG_Generate(rand, salt, saltSize);
    // Create the hash of the pad || input hash || salt
    CryptHashStart(&hashState, hashAlg);
    CryptDigestUpdate(&hashState, 8, pOut);
    CryptDigestUpdate2B(&hashState, digest);
    CryptDigestUpdate(&hashState, saltSize, salt);
    CryptHashEnd(&hashState, hLen, &pOut[out->size - hLen - 1]);
    // Create a mask
    if(CryptMGF_KDF(mLen, pOut, hashAlg, hLen, &pOut[mLen], 0) != mLen)
	FAIL(FATAL_ERROR_INTERNAL);
    // Since this implementation uses key sizes that are all even multiples of
    // 8, just need to make sure that the most significant bit is CLEAR
    *pOut &= 0x7f;
    // Before we mess up the pOut value, set the last byte to 0xbc
    pOut[out->size - 1] = 0xbc;
    // XOR a byte of 0x01 at the position just before where the salt will be XOR'ed
    pOut = &pOut[mLen - saltSize - 1];
    *pOut++ ^= 0x01;
    // XOR the salt data into the buffer
    for(; saltSize > 0; saltSize--)
	*pOut++ ^= *ps++;
    // and we are done
    return TPM_RC_SUCCESS;
}
/* 10.2.17.4.10 PssDecode() */
/* This function checks that the PSS encoded block was built from the provided digest. If the check
   is successful, TPM_RC_SUCCESS is returned. Any other value indicates an error. */
/* This implementation of PSS decoding is intended for the reference TPM implementation and is not
   at all generalized.  It is used to check signatures over hashes and assumptions are made about
   the sizes of values. Those assumptions are enforce by this implementation. This implementation
   does allow for a variable size salt value to have been used by the creator of the signature. */
/* Error Returns Meaning */
/* TPM_RC_SCHEME hashAlg is not a supported hash algorithm */
/* TPM_RC_VALUE decode operation failed */
static TPM_RC
PssDecode(
	  TPM_ALG_ID   hashAlg,        // IN: hash algorithm to use for the encoding
	  TPM2B       *dIn,            // In: the digest to compare
	  TPM2B       *eIn             // IN: the encoded data
	  )
{
    UINT32           hLen = CryptHashGetDigestSize(hashAlg);
    BYTE             mask[MAX_RSA_KEY_BYTES];
    BYTE            *pm = mask;
    BYTE            *pe;
    BYTE             pad[8] = {0};
    UINT32           i;
    UINT32           mLen;
    BYTE             fail;
    TPM_RC           retVal = TPM_RC_SUCCESS;
    HASH_STATE       hashState;
    // These errors are indicative of failures due to programmer error
    pAssert(dIn != NULL && eIn != NULL);
    pe = eIn->buffer;
    // check the hash scheme
    if(hLen == 0)
	ERROR_RETURN(TPM_RC_SCHEME);
    // most significant bit must be zero
    fail = pe[0] & 0x80;
    // last byte must be 0xbc
    fail |= pe[eIn->size - 1] ^ 0xbc;
    // Use the hLen bytes at the end of the buffer to generate a mask
    // Doesn't start at the end which is a flag byte
    mLen = eIn->size - hLen - 1;
    CryptMGF_KDF(mLen, mask, hashAlg, hLen, &pe[mLen], 0);
    // Clear the MSO of the mask to make it consistent with the encoding.
    mask[0] &= 0x7F;
    pAssert(mLen <= sizeof(mask));
    // XOR the data into the mask to recover the salt. This sequence
    // advances eIn so that it will end up pointing to the seed data
    // which is the hash of the signature data
    for(i = mLen; i > 0; i--)
	*pm++ ^= *pe++;
    // Find the first byte of 0x01 after a string of all 0x00
    for(pm = mask, i = mLen; i > 0; i--)
	{
	    if(*pm == 0x01)
		break;
	    else
		fail |= *pm++;
	}
    // i should not be zero
    fail |= (i == 0);
    // if we have failed, will continue using the entire mask as the salt value so
    // that the timing attacks will not disclose anything (I don't think that this
    // is a problem for TPM applications but, usually, we don't fail so this
    // doesn't cost anything).
    if(fail)
	{
	    i = mLen;
	    pm = mask;
	}
    else
	{
	    pm++;
	    i--;
	}
    // i contains the salt size and pm points to the salt. Going to use the input
    // hash and the seed to recreate the hash in the lower portion of eIn.
    CryptHashStart(&hashState, hashAlg);
    // add the pad of 8 zeros
    CryptDigestUpdate(&hashState, 8, pad);
    // add the provided digest value
    CryptDigestUpdate(&hashState, dIn->size, dIn->buffer);
    // and the salt
    CryptDigestUpdate(&hashState, i, pm);
    // get the result
    fail |= (CryptHashEnd(&hashState, hLen, mask) != hLen);
    // Compare all bytes
    for(pm = mask; hLen > 0; hLen--)
	// don't use fail = because that could skip the increment and compare
	// operations after the first failure and that gives away timing
	// information.
	fail |= *pm++ ^ *pe++;
    retVal = (fail != 0) ? TPM_RC_VALUE : TPM_RC_SUCCESS;
 Exit:
    return retVal;
}
/* 10.2.17.4.16	MakeDerTag() */
/* Construct the DER value that is used in RSASSA */
/* Return Value	Meaning */
/* > 0	size of value */
/* <= 0	no hash exists */
INT16
MakeDerTag(
	   TPM_ALG_ID   hashAlg,
	   INT16        sizeOfBuffer,
	   BYTE        *buffer
	   )
{
    //    0x30, 0x31,       // SEQUENCE (2 elements) 1st
    //        0x30, 0x0D,   // SEQUENCE (2 elements)
    //            0x06, 0x09,   // HASH OID
    //                0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
    //             0x05, 0x00,  // NULL
    //        0x04, 0x20  //  OCTET STRING
    HASH_DEF   *info = CryptGetHashDef(hashAlg);
    INT16       oidSize;
    // If no OID, can't do encode
    VERIFY(info != NULL);
    oidSize = 2 + (info->OID)[1];
    // make sure this fits in the buffer
    VERIFY(sizeOfBuffer >= (oidSize + 8));
    *buffer++ = 0x30;  // 1st SEQUENCE
    // Size of the 1st SEQUENCE is 6 bytes + size of the hash OID + size of the
    // digest size
    *buffer++ = (BYTE)(6 + oidSize + info->digestSize);   //
    *buffer++ = 0x30; // 2nd SEQUENCE
    // size is 4 bytes of overhead plus the side of the OID
    *buffer++ = (BYTE)(2 + oidSize);
    MemoryCopy(buffer, info->OID, oidSize);
    buffer += oidSize;
    *buffer++ = 0x05;   // Add a NULL
    *buffer++ = 0x00;
    
    *buffer++ = 0x04;
    *buffer++ = (BYTE)(info->digestSize);
    return oidSize + 8;
 Error:
    return 0;
    
}

/* 10.2.17.4.17	RSASSA_Encode() */
/* Encode a message using PKCS1v1.5 method. */
/* Error Returns	Meaning */
/* TPM_RC_SCHEME	hashAlg is not a supported hash algorithm */
/* TPM_RC_SIZE	eOutSize is not large enough */
/* TPM_RC_VALUE	hInSize does not match the digest size of hashAlg */
static TPM_RC
RSASSA_Encode(
	      TPM2B               *pOut,      // IN:OUT on in, the size of the public key
	      //        on out, the encoded area
	      TPM_ALG_ID           hashAlg,   // IN: hash algorithm for PKCS1v1_5
	      TPM2B               *hIn        // IN: digest value to encode
	      )
{
    BYTE             DER[20];
    BYTE            *der = DER;
    INT32            derSize = MakeDerTag(hashAlg, sizeof(DER), DER);
    BYTE            *eOut;
    INT32            fillSize;
    TPM_RC           retVal = TPM_RC_SUCCESS;
    
    // Can't use this scheme if the algorithm doesn't have a DER string defined.
    if(derSize == 0)
	ERROR_RETURN(TPM_RC_SCHEME);
    
    // If the digest size of 'hashAl' doesn't match the input digest size, then
    // the DER will misidentify the digest so return an error
    if(CryptHashGetDigestSize(hashAlg) != hIn->size)
	ERROR_RETURN(TPM_RC_VALUE);
    fillSize = pOut->size - derSize - hIn->size - 3;
    eOut = pOut->buffer;
    
    // Make sure that this combination will fit in the provided space
    if(fillSize < 8)
	ERROR_RETURN(TPM_RC_SIZE);
    
    // Start filling
    *eOut++ = 0; // initial byte of zero
    *eOut++ = 1; // byte of 0x01
    for(; fillSize > 0; fillSize--)
	*eOut++ = 0xff; // bunch of 0xff
    *eOut++ = 0; // another 0
    for(; derSize > 0; derSize--)
	*eOut++ = *der++;   // copy the DER
    der = hIn->buffer;
    for(fillSize = hIn->size; fillSize > 0; fillSize--)
	*eOut++ = *der++;   // copy the hash
 Exit:
    return retVal;
}

/* 10.2.17.4.18	RSASSA_Decode() */
/* This function performs the RSASSA decoding of a signature. */
/* Error Returns	Meaning */
/* TPM_RC_VALUE	decode unsuccessful */
/* TPM_RC_SCHEME	haslAlg is not supported */
static TPM_RC
RSASSA_Decode(
	      TPM_ALG_ID       hashAlg,        // IN: hash algorithm to use for the encoding
	      TPM2B           *hIn,            // In: the digest to compare
	      TPM2B           *eIn             // IN: the encoded data
	      )
{
    BYTE             fail;
    BYTE             DER[20];
    BYTE            *der = DER;
    INT32            derSize = MakeDerTag(hashAlg, sizeof(DER), DER);
    BYTE            *pe;
    INT32            hashSize = CryptHashGetDigestSize(hashAlg);
    INT32            fillSize;
    TPM_RC           retVal;
    BYTE            *digest;
    UINT16           digestSize;
    
    pAssert(hIn != NULL && eIn != NULL);
    pe = eIn->buffer;
    
    // Can't use this scheme if the algorithm doesn't have a DER string
    // defined or if the provided hash isn't the right size
    if(derSize == 0 || (unsigned)hashSize != hIn->size)
	ERROR_RETURN(TPM_RC_SCHEME);
    
    // Make sure that this combination will fit in the provided space
    // Since no data movement takes place, can just walk though this
    // and accept nearly random values. This can only be called from
    // CryptValidateSignature() so eInSize is known to be in range.
    fillSize = eIn->size - derSize - hashSize - 3;
    
    // Start checking (fail will become non-zero if any of the bytes do not have
    // the expected value.
    fail = *pe++;                   // initial byte of zero
    fail |= *pe++ ^ 1;              // byte of 0x01
    for(; fillSize > 0; fillSize--)
	fail |= *pe++ ^ 0xff;       // bunch of 0xff
    fail |= *pe++;                  // another 0
    for(; derSize > 0; derSize--)
	fail |= *pe++ ^ *der++;    // match the DER
    digestSize = hIn->size;
    digest = hIn->buffer;
    for(; digestSize > 0; digestSize--)
	fail |= *pe++ ^ *digest++; // match the hash
    retVal = (fail != 0) ? TPM_RC_VALUE : TPM_RC_SUCCESS;
 Exit:
    return retVal;
}
#endif                                 // libtpms added

/* 10.2.17.4.13 CryptRsaSelectScheme() */
/* This function is used by TPM2_RSA_Decrypt() and TPM2_RSA_Encrypt().  It sets up the rules to
   select a scheme between input and object default. This function assume the RSA object is
   loaded. If a default scheme is defined in object, the default scheme should be chosen, otherwise,
   the input scheme should be chosen. In the case that both the object and scheme are not
   TPM_ALG_NULL, then if the schemes are the same, the input scheme will be chosen. if the scheme
   are not compatible, a NULL pointer will be returned. */
/* The return pointer may point to a TPM_ALG_NULL scheme. */
TPMT_RSA_DECRYPT*
CryptRsaSelectScheme(
		     TPMI_DH_OBJECT       rsaHandle,     // IN: handle of an RSA key
		     TPMT_RSA_DECRYPT    *scheme         // IN: a sign or decrypt scheme
		     )
{
    OBJECT              *rsaObject;
    TPMT_ASYM_SCHEME    *keyScheme;
    TPMT_RSA_DECRYPT    *retVal = NULL;
    // Get sign object pointer
    rsaObject = HandleToObject(rsaHandle);
    keyScheme = &rsaObject->publicArea.parameters.asymDetail.scheme;
    // if the default scheme of the object is TPM_ALG_NULL, then select the
    // input scheme
    if(keyScheme->scheme == TPM_ALG_NULL)
	{
	    retVal = scheme;
	}
    // if the object scheme is not TPM_ALG_NULL and the input scheme is
    // TPM_ALG_NULL, then select the default scheme of the object.
    else if(scheme->scheme == TPM_ALG_NULL)
	{
	    // if input scheme is NULL
	    retVal = (TPMT_RSA_DECRYPT *)keyScheme;
	}
    // get here if both the object scheme and the input scheme are
    // not TPM_ALG_NULL. Need to insure that they are the same.
    // IMPLEMENTATION NOTE: This could cause problems if future versions have
    // schemes that have more values than just a hash algorithm. A new function
    // (IsSchemeSame()) might be needed then.
    else if(keyScheme->scheme == scheme->scheme
	    && keyScheme->details.anySig.hashAlg == scheme->details.anySig.hashAlg)
	{
	    retVal = scheme;
	}
    // two different, incompatible schemes specified will return NULL
    return retVal;
}
/* 10.2.17.4.14 CryptRsaLoadPrivateExponent() */
/* Error Returns Meaning */
/* TPM_RC_BINDING public and private parts of rsaKey are not matched */
TPM_RC
CryptRsaLoadPrivateExponent(
			    OBJECT          *rsaKey        // IN: the RSA key object
			    )
{
    BN_RSA_INITIALIZED(bnN, &rsaKey->publicArea.unique.rsa);
    BN_PRIME_INITIALIZED(bnP, &rsaKey->sensitive.sensitive.rsa);
    BN_RSA(bnQ);
    BN_PRIME(bnQr);
    BN_WORD_INITIALIZED(bnE, (rsaKey->publicArea.parameters.rsaDetail.exponent == 0)
			? RSA_DEFAULT_PUBLIC_EXPONENT
			: rsaKey->publicArea.parameters.rsaDetail.exponent);
    TPM_RC          retVal = TPM_RC_SUCCESS;
    if(!rsaKey->attributes.privateExp)
	{
	    TEST(TPM_ALG_NULL);
	    // Make sure that the bigNum used for the exponent is properly initialized
	    RsaInitializeExponent(&rsaKey->privateExponent);
	    // Find the second prime by division
	    BnDiv(bnQ, bnQr, bnN, bnP);
	    if(!BnEqualZero(bnQr))
		ERROR_RETURN(TPM_RC_BINDING);
	    // Compute the private exponent and return it if found
	    if(!ComputePrivateExponent(bnP, bnQ, bnE, bnN,
				       &rsaKey->privateExponent))
		ERROR_RETURN(TPM_RC_BINDING);
	}
 Exit:
    rsaKey->attributes.privateExp = (retVal == TPM_RC_SUCCESS);
    return retVal;
}
#if !USE_OPENSSL_FUNCTIONS_RSA         // libtpms added
/* 10.2.17.4.15 CryptRsaEncrypt() */
/* This is the entry point for encryption using RSA. Encryption is use of the public exponent. The
   padding parameter determines what padding will be used. */
/* The cOutSize parameter must be at least as large as the size of the key. */
/* If the padding is RSA_PAD_NONE, dIn is treated as a number. It must be lower in value than the
   key modulus. */
/* NOTE: If dIn has fewer bytes than cOut, then we don't add low-order zeros to dIn to make it the
   size of the RSA key for the call to RSAEP. This is because the high order bytes of dIn might have
   a numeric value that is greater than the value of the key modulus. If this had low-order zeros
   added, it would have a numeric value larger than the modulus even though it started out with a
   lower numeric value. */
/* Error Returns Meaning */
/* TPM_RC_VALUE cOutSize is too small (must be the size of the modulus) */
/* TPM_RC_SCHEME padType is not a supported scheme */
LIB_EXPORT TPM_RC
CryptRsaEncrypt(
		TPM2B_PUBLIC_KEY_RSA        *cOut,          // OUT: the encrypted data
		TPM2B                       *dIn,           // IN: the data to encrypt
		OBJECT                      *key,           // IN: the key used for encryption
		TPMT_RSA_DECRYPT            *scheme,        // IN: the type of padding and hash
		//     if needed
		const TPM2B                 *label,         // IN: in case it is needed
		RAND_STATE                  *rand           // IN: random number generator
		//     state (mostly for testing)
		)
{
    TPM_RC                       retVal = TPM_RC_SUCCESS;
    TPM2B_PUBLIC_KEY_RSA         dataIn;
    //
    // if the input and output buffers are the same, copy the input to a scratch
    // buffer so that things don't get messed up.
    if(dIn == &cOut->b)
	{
	    MemoryCopy2B(&dataIn.b, dIn, sizeof(dataIn.t.buffer));
	    dIn = &dataIn.b;
	}
    // All encryption schemes return the same size of data
    cOut->t.size = key->publicArea.unique.rsa.t.size;
    TEST(scheme->scheme);
    switch(scheme->scheme)
	{
	  case TPM_ALG_NULL:  // 'raw' encryption
	      {
		  INT32            i;
		  INT32            dSize = dIn->size;
		  // dIn can have more bytes than cOut as long as the extra bytes
		  // are zero. Note: the more significant bytes of a number in a byte
		  // buffer are the bytes at the start of the array.
		  for(i = 0; (i < dSize) && (dIn->buffer[i] == 0); i++);
		  dSize -= i;
		  if(dSize > cOut->t.size)
		      ERROR_RETURN(TPM_RC_VALUE);
		  // Pad cOut with zeros if dIn is smaller
		  memset(cOut->t.buffer, 0, cOut->t.size - dSize);
		  // And copy the rest of the value
		  memcpy(&cOut->t.buffer[cOut->t.size - dSize], &dIn->buffer[i], dSize);
		  // If the size of dIn is the same as cOut dIn could be larger than
		  // the modulus. If it is, then RSAEP() will catch it.
	      }
	      break;
	  case TPM_ALG_RSAES:
	    retVal = RSAES_PKCS1v1_5Encode(&cOut->b, dIn, rand);
	    break;
	  case TPM_ALG_OAEP:
	    retVal = OaepEncode(&cOut->b, scheme->details.oaep.hashAlg, label, dIn,
				rand);
	    break;
	  default:
	    ERROR_RETURN(TPM_RC_SCHEME);
	    break;
	}
    // All the schemes that do padding will come here for the encryption step
    // Check that the Encoding worked
    if(retVal == TPM_RC_SUCCESS)
	// Padding OK so do the encryption
	retVal = RSAEP(&cOut->b, key);
 Exit:
    return retVal;
}
/* 10.2.17.4.16 CryptRsaDecrypt() */
/* This is the entry point for decryption using RSA. Decryption is use of the private exponent. The
   padType parameter determines what padding was used. */
/* Error Returns Meaning */
/* TPM_RC_SIZE cInSize is not the same as the size of the public modulus of key; or numeric value of
   the encrypted data is greater than the modulus */
/* TPM_RC_VALUE dOutSize is not large enough for the result */
/* TPM_RC_SCHEME padType is not supported */
LIB_EXPORT TPM_RC
CryptRsaDecrypt(
		TPM2B               *dOut,          // OUT: the decrypted data
		TPM2B               *cIn,           // IN: the data to decrypt
		OBJECT              *key,           // IN: the key to use for decryption
		TPMT_RSA_DECRYPT    *scheme,        // IN: the padding scheme
		const TPM2B         *label          // IN: in case it is needed for the scheme
		)
{
    TPM_RC                 retVal;
    // Make sure that the necessary parameters are provided
    pAssert(cIn != NULL && dOut != NULL && key != NULL);
    // Size is checked to make sure that the encrypted value is the right size
    if(cIn->size != key->publicArea.unique.rsa.t.size)
	ERROR_RETURN(TPM_RC_SIZE);
    TEST(scheme->scheme);
    // For others that do padding, do the decryption in place and then
    // go handle the decoding.
    retVal = RSADP(cIn, key);
    if(retVal == TPM_RC_SUCCESS)
	{
	    // Remove padding
	    switch(scheme->scheme)
		{
		  case TPM_ALG_NULL:
		    if(dOut->size < cIn->size)
			return TPM_RC_VALUE;
		    MemoryCopy2B(dOut, cIn, dOut->size);
		    break;
		  case TPM_ALG_RSAES:
		    retVal = RSAES_Decode(dOut, cIn);
		    break;
		  case TPM_ALG_OAEP:
		    retVal = OaepDecode(dOut, scheme->details.oaep.hashAlg, label, cIn);
		    break;
		  default:
		    retVal = TPM_RC_SCHEME;
		    break;
		}
	}
 Exit:
    return retVal;
}
/* 10.2.17.4.17 CryptRsaSign() */
/* This function is used to generate an RSA signature of the type indicated in scheme. */
/* Error Returns Meaning */
/* TPM_RC_SCHEME scheme or hashAlg are not supported */
/* TPM_RC_VALUE hInSize does not match hashAlg (for RSASSA) */
LIB_EXPORT TPM_RC
CryptRsaSign(
	     TPMT_SIGNATURE      *sigOut,
	     OBJECT              *key,           // IN: key to use
	     TPM2B_DIGEST        *hIn,           // IN: the digest to sign
	     RAND_STATE          *rand           // IN: the random number generator
	     //      to use (mostly for testing)
	     )
{
    TPM_RC                retVal = TPM_RC_SUCCESS;
    UINT16                modSize;
    // parameter checks
    pAssert(sigOut != NULL && key != NULL && hIn != NULL);
    modSize = key->publicArea.unique.rsa.t.size;
    // for all non-null signatures, the size is the size of the key modulus
    sigOut->signature.rsapss.sig.t.size = modSize;
    TEST(sigOut->sigAlg);
    switch(sigOut->sigAlg)
	{
	  case TPM_ALG_NULL:
	    sigOut->signature.rsapss.sig.t.size = 0;
	    return TPM_RC_SUCCESS;
	  case TPM_ALG_RSAPSS:
	    retVal = PssEncode(&sigOut->signature.rsapss.sig.b,
			       sigOut->signature.rsapss.hash, &hIn->b, rand);
	    break;
	  case TPM_ALG_RSASSA:
	    retVal = RSASSA_Encode(&sigOut->signature.rsassa.sig.b,
				   sigOut->signature.rsassa.hash, &hIn->b);
	    break;
	  default:
	    retVal = TPM_RC_SCHEME;
	}
    if(retVal == TPM_RC_SUCCESS)
	{
	    // Do the encryption using the private key
	    retVal = RSADP(&sigOut->signature.rsapss.sig.b, key);
	}
    return retVal;
}
/* 10.2.17.4.18 CryptRsaValidateSignature() */
/* This function is used to validate an RSA signature. If the signature is valid TPM_RC_SUCCESS is
   returned. If the signature is not valid, TPM_RC_SIGNATURE is returned. Other return codes
   indicate either parameter problems or fatal errors. */
/* Error Returns Meaning */
/* TPM_RC_SIGNATURE the signature does not check */
/* TPM_RC_SCHEME unsupported scheme or hash algorithm */
LIB_EXPORT TPM_RC
CryptRsaValidateSignature(
			  TPMT_SIGNATURE  *sig,           // IN: signature
			  OBJECT          *key,           // IN: public modulus
			  TPM2B_DIGEST    *digest         // IN: The digest being validated
			  )
{
    TPM_RC          retVal;
    //
    // Fatal programming errors
    pAssert(key != NULL && sig != NULL && digest != NULL);
    switch(sig->sigAlg)
	{
	  case TPM_ALG_RSAPSS:
	  case TPM_ALG_RSASSA:
	    break;
	  default:
	    return TPM_RC_SCHEME;
	}
    // Errors that might be caused by calling parameters
    if(sig->signature.rsassa.sig.t.size != key->publicArea.unique.rsa.t.size)
	ERROR_RETURN(TPM_RC_SIGNATURE);
    TEST(sig->sigAlg);
    // Decrypt the block
    retVal = RSAEP(&sig->signature.rsassa.sig.b, key);
    if(retVal == TPM_RC_SUCCESS)
	{
	    switch(sig->sigAlg)
		{
		  case TPM_ALG_RSAPSS:
		    retVal = PssDecode(sig->signature.any.hashAlg, &digest->b,
				       &sig->signature.rsassa.sig.b);
		    break;
		  case TPM_ALG_RSASSA:
		    retVal = RSASSA_Decode(sig->signature.any.hashAlg, &digest->b,
					   &sig->signature.rsassa.sig.b);
		    break;
		  default:
		    return TPM_RC_SCHEME;
		}
	}
 Exit:
    return (retVal != TPM_RC_SUCCESS) ? TPM_RC_SIGNATURE : TPM_RC_SUCCESS;
}
#endif                                 // libtpms added
#if SIMULATION && USE_RSA_KEY_CACHE
extern int s_rsaKeyCacheEnabled;
int GetCachedRsaKey(OBJECT *key, RAND_STATE *rand);
#define GET_CACHED_KEY(key, rand)					\
    (s_rsaKeyCacheEnabled && GetCachedRsaKey(key, rand))
#else
#define GET_CACHED_KEY(key, rand)
#endif
/* 10.2.17.4.19 CryptRsaGenerateKey() */
/* Generate an RSA key from a provided seed */
/* Error Returns Meaning */
/* TPM_RC_CANCELED operation was canceled */
/* TPM_RC_RANGE public exponent is not supported */
/* TPM_RC_VALUE could not find a prime using the provided parameters */
LIB_EXPORT TPM_RC
CryptRsaGenerateKey(
		    OBJECT              *rsaKey,            // IN/OUT: The object structure in which
		    //          the key is created.
		    RAND_STATE          *rand               // IN: if not NULL, the deterministic
		    //     RNG state
		    )
{
    UINT32               i;
    BN_PRIME(bnP); // These four declarations initialize the number to 0
    BN_PRIME(bnQ);
    BN_RSA(bnD);
    BN_RSA(bnN);
    BN_WORD(bnE);
    UINT32               e;
    int                  keySizeInBits;
    TPMT_PUBLIC         *publicArea = &rsaKey->publicArea;
    TPMT_SENSITIVE      *sensitive = &rsaKey->sensitive;
    TPM_RC               retVal = TPM_RC_NO_RESULT;
    //
    // Need to make sure that the caller did not specify an exponent that is
    // not supported
    e = publicArea->parameters.rsaDetail.exponent;
    if(e == 0)
	e = RSA_DEFAULT_PUBLIC_EXPONENT;
    if(e < 65537)
	ERROR_RETURN(TPM_RC_RANGE);
    if(e != RSA_DEFAULT_PUBLIC_EXPONENT && !IsPrimeInt(e))
	ERROR_RETURN(TPM_RC_RANGE);
    BnSetWord(bnE, e);
    // Check that e is prime
    // check for supported key size.
    keySizeInBits = publicArea->parameters.rsaDetail.keyBits;
    if(((keySizeInBits % 1024) != 0)
       || (keySizeInBits > MAX_RSA_KEY_BITS)  // this might be redundant, but...
       || (keySizeInBits == 0))
	ERROR_RETURN(TPM_RC_VALUE);
    // Set the prime size for instrumentation purposes
    INSTRUMENT_SET(PrimeIndex, PRIME_INDEX(keySizeInBits / 2));
#if SIMULATION && USE_RSA_KEY_CACHE
    if(GET_CACHED_KEY(rsaKey, rand))
	return TPM_RC_SUCCESS;
#endif
    // Make sure that key generation has been tested
    TEST(TPM_ALG_NULL);
#if USE_OPENSSL_FUNCTIONS_RSA          // libtpms added begin
    if (rand == NULL)
        return OpenSSLCryptRsaGenerateKey(rsaKey, e, keySizeInBits);
#endif                                 // libtpms added end
    // Need to initialize the privateExponent structure
    RsaInitializeExponent(&rsaKey->privateExponent);
    // The prime is computed in P. When a new prime is found, Q is checked to
    // see if it is zero.  If so, P is copied to Q and a new P is found.
    // When both P and Q are non-zero, the modulus and
    // private exponent are computed and a trial encryption/decryption is
    // performed.  If the encrypt/decrypt fails, assume that at least one of the
    // primes is composite. Since we don't know which one, set Q to zero and start
    // over and find a new pair of primes.
    for(i = 1; (retVal != TPM_RC_SUCCESS) && (i != 100); i++)
	{
	    if(_plat__IsCanceled())
		ERROR_RETURN(TPM_RC_CANCELED);
	    BnGeneratePrimeForRSA(bnP, keySizeInBits / 2, e, rand);
	    INSTRUMENT_INC(PrimeCounts[PrimeIndex]);
	    // If this is the second prime, make sure that it differs from the
	    // first prime by at least 2^100
	    if(BnEqualZero(bnQ))
		{
		    // copy p to q and compute another prime in p
		    BnCopy(bnQ, bnP);
		    continue;
		}
	    // Make sure that the difference is at least 100 bits. Need to do it this
	    // way because the big numbers are only positive values
	    if(BnUnsignedCmp(bnP, bnQ) < 0)
		BnSub(bnD, bnQ, bnP);
	    else
		BnSub(bnD, bnP, bnQ);
	    if(BnMsb(bnD) < 100)
		continue;
	    //Form the public modulus and set the unique value
	    BnMult(bnN, bnP, bnQ);
	    BnTo2B(bnN, &publicArea->unique.rsa.b,
		   (NUMBYTES)BITS_TO_BYTES(keySizeInBits));
	    // And the  prime to the sensitive area
	    BnTo2B(bnP, &sensitive->sensitive.rsa.b,
		   (NUMBYTES)BITS_TO_BYTES(keySizeInBits) / 2);
	    // Make sure everything came out right. The MSb of the values must be
	    // one
	    if(((publicArea->unique.rsa.t.buffer[0] & 0x80) == 0)
	       || ((sensitive->sensitive.rsa.t.buffer[0] & 0x80) == 0))
		FAIL(FATAL_ERROR_INTERNAL);
	    // Make sure that we can form the private exponent values
	    if(ComputePrivateExponent(bnP, bnQ, bnE, bnN, &rsaKey->privateExponent)
	       != TRUE)
		{
		    // If ComputePrivateExponent could not find an inverse for
		    // Q, then copy P and recompute P. This might
		    // cause both to be recomputed if P is also zero
		    if(BnEqualZero(bnQ))
			BnCopy(bnQ, bnP);
		    continue;
		}
	    retVal = TPM_RC_SUCCESS;
	    // Do a trial encryption decryption if this is a signing key
	    if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))
		{
		    BN_RSA(temp1);
		    BN_RSA(temp2);
		    BnGenerateRandomInRange(temp1, bnN, rand);
		    // Encrypt with public exponent...
		    BnModExp(temp2, temp1, bnE, bnN);
		    // ...  then decrypt with private exponent
		    RsaPrivateKeyOp(temp2, bnN, bnP, &rsaKey->privateExponent);
		    // If the starting and ending values are not the same,
		    // start over )-;
		    if(BnUnsignedCmp(temp2, temp1) != 0)
			{
			    BnSetWord(bnQ, 0);
			    retVal = TPM_RC_NO_RESULT;
			}
		}
	}
 Exit:
    if(retVal == TPM_RC_SUCCESS)
	rsaKey->attributes.privateExp = SET;
    return retVal;
}

#if USE_OPENSSL_FUNCTIONS_RSA          // libtpms added begin
LIB_EXPORT TPM_RC
CryptRsaEncrypt(
		TPM2B_PUBLIC_KEY_RSA        *cOut,          // OUT: the encrypted data
		TPM2B                       *dIn,           // IN: the data to encrypt
		OBJECT                      *key,           // IN: the key used for encryption
		TPMT_RSA_DECRYPT            *scheme,        // IN: the type of padding and hash
		//     if needed
		const TPM2B                 *label,         // IN: in case it is needed
		RAND_STATE                  *rand           // IN: random number generator
		//     state (mostly for testing)
		)
{
    TPM_RC                       retVal;
    TPM2B_PUBLIC_KEY_RSA         dataIn;
    TPM2B_PUBLIC_KEY_RSA         scratch;
    size_t                       outlen;
    EVP_PKEY                    *pkey = NULL;
    EVP_PKEY_CTX                *ctx = NULL;
    const EVP_MD                *md;
    const char                  *digestname;
    unsigned char               *tmp = NULL;
    //
    // if the input and output buffers are the same, copy the input to a scratch
    // buffer so that things don't get messed up.
    if(dIn == &cOut->b)
	{
	    MemoryCopy2B(&dataIn.b, dIn, sizeof(dataIn.t.buffer));
	    dIn = &dataIn.b;
	}
    // All encryption schemes return the same size of data
    pAssert(sizeof(cOut->t.buffer) >= key->publicArea.unique.rsa.t.size);
    cOut->t.size = key->publicArea.unique.rsa.t.size;
    TEST(scheme->scheme);

    retVal = InitOpenSSLRSAPublicKey(key, &pkey);
    if (retVal != TPM_RC_SUCCESS)
        return retVal;

    ctx = EVP_PKEY_CTX_new(pkey, NULL);
    if (ctx == NULL ||
        EVP_PKEY_encrypt_init(ctx) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    switch(scheme->scheme)
	{
          case TPM_ALG_NULL:  // 'raw' encryption
	    {
		INT32                 i;
		INT32                 dSize = dIn->size;
		// dIn can have more bytes than cOut as long as the extra bytes
		// are zero. Note: the more significant bytes of a number in a byte
		// buffer are the bytes at the start of the array.
		for(i = 0; (i < dSize) && (dIn->buffer[i] == 0); i++);
		dSize -= i;
		scratch.t.size = cOut->t.size;
		pAssert(scratch.t.size <= sizeof(scratch.t.buffer));
		if(dSize > scratch.t.size)
		    ERROR_RETURN(TPM_RC_VALUE);
		// Pad cOut with zeros if dIn is smaller
		memset(scratch.t.buffer, 0, scratch.t.size - dSize);
		// And copy the rest of the value; value is then right-aligned
		memcpy(&scratch.t.buffer[scratch.t.size - dSize], &dIn->buffer[i], dSize);

		dIn = &scratch.b;
	    }
            if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);
            break;
          case TPM_ALG_RSAES:
            if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);
            break;
          case TPM_ALG_OAEP:
            digestname = GetDigestNameByHashAlg(scheme->details.oaep.hashAlg);
            if (digestname == NULL)
                ERROR_RETURN(TPM_RC_VALUE);

            md = EVP_get_digestbyname(digestname);
            if (md == NULL ||
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0 ||
                EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);

            if (label->size > 0) {
                tmp = malloc(label->size);
                if (tmp == NULL)
                    ERROR_RETURN(TPM_RC_FAILURE);
                memcpy(tmp, label->buffer, label->size);
            }
            // label->size == 0 is supported
            if (EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, tmp, label->size) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);
            tmp = NULL;
            break;
          default:
            ERROR_RETURN(TPM_RC_SCHEME);
            break;
	}

    outlen = cOut->t.size;

    if (EVP_PKEY_encrypt(ctx, cOut->t.buffer, &outlen,
                         dIn->buffer, dIn->size) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    cOut->t.size = outlen;

 Exit:
    EVP_PKEY_free(pkey);
    EVP_PKEY_CTX_free(ctx);
    free(tmp);

    return retVal;
}

LIB_EXPORT TPM_RC
CryptRsaDecrypt(
		TPM2B               *dOut,          // OUT: the decrypted data
		TPM2B               *cIn,           // IN: the data to decrypt
		OBJECT              *key,           // IN: the key to use for decryption
		TPMT_RSA_DECRYPT    *scheme,        // IN: the padding scheme
		const TPM2B         *label          // IN: in case it is needed for the scheme
		)
{
    TPM_RC                 retVal;
    EVP_PKEY              *pkey = NULL;
    EVP_PKEY_CTX          *ctx = NULL;
    const EVP_MD          *md = NULL;
    const char            *digestname;
    size_t                 outlen;
    unsigned char         *tmp = NULL;
    unsigned char          buffer[MAX_RSA_KEY_BYTES];

    // Make sure that the necessary parameters are provided
    pAssert(cIn != NULL && dOut != NULL && key != NULL);
    // Size is checked to make sure that the encrypted value is the right size
    if(cIn->size != key->publicArea.unique.rsa.t.size)
        ERROR_RETURN(TPM_RC_SIZE);
    TEST(scheme->scheme);

    retVal = InitOpenSSLRSAPrivateKey(key, &pkey);
    if (retVal != TPM_RC_SUCCESS)
        return retVal;

    ctx = EVP_PKEY_CTX_new(pkey, NULL);
    if (ctx == NULL ||
        EVP_PKEY_decrypt_init(ctx) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    switch(scheme->scheme)
	{
	  case TPM_ALG_NULL:  // 'raw' encryption
            if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);
            break;
	  case TPM_ALG_RSAES:
            if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);
            break;
	  case TPM_ALG_OAEP:
            digestname = GetDigestNameByHashAlg(scheme->details.oaep.hashAlg);
            if (digestname == NULL)
                ERROR_RETURN(TPM_RC_VALUE);

            md = EVP_get_digestbyname(digestname);
            if (md == NULL ||
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0 ||
                EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md) <= 0)
                ERROR_RETURN(TPM_RC_FAILURE);

            if (label->size > 0) {
                tmp = malloc(label->size);
                if (tmp == NULL)
                    ERROR_RETURN(TPM_RC_FAILURE);
                memcpy(tmp, label->buffer, label->size);

                if (EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, tmp, label->size) <= 0)
                    ERROR_RETURN(TPM_RC_FAILURE);
                tmp = NULL;
            }
            break;
	  default:
            ERROR_RETURN(TPM_RC_SCHEME);
            break;
	}

    /* cannot use cOut->buffer */
    outlen = sizeof(buffer);
    if (EVP_PKEY_decrypt(ctx, buffer, &outlen,
                         cIn->buffer, cIn->size) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    if (outlen > dOut->size)
        ERROR_RETURN(TPM_RC_FAILURE);

    memcpy(dOut->buffer, buffer, outlen);
    dOut->size = outlen;

    retVal = TPM_RC_SUCCESS;

 Exit:
    EVP_PKEY_free(pkey);
    EVP_PKEY_CTX_free(ctx);
    free(tmp);

    return retVal;
}

LIB_EXPORT TPM_RC
CryptRsaSign(
	     TPMT_SIGNATURE      *sigOut,
	     OBJECT              *key,           // IN: key to use
	     TPM2B_DIGEST        *hIn,           // IN: the digest to sign
	     RAND_STATE          *rand           // IN: the random number generator
	     //      to use (mostly for testing)
	     )
{
    TPM_RC                retVal = TPM_RC_SUCCESS;
    UINT16                modSize;
    size_t                outlen;
    int                   padding;
    EVP_PKEY             *pkey = NULL;
    EVP_PKEY_CTX         *ctx = NULL;
    const EVP_MD         *md;
    const char           *digestname;
    TPMI_ALG_HASH         hashAlg;

    // parameter checks
    pAssert(sigOut != NULL && key != NULL && hIn != NULL);
    modSize = key->publicArea.unique.rsa.t.size;
    // for all non-null signatures, the size is the size of the key modulus
    sigOut->signature.rsapss.sig.t.size = modSize;
    TEST(sigOut->sigAlg);

    switch(sigOut->sigAlg)
         {
          case TPM_ALG_NULL:
            sigOut->signature.rsapss.sig.t.size = 0;
            return TPM_RC_SUCCESS;
          case TPM_ALG_RSAPSS:
            padding = RSA_PKCS1_PSS_PADDING;
            hashAlg = sigOut->signature.rsapss.hash;
            break;
          case TPM_ALG_RSASSA:
            padding = RSA_PKCS1_PADDING;
            hashAlg = sigOut->signature.rsassa.hash;
            break;
          default:
            ERROR_RETURN(TPM_RC_SCHEME);
         }

    digestname = GetDigestNameByHashAlg(hashAlg);
    if (digestname == NULL)
        ERROR_RETURN(TPM_RC_VALUE);

    md = EVP_get_digestbyname(digestname);
    if (md == NULL)
        ERROR_RETURN(TPM_RC_FAILURE);

    retVal = InitOpenSSLRSAPrivateKey(key, &pkey);
    if (retVal != TPM_RC_SUCCESS)
        return retVal;

    ctx = EVP_PKEY_CTX_new(pkey, NULL);
    if (ctx == NULL ||
        EVP_PKEY_sign_init(ctx) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    if (EVP_PKEY_CTX_set_rsa_padding(ctx, padding) <= 0 ||
        EVP_PKEY_CTX_set_signature_md(ctx, md) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    /* careful with PSS padding: Use salt length = hash length (-1) if
     *   length(digest) + length(hash-to-sign) + 2 <= modSize
     * otherwise use the max. possible salt length, which is the default (-2)
     * test case: 1024 bit key PSS signing sha512 hash
     */
    if (padding == RSA_PKCS1_PSS_PADDING &&
        EVP_MD_size(md) + hIn->b.size + 2 <= modSize && /* OSSL: RSA_padding_add_PKCS1_PSS_mgf1 */
        EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, -1) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    outlen = sigOut->signature.rsapss.sig.t.size;
    if (EVP_PKEY_sign(ctx,
                      sigOut->signature.rsapss.sig.t.buffer, &outlen,
                      hIn->b.buffer, hIn->b.size) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    sigOut->signature.rsapss.sig.t.size = outlen;

 Exit:
    EVP_PKEY_free(pkey);
    EVP_PKEY_CTX_free(ctx);

    return retVal;
}

LIB_EXPORT TPM_RC
CryptRsaValidateSignature(
			  TPMT_SIGNATURE  *sig,           // IN: signature
			  OBJECT          *key,           // IN: public modulus
			  TPM2B_DIGEST    *digest         // IN: The digest being validated
			  )
{
    TPM_RC          retVal;
    int             padding;
    EVP_PKEY       *pkey = NULL;
    EVP_PKEY_CTX   *ctx = NULL;
    const EVP_MD   *md;
    const char     *digestname;

    //
    // Fatal programming errors
    pAssert(key != NULL && sig != NULL && digest != NULL);
    switch(sig->sigAlg)
	{
	  case TPM_ALG_RSAPSS:
	    padding = RSA_PKCS1_PSS_PADDING;
	    break;
	  case TPM_ALG_RSASSA:
	    padding = RSA_PKCS1_PADDING;
	    break;
	  default:
	    return TPM_RC_SCHEME;
	}
    // Errors that might be caused by calling parameters
    if(sig->signature.rsassa.sig.t.size != key->publicArea.unique.rsa.t.size)
	ERROR_RETURN(TPM_RC_SIGNATURE);
    TEST(sig->sigAlg);

    retVal = InitOpenSSLRSAPublicKey(key, &pkey);
    if (retVal != TPM_RC_SUCCESS)
        return retVal;

    digestname = GetDigestNameByHashAlg(sig->signature.any.hashAlg);
    if (digestname == NULL)
        ERROR_RETURN(TPM_RC_VALUE);

    md = EVP_get_digestbyname(digestname);
    ctx = EVP_PKEY_CTX_new(pkey, NULL);
    if (md == NULL || ctx == NULL ||
        EVP_PKEY_verify_init(ctx) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    if (EVP_PKEY_CTX_set_rsa_padding(ctx, padding) <= 0 ||
        EVP_PKEY_CTX_set_signature_md(ctx, md) <= 0)
        ERROR_RETURN(TPM_RC_FAILURE);

    if (EVP_PKEY_verify(ctx,
                        sig->signature.rsassa.sig.t.buffer, sig->signature.rsassa.sig.t.size,
                        digest->t.buffer, digest->t.size) <= 0)
        ERROR_RETURN(TPM_RC_SIGNATURE);

    retVal = TPM_RC_SUCCESS;

 Exit:
    EVP_PKEY_free(pkey);
    EVP_PKEY_CTX_free(ctx);

    return (retVal != TPM_RC_SUCCESS) ? TPM_RC_SIGNATURE : TPM_RC_SUCCESS;
}
#endif // USE_OPENSSL_FUNCTIONS_RSA    libtpms added end

#endif // TPM_ALG_RSA