1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
|
/********************************************************************************/
/* */
/* TPM to OpenSSL BigNum Shim Layer */
/* Written by Ken Goldman */
/* IBM Thomas J. Watson Research Center */
/* $Id: TpmToOsslMath.c 1598 2020-03-27 21:59:49Z kgoldman $ */
/* */
/* Licenses and Notices */
/* */
/* 1. Copyright Licenses: */
/* */
/* - Trusted Computing Group (TCG) grants to the user of the source code in */
/* this specification (the "Source Code") a worldwide, irrevocable, */
/* nonexclusive, royalty free, copyright license to reproduce, create */
/* derivative works, distribute, display and perform the Source Code and */
/* derivative works thereof, and to grant others the rights granted herein. */
/* */
/* - The TCG grants to the user of the other parts of the specification */
/* (other than the Source Code) the rights to reproduce, distribute, */
/* display, and perform the specification solely for the purpose of */
/* developing products based on such documents. */
/* */
/* 2. Source Code Distribution Conditions: */
/* */
/* - Redistributions of Source Code must retain the above copyright licenses, */
/* this list of conditions and the following disclaimers. */
/* */
/* - Redistributions in binary form must reproduce the above copyright */
/* licenses, this list of conditions and the following disclaimers in the */
/* documentation and/or other materials provided with the distribution. */
/* */
/* 3. Disclaimers: */
/* */
/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */
/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */
/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */
/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */
/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */
/* information on specification licensing rights available through TCG */
/* membership agreements. */
/* */
/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */
/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */
/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */
/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */
/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */
/* */
/* - Without limitation, TCG and its members and licensors disclaim all */
/* liability, including liability for infringement of any proprietary */
/* rights, relating to use of information in this specification and to the */
/* implementation of this specification, and TCG disclaims all liability for */
/* cost of procurement of substitute goods or services, lost profits, loss */
/* of use, loss of data or any incidental, consequential, direct, indirect, */
/* or special damages, whether under contract, tort, warranty or otherwise, */
/* arising in any way out of use or reliance upon this specification or any */
/* information herein. */
/* */
/* (c) Copyright IBM Corp. and others, 2016 - 2020 */
/* */
/********************************************************************************/
/* B.2.3.2. TpmToOsslMath.c */
/* B.2.3.2.1. Introduction */
/* The functions in this file provide the low-level interface between the TPM code and the big
number and elliptic curve math routines in OpenSSL. */
/* Most math on big numbers require a context. The context contains the memory in which OpenSSL
creates and manages the big number values. When a OpenSSL math function will be called that
modifies a BIGNUM value, that value must be created in an OpenSSL context. The first line of code
in such a function must be: OSSL_ENTER(); and the last operation before returning must be
OSSL_LEAVE(). OpenSSL variables can then be created with BnNewVariable(). Constant values to be
used by OpenSSL are created from the bigNum values passed to the functions in this file. Space
for the BIGNUM control block is allocated in the stack of the function and then it is initialized
by calling BigInitialized(). That function sets up the values in the BIGNUM structure and sets
the data pointer to point to the data in the bignum_t. This is only used when the value is known
to be a constant in the called function. */
/* Because the allocations of constants is on the local stack and the OSSL_ENTER()/OSSL_LEAVE() pair
flushes everything created in OpenSSL memory, there should be no chance of a memory leak. */
#include "Tpm.h"
#ifdef MATH_LIB_OSSL
#include "TpmToOsslMath_fp.h"
/* B.2.3.2.3.1. OsslToTpmBn() */
/* This function converts an OpenSSL BIGNUM to a TPM bignum. In this implementation it is assumed
that OpenSSL uses a different control structure but the same data layout -- an array of
native-endian words in little-endian order. */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure because value will not fit or OpenSSL variable doesn't exist */
BOOL
OsslToTpmBn(
bigNum bn,
const BIGNUM *osslBn // libtpms: added 'const'
)
{
VERIFY(osslBn != NULL);
// If the bn is NULL, it means that an output value pointer was NULL meaning that
// the results is simply to be discarded.
unsigned char buffer[LARGEST_NUMBER + 1]; // libtpms added
int buffer_len; // libtpms added
if(bn != NULL)
{
#if 1 //libtpms added begin
int num_bytes;
num_bytes = BN_num_bytes(osslBn);
VERIFY(num_bytes >= 0 && sizeof(buffer) >= (size_t)num_bytes);
buffer_len = BN_bn2bin(osslBn, buffer); /* ossl to bin */
BnFromBytes(bn, buffer, buffer_len); /* bin to TPM */
#else // libtpms added end
int i;
//
VERIFY((unsigned)osslBn->top <= BnGetAllocated(bn));
for(i = 0; i < osslBn->top; i++)
bn->d[i] = osslBn->d[i];
BnSetTop(bn, osslBn->top);
#endif // libtpms added
}
return TRUE;
Error:
return FALSE;
}
/* B.2.3.2.3.2. BigInitialized() */
/* This function initializes an OSSL BIGNUM from a TPM bigConst. Do not use this for values that are
passed to OpenSLL when they are not declared as const in the function prototype. Instead, use
BnNewVariable(). */
BIGNUM *
BigInitialized(
BIGNUM *toInit,
bigConst initializer
)
{
#if 1 // libtpms added begin
BIGNUM *_toInit;
unsigned char buffer[LARGEST_NUMBER + 1];
NUMBYTES buffer_len = (NUMBYTES )sizeof(buffer);
#endif // libtpms added end
if(initializer == NULL)
FAIL(FATAL_ERROR_PARAMETER);
if(toInit == NULL || initializer == NULL)
return NULL;
#if 1 // libtpms added begin
BnToBytes(initializer, buffer, &buffer_len); /* TPM to bin */
_toInit = BN_bin2bn(buffer, buffer_len, NULL); /* bin to ossl */
BN_set_flags(_toInit, BN_FLG_CONSTTIME);
BN_copy(toInit, _toInit);
BN_clear_free(_toInit);
#else // libtpms added end
toInit->d = (BN_ULONG *)&initializer->d[0];
toInit->dmax = (int)initializer->allocated;
toInit->top = (int)initializer->size;
toInit->neg = 0;
toInit->flags = 0;
#endif
return toInit;
}
#ifndef OSSL_DEBUG
# define BIGNUM_PRINT(label, bn, eol)
# define DEBUG_PRINT(x)
#else
# define DEBUG_PRINT(x) printf("%s", x)
# define BIGNUM_PRINT(label, bn, eol) BIGNUM_print((label), (bn), (eol))
static
void BIGNUM_print(
const char *label,
const BIGNUM *a,
BOOL eol
)
{
BN_ULONG *d;
int i;
int notZero = FALSE;
if(label != NULL)
printf("%s", label);
if(a == NULL)
{
printf("NULL");
goto done;
}
if (a->neg)
printf("-");
for(i = a->top, d = &a->d[i - 1]; i > 0; i--)
{
int j;
BN_ULONG l = *d--;
for(j = BN_BITS2 - 8; j >= 0; j -= 8)
{
BYTE b = (BYTE)((l >> j) & 0xFF);
notZero = notZero || (b != 0);
if(notZero)
printf("%02x", b);
}
if(!notZero)
printf("0");
}
done:
if(eol)
printf("\n");
return;
}
#endif
/* B.2.3.2.3.4. BnNewVariable() */
/* This function allocates a new variable in the provided context. If the context does not exist or
the allocation fails, it is a catastrophic failure. */
static BIGNUM *
BnNewVariable(
BN_CTX *CTX
)
{
BIGNUM *new;
//
// This check is intended to protect against calling this function without
// having initialized the CTX.
if((CTX == NULL) || ((new = BN_CTX_get(CTX)) == NULL))
FAIL(FATAL_ERROR_ALLOCATION);
return new;
}
#if LIBRARY_COMPATIBILITY_CHECK
BOOL
MathLibraryCompatibilityCheck(
void
)
{
OSSL_ENTER();
BIGNUM *osslTemp = BnNewVariable(CTX);
#if 0
crypt_uword_t i;
#endif
BYTE test[] = {0x1F, 0x1E, 0x1D, 0x1C, 0x1B, 0x1A, 0x19, 0x18,
0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00};
BN_VAR(tpmTemp, sizeof(test) * 8); // allocate some space for a test value
//
// Convert the test data to a bigNum
BnFromBytes(tpmTemp, test, sizeof(test));
// Convert the test data to an OpenSSL BIGNUM
BN_bin2bn(test, sizeof(test), osslTemp);
// Make sure the values are consistent
#if 0
VERIFY(osslTemp->top == (int)tpmTemp->size);
for(i = 0; i < tpmTemp->size; i++)
VERIFY(osslTemp->d[i] == tpmTemp->d[i]);
#endif
OSSL_LEAVE();
return 1;
#if 0
Error:
return 0;
#endif
}
#endif
/* B.2.3.2.3.3. BnModMult() */
/* Does multiply and divide returning the remainder of the divide. */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnModMult(
bigNum result,
bigConst op1,
bigConst op2,
bigConst modulus
)
{
OSSL_ENTER();
BOOL OK = TRUE;
BIGNUM *bnResult = BN_NEW();
BIGNUM *bnTemp = BN_NEW();
BIG_INITIALIZED(bnOp1, op1);
BIG_INITIALIZED(bnOp2, op2);
BIG_INITIALIZED(bnMod, modulus);
//
VERIFY(BN_mul(bnTemp, bnOp1, bnOp2, CTX));
VERIFY(BN_div(NULL, bnResult, bnTemp, bnMod, CTX));
VERIFY(OsslToTpmBn(result, bnResult));
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bnMod); // libtpms added
BN_clear_free(bnOp2); // libtpms added
BN_clear_free(bnOp1); // libtpms added
OSSL_LEAVE();
return OK;
}
/* B.2.3.2.3.4. BnMult() */
/* Multiplies two numbers */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnMult(
bigNum result,
bigConst multiplicand,
bigConst multiplier
)
{
OSSL_ENTER();
BIGNUM *bnTemp = BN_NEW();
BOOL OK = TRUE;
BIG_INITIALIZED(bnA, multiplicand);
BIG_INITIALIZED(bnB, multiplier);
//
VERIFY(BN_mul(bnTemp, bnA, bnB, CTX));
VERIFY(OsslToTpmBn(result, bnTemp));
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bnB); // libtpms added
BN_clear_free(bnA); // libtpms added
OSSL_LEAVE();
return OK;
}
/* B.2.3.2.3.5. BnDiv() */
/* This function divides two bigNum values. The function returns FALSE if there is an error in the
operation. */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnDiv(
bigNum quotient,
bigNum remainder,
bigConst dividend,
bigConst divisor
)
{
OSSL_ENTER();
BIGNUM *bnQ = BN_NEW();
BIGNUM *bnR = BN_NEW();
BOOL OK = TRUE;
BIG_INITIALIZED(bnDend, dividend);
BIG_INITIALIZED(bnSor, divisor);
//
if(BnEqualZero(divisor))
FAIL(FATAL_ERROR_DIVIDE_ZERO);
VERIFY(BN_div(bnQ, bnR, bnDend, bnSor, CTX));
VERIFY(OsslToTpmBn(quotient, bnQ));
VERIFY(OsslToTpmBn(remainder, bnR));
DEBUG_PRINT("In BnDiv:\n");
BIGNUM_PRINT(" bnDividend: ", bnDend, TRUE);
BIGNUM_PRINT(" bnDivisor: ", bnSor, TRUE);
BIGNUM_PRINT(" bnQuotient: ", bnQ, TRUE);
BIGNUM_PRINT(" bnRemainder: ", bnR, TRUE);
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bnSor); // libtpms added
BN_clear_free(bnDend); // libtpms added
OSSL_LEAVE();
return OK;
}
#if ALG_RSA
#if !RSA_KEY_SIEVE // libtpms added
/* B.2.3.2.3.6. BnGcd() */
/* Get the greatest common divisor of two numbers */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnGcd(
bigNum gcd, // OUT: the common divisor
bigConst number1, // IN:
bigConst number2 // IN:
)
{
OSSL_ENTER();
BIGNUM *bnGcd = BN_NEW();
BOOL OK = TRUE;
BIG_INITIALIZED(bn1, number1);
BIG_INITIALIZED(bn2, number2);
//
BN_set_flags(bn1, BN_FLG_CONSTTIME); // number1 is secret prime number
VERIFY(BN_gcd(bnGcd, bn1, bn2, CTX));
VERIFY(OsslToTpmBn(gcd, bnGcd));
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bn2); // libtpms added
BN_clear_free(bn1); // libtpms added
OSSL_LEAVE();
return OK;
}
#endif // libtpms added
/* B.2.3.2.3.7. BnModExp() */
/* Do modular exponentiation using bigNum values. The conversion from a bignum_t to a bigNum is
trivial as they are based on the same structure */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnModExp(
bigNum result, // OUT: the result
bigConst number, // IN: number to exponentiate
bigConst exponent, // IN:
bigConst modulus // IN:
)
{
OSSL_ENTER();
BIGNUM *bnResult = BN_NEW();
BOOL OK = TRUE;
BIG_INITIALIZED(bnN, number);
BIG_INITIALIZED(bnE, exponent);
BIG_INITIALIZED(bnM, modulus);
//
BN_set_flags(bnE, BN_FLG_CONSTTIME); // exponent may be private
VERIFY(BN_mod_exp(bnResult, bnN, bnE, bnM, CTX));
VERIFY(OsslToTpmBn(result, bnResult));
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bnM); // libtpms added
BN_clear_free(bnE); // libtpms added
BN_clear_free(bnN); // libtpms added
OSSL_LEAVE();
return OK;
}
/* B.2.3.2.3.8. BnModInverse() */
/* Modular multiplicative inverse */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
LIB_EXPORT BOOL
BnModInverse(
bigNum result,
bigConst number,
bigConst modulus
)
{
OSSL_ENTER();
BIGNUM *bnResult = BN_NEW();
BOOL OK = TRUE;
BIG_INITIALIZED(bnN, number);
BIG_INITIALIZED(bnM, modulus);
//
BN_set_flags(bnN, BN_FLG_CONSTTIME); // number may be private
VERIFY(BN_mod_inverse(bnResult, bnN, bnM, CTX) != NULL);
VERIFY(OsslToTpmBn(result, bnResult));
goto Exit;
Error:
OK = FALSE;
Exit:
BN_clear_free(bnM); // libtpms added
BN_clear_free(bnN); // libtpms added
OSSL_LEAVE();
return OK;
}
#endif // TPM_ALG_RSA
#if ALG_ECC
/* B.2.3.2.3.9. PointFromOssl() */
/* Function to copy the point result from an OSSL function to a bigNum */
/* Return Value Meaning */
/* TRUE(1) success */
/* FALSE(0) failure in operation */
static BOOL
PointFromOssl(
bigPoint pOut, // OUT: resulting point
EC_POINT *pIn, // IN: the point to return
bigCurve E // IN: the curve
)
{
BIGNUM *x = NULL;
BIGNUM *y = NULL;
BOOL OK;
BN_CTX_start(E->CTX);
//
x = BN_CTX_get(E->CTX);
y = BN_CTX_get(E->CTX);
if(y == NULL)
FAIL(FATAL_ERROR_ALLOCATION);
// If this returns false, then the point is at infinity
#if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
!defined(LIBRESSL_VERSION_NUMBER) // libtpms added begin
OK = EC_POINT_get_affine_coordinates(E->G, pIn, x, y, E->CTX);
#else // libtpms added begin
OK = EC_POINT_get_affine_coordinates_GFp(E->G, pIn, x, y, E->CTX);
#endif // libtpms added end
if(OK)
{
OsslToTpmBn(pOut->x, x);
OsslToTpmBn(pOut->y, y);
BnSetWord(pOut->z, 1);
}
else
BnSetWord(pOut->z, 0);
BN_CTX_end(E->CTX);
return OK;
}
/* B.2.3.2.3.10. EcPointInitialized() */
/* Allocate and initialize a point. */
LIB_EXPORT EC_POINT * // libtpms: exported function
EcPointInitialized(
pointConst initializer,
bigCurve E
)
{
EC_POINT *P = NULL;
if(initializer != NULL)
{
BIG_INITIALIZED(bnX, initializer->x);
BIG_INITIALIZED(bnY, initializer->y);
if(E == NULL)
FAIL(FATAL_ERROR_ALLOCATION);
P = EC_POINT_new(E->G);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
!defined(LIBRESSL_VERSION_NUMBER) // libtpms added begin
if(!EC_POINT_set_affine_coordinates(E->G, P, bnX, bnY, E->CTX))
#else // libtpms added end
if(!EC_POINT_set_affine_coordinates_GFp(E->G, P, bnX, bnY, E->CTX))
#endif // libtpms added
P = NULL;
BN_clear_free(bnX); // libtpms added
BN_clear_free(bnY); // libtpms added
}
return P;
}
/* B.2.3.2.3.11. BnCurveInitialize() */
/* This function initializes the OpenSSL group definition */
/* It is a fatal error if groupContext is not provided. */
/* Return Values Meaning */
/* NULL the TPM_ECC_CURVE is not valid */
/* non-NULL points to a structure in groupContext */
LIB_EXPORT bigCurve
BnCurveInitialize(
bigCurve E, // IN: curve structure to initialize
TPM_ECC_CURVE curveId // IN: curve identifier
)
{
const ECC_CURVE_DATA *C = GetCurveData(curveId);
if(C == NULL)
E = NULL;
if(E != NULL)
{
// This creates the OpenSSL memory context that stays in effect as long as the
// curve (E) is defined.
OSSL_ENTER(); // if the allocation fails, the TPM fails
EC_POINT *P = NULL;
BIG_INITIALIZED(bnP, C->prime);
BIG_INITIALIZED(bnA, C->a);
BIG_INITIALIZED(bnB, C->b);
BIG_INITIALIZED(bnX, C->base.x);
BIG_INITIALIZED(bnY, C->base.y);
BIG_INITIALIZED(bnN, C->order);
BIG_INITIALIZED(bnH, C->h);
//
E->C = C;
E->CTX = CTX;
// initialize EC group, associate a generator point and initialize the point
// from the parameter data
// Create a group structure
E->G = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, CTX);
VERIFY(E->G != NULL);
// Allocate a point in the group that will be used in setting the
// generator. This is not needed after the generator is set.
P = EC_POINT_new(E->G);
VERIFY(P != NULL);
// Need to use this in case Montgomery method is being used
#if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
!defined(LIBRESSL_VERSION_NUMBER) // libtpms added begin
VERIFY(EC_POINT_set_affine_coordinates(E->G, P, bnX, bnY, CTX));
#else // libtpms added end
VERIFY(EC_POINT_set_affine_coordinates_GFp(E->G, P, bnX, bnY, CTX));
#endif // libtpms added
// Now set the generator
VERIFY(EC_GROUP_set_generator(E->G, P, bnN, bnH));
EC_POINT_free(P);
goto Exit_free; // libtpms changed
Error:
EC_POINT_free(P);
BnCurveFree(E);
E = NULL;
Exit_free: // libtpms added begin
BN_clear_free(bnH);
BN_clear_free(bnN);
BN_clear_free(bnY);
BN_clear_free(bnX);
BN_clear_free(bnB);
BN_clear_free(bnA);
BN_clear_free(bnP); // libtpms added end
}
// Exit:
return E;
}
/* B.2.3.2.3.15. BnCurveFree() */
/* This function will free the allocated components of the curve and end the frame in which the
curve data exists */
LIB_EXPORT void
BnCurveFree(
bigCurve E
)
{
if(E)
{
EC_GROUP_free(E->G);
OsslContextLeave(E->CTX);
}
}
/* B.2.3.2.3.11. BnEccModMult() */
/* This functi2n does a point multiply of the form R = [d]S */
/* Return Values Meaning */
/* FALSE failure in operation; treat as result being point at infinity */
LIB_EXPORT BOOL
BnEccModMult(
bigPoint R, // OUT: computed point
pointConst S, // IN: point to multiply by 'd' (optional)
bigConst d, // IN: scalar for [d]S
bigCurve E
)
{
EC_POINT *pR = EC_POINT_new(E->G);
EC_POINT *pS = EcPointInitialized(S, E);
BIG_INITIALIZED(bnD, d);
if(S == NULL)
EC_POINT_mul(E->G, pR, bnD, NULL, NULL, E->CTX);
else
EC_POINT_mul(E->G, pR, NULL, pS, bnD, E->CTX);
PointFromOssl(R, pR, E);
EC_POINT_clear_free(pR); // libtpms changed
EC_POINT_clear_free(pS); // libtpms changed
BN_clear_free(bnD); // libtpms added
return !BnEqualZero(R->z);
}
/* B.2.3.2.3.13. BnEccModMult2() */
/* This function does a point multiply of the form R = [d]G + [u]Q */
/* FALSE failure in operation; treat as result being point at infinity */
LIB_EXPORT BOOL
BnEccModMult2(
bigPoint R, // OUT: computed point
pointConst S, // IN: optional point
bigConst d, // IN: scalar for [d]S or [d]G
pointConst Q, // IN: second point
bigConst u, // IN: second scalar
bigCurve E // IN: curve
)
{
EC_POINT *pR = EC_POINT_new(E->G);
EC_POINT *pS = EcPointInitialized(S, E);
BIG_INITIALIZED(bnD, d);
EC_POINT *pQ = EcPointInitialized(Q, E);
BIG_INITIALIZED(bnU, u);
if(S == NULL || S == (pointConst)&(AccessCurveData(E)->base))
EC_POINT_mul(E->G, pR, bnD, pQ, bnU, E->CTX);
else
{
const EC_POINT *points[2];
const BIGNUM *scalars[2];
points[0] = pS;
points[1] = pQ;
scalars[0] = bnD;
scalars[1] = bnU;
EC_POINTs_mul(E->G, pR, NULL, 2, points, scalars, E->CTX);
}
PointFromOssl(R, pR, E);
EC_POINT_clear_free(pR); // libtpms changed
EC_POINT_clear_free(pS); // libtpms changed
EC_POINT_clear_free(pQ); // libtpms changed
BN_clear_free(bnD); // libtpms added
BN_clear_free(bnU); // libtpms added
return !BnEqualZero(R->z);
}
/* B.2.3.2.4. BnEccAdd() */
/* This function does addition of two points. */
/* Return Values Meaning */
/* FALSE failure in operation; treat as result being point at infinity */
LIB_EXPORT BOOL
BnEccAdd(
bigPoint R, // OUT: computed point
pointConst S, // IN: point to multiply by 'd'
pointConst Q, // IN: second point
bigCurve E // IN: curve
)
{
EC_POINT *pR = EC_POINT_new(E->G);
EC_POINT *pS = EcPointInitialized(S, E);
EC_POINT *pQ = EcPointInitialized(Q, E);
//
EC_POINT_add(E->G, pR, pS, pQ, E->CTX);
PointFromOssl(R, pR, E);
EC_POINT_clear_free(pR); // libtpms changed
EC_POINT_clear_free(pS); // libtpms changed
EC_POINT_clear_free(pQ); // libtpms changed
return !BnEqualZero(R->z);
}
#endif // ALG_ECC
#endif // MATH_LIB_OSSL
|