/** * @file validation.c * @author Michal Vasko * @brief Validation * * Copyright (c) 2019 - 2022 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _GNU_SOURCE /* asprintf, strdup */ #include "validation.h" #include #include #include #include #include #include #include "common.h" #include "compat.h" #include "diff.h" #include "hash_table.h" #include "log.h" #include "parser_data.h" #include "parser_internal.h" #include "plugins_exts.h" #include "plugins_exts/metadata.h" #include "plugins_types.h" #include "set.h" #include "tree.h" #include "tree_data.h" #include "tree_data_internal.h" #include "tree_schema.h" #include "tree_schema_internal.h" #include "xpath.h" LY_ERR lyd_val_diff_add(const struct lyd_node *node, enum lyd_diff_op op, struct lyd_node **diff) { LY_ERR ret = LY_SUCCESS; struct lyd_node *new_diff = NULL; const struct lyd_node *prev_inst; char *key = NULL, *value = NULL, *position = NULL; size_t buflen = 0, bufused = 0; uint32_t pos; assert((op == LYD_DIFF_OP_DELETE) || (op == LYD_DIFF_OP_CREATE)); if ((op == LYD_DIFF_OP_CREATE) && lysc_is_userordered(node->schema)) { if (lysc_is_dup_inst_list(node->schema)) { pos = lyd_list_pos(node); /* generate position meta */ if (pos > 1) { if (asprintf(&position, "%" PRIu32, pos - 1) == -1) { LOGMEM(LYD_CTX(node)); ret = LY_EMEM; goto cleanup; } } else { position = strdup(""); LY_CHECK_ERR_GOTO(!position, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup); } } else { if (node->prev->next && (node->prev->schema == node->schema)) { prev_inst = node->prev; } else { /* first instance */ prev_inst = NULL; } if (node->schema->nodetype == LYS_LIST) { /* generate key meta */ if (prev_inst) { LY_CHECK_GOTO(ret = lyd_path_list_predicate(prev_inst, &key, &buflen, &bufused, 0), cleanup); } else { key = strdup(""); LY_CHECK_ERR_GOTO(!key, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup); } } else { /* generate value meta */ if (prev_inst) { value = strdup(lyd_get_value(prev_inst)); LY_CHECK_ERR_GOTO(!value, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup); } else { value = strdup(""); LY_CHECK_ERR_GOTO(!value, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup); } } } } /* create new diff tree */ LY_CHECK_GOTO(ret = lyd_diff_add(node, op, NULL, NULL, key, value, position, NULL, NULL, &new_diff), cleanup); /* merge into existing diff */ ret = lyd_diff_merge_all(diff, new_diff, 0); cleanup: lyd_free_tree(new_diff); free(key); free(value); free(position); return ret; } /** * @brief Evaluate all relevant "when" conditions of a node. * * @param[in] tree Data tree. * @param[in] node Node whose relevant when conditions will be evaluated. * @param[in] schema Schema node of @p node. It may not be possible to use directly if @p node is opaque. * @param[in] xpath_options Additional XPath options to use. * @param[out] disabled First when that evaluated false, if any. * @return LY_SUCCESS on success. * @return LY_EINCOMPLETE if a referenced node does not have its when evaluated. * @return LY_ERR value on error. */ static LY_ERR lyd_validate_node_when(const struct lyd_node *tree, const struct lyd_node *node, const struct lysc_node *schema, uint32_t xpath_options, const struct lysc_when **disabled) { LY_ERR ret; const struct lyd_node *ctx_node; struct lyxp_set xp_set; LY_ARRAY_COUNT_TYPE u; assert(!node->schema || (node->schema == schema)); *disabled = NULL; do { const struct lysc_when *when; struct lysc_when **when_list = lysc_node_when(schema); LY_ARRAY_FOR(when_list, u) { when = when_list[u]; /* get context node */ if (when->context == schema) { ctx_node = node; } else { assert((!when->context && !node->parent) || (when->context == node->parent->schema)); ctx_node = lyd_parent(node); } /* evaluate when */ memset(&xp_set, 0, sizeof xp_set); ret = lyxp_eval(LYD_CTX(node), when->cond, schema->module, LY_VALUE_SCHEMA_RESOLVED, when->prefixes, ctx_node, ctx_node, tree, NULL, &xp_set, LYXP_SCHEMA | xpath_options); lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN); /* return error or LY_EINCOMPLETE for dependant unresolved when */ LY_CHECK_RET(ret); if (!xp_set.val.bln) { /* false when */ *disabled = when; return LY_SUCCESS; } } schema = schema->parent; } while (schema && (schema->nodetype & (LYS_CASE | LYS_CHOICE))); return LY_SUCCESS; } /** * @brief Evaluate when conditions of collected unres nodes. * * @param[in,out] tree Data tree, is updated if some nodes are autodeleted. * @param[in] mod Module of the @p tree to take into consideration when deleting @p tree and moving it. * If set, it is expected @p tree should point to the first node of @p mod. Otherwise it will simply be * the first top-level sibling. * @param[in] node_when Set with nodes with "when" conditions. * @param[in] xpath_options Additional XPath options to use. * @param[in,out] node_types Set with nodes with unresolved types, remove any with false "when" parents. * @param[in,out] diff Validation diff. * @return LY_SUCCESS on success. * @return LY_ERR value on error. */ static LY_ERR lyd_validate_unres_when(struct lyd_node **tree, const struct lys_module *mod, struct ly_set *node_when, uint32_t xpath_options, struct ly_set *node_types, struct lyd_node **diff) { LY_ERR rc, r; uint32_t i, idx; const struct lysc_when *disabled; struct lyd_node *node = NULL, *elem; if (!node_when->count) { return LY_SUCCESS; } i = node_when->count; do { --i; node = node_when->dnodes[i]; LOG_LOCSET(node->schema, node, NULL, NULL); /* evaluate all when expressions that affect this node's existence */ r = lyd_validate_node_when(*tree, node, node->schema, xpath_options, &disabled); if (!r) { if (disabled) { /* when false */ if (node->flags & LYD_WHEN_TRUE) { /* autodelete */ lyd_del_move_root(tree, node, mod); if (diff) { /* add into diff */ LY_CHECK_GOTO(rc = lyd_val_diff_add(node, LYD_DIFF_OP_DELETE, diff), error); } /* remove from node types set, if present */ if (node_types && node_types->count) { LYD_TREE_DFS_BEGIN(node, elem) { /* only term nodes with a validation callback can be in node_types */ if ((elem->schema->nodetype & LYD_NODE_TERM) && ((struct lysc_node_leaf *)elem->schema)->type->plugin->validate && ly_set_contains(node_types, elem, &idx)) { LY_CHECK_GOTO(rc = ly_set_rm_index(node_types, idx, NULL), error); } LYD_TREE_DFS_END(node, elem); } } /* free */ lyd_free_tree(node); } else { /* invalid data */ LOGVAL(LYD_CTX(node), LY_VCODE_NOWHEN, disabled->cond->expr); rc = LY_EVALID; goto error; } } else { /* when true */ node->flags |= LYD_WHEN_TRUE; } /* remove this node from the set keeping the order, its when was resolved */ ly_set_rm_index_ordered(node_when, i, NULL); } else if (r != LY_EINCOMPLETE) { /* error */ rc = r; goto error; } LOG_LOCBACK(1, 1, 0, 0); } while (i); return LY_SUCCESS; error: LOG_LOCBACK(1, 1, 0, 0); return rc; } LY_ERR lyd_validate_unres(struct lyd_node **tree, const struct lys_module *mod, enum lyd_type data_type, struct ly_set *node_when, uint32_t when_xp_opts, struct ly_set *node_types, struct ly_set *meta_types, struct ly_set *ext_node, struct ly_set *ext_val, uint32_t val_opts, struct lyd_node **diff) { LY_ERR ret = LY_SUCCESS; uint32_t i; if (ext_val && ext_val->count) { /* first validate parsed extension data */ i = ext_val->count; do { --i; struct lyd_ctx_ext_val *ext_v = ext_val->objs[i]; /* validate extension data */ ret = ext_v->ext->def->plugin->validate(ext_v->ext, ext_v->sibling, *tree, data_type, val_opts, diff); LY_CHECK_RET(ret); /* remove this item from the set */ ly_set_rm_index(ext_val, i, free); } while (i); } if (ext_node && ext_node->count) { /* validate data nodes with extension instances */ i = ext_node->count; do { --i; struct lyd_ctx_ext_node *ext_n = ext_node->objs[i]; /* validate the node */ ret = ext_n->ext->def->plugin->node(ext_n->ext, ext_n->node, val_opts); LY_CHECK_RET(ret); /* remove this item from the set */ ly_set_rm_index(ext_node, i, free); } while (i); } if (node_when) { /* evaluate all when conditions */ uint32_t prev_count; do { prev_count = node_when->count; LY_CHECK_RET(lyd_validate_unres_when(tree, mod, node_when, when_xp_opts, node_types, diff)); /* there must have been some when conditions resolved */ } while (prev_count > node_when->count); /* there could have been no cyclic when dependencies, checked during compilation */ assert(!node_when->count); } if (node_types && node_types->count) { /* finish incompletely validated terminal values (traverse from the end for efficient set removal) */ i = node_types->count; do { --i; struct lyd_node_term *node = node_types->objs[i]; struct lysc_type *type = ((struct lysc_node_leaf *)node->schema)->type; /* resolve the value of the node */ LOG_LOCSET(NULL, &node->node, NULL, NULL); ret = lyd_value_validate_incomplete(LYD_CTX(node), type, &node->value, &node->node, *tree); LOG_LOCBACK(0, 1, 0, 0); LY_CHECK_RET(ret); /* remove this node from the set */ ly_set_rm_index(node_types, i, NULL); } while (i); } if (meta_types && meta_types->count) { /* ... and metadata values */ i = meta_types->count; do { --i; struct lyd_meta *meta = meta_types->objs[i]; struct lysc_type *type; /* validate and store the value of the metadata */ lyplg_ext_get_storage(meta->annotation, LY_STMT_TYPE, sizeof type, (const void **)&type); ret = lyd_value_validate_incomplete(LYD_CTX(meta->parent), type, &meta->value, meta->parent, *tree); LY_CHECK_RET(ret); /* remove this attr from the set */ ly_set_rm_index(meta_types, i, NULL); } while (i); } return ret; } /** * @brief Validate instance duplication. * * @param[in] first First sibling to search in. * @param[in] node Data node instance to check. * @return LY_ERR value. */ static LY_ERR lyd_validate_duplicates(const struct lyd_node *first, const struct lyd_node *node) { struct lyd_node **match_p; ly_bool fail = 0; assert(node->flags & LYD_NEW); /* key-less list or non-configuration leaf-list */ if (lysc_is_dup_inst_list(node->schema)) { /* duplicate instances allowed */ return LY_SUCCESS; } /* find exactly the same next instance using hashes if possible */ if (node->parent && node->parent->children_ht) { if (!lyht_find_next(node->parent->children_ht, &node, node->hash, (void **)&match_p)) { fail = 1; } } else { for ( ; first; first = first->next) { if (first == node) { continue; } if (node->schema->nodetype & (LYD_NODE_ANY | LYS_LEAF)) { if (first->schema == node->schema) { fail = 1; break; } } else if (!lyd_compare_single(first, node, 0)) { fail = 1; break; } } } if (fail) { LOGVAL(node->schema->module->ctx, LY_VCODE_DUP, node->schema->name); return LY_EVALID; } return LY_SUCCESS; } /** * @brief Validate multiple case data existence with possible autodelete. * * @param[in,out] first First sibling to search in, is updated if needed. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in] choic Choice node whose cases to check. * @param[in,out] diff Validation diff. * @return LY_ERR value. */ static LY_ERR lyd_validate_cases(struct lyd_node **first, const struct lys_module *mod, const struct lysc_node_choice *choic, struct lyd_node **diff) { const struct lysc_node *scase, *iter, *old_case = NULL, *new_case = NULL; struct lyd_node *match, *to_del; ly_bool found; LOG_LOCSET(&choic->node, NULL, NULL, NULL); LY_LIST_FOR((struct lysc_node *)choic->cases, scase) { found = 0; iter = NULL; match = NULL; while ((match = lys_getnext_data(match, *first, &iter, scase, NULL))) { if (match->flags & LYD_NEW) { /* a new case data found, nothing more to look for */ found = 2; break; } else { /* and old case data found */ if (found == 0) { found = 1; } } } if (found == 1) { /* there should not be 2 old cases */ if (old_case) { /* old data from 2 cases */ LOGVAL(choic->module->ctx, LY_VCODE_DUPCASE, old_case->name, scase->name); LOG_LOCBACK(1, 0, 0, 0); return LY_EVALID; } /* remember an old existing case */ old_case = scase; } else if (found == 2) { if (new_case) { /* new data from 2 cases */ LOGVAL(choic->module->ctx, LY_VCODE_DUPCASE, new_case->name, scase->name); LOG_LOCBACK(1, 0, 0, 0); return LY_EVALID; } /* remember a new existing case */ new_case = scase; } } LOG_LOCBACK(1, 0, 0, 0); if (old_case && new_case) { /* auto-delete old case */ iter = NULL; match = NULL; to_del = NULL; while ((match = lys_getnext_data(match, *first, &iter, old_case, NULL))) { lyd_del_move_root(first, to_del, mod); /* free previous node */ lyd_free_tree(to_del); if (diff) { /* add into diff */ LY_CHECK_RET(lyd_val_diff_add(match, LYD_DIFF_OP_DELETE, diff)); } to_del = match; } lyd_del_move_root(first, to_del, mod); lyd_free_tree(to_del); } return LY_SUCCESS; } /** * @brief Check whether a schema node can have some default values (true for NP containers as well). * * @param[in] schema Schema node to check. * @return non-zero if yes, * @return 0 otherwise. */ static int lyd_val_has_default(const struct lysc_node *schema) { switch (schema->nodetype) { case LYS_LEAF: if (((struct lysc_node_leaf *)schema)->dflt) { return 1; } break; case LYS_LEAFLIST: if (((struct lysc_node_leaflist *)schema)->dflts) { return 1; } break; case LYS_CONTAINER: if (!(schema->flags & LYS_PRESENCE)) { return 1; } break; default: break; } return 0; } /** * @brief Properly delete a node as part of auto-delete validation tasks. * * @param[in,out] first First sibling, is updated if needed. * @param[in] del Node instance to delete. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in,out] node Current iteration node, update it if it is deleted. * @param[in,out] diff Validation diff. * @return 1 if @p node auto-deleted and updated to its next sibling. * @return 0 if @p node was not auto-deleted. */ static ly_bool lyd_validate_autodel_node_del(struct lyd_node **first, struct lyd_node *del, const struct lys_module *mod, struct lyd_node **node, struct lyd_node **diff) { struct lyd_node *iter; ly_bool node_autodel = 0; lyd_del_move_root(first, del, mod); if (del == *node) { *node = (*node)->next; node_autodel = 1; } if (diff) { /* add into diff */ if ((del->schema->nodetype == LYS_CONTAINER) && !(del->schema->flags & LYS_PRESENCE)) { /* we do not want to track NP container changes, but remember any removed children */ LY_LIST_FOR(lyd_child(del), iter) { lyd_val_diff_add(iter, LYD_DIFF_OP_DELETE, diff); } } else { lyd_val_diff_add(del, LYD_DIFF_OP_DELETE, diff); } } lyd_free_tree(del); return node_autodel; } /** * @brief Auto-delete leaf-list default instances to prevent validation errors. * * @param[in,out] first First sibling to search in, is updated if needed. * @param[in,out] node New data node instance to check, is updated if auto-deleted. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in,out] diff Validation diff. * @return 1 if @p node auto-deleted and updated to its next sibling. * @return 0 if @p node was not auto-deleted. */ static ly_bool lyd_validate_autodel_leaflist_dflt(struct lyd_node **first, struct lyd_node **node, const struct lys_module *mod, struct lyd_node **diff) { const struct lysc_node *schema; struct lyd_node *iter, *next; ly_bool found = 0, node_autodel = 0; assert((*node)->flags & LYD_NEW); schema = (*node)->schema; assert(schema->nodetype == LYS_LEAFLIST); /* check whether there is any explicit instance */ LYD_LIST_FOR_INST(*first, schema, iter) { if (!(iter->flags & LYD_DEFAULT)) { found = 1; break; } } if (!found) { /* no explicit instance, keep defaults as they are */ return 0; } LYD_LIST_FOR_INST_SAFE(*first, schema, next, iter) { if (iter->flags & LYD_DEFAULT) { /* default instance found, remove it */ if (lyd_validate_autodel_node_del(first, iter, mod, node, diff)) { node_autodel = 1; } } } return node_autodel; } /** * @brief Auto-delete container or leaf default instances to prevent validation errors. * * @param[in,out] first First sibling to search in, is updated if needed. * @param[in,out] node New data node instance to check, is updated if auto-deleted. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in,out] diff Validation diff. * @return 1 if @p node auto-deleted and updated to its next sibling. * @return 0 if @p node was not auto-deleted. */ static ly_bool lyd_validate_autodel_cont_leaf_dflt(struct lyd_node **first, struct lyd_node **node, const struct lys_module *mod, struct lyd_node **diff) { const struct lysc_node *schema; struct lyd_node *iter, *next; ly_bool found = 0, node_autodel = 0; assert((*node)->flags & LYD_NEW); schema = (*node)->schema; assert(schema->nodetype & (LYS_LEAF | LYS_CONTAINER)); /* check whether there is any explicit instance */ LYD_LIST_FOR_INST(*first, schema, iter) { if (!(iter->flags & LYD_DEFAULT)) { found = 1; break; } } if (found) { /* remove all default instances */ LYD_LIST_FOR_INST_SAFE(*first, schema, next, iter) { if (iter->flags & LYD_DEFAULT) { /* default instance, remove it */ if (lyd_validate_autodel_node_del(first, iter, mod, node, diff)) { node_autodel = 1; } } } } else { /* remove a single old default instance, if any */ LYD_LIST_FOR_INST(*first, schema, iter) { if ((iter->flags & LYD_DEFAULT) && !(iter->flags & LYD_NEW)) { /* old default instance, remove it */ if (lyd_validate_autodel_node_del(first, iter, mod, node, diff)) { node_autodel = 1; } break; } } } return node_autodel; } /** * @brief Auto-delete leftover default nodes of deleted cases (that have no existing explicit data). * * @param[in,out] first First sibling to search in, is updated if needed. * @param[in,out] node Default data node instance to check. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in,out] diff Validation diff. * @return 1 if @p node auto-deleted and updated to its next sibling. * @return 0 if @p node was not auto-deleted. */ static ly_bool lyd_validate_autodel_case_dflt(struct lyd_node **first, struct lyd_node **node, const struct lys_module *mod, struct lyd_node **diff) { const struct lysc_node *schema; struct lysc_node_choice *choic; struct lyd_node *iter = NULL; const struct lysc_node *slast = NULL; ly_bool node_autodel = 0; assert((*node)->flags & LYD_DEFAULT); schema = (*node)->schema; if (!schema->parent || (schema->parent->nodetype != LYS_CASE)) { /* the default node is not a descendant of a case */ return 0; } choic = (struct lysc_node_choice *)schema->parent->parent; assert(choic->nodetype == LYS_CHOICE); if (choic->dflt && (choic->dflt == (struct lysc_node_case *)schema->parent)) { /* data of a default case, keep them */ return 0; } /* try to find an explicit node of the case */ while ((iter = lys_getnext_data(iter, *first, &slast, schema->parent, NULL))) { if (!(iter->flags & LYD_DEFAULT)) { break; } } if (!iter) { /* there are only default nodes of the case meaning it does not exist and neither should any default nodes * of the case, remove this one default node */ if (lyd_validate_autodel_node_del(first, *node, mod, node, diff)) { node_autodel = 1; } } return node_autodel; } /** * @brief Validate new siblings in choices, recursively for nested choices. * * @param[in,out] first First sibling. * @param[in] sparent Schema parent of the siblings, NULL for top-level siblings. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in,out] diff Validation diff. * @return LY_ERR value. */ static LY_ERR lyd_validate_choice_r(struct lyd_node **first, const struct lysc_node *sparent, const struct lys_module *mod, struct lyd_node **diff) { const struct lysc_node *snode = NULL; while (*first && (snode = lys_getnext(snode, sparent, mod ? mod->compiled : NULL, LYS_GETNEXT_WITHCHOICE))) { /* check case duplicites */ if (snode->nodetype == LYS_CHOICE) { LY_CHECK_RET(lyd_validate_cases(first, mod, (struct lysc_node_choice *)snode, diff)); /* check for nested choice */ LY_CHECK_RET(lyd_validate_choice_r(first, snode, mod, diff)); } } return LY_SUCCESS; } LY_ERR lyd_validate_new(struct lyd_node **first, const struct lysc_node *sparent, const struct lys_module *mod, struct lyd_node **diff) { LY_ERR r; struct lyd_node *node; const struct lysc_node *last_dflt_schema = NULL; assert(first && (sparent || mod)); /* validate choices */ LY_CHECK_RET(lyd_validate_choice_r(first, sparent, mod, diff)); node = *first; while (node) { if (!node->schema || (mod && (lyd_owner_module(node) != mod))) { /* opaque node or all top-level data from this module checked */ break; } if (!(node->flags & (LYD_NEW | LYD_DEFAULT))) { /* check only new and default nodes */ node = node->next; continue; } if (lyd_val_has_default(node->schema) && (node->schema != last_dflt_schema) && (node->flags & LYD_NEW)) { /* remove old default(s) of the new node if an explicit instance exists */ last_dflt_schema = node->schema; if (node->schema->nodetype == LYS_LEAFLIST) { if (lyd_validate_autodel_leaflist_dflt(first, &node, mod, diff)) { continue; } } else { if (lyd_validate_autodel_cont_leaf_dflt(first, &node, mod, diff)) { continue; } } } if (node->flags & LYD_NEW) { /* then check new node instance duplicities */ LOG_LOCSET(NULL, node, NULL, NULL); r = lyd_validate_duplicates(*first, node); LOG_LOCBACK(0, 1, 0, 0); LY_CHECK_RET(r); /* this node is valid */ node->flags &= ~LYD_NEW; } if (node->flags & LYD_DEFAULT) { /* remove leftover default nodes from a no-longer existing case */ if (lyd_validate_autodel_case_dflt(first, &node, mod, diff)) { continue; } } /* next iter */ node = node->next; } return LY_SUCCESS; } /** * @brief Evaluate any "when" conditions of a non-existent data node with existing parent. * * @param[in] first First data sibling of the non-existing node. * @param[in] parent Data parent of the non-existing node. * @param[in] snode Schema node of the non-existing node. * @param[out] disabled First when that evaluated false, if any. * @return LY_ERR value. */ static LY_ERR lyd_validate_dummy_when(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode, const struct lysc_when **disabled) { LY_ERR ret = LY_SUCCESS; struct lyd_node *tree, *dummy = NULL; uint32_t xp_opts; /* find root */ if (parent) { tree = (struct lyd_node *)parent; while (tree->parent) { tree = lyd_parent(tree); } tree = lyd_first_sibling(tree); } else { /* is the first sibling from the same module, but may not be the actual first */ tree = lyd_first_sibling(first); } /* create dummy opaque node */ ret = lyd_new_opaq((struct lyd_node *)parent, snode->module->ctx, snode->name, NULL, NULL, snode->module->name, &dummy); LY_CHECK_GOTO(ret, cleanup); /* connect it if needed */ if (!parent) { if (first) { lyd_insert_sibling((struct lyd_node *)first, dummy, &tree); } else { assert(!tree); tree = dummy; } } /* explicitly specified accesible tree */ if (snode->flags & LYS_CONFIG_W) { xp_opts = LYXP_ACCESS_TREE_CONFIG; } else { xp_opts = LYXP_ACCESS_TREE_ALL; } /* evaluate all when */ ret = lyd_validate_node_when(tree, dummy, snode, xp_opts, disabled); if (ret == LY_EINCOMPLETE) { /* all other when must be resolved by now */ LOGINT(snode->module->ctx); ret = LY_EINT; goto cleanup; } else if (ret) { /* error */ goto cleanup; } cleanup: lyd_free_tree(dummy); return ret; } /** * @brief Validate mandatory node existence. * * @param[in] first First sibling to search in. * @param[in] parent Data parent. * @param[in] snode Schema node to validate. * @return LY_ERR value. */ static LY_ERR lyd_validate_mandatory(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode) { const struct lysc_when *disabled; if (snode->nodetype == LYS_CHOICE) { /* some data of a choice case exist */ if (lys_getnext_data(NULL, first, NULL, snode, NULL)) { return LY_SUCCESS; } } else { assert(snode->nodetype & (LYS_LEAF | LYS_CONTAINER | LYD_NODE_ANY)); if (!lyd_find_sibling_val(first, snode, NULL, 0, NULL)) { /* data instance found */ return LY_SUCCESS; } } disabled = NULL; if (lysc_has_when(snode)) { /* if there are any when conditions, they must be true for a validation error */ LY_CHECK_RET(lyd_validate_dummy_when(first, parent, snode, &disabled)); } if (!disabled) { /* node instance not found */ if (snode->nodetype == LYS_CHOICE) { LOGVAL_APPTAG(snode->module->ctx, "missing-choice", LY_VCODE_NOMAND_CHOIC, snode->name); } else { LOGVAL(snode->module->ctx, LY_VCODE_NOMAND, snode->name); } return LY_EVALID; } return LY_SUCCESS; } /** * @brief Validate min/max-elements constraints, if any. * * @param[in] first First sibling to search in. * @param[in] parent Data parent. * @param[in] snode Schema node to validate. * @param[in] min Minimum number of elements, 0 for no restriction. * @param[in] max Max number of elements, 0 for no restriction. * @return LY_ERR value. */ static LY_ERR lyd_validate_minmax(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode, uint32_t min, uint32_t max) { uint32_t count = 0; struct lyd_node *iter; const struct lysc_when *disabled; ly_bool invalid_instance = 0; assert(min || max); LYD_LIST_FOR_INST(first, snode, iter) { ++count; if (min && (count == min)) { /* satisfied */ min = 0; if (!max) { /* nothing more to check */ break; } } if (max && (count > max)) { /* not satisifed */ LOG_LOCSET(NULL, iter, NULL, NULL); invalid_instance = 1; break; } } if (min) { assert(count < min); disabled = NULL; if (lysc_has_when(snode)) { /* if there are any when conditions, they must be true for a validation error */ LY_CHECK_RET(lyd_validate_dummy_when(first, parent, snode, &disabled)); } if (!disabled) { LOGVAL_APPTAG(snode->module->ctx, "too-few-elements", LY_VCODE_NOMIN, snode->name); goto failure; } } else if (max && (count > max)) { LOGVAL_APPTAG(snode->module->ctx, "too-many-elements", LY_VCODE_NOMAX, snode->name); goto failure; } return LY_SUCCESS; failure: LOG_LOCBACK(0, invalid_instance, 0, 0); return LY_EVALID; } /** * @brief Find node referenced by a list unique statement. * * @param[in] uniq_leaf Unique leaf to find. * @param[in] list List instance to use for the search. * @return Found leaf, * @return NULL if no leaf found. */ static struct lyd_node * lyd_val_uniq_find_leaf(const struct lysc_node_leaf *uniq_leaf, const struct lyd_node *list) { struct lyd_node *node; const struct lysc_node *iter; size_t depth = 0, i; /* get leaf depth */ for (iter = &uniq_leaf->node; iter && (iter != list->schema); iter = lysc_data_parent(iter)) { ++depth; } node = (struct lyd_node *)list; while (node && depth) { /* find schema node with this depth */ for (i = depth - 1, iter = &uniq_leaf->node; i; iter = lysc_data_parent(iter)) { --i; } /* find iter instance in children */ assert(iter->nodetype & (LYS_CONTAINER | LYS_LEAF)); lyd_find_sibling_val(lyd_child(node), iter, NULL, 0, &node); --depth; } return node; } /** * @brief Callback for comparing 2 list unique leaf values. * * Implementation of ::lyht_value_equal_cb. * * @param[in] cb_data 0 to compare all uniques, n to compare only n-th unique. */ static ly_bool lyd_val_uniq_list_equal(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *cb_data) { struct ly_ctx *ctx; struct lysc_node_list *slist; struct lyd_node *diter, *first, *second; struct lyd_value *val1, *val2; char *path1, *path2, *uniq_str, *ptr; LY_ARRAY_COUNT_TYPE u, v, action; assert(val1_p && val2_p); first = *((struct lyd_node **)val1_p); second = *((struct lyd_node **)val2_p); action = (uintptr_t)cb_data; assert(first && (first->schema->nodetype == LYS_LIST)); assert(second && (second->schema == first->schema)); ctx = first->schema->module->ctx; slist = (struct lysc_node_list *)first->schema; /* compare unique leaves */ if (action > 0) { u = action - 1; if (u < LY_ARRAY_COUNT(slist->uniques)) { goto uniquecheck; } } LY_ARRAY_FOR(slist->uniques, u) { uniquecheck: LY_ARRAY_FOR(slist->uniques[u], v) { /* first */ diter = lyd_val_uniq_find_leaf(slist->uniques[u][v], first); if (diter) { val1 = &((struct lyd_node_term *)diter)->value; } else { /* use default value */ val1 = slist->uniques[u][v]->dflt; } /* second */ diter = lyd_val_uniq_find_leaf(slist->uniques[u][v], second); if (diter) { val2 = &((struct lyd_node_term *)diter)->value; } else { /* use default value */ val2 = slist->uniques[u][v]->dflt; } if (!val1 || !val2 || val1->realtype->plugin->compare(val1, val2)) { /* values differ or either one is not set */ break; } } if (v && (v == LY_ARRAY_COUNT(slist->uniques[u]))) { /* all unique leafs are the same in this set, create this nice error */ path1 = lyd_path(first, LYD_PATH_STD, NULL, 0); path2 = lyd_path(second, LYD_PATH_STD, NULL, 0); /* use buffer to rebuild the unique string */ #define UNIQ_BUF_SIZE 1024 uniq_str = malloc(UNIQ_BUF_SIZE); uniq_str[0] = '\0'; ptr = uniq_str; LY_ARRAY_FOR(slist->uniques[u], v) { if (v) { strcpy(ptr, " "); ++ptr; } ptr = lysc_path_until((struct lysc_node *)slist->uniques[u][v], &slist->node, LYSC_PATH_LOG, ptr, UNIQ_BUF_SIZE - (ptr - uniq_str)); if (!ptr) { /* path will be incomplete, whatever */ break; } ptr += strlen(ptr); } LOG_LOCSET(NULL, second, NULL, NULL); LOGVAL_APPTAG(ctx, "data-not-unique", LY_VCODE_NOUNIQ, uniq_str, path1, path2); LOG_LOCBACK(0, 1, 0, 0); free(path1); free(path2); free(uniq_str); #undef UNIQ_BUF_SIZE return 1; } if (action > 0) { /* done */ return 0; } } return 0; } /** * @brief Validate list unique leaves. * * @param[in] first First sibling to search in. * @param[in] snode Schema node to validate. * @param[in] uniques List unique arrays to validate. * @return LY_ERR value. */ static LY_ERR lyd_validate_unique(const struct lyd_node *first, const struct lysc_node *snode, const struct lysc_node_leaf ***uniques) { const struct lyd_node *diter; struct ly_set *set; LY_ARRAY_COUNT_TYPE u, v, x = 0; LY_ERR ret = LY_SUCCESS; uint32_t hash, i; size_t key_len; ly_bool dyn; const void *hash_key; void *cb_data; struct hash_table **uniqtables = NULL; struct lyd_value *val; struct ly_ctx *ctx = snode->module->ctx; assert(uniques); /* get all list instances */ LY_CHECK_RET(ly_set_new(&set)); LY_LIST_FOR(first, diter) { if (diter->schema == snode) { ret = ly_set_add(set, (void *)diter, 1, NULL); LY_CHECK_GOTO(ret, cleanup); } } if (set->count == 2) { /* simple comparison */ if (lyd_val_uniq_list_equal(&set->objs[0], &set->objs[1], 0, (void *)0)) { /* instance duplication */ ret = LY_EVALID; goto cleanup; } } else if (set->count > 2) { /* use hashes for comparison */ uniqtables = malloc(LY_ARRAY_COUNT(uniques) * sizeof *uniqtables); LY_CHECK_ERR_GOTO(!uniqtables, LOGMEM(ctx); ret = LY_EMEM, cleanup); x = LY_ARRAY_COUNT(uniques); for (v = 0; v < x; v++) { cb_data = (void *)(uintptr_t)(v + 1L); uniqtables[v] = lyht_new(lyht_get_fixed_size(set->count), sizeof(struct lyd_node *), lyd_val_uniq_list_equal, cb_data, 0); LY_CHECK_ERR_GOTO(!uniqtables[v], LOGMEM(ctx); ret = LY_EMEM, cleanup); } for (i = 0; i < set->count; i++) { /* loop for unique - get the hash for the instances */ for (u = 0; u < x; u++) { val = NULL; for (v = hash = 0; v < LY_ARRAY_COUNT(uniques[u]); v++) { diter = lyd_val_uniq_find_leaf(uniques[u][v], set->objs[i]); if (diter) { val = &((struct lyd_node_term *)diter)->value; } else { /* use default value */ val = uniques[u][v]->dflt; } if (!val) { /* unique item not present nor has default value */ break; } /* get hash key */ hash_key = val->realtype->plugin->print(NULL, val, LY_VALUE_LYB, NULL, &dyn, &key_len); hash = dict_hash_multi(hash, hash_key, key_len); if (dyn) { free((void *)hash_key); } } if (!val) { /* skip this list instance since its unique set is incomplete */ continue; } /* finish the hash value */ hash = dict_hash_multi(hash, NULL, 0); /* insert into the hashtable */ ret = lyht_insert(uniqtables[u], &set->objs[i], hash, NULL); if (ret == LY_EEXIST) { /* instance duplication */ ret = LY_EVALID; } LY_CHECK_GOTO(ret != LY_SUCCESS, cleanup); } } } cleanup: ly_set_free(set, NULL); for (v = 0; v < x; v++) { if (!uniqtables[v]) { /* failed when allocating uniquetables[j], following j are not allocated */ break; } lyht_free(uniqtables[v]); } free(uniqtables); return ret; } /** * @brief Validate data siblings based on generic schema node restrictions, recursively for schema-only nodes. * * @param[in] first First sibling to search in. * @param[in] parent Data parent. * @param[in] sparent Schema parent of the nodes to check. * @param[in] mod Module of the nodes to check. * @param[in] val_opts Validation options, see @ref datavalidationoptions. * @param[in] int_opts Internal parser options. * @return LY_ERR value. */ static LY_ERR lyd_validate_siblings_schema_r(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *sparent, const struct lysc_module *mod, uint32_t val_opts, uint32_t int_opts) { LY_ERR ret = LY_SUCCESS; const struct lysc_node *snode = NULL, *scase; struct lysc_node_list *slist; struct lysc_node_leaflist *sllist; uint32_t getnext_opts; getnext_opts = LYS_GETNEXT_WITHCHOICE | (int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0); /* disabled nodes are skipped by lys_getnext */ while ((snode = lys_getnext(snode, sparent, mod, getnext_opts))) { if ((val_opts & LYD_VALIDATE_NO_STATE) && (snode->flags & LYS_CONFIG_R)) { continue; } LOG_LOCSET(snode, NULL, NULL, NULL); /* check min-elements and max-elements */ if (snode->nodetype == LYS_LIST) { slist = (struct lysc_node_list *)snode; if (slist->min || slist->max) { ret = lyd_validate_minmax(first, parent, snode, slist->min, slist->max); LY_CHECK_GOTO(ret, error); } } else if (snode->nodetype == LYS_LEAFLIST) { sllist = (struct lysc_node_leaflist *)snode; if (sllist->min || sllist->max) { ret = lyd_validate_minmax(first, parent, snode, sllist->min, sllist->max); LY_CHECK_GOTO(ret, error); } } else if (snode->flags & LYS_MAND_TRUE) { /* check generic mandatory existence */ ret = lyd_validate_mandatory(first, parent, snode); LY_CHECK_GOTO(ret, error); } /* check unique */ if (snode->nodetype == LYS_LIST) { slist = (struct lysc_node_list *)snode; if (slist->uniques) { ret = lyd_validate_unique(first, snode, (const struct lysc_node_leaf ***)slist->uniques); LY_CHECK_GOTO(ret, error); } } if (snode->nodetype == LYS_CHOICE) { /* find the existing case, if any */ LY_LIST_FOR(lysc_node_child(snode), scase) { if (lys_getnext_data(NULL, first, NULL, scase, NULL)) { /* validate only this case */ ret = lyd_validate_siblings_schema_r(first, parent, scase, mod, val_opts, int_opts); LY_CHECK_GOTO(ret, error); break; } } } LOG_LOCBACK(1, 0, 0, 0); } return LY_SUCCESS; error: LOG_LOCBACK(1, 0, 0, 0); return ret; } /** * @brief Validate obsolete nodes, only warnings are printed. * * @param[in] node Node to check. */ static void lyd_validate_obsolete(const struct lyd_node *node) { const struct lysc_node *snode; snode = node->schema; do { if (snode->flags & LYS_STATUS_OBSLT) { LOGWRN(snode->module->ctx, "Obsolete schema node \"%s\" instantiated in data.", snode->name); break; } snode = snode->parent; } while (snode && (snode->nodetype & (LYS_CHOICE | LYS_CASE))); } /** * @brief Validate must conditions of a data node. * * @param[in] node Node to validate. * @param[in] int_opts Internal parser options. * @param[in] xpath_options Additional XPath options to use. * @return LY_ERR value. */ static LY_ERR lyd_validate_must(const struct lyd_node *node, uint32_t int_opts, uint32_t xpath_options) { LY_ERR ret; struct lyxp_set xp_set; struct lysc_must *musts; const struct lyd_node *tree; const struct lysc_node *schema; const char *emsg, *eapptag; LY_ARRAY_COUNT_TYPE u; assert((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)) != (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)); assert((int_opts & (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) != (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)); if (node->schema->nodetype & (LYS_ACTION | LYS_RPC)) { if (int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION)) { schema = &((struct lysc_node_action *)node->schema)->input.node; } else if (int_opts & LYD_INTOPT_REPLY) { schema = &((struct lysc_node_action *)node->schema)->output.node; } else { LOGINT_RET(LYD_CTX(node)); } } else { schema = node->schema; } musts = lysc_node_musts(schema); if (!musts) { /* no must to evaluate */ return LY_SUCCESS; } /* find first top-level node */ for (tree = node; tree->parent; tree = lyd_parent(tree)) {} tree = lyd_first_sibling(tree); LY_ARRAY_FOR(musts, u) { memset(&xp_set, 0, sizeof xp_set); /* evaluate must */ ret = lyxp_eval(LYD_CTX(node), musts[u].cond, node->schema->module, LY_VALUE_SCHEMA_RESOLVED, musts[u].prefixes, node, node, tree, NULL, &xp_set, LYXP_SCHEMA | xpath_options); if (ret == LY_EINCOMPLETE) { LOGINT_RET(LYD_CTX(node)); } else if (ret) { return ret; } /* check the result */ lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN); if (!xp_set.val.bln) { /* use specific error information */ emsg = musts[u].emsg; eapptag = musts[u].eapptag ? musts[u].eapptag : "must-violation"; if (emsg) { LOGVAL_APPTAG(LYD_CTX(node), eapptag, LYVE_DATA, "%s", emsg); } else { LOGVAL_APPTAG(LYD_CTX(node), eapptag, LY_VCODE_NOMUST, musts[u].cond->expr); } return LY_EVALID; } } return LY_SUCCESS; } /** * @brief Perform all remaining validation tasks, the data tree must be final when calling this function. * * @param[in] first First sibling. * @param[in] parent Data parent. * @param[in] sparent Schema parent of the siblings, NULL for top-level siblings. * @param[in] mod Module of the siblings, NULL for nested siblings. * @param[in] val_opts Validation options (@ref datavalidationoptions). * @param[in] int_opts Internal parser options. * @param[in] must_xp_opts Additional XPath options to use for evaluating "must". * @return LY_ERR value. */ static LY_ERR lyd_validate_final_r(struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *sparent, const struct lys_module *mod, uint32_t val_opts, uint32_t int_opts, uint32_t must_xp_opts) { LY_ERR r; const char *innode; struct lyd_node *next = NULL, *node; /* validate all restrictions of nodes themselves */ LY_LIST_FOR_SAFE(first, next, node) { if (node->flags & LYD_EXT) { /* ext instance data should have already been validated */ continue; } LOG_LOCSET(node->schema, node, NULL, NULL); /* opaque data */ if (!node->schema) { r = lyd_parse_opaq_error(node); LOG_LOCBACK(0, 1, 0, 0); return r; } if (!node->parent && mod && (lyd_owner_module(node) != mod)) { /* all top-level data from this module checked */ LOG_LOCBACK(1, 1, 0, 0); break; } /* no state/input/output/op data */ innode = NULL; if ((val_opts & LYD_VALIDATE_NO_STATE) && (node->schema->flags & LYS_CONFIG_R)) { innode = "state"; } else if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION)) && (node->schema->flags & LYS_IS_OUTPUT)) { innode = "output"; } else if ((int_opts & LYD_INTOPT_REPLY) && (node->schema->flags & LYS_IS_INPUT)) { innode = "input"; } else if (!(int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)) && (node->schema->nodetype == LYS_RPC)) { innode = "rpc"; } else if (!(int_opts & (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) && (node->schema->nodetype == LYS_ACTION)) { innode = "action"; } else if (!(int_opts & LYD_INTOPT_NOTIF) && (node->schema->nodetype == LYS_NOTIF)) { innode = "notification"; } if (innode) { LOGVAL(LYD_CTX(node), LY_VCODE_UNEXPNODE, innode, node->schema->name); LOG_LOCBACK(1, 1, 0, 0); return LY_EVALID; } /* obsolete data */ lyd_validate_obsolete(node); /* node's musts */ if ((r = lyd_validate_must(node, int_opts, must_xp_opts))) { LOG_LOCBACK(1, 1, 0, 0); return r; } /* node value was checked by plugins */ /* next iter */ LOG_LOCBACK(1, 1, 0, 0); } /* validate schema-based restrictions */ LY_CHECK_RET(lyd_validate_siblings_schema_r(first, parent, sparent, mod ? mod->compiled : NULL, val_opts, int_opts)); LY_LIST_FOR(first, node) { if (!node->parent && mod && (lyd_owner_module(node) != mod)) { /* all top-level data from this module checked */ break; } /* validate all children recursively */ LY_CHECK_RET(lyd_validate_final_r(lyd_child(node), node, node->schema, NULL, val_opts, int_opts, must_xp_opts)); /* set default for containers */ lyd_cont_set_dflt(node); } return LY_SUCCESS; } /** * @brief Validate extension instance data by storing it in its unres set. * * @param[in] sibling First sibling with ::LYD_EXT flag, all the following ones are expected to have it, too. * @param[in,out] ext_val Set with parsed extension instance data to validate. * @return LY_ERR value. */ static LY_ERR lyd_validate_nested_ext(struct lyd_node *sibling, struct ly_set *ext_val) { struct lyd_node *node; struct lyd_ctx_ext_val *ext_v; struct lysc_ext_instance *nested_exts, *ext = NULL; LY_ARRAY_COUNT_TYPE u; /* check of basic assumptions */ if (!sibling->parent || !sibling->parent->schema) { LOGINT_RET(LYD_CTX(sibling)); } LY_LIST_FOR(sibling, node) { if (!(node->flags & LYD_EXT)) { LOGINT_RET(LYD_CTX(sibling)); } } /* try to find the extension instance */ nested_exts = sibling->parent->schema->exts; LY_ARRAY_FOR(nested_exts, u) { if (nested_exts[u].def->plugin->validate) { if (ext) { /* more extension instances with validate callback */ LOGINT_RET(LYD_CTX(sibling)); } ext = &nested_exts[u]; } } if (!ext) { /* no extension instance with validate callback */ LOGINT_RET(LYD_CTX(sibling)); } /* store for validation */ ext_v = malloc(sizeof *ext_v); LY_CHECK_ERR_RET(!ext_v, LOGMEM(LYD_CTX(sibling)), LY_EMEM); ext_v->ext = ext; ext_v->sibling = sibling; LY_CHECK_RET(ly_set_add(ext_val, ext_v, 1, NULL)); return LY_SUCCESS; } LY_ERR lyd_validate_node_ext(struct lyd_node *node, struct ly_set *ext_node) { struct lyd_ctx_ext_node *ext_n; struct lysc_ext_instance *exts; LY_ARRAY_COUNT_TYPE u; /* try to find a relevant extension instance with node callback */ exts = node->schema->exts; LY_ARRAY_FOR(exts, u) { if (exts[u].def->plugin && exts[u].def->plugin->node) { /* store for validation */ ext_n = malloc(sizeof *ext_n); LY_CHECK_ERR_RET(!ext_n, LOGMEM(LYD_CTX(node)), LY_EMEM); ext_n->ext = &exts[u]; ext_n->node = node; LY_CHECK_RET(ly_set_add(ext_node, ext_n, 1, NULL)); } } return LY_SUCCESS; } /** * @brief Validate the whole data subtree. * * @param[in] root Subtree root. * @param[in,out] node_when Set for nodes with when conditions. * @param[in,out] node_types Set for unres node types. * @param[in,out] meta_types Set for unres metadata types. * @param[in,out] ext_node Set with nodes with extensions to validate. * @param[in,out] ext_val Set for parsed extension data to validate. * @param[in] impl_opts Implicit options, see @ref implicitoptions. * @param[in,out] diff Validation diff. * @return LY_ERR value. */ static LY_ERR lyd_validate_subtree(struct lyd_node *root, struct ly_set *node_when, struct ly_set *node_types, struct ly_set *meta_types, struct ly_set *ext_node, struct ly_set *ext_val, uint32_t impl_opts, struct lyd_node **diff) { const struct lyd_meta *meta; const struct lysc_type *type; struct lyd_node *node; LYD_TREE_DFS_BEGIN(root, node) { if (node->flags & LYD_EXT) { /* validate using the extension instance callback */ return lyd_validate_nested_ext(node, ext_val); } if (!node->schema) { /* do not validate opaque nodes */ goto next_node; } LY_LIST_FOR(node->meta, meta) { lyplg_ext_get_storage(meta->annotation, LY_STMT_TYPE, sizeof type, (const void **)&type); if (type->plugin->validate) { /* metadata type resolution */ LY_CHECK_RET(ly_set_add(meta_types, (void *)meta, 1, NULL)); } } if ((node->schema->nodetype & LYD_NODE_TERM) && ((struct lysc_node_leaf *)node->schema)->type->plugin->validate) { /* node type resolution */ LY_CHECK_RET(ly_set_add(node_types, (void *)node, 1, NULL)); } else if (node->schema->nodetype & LYD_NODE_INNER) { /* new node validation, autodelete */ LY_CHECK_RET(lyd_validate_new(lyd_node_child_p(node), node->schema, NULL, diff)); /* add nested defaults */ LY_CHECK_RET(lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, NULL, NULL, NULL, impl_opts, diff)); } if (lysc_has_when(node->schema)) { /* when evaluation */ LY_CHECK_RET(ly_set_add(node_when, (void *)node, 1, NULL)); } /* store for ext instance node validation, if needed */ LY_CHECK_RET(lyd_validate_node_ext(node, ext_node)); next_node: LYD_TREE_DFS_END(root, node); } return LY_SUCCESS; } LY_ERR lyd_validate(struct lyd_node **tree, const struct lys_module *module, const struct ly_ctx *ctx, uint32_t val_opts, ly_bool validate_subtree, struct ly_set *node_when_p, struct ly_set *node_types_p, struct ly_set *meta_types_p, struct ly_set *ext_node_p, struct ly_set *ext_val_p, struct lyd_node **diff) { LY_ERR ret = LY_SUCCESS; struct lyd_node *first, *next, **first2, *iter; const struct lys_module *mod; struct ly_set node_types = {0}, meta_types = {0}, node_when = {0}, ext_node = {0}, ext_val = {0}; uint32_t i = 0; assert(tree && ctx); assert((node_when_p && node_types_p && meta_types_p && ext_node_p && ext_val_p) || (!node_when_p && !node_types_p && !meta_types_p && !ext_node_p && !ext_val_p)); if (!node_when_p) { node_when_p = &node_when; node_types_p = &node_types; meta_types_p = &meta_types; ext_node_p = &ext_node; ext_val_p = &ext_val; } next = *tree; while (1) { if (val_opts & LYD_VALIDATE_PRESENT) { mod = lyd_data_next_module(&next, &first); } else { mod = lyd_mod_next_module(next, module, ctx, &i, &first); } if (!mod) { break; } if (!first || (first == *tree)) { /* make sure first2 changes are carried to tree */ first2 = tree; } else { first2 = &first; } /* validate new top-level nodes of this module, autodelete */ ret = lyd_validate_new(first2, NULL, mod, diff); LY_CHECK_GOTO(ret, cleanup); /* add all top-level defaults for this module, if going to validate subtree, do not add into unres sets * (lyd_validate_subtree() adds all the nodes in that case) */ ret = lyd_new_implicit_r(NULL, first2, NULL, mod, validate_subtree ? NULL : node_when_p, validate_subtree ? NULL : node_types_p, validate_subtree ? NULL : ext_node_p, (val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0, diff); LY_CHECK_GOTO(ret, cleanup); /* our first module node pointer may no longer be the first */ first = *first2; lyd_first_module_sibling(&first, mod); if (!first || (first == *tree)) { first2 = tree; } else { first2 = &first; } if (validate_subtree) { /* process nested nodes */ LY_LIST_FOR(*first2, iter) { if (lyd_owner_module(iter) != mod) { break; } ret = lyd_validate_subtree(iter, node_when_p, node_types_p, meta_types_p, ext_node_p, ext_val_p, (val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0, diff); LY_CHECK_GOTO(ret, cleanup); } } /* finish incompletely validated terminal values/attributes and when conditions */ ret = lyd_validate_unres(first2, mod, LYD_TYPE_DATA_YANG, node_when_p, 0, node_types_p, meta_types_p, ext_node_p, ext_val_p, val_opts, diff); LY_CHECK_GOTO(ret, cleanup); /* perform final validation that assumes the data tree is final */ ret = lyd_validate_final_r(*first2, NULL, NULL, mod, val_opts, 0, 0); LY_CHECK_GOTO(ret, cleanup); } cleanup: ly_set_erase(&node_when, NULL); ly_set_erase(&node_types, NULL); ly_set_erase(&meta_types, NULL); ly_set_erase(&ext_node, free); ly_set_erase(&ext_val, free); return ret; } LIBYANG_API_DEF LY_ERR lyd_validate_all(struct lyd_node **tree, const struct ly_ctx *ctx, uint32_t val_opts, struct lyd_node **diff) { LY_CHECK_ARG_RET(NULL, tree, *tree || ctx, LY_EINVAL); LY_CHECK_CTX_EQUAL_RET(*tree ? LYD_CTX(*tree) : NULL, ctx, LY_EINVAL); if (!ctx) { ctx = LYD_CTX(*tree); } if (diff) { *diff = NULL; } return lyd_validate(tree, NULL, ctx, val_opts, 1, NULL, NULL, NULL, NULL, NULL, diff); } LIBYANG_API_DEF LY_ERR lyd_validate_module(struct lyd_node **tree, const struct lys_module *module, uint32_t val_opts, struct lyd_node **diff) { LY_CHECK_ARG_RET(NULL, tree, *tree || module, LY_EINVAL); LY_CHECK_CTX_EQUAL_RET(*tree ? LYD_CTX(*tree) : NULL, module ? module->ctx : NULL, LY_EINVAL); if (diff) { *diff = NULL; } return lyd_validate(tree, module, (*tree) ? LYD_CTX(*tree) : module->ctx, val_opts, 1, NULL, NULL, NULL, NULL, NULL, diff); } /** * @brief Find nodes for merging an operation into data tree for validation. * * @param[in] op_tree Full operation data tree. * @param[in] op_node Operation node itself. * @param[in] tree Data tree to be merged into. * @param[out] op_subtree Operation subtree to merge. * @param[out] tree_sibling Data tree sibling to merge next to, is set if @p tree_parent is NULL. * @param[out] tree_parent Data tree parent to merge into, is set if @p tree_sibling is NULL. */ static void lyd_val_op_merge_find(const struct lyd_node *op_tree, const struct lyd_node *op_node, const struct lyd_node *tree, struct lyd_node **op_subtree, struct lyd_node **tree_sibling, struct lyd_node **tree_parent) { const struct lyd_node *tree_iter, *op_iter; struct lyd_node *match = NULL; uint32_t i, cur_depth, op_depth; *op_subtree = NULL; *tree_sibling = NULL; *tree_parent = NULL; /* learn op depth (top-level being depth 0) */ op_depth = 0; for (op_iter = op_node; op_iter != op_tree; op_iter = lyd_parent(op_iter)) { ++op_depth; } /* find where to merge op */ tree_iter = tree; cur_depth = op_depth; while (cur_depth && tree_iter) { /* find op iter in tree */ lyd_find_sibling_first(tree_iter, op_iter, &match); if (!match) { break; } /* move tree_iter */ tree_iter = lyd_child(match); /* move depth */ --cur_depth; /* find next op parent */ op_iter = op_node; for (i = 0; i < cur_depth; ++i) { op_iter = lyd_parent(op_iter); } } assert(op_iter); *op_subtree = (struct lyd_node *)op_iter; if (!tree || tree_iter) { /* there is no tree whatsoever or this is the last found sibling */ *tree_sibling = (struct lyd_node *)tree_iter; } else { /* matching parent was found but it has no children to insert next to */ assert(match); *tree_parent = match; } } /** * @brief Validate an RPC/action request, reply, or notification. * * @param[in] op_tree Full operation data tree. * @param[in] op_node Operation node itself. * @param[in] dep_tree Tree to be used for validating references from the operation subtree. * @param[in] int_opts Internal parser options. * @param[in] data_type Type of validated data. * @param[in] validate_subtree Whether subtree was already validated (as part of data parsing) or not (separate validation). * @param[in] node_when_p Set of nodes with when conditions, if NULL a local set is used. * @param[in] node_types_p Set of unres node types, if NULL a local set is used. * @param[in] meta_types_p Set of unres metadata types, if NULL a local set is used. * @param[in] ext_node_p Set of unres nodes with extensions to validate, if NULL a local set is used. * @param[in] ext_val_p Set of parsed extension data to validate, if NULL a local set is used. * @param[out] diff Optional diff with any changes made by the validation. * @return LY_SUCCESS on success. * @return LY_ERR error on error. */ static LY_ERR _lyd_validate_op(struct lyd_node *op_tree, struct lyd_node *op_node, const struct lyd_node *dep_tree, enum lyd_type data_type, uint32_t int_opts, ly_bool validate_subtree, struct ly_set *node_when_p, struct ly_set *node_types_p, struct ly_set *meta_types_p, struct ly_set *ext_node_p, struct ly_set *ext_val_p, struct lyd_node **diff) { LY_ERR rc = LY_SUCCESS; struct lyd_node *tree_sibling, *tree_parent, *op_subtree, *op_parent, *op_sibling_before, *op_sibling_after, *child; struct ly_set node_types = {0}, meta_types = {0}, node_when = {0}, ext_node = {0}, ext_val = {0}; assert(op_tree && op_node); assert((node_when_p && node_types_p && meta_types_p && ext_node_p && ext_val_p) || (!node_when_p && !node_types_p && !meta_types_p && !ext_node_p && !ext_val_p)); if (!node_when_p) { node_when_p = &node_when; node_types_p = &node_types; meta_types_p = &meta_types; ext_node_p = &ext_node; ext_val_p = &ext_val; } /* merge op_tree into dep_tree */ lyd_val_op_merge_find(op_tree, op_node, dep_tree, &op_subtree, &tree_sibling, &tree_parent); op_sibling_before = op_subtree->prev->next ? op_subtree->prev : NULL; op_sibling_after = op_subtree->next; op_parent = lyd_parent(op_subtree); lyd_unlink_tree(op_subtree); lyd_insert_node(tree_parent, &tree_sibling, op_subtree, 0); if (!dep_tree) { dep_tree = tree_sibling; } LOG_LOCSET(NULL, op_node, NULL, NULL); if (int_opts & LYD_INTOPT_REPLY) { /* add output children defaults */ rc = lyd_new_implicit_r(op_node, lyd_node_child_p(op_node), NULL, NULL, node_when_p, node_types_p, ext_node_p, LYD_IMPLICIT_OUTPUT, diff); LY_CHECK_GOTO(rc, cleanup); if (validate_subtree) { /* skip validating the operation itself, go to children directly */ LY_LIST_FOR(lyd_child(op_node), child) { rc = lyd_validate_subtree(child, node_when_p, node_types_p, meta_types_p, ext_node_p, ext_val_p, 0, diff); LY_CHECK_GOTO(rc, cleanup); } } } else { if (validate_subtree) { /* prevalidate whole operation subtree */ rc = lyd_validate_subtree(op_node, node_when_p, node_types_p, meta_types_p, ext_node_p, ext_val_p, 0, diff); LY_CHECK_GOTO(rc, cleanup); } } /* finish incompletely validated terminal values/attributes and when conditions on the full tree, * account for unresolved 'when' that may appear in the non-validated dependency data tree */ LY_CHECK_GOTO(rc = lyd_validate_unres((struct lyd_node **)&dep_tree, NULL, data_type, node_when_p, LYXP_IGNORE_WHEN, node_types_p, meta_types_p, ext_node_p, ext_val_p, 0, diff), cleanup); /* perform final validation of the operation/notification */ lyd_validate_obsolete(op_node); LY_CHECK_GOTO(rc = lyd_validate_must(op_node, int_opts, LYXP_IGNORE_WHEN), cleanup); /* final validation of all the descendants */ rc = lyd_validate_final_r(lyd_child(op_node), op_node, op_node->schema, NULL, 0, int_opts, LYXP_IGNORE_WHEN); LY_CHECK_GOTO(rc, cleanup); cleanup: LOG_LOCBACK(0, 1, 0, 0); /* restore operation tree */ lyd_unlink_tree(op_subtree); if (op_sibling_before) { lyd_insert_after_node(op_sibling_before, op_subtree); } else if (op_sibling_after) { lyd_insert_before_node(op_sibling_after, op_subtree); } else if (op_parent) { lyd_insert_node(op_parent, NULL, op_subtree, 0); } ly_set_erase(&node_when, NULL); ly_set_erase(&node_types, NULL); ly_set_erase(&meta_types, NULL); ly_set_erase(&ext_node, free); ly_set_erase(&ext_val, free); return rc; } LIBYANG_API_DEF LY_ERR lyd_validate_op(struct lyd_node *op_tree, const struct lyd_node *dep_tree, enum lyd_type data_type, struct lyd_node **diff) { struct lyd_node *op_node; uint32_t int_opts; struct ly_set ext_val = {0}; LY_ERR rc; LY_CHECK_ARG_RET(NULL, op_tree, !dep_tree || !dep_tree->parent, (data_type == LYD_TYPE_RPC_YANG) || (data_type == LYD_TYPE_NOTIF_YANG) || (data_type == LYD_TYPE_REPLY_YANG), LY_EINVAL); if (diff) { *diff = NULL; } if (data_type == LYD_TYPE_RPC_YANG) { int_opts = LYD_INTOPT_RPC | LYD_INTOPT_ACTION; } else if (data_type == LYD_TYPE_NOTIF_YANG) { int_opts = LYD_INTOPT_NOTIF; } else { int_opts = LYD_INTOPT_REPLY; } if (op_tree->schema && (op_tree->schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF))) { /* we have the operation/notification, adjust the pointers */ op_node = op_tree; while (op_tree->parent) { op_tree = lyd_parent(op_tree); } } else { /* find the operation/notification */ while (op_tree->parent) { op_tree = lyd_parent(op_tree); } LYD_TREE_DFS_BEGIN(op_tree, op_node) { if (!op_node->schema) { return lyd_parse_opaq_error(op_node); } else if (op_node->flags & LYD_EXT) { /* fully validate the rest using the extension instance callback */ LY_CHECK_RET(lyd_validate_nested_ext(op_node, &ext_val)); rc = lyd_validate_unres((struct lyd_node **)&dep_tree, NULL, data_type, NULL, 0, NULL, NULL, NULL, &ext_val, 0, diff); ly_set_erase(&ext_val, free); return rc; } if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) && (op_node->schema->nodetype & (LYS_RPC | LYS_ACTION))) { break; } else if ((int_opts & LYD_INTOPT_NOTIF) && (op_node->schema->nodetype == LYS_NOTIF)) { break; } LYD_TREE_DFS_END(op_tree, op_node); } } if (int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) { if (!op_node || !(op_node->schema->nodetype & (LYS_RPC | LYS_ACTION))) { LOGERR(LYD_CTX(op_tree), LY_EINVAL, "No RPC/action to validate found."); return LY_EINVAL; } } else { if (!op_node || (op_node->schema->nodetype != LYS_NOTIF)) { LOGERR(LYD_CTX(op_tree), LY_EINVAL, "No notification to validate found."); return LY_EINVAL; } } /* validate */ return _lyd_validate_op(op_tree, op_node, dep_tree, data_type, int_opts, 1, NULL, NULL, NULL, NULL, NULL, diff); }