/** * @file xpath.c * @author Michal Vasko * @brief YANG XPath evaluation functions * * Copyright (c) 2015 - 2022 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _GNU_SOURCE /* asprintf, strdup */ #include "xpath.h" #include #include #include #include #include #include #include #include #include "common.h" #include "compat.h" #include "context.h" #include "dict.h" #include "hash_table.h" #include "out.h" #include "parser_data.h" #include "path.h" #include "plugins_exts/metadata.h" #include "plugins_types.h" #include "printer_data.h" #include "schema_compile_node.h" #include "tree.h" #include "tree_data.h" #include "tree_data_internal.h" #include "tree_edit.h" #include "tree_schema_internal.h" #include "xml.h" static LY_ERR set_scnode_insert_node(struct lyxp_set *set, const struct lysc_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, uint32_t *index_p); static LY_ERR reparse_or_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth); static LY_ERR eval_expr_select(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_expr_type etype, struct lyxp_set *set, uint32_t options); static LY_ERR moveto_resolve_model(const char **qname, uint32_t *qname_len, const struct lyxp_set *set, const struct lysc_node *ctx_scnode, const struct lys_module **moveto_mod); static LY_ERR moveto_axis_node_next(const struct lyd_node **iter, enum lyxp_node_type *iter_type, const struct lyd_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set); static LY_ERR moveto_node(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis, uint32_t options); static LY_ERR moveto_scnode(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis, uint32_t options); static LY_ERR moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, ly_bool *result); /* Functions are divided into the following basic classes: * * (re)parse functions: * Parse functions parse the expression into * tokens (syntactic analysis). * Reparse functions perform semantic analysis * (do not save the result, just a check) of * the expression and fill repeat indices. * * warn functions: * Warn functions check specific reasonable conditions for schema XPath * and print a warning if they are not satisfied. * * moveto functions: * They and only they actually change the context (set). * * eval functions: * They execute a parsed XPath expression on some data subtree. */ /** * @brief Print the type of an XPath \p set. * * @param[in] set Set to use. * @return Set type string. */ static const char * print_set_type(struct lyxp_set *set) { switch (set->type) { case LYXP_SET_NODE_SET: return "node set"; case LYXP_SET_SCNODE_SET: return "schema node set"; case LYXP_SET_BOOLEAN: return "boolean"; case LYXP_SET_NUMBER: return "number"; case LYXP_SET_STRING: return "string"; } return NULL; } const char * lyxp_token2str(enum lyxp_token tok) { switch (tok) { case LYXP_TOKEN_PAR1: return "("; case LYXP_TOKEN_PAR2: return ")"; case LYXP_TOKEN_BRACK1: return "["; case LYXP_TOKEN_BRACK2: return "]"; case LYXP_TOKEN_DOT: return "."; case LYXP_TOKEN_DDOT: return ".."; case LYXP_TOKEN_AT: return "@"; case LYXP_TOKEN_COMMA: return ","; case LYXP_TOKEN_NAMETEST: return "NameTest"; case LYXP_TOKEN_NODETYPE: return "NodeType"; case LYXP_TOKEN_VARREF: return "VariableReference"; case LYXP_TOKEN_FUNCNAME: return "FunctionName"; case LYXP_TOKEN_OPER_LOG: return "Operator(Logic)"; case LYXP_TOKEN_OPER_EQUAL: return "Operator(Equal)"; case LYXP_TOKEN_OPER_NEQUAL: return "Operator(Non-equal)"; case LYXP_TOKEN_OPER_COMP: return "Operator(Comparison)"; case LYXP_TOKEN_OPER_MATH: return "Operator(Math)"; case LYXP_TOKEN_OPER_UNI: return "Operator(Union)"; case LYXP_TOKEN_OPER_PATH: return "Operator(Path)"; case LYXP_TOKEN_OPER_RPATH: return "Operator(Recursive Path)"; case LYXP_TOKEN_LITERAL: return "Literal"; case LYXP_TOKEN_NUMBER: return "Number"; default: LOGINT(NULL); return ""; } } /** * @brief Transform string into an axis. * * @param[in] str String to transform. * @param[in] str_len Length of @p str. * @return Transformed axis. */ static enum lyxp_axis str2axis(const char *str, uint32_t str_len) { switch (str_len) { case 4: assert(!strncmp("self", str, str_len)); return LYXP_AXIS_SELF; case 5: assert(!strncmp("child", str, str_len)); return LYXP_AXIS_CHILD; case 6: assert(!strncmp("parent", str, str_len)); return LYXP_AXIS_PARENT; case 8: assert(!strncmp("ancestor", str, str_len)); return LYXP_AXIS_ANCESTOR; case 9: if (str[0] == 'a') { assert(!strncmp("attribute", str, str_len)); return LYXP_AXIS_ATTRIBUTE; } else if (str[0] == 'f') { assert(!strncmp("following", str, str_len)); return LYXP_AXIS_FOLLOWING; } else { assert(!strncmp("preceding", str, str_len)); return LYXP_AXIS_PRECEDING; } break; case 10: assert(!strncmp("descendant", str, str_len)); return LYXP_AXIS_DESCENDANT; case 16: assert(!strncmp("ancestor-or-self", str, str_len)); return LYXP_AXIS_ANCESTOR_OR_SELF; case 17: if (str[0] == 'f') { assert(!strncmp("following-sibling", str, str_len)); return LYXP_AXIS_FOLLOWING_SIBLING; } else { assert(!strncmp("preceding-sibling", str, str_len)); return LYXP_AXIS_PRECEDING_SIBLING; } break; case 18: assert(!strncmp("descendant-or-self", str, str_len)); return LYXP_AXIS_DESCENDANT_OR_SELF; } LOGINT(NULL); return 0; } /** * @brief Print the whole expression \p exp to debug output. * * @param[in] exp Expression to use. */ static void print_expr_struct_debug(const struct lyxp_expr *exp) { #define MSG_BUFFER_SIZE 128 char tmp[MSG_BUFFER_SIZE]; uint32_t i, j; if (!exp || (ly_ll < LY_LLDBG)) { return; } LOGDBG(LY_LDGXPATH, "expression \"%s\":", exp->expr); for (i = 0; i < exp->used; ++i) { sprintf(tmp, "\ttoken %s, in expression \"%.*s\"", lyxp_token2str(exp->tokens[i]), exp->tok_len[i], &exp->expr[exp->tok_pos[i]]); if (exp->repeat && exp->repeat[i]) { sprintf(tmp + strlen(tmp), " (repeat %d", exp->repeat[i][0]); for (j = 1; exp->repeat[i][j]; ++j) { sprintf(tmp + strlen(tmp), ", %d", exp->repeat[i][j]); } strcat(tmp, ")"); } LOGDBG(LY_LDGXPATH, tmp); } #undef MSG_BUFFER_SIZE } #ifndef NDEBUG /** * @brief Print XPath set content to debug output. * * @param[in] set Set to print. */ static void print_set_debug(struct lyxp_set *set) { uint32_t i; char *str; struct lyxp_set_node *item; struct lyxp_set_scnode *sitem; if (ly_ll < LY_LLDBG) { return; } switch (set->type) { case LYXP_SET_NODE_SET: LOGDBG(LY_LDGXPATH, "set NODE SET:"); for (i = 0; i < set->used; ++i) { item = &set->val.nodes[i]; switch (item->type) { case LYXP_NODE_NONE: LOGDBG(LY_LDGXPATH, "\t%d (pos %u): NONE", i + 1, item->pos); break; case LYXP_NODE_ROOT: LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT", i + 1, item->pos); break; case LYXP_NODE_ROOT_CONFIG: LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT CONFIG", i + 1, item->pos); break; case LYXP_NODE_ELEM: if ((item->node->schema->nodetype == LYS_LIST) && (lyd_child(item->node)->schema->nodetype == LYS_LEAF)) { LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (1st child val: %s)", i + 1, item->pos, item->node->schema->name, lyd_get_value(lyd_child(item->node))); } else if (item->node->schema->nodetype == LYS_LEAFLIST) { LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (val: %s)", i + 1, item->pos, item->node->schema->name, lyd_get_value(item->node)); } else { LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s", i + 1, item->pos, item->node->schema->name); } break; case LYXP_NODE_TEXT: if (item->node->schema->nodetype & LYS_ANYDATA) { LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT <%s>", i + 1, item->pos, item->node->schema->nodetype == LYS_ANYXML ? "anyxml" : "anydata"); } else { LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT %s", i + 1, item->pos, lyd_get_value(item->node)); } break; case LYXP_NODE_META: LOGDBG(LY_LDGXPATH, "\t%d (pos %u): META %s = %s", i + 1, item->pos, set->val.meta[i].meta->name, set->val.meta[i].meta->value); break; } } break; case LYXP_SET_SCNODE_SET: LOGDBG(LY_LDGXPATH, "set SCNODE SET:"); for (i = 0; i < set->used; ++i) { sitem = &set->val.scnodes[i]; switch (sitem->type) { case LYXP_NODE_ROOT: LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT", i + 1, sitem->in_ctx); break; case LYXP_NODE_ROOT_CONFIG: LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT CONFIG", i + 1, sitem->in_ctx); break; case LYXP_NODE_ELEM: LOGDBG(LY_LDGXPATH, "\t%d (%u): ELEM %s", i + 1, sitem->in_ctx, sitem->scnode->name); break; default: LOGINT(NULL); break; } } break; case LYXP_SET_BOOLEAN: LOGDBG(LY_LDGXPATH, "set BOOLEAN"); LOGDBG(LY_LDGXPATH, "\t%s", (set->val.bln ? "true" : "false")); break; case LYXP_SET_STRING: LOGDBG(LY_LDGXPATH, "set STRING"); LOGDBG(LY_LDGXPATH, "\t%s", set->val.str); break; case LYXP_SET_NUMBER: LOGDBG(LY_LDGXPATH, "set NUMBER"); if (isnan(set->val.num)) { str = strdup("NaN"); } else if ((set->val.num == 0) || (set->val.num == -0.0f)) { str = strdup("0"); } else if (isinf(set->val.num) && !signbit(set->val.num)) { str = strdup("Infinity"); } else if (isinf(set->val.num) && signbit(set->val.num)) { str = strdup("-Infinity"); } else if ((long long)set->val.num == set->val.num) { if (asprintf(&str, "%lld", (long long)set->val.num) == -1) { str = NULL; } } else { if (asprintf(&str, "%03.1Lf", set->val.num) == -1) { str = NULL; } } LY_CHECK_ERR_RET(!str, LOGMEM(NULL), ); LOGDBG(LY_LDGXPATH, "\t%s", str); free(str); } } #endif /** * @brief Realloc the string \p str. * * @param[in] ctx libyang context for logging. * @param[in] needed How much free space is required. * @param[in,out] str Pointer to the string to use. * @param[in,out] used Used bytes in \p str. * @param[in,out] size Allocated bytes in \p str. * @return LY_ERR */ static LY_ERR cast_string_realloc(const struct ly_ctx *ctx, uint64_t needed, char **str, uint32_t *used, uint32_t *size) { if (*size - (unsigned)*used < needed) { do { if ((UINT32_MAX - *size) < LYXP_STRING_CAST_SIZE_STEP) { LOGERR(ctx, LY_EINVAL, "XPath string length limit (%" PRIu32 ") reached.", UINT32_MAX); return LY_EINVAL; } *size += LYXP_STRING_CAST_SIZE_STEP; } while (*size - (unsigned)*used < needed); *str = ly_realloc(*str, *size * sizeof(char)); LY_CHECK_ERR_RET(!(*str), LOGMEM(ctx), LY_EMEM); } return LY_SUCCESS; } /** * @brief Cast nodes recursively to one string @p str. * * @param[in] node Node to cast, NULL if root. * @param[in] set XPath set. * @param[in] indent Current indent. * @param[in,out] str Resulting string. * @param[in,out] used Used bytes in @p str. * @param[in,out] size Allocated bytes in @p str. * @return LY_ERR value. */ static LY_ERR cast_string_recursive(const struct lyd_node *node, struct lyxp_set *set, uint32_t indent, char **str, uint32_t *used, uint32_t *size) { char *buf, *line, *ptr = NULL; const char *value_str; const struct lyd_node *child; enum lyxp_node_type child_type; struct lyd_node *tree; struct lyd_node_any *any; LY_ERR rc; if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && node && (node->schema->flags & LYS_CONFIG_R)) { return LY_SUCCESS; } if (!node) { /* fake container */ LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size)); strcpy(*str + (*used - 1), "\n"); ++(*used); ++indent; /* print all the top-level nodes */ child = NULL; child_type = 0; while (!moveto_axis_node_next(&child, &child_type, NULL, set->root_type, LYXP_AXIS_CHILD, set)) { LY_CHECK_RET(cast_string_recursive(child, set, indent, str, used, size)); } /* end fake container */ LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size)); strcpy(*str + (*used - 1), "\n"); ++(*used); --indent; } else { switch (node->schema->nodetype) { case LYS_CONTAINER: case LYS_LIST: case LYS_RPC: case LYS_NOTIF: LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size)); strcpy(*str + (*used - 1), "\n"); ++(*used); for (child = lyd_child(node); child; child = child->next) { LY_CHECK_RET(cast_string_recursive(child, set, indent + 1, str, used, size)); } break; case LYS_LEAF: case LYS_LEAFLIST: value_str = lyd_get_value(node); /* print indent */ LY_CHECK_RET(cast_string_realloc(set->ctx, indent * 2 + strlen(value_str) + 1, str, used, size)); memset(*str + (*used - 1), ' ', indent * 2); *used += indent * 2; /* print value */ if (*used == 1) { sprintf(*str + (*used - 1), "%s", value_str); *used += strlen(value_str); } else { sprintf(*str + (*used - 1), "%s\n", value_str); *used += strlen(value_str) + 1; } break; case LYS_ANYXML: case LYS_ANYDATA: any = (struct lyd_node_any *)node; if (!(void *)any->value.tree) { /* no content */ buf = strdup(""); LY_CHECK_ERR_RET(!buf, LOGMEM(set->ctx), LY_EMEM); } else { struct ly_out *out; if (any->value_type == LYD_ANYDATA_LYB) { /* try to parse it into a data tree */ if (lyd_parse_data_mem((struct ly_ctx *)set->ctx, any->value.mem, LYD_LYB, LYD_PARSE_ONLY | LYD_PARSE_STRICT, 0, &tree) == LY_SUCCESS) { /* successfully parsed */ free(any->value.mem); any->value.tree = tree; any->value_type = LYD_ANYDATA_DATATREE; } /* error is covered by the following switch where LYD_ANYDATA_LYB causes failure */ } switch (any->value_type) { case LYD_ANYDATA_STRING: case LYD_ANYDATA_XML: case LYD_ANYDATA_JSON: buf = strdup(any->value.json); LY_CHECK_ERR_RET(!buf, LOGMEM(set->ctx), LY_EMEM); break; case LYD_ANYDATA_DATATREE: LY_CHECK_RET(ly_out_new_memory(&buf, 0, &out)); rc = lyd_print_all(out, any->value.tree, LYD_XML, 0); ly_out_free(out, NULL, 0); LY_CHECK_RET(rc < 0, -rc); break; case LYD_ANYDATA_LYB: LOGERR(set->ctx, LY_EINVAL, "Cannot convert LYB anydata into string."); return LY_EINVAL; } } line = strtok_r(buf, "\n", &ptr); do { rc = cast_string_realloc(set->ctx, indent * 2 + strlen(line) + 1, str, used, size); if (rc != LY_SUCCESS) { free(buf); return rc; } memset(*str + (*used - 1), ' ', indent * 2); *used += indent * 2; strcpy(*str + (*used - 1), line); *used += strlen(line); strcpy(*str + (*used - 1), "\n"); *used += 1; } while ((line = strtok_r(NULL, "\n", &ptr))); free(buf); break; default: LOGINT_RET(set->ctx); } } return LY_SUCCESS; } /** * @brief Cast an element into a string. * * @param[in] node Node to cast, NULL if root. * @param[in] set XPath set. * @param[out] str Element cast to dynamically-allocated string. * @return LY_ERR */ static LY_ERR cast_string_elem(const struct lyd_node *node, struct lyxp_set *set, char **str) { uint32_t used, size; LY_ERR rc; *str = malloc(LYXP_STRING_CAST_SIZE_START * sizeof(char)); LY_CHECK_ERR_RET(!*str, LOGMEM(set->ctx), LY_EMEM); (*str)[0] = '\0'; used = 1; size = LYXP_STRING_CAST_SIZE_START; rc = cast_string_recursive(node, set, 0, str, &used, &size); if (rc != LY_SUCCESS) { free(*str); return rc; } if (size > used) { *str = ly_realloc(*str, used * sizeof(char)); LY_CHECK_ERR_RET(!*str, LOGMEM(set->ctx), LY_EMEM); } return LY_SUCCESS; } /** * @brief Cast a LYXP_SET_NODE_SET set into a string. * Context position aware. * * @param[in] set Set to cast. * @param[out] str Cast dynamically-allocated string. * @return LY_ERR */ static LY_ERR cast_node_set_to_string(struct lyxp_set *set, char **str) { if (!set->used) { *str = strdup(""); if (!*str) { LOGMEM_RET(set->ctx); } return LY_SUCCESS; } switch (set->val.nodes[0].type) { case LYXP_NODE_NONE: /* invalid */ LOGINT_RET(set->ctx); case LYXP_NODE_ROOT: case LYXP_NODE_ROOT_CONFIG: case LYXP_NODE_ELEM: case LYXP_NODE_TEXT: return cast_string_elem(set->val.nodes[0].node, set, str); case LYXP_NODE_META: *str = strdup(lyd_get_meta_value(set->val.meta[0].meta)); if (!*str) { LOGMEM_RET(set->ctx); } return LY_SUCCESS; } LOGINT_RET(set->ctx); } /** * @brief Cast a string into an XPath number. * * @param[in] str String to use. * @return Cast number. */ static long double cast_string_to_number(const char *str) { long double num; char *ptr; errno = 0; num = strtold(str, &ptr); if (errno || *ptr) { num = NAN; } return num; } /** * @brief Callback for checking value equality. * * Implementation of ::lyht_value_equal_cb. * * @param[in] val1_p First value. * @param[in] val2_p Second value. * @param[in] mod Whether hash table is being modified. * @param[in] cb_data Callback data. * @return Boolean value whether values are equal or not. */ static ly_bool set_values_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data)) { struct lyxp_set_hash_node *val1, *val2; val1 = (struct lyxp_set_hash_node *)val1_p; val2 = (struct lyxp_set_hash_node *)val2_p; if ((val1->node == val2->node) && (val1->type == val2->type)) { return 1; } return 0; } /** * @brief Insert node and its hash into set. * * @param[in] set et to insert to. * @param[in] node Node with hash. * @param[in] type Node type. */ static void set_insert_node_hash(struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type) { LY_ERR r; uint32_t i, hash; struct lyxp_set_hash_node hnode; if (!set->ht && (set->used >= LYD_HT_MIN_ITEMS)) { /* create hash table and add all the nodes */ set->ht = lyht_new(1, sizeof(struct lyxp_set_hash_node), set_values_equal_cb, NULL, 1); for (i = 0; i < set->used; ++i) { hnode.node = set->val.nodes[i].node; hnode.type = set->val.nodes[i].type; hash = dict_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); hash = dict_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); hash = dict_hash_multi(hash, NULL, 0); r = lyht_insert(set->ht, &hnode, hash, NULL); assert(!r); (void)r; if (hnode.node == node) { /* it was just added, do not add it twice */ node = NULL; } } } if (set->ht && node) { /* add the new node into hash table */ hnode.node = node; hnode.type = type; hash = dict_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); hash = dict_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); hash = dict_hash_multi(hash, NULL, 0); r = lyht_insert(set->ht, &hnode, hash, NULL); assert(!r); (void)r; } } /** * @brief Remove node and its hash from set. * * @param[in] set Set to remove from. * @param[in] node Node to remove. * @param[in] type Node type. */ static void set_remove_node_hash(struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type) { LY_ERR r; struct lyxp_set_hash_node hnode; uint32_t hash; if (set->ht) { hnode.node = node; hnode.type = type; hash = dict_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); hash = dict_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); hash = dict_hash_multi(hash, NULL, 0); r = lyht_remove(set->ht, &hnode, hash); assert(!r); (void)r; if (!set->ht->used) { lyht_free(set->ht); set->ht = NULL; } } } /** * @brief Check whether node is in set based on its hash. * * @param[in] set Set to search in. * @param[in] node Node to search for. * @param[in] type Node type. * @param[in] skip_idx Index in @p set to skip. * @return LY_ERR */ static LY_ERR set_dup_node_hash_check(const struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type, int skip_idx) { struct lyxp_set_hash_node hnode, *match_p; uint32_t hash; hnode.node = node; hnode.type = type; hash = dict_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); hash = dict_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); hash = dict_hash_multi(hash, NULL, 0); if (!lyht_find(set->ht, &hnode, hash, (void **)&match_p)) { if ((skip_idx > -1) && (set->val.nodes[skip_idx].node == match_p->node) && (set->val.nodes[skip_idx].type == match_p->type)) { /* we found it on the index that should be skipped, find another */ hnode = *match_p; if (lyht_find_next(set->ht, &hnode, hash, (void **)&match_p)) { /* none other found */ return LY_SUCCESS; } } return LY_EEXIST; } /* not found */ return LY_SUCCESS; } void lyxp_set_free_content(struct lyxp_set *set) { if (!set) { return; } if (set->type == LYXP_SET_NODE_SET) { free(set->val.nodes); lyht_free(set->ht); } else if (set->type == LYXP_SET_SCNODE_SET) { free(set->val.scnodes); lyht_free(set->ht); } else { if (set->type == LYXP_SET_STRING) { free(set->val.str); } set->type = LYXP_SET_NODE_SET; } set->val.nodes = NULL; set->used = 0; set->size = 0; set->ht = NULL; set->ctx_pos = 0; set->ctx_size = 0; } /** * @brief Free dynamically-allocated set. * * @param[in] set Set to free. */ static void lyxp_set_free(struct lyxp_set *set) { if (!set) { return; } lyxp_set_free_content(set); free(set); } /** * @brief Initialize set context. * * @param[in] new Set to initialize. * @param[in] set Arbitrary initialized set. */ static void set_init(struct lyxp_set *new, const struct lyxp_set *set) { memset(new, 0, sizeof *new); if (set) { new->non_child_axis = set->non_child_axis; new->ctx = set->ctx; new->cur_node = set->cur_node; new->root_type = set->root_type; new->context_op = set->context_op; new->tree = set->tree; new->cur_mod = set->cur_mod; new->format = set->format; new->prefix_data = set->prefix_data; new->vars = set->vars; } } /** * @brief Create a deep copy of a set. * * @param[in] set Set to copy. * @return Copy of @p set. */ static struct lyxp_set * set_copy(struct lyxp_set *set) { struct lyxp_set *ret; uint32_t i; if (!set) { return NULL; } ret = malloc(sizeof *ret); LY_CHECK_ERR_RET(!ret, LOGMEM(set->ctx), NULL); set_init(ret, set); if (set->type == LYXP_SET_SCNODE_SET) { ret->type = set->type; for (i = 0; i < set->used; ++i) { if ((set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) || (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_START)) { uint32_t idx; LY_CHECK_ERR_RET(set_scnode_insert_node(ret, set->val.scnodes[i].scnode, set->val.scnodes[i].type, set->val.scnodes[i].axis, &idx), lyxp_set_free(ret), NULL); /* coverity seems to think scnodes can be NULL */ if (!ret->val.scnodes) { lyxp_set_free(ret); return NULL; } ret->val.scnodes[idx].in_ctx = set->val.scnodes[i].in_ctx; } } } else if (set->type == LYXP_SET_NODE_SET) { ret->type = set->type; if (set->used) { ret->val.nodes = malloc(set->used * sizeof *ret->val.nodes); LY_CHECK_ERR_RET(!ret->val.nodes, LOGMEM(set->ctx); free(ret), NULL); memcpy(ret->val.nodes, set->val.nodes, set->used * sizeof *ret->val.nodes); } else { ret->val.nodes = NULL; } ret->used = ret->size = set->used; ret->ctx_pos = set->ctx_pos; ret->ctx_size = set->ctx_size; if (set->ht) { ret->ht = lyht_dup(set->ht); } } else { memcpy(ret, set, sizeof *ret); if (set->type == LYXP_SET_STRING) { ret->val.str = strdup(set->val.str); LY_CHECK_ERR_RET(!ret->val.str, LOGMEM(set->ctx); free(ret), NULL); } } return ret; } /** * @brief Fill XPath set with a string. Any current data are disposed of. * * @param[in] set Set to fill. * @param[in] string String to fill into \p set. * @param[in] str_len Length of \p string. 0 is a valid value! */ static void set_fill_string(struct lyxp_set *set, const char *string, uint32_t str_len) { lyxp_set_free_content(set); set->type = LYXP_SET_STRING; if ((str_len == 0) && (string[0] != '\0')) { string = ""; } set->val.str = strndup(string, str_len); } /** * @brief Fill XPath set with a number. Any current data are disposed of. * * @param[in] set Set to fill. * @param[in] number Number to fill into \p set. */ static void set_fill_number(struct lyxp_set *set, long double number) { lyxp_set_free_content(set); set->type = LYXP_SET_NUMBER; set->val.num = number; } /** * @brief Fill XPath set with a boolean. Any current data are disposed of. * * @param[in] set Set to fill. * @param[in] boolean Boolean to fill into \p set. */ static void set_fill_boolean(struct lyxp_set *set, ly_bool boolean) { lyxp_set_free_content(set); set->type = LYXP_SET_BOOLEAN; set->val.bln = boolean; } /** * @brief Fill XPath set with the value from another set (deep assign). * Any current data are disposed of. * * @param[in] trg Set to fill. * @param[in] src Source set to copy into \p trg. */ static void set_fill_set(struct lyxp_set *trg, const struct lyxp_set *src) { if (!trg || !src) { return; } if (trg->type == LYXP_SET_NODE_SET) { free(trg->val.nodes); } else if (trg->type == LYXP_SET_STRING) { free(trg->val.str); } set_init(trg, src); if (src->type == LYXP_SET_SCNODE_SET) { trg->type = LYXP_SET_SCNODE_SET; trg->used = src->used; trg->size = src->used; if (trg->size) { trg->val.scnodes = ly_realloc(trg->val.scnodes, trg->size * sizeof *trg->val.scnodes); LY_CHECK_ERR_RET(!trg->val.scnodes, LOGMEM(src->ctx); memset(trg, 0, sizeof *trg), ); memcpy(trg->val.scnodes, src->val.scnodes, src->used * sizeof *src->val.scnodes); } else { trg->val.scnodes = NULL; } } else if (src->type == LYXP_SET_BOOLEAN) { set_fill_boolean(trg, src->val.bln); } else if (src->type == LYXP_SET_NUMBER) { set_fill_number(trg, src->val.num); } else if (src->type == LYXP_SET_STRING) { set_fill_string(trg, src->val.str, strlen(src->val.str)); } else { if (trg->type == LYXP_SET_NODE_SET) { free(trg->val.nodes); } else if (trg->type == LYXP_SET_STRING) { free(trg->val.str); } assert(src->type == LYXP_SET_NODE_SET); trg->type = LYXP_SET_NODE_SET; trg->used = src->used; trg->size = src->used; trg->ctx_pos = src->ctx_pos; trg->ctx_size = src->ctx_size; if (trg->size) { trg->val.nodes = malloc(trg->size * sizeof *trg->val.nodes); LY_CHECK_ERR_RET(!trg->val.nodes, LOGMEM(src->ctx); memset(trg, 0, sizeof *trg), ); memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes); } else { trg->val.nodes = NULL; } if (src->ht) { trg->ht = lyht_dup(src->ht); } else { trg->ht = NULL; } } } /** * @brief Clear context of all schema nodes. * * @param[in] set Set to clear. * @param[in] new_ctx New context state for all the nodes currently in the context. */ static void set_scnode_clear_ctx(struct lyxp_set *set, int32_t new_ctx) { uint32_t i; for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { set->val.scnodes[i].in_ctx = new_ctx; } else if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_START) { set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_START_USED; } } } /** * @brief Remove a node from a set. Removing last node changes * set into LYXP_SET_EMPTY. Context position aware. * * @param[in] set Set to use. * @param[in] idx Index from @p set of the node to be removed. */ static void set_remove_node(struct lyxp_set *set, uint32_t idx) { assert(set && (set->type == LYXP_SET_NODE_SET)); assert(idx < set->used); set_remove_node_hash(set, set->val.nodes[idx].node, set->val.nodes[idx].type); --set->used; if (idx < set->used) { memmove(&set->val.nodes[idx], &set->val.nodes[idx + 1], (set->used - idx) * sizeof *set->val.nodes); } else if (!set->used) { lyxp_set_free_content(set); } } /** * @brief Remove a node from a set by setting its type to LYXP_NODE_NONE. * * @param[in] set Set to use. * @param[in] idx Index from @p set of the node to be removed. */ static void set_remove_node_none(struct lyxp_set *set, uint32_t idx) { assert(set && (set->type == LYXP_SET_NODE_SET)); assert(idx < set->used); if (set->val.nodes[idx].type == LYXP_NODE_ELEM) { set_remove_node_hash(set, set->val.nodes[idx].node, set->val.nodes[idx].type); } set->val.nodes[idx].type = LYXP_NODE_NONE; } /** * @brief Remove all LYXP_NODE_NONE nodes from a set. Removing last node changes * set into LYXP_SET_EMPTY. Context position aware. * * @param[in] set Set to consolidate. */ static void set_remove_nodes_none(struct lyxp_set *set) { uint32_t i, orig_used, end = 0; int64_t start; assert(set); orig_used = set->used; set->used = 0; for (i = 0; i < orig_used; ) { start = -1; do { if ((set->val.nodes[i].type != LYXP_NODE_NONE) && (start == -1)) { start = i; } else if ((start > -1) && (set->val.nodes[i].type == LYXP_NODE_NONE)) { end = i; ++i; break; } ++i; if (i == orig_used) { end = i; } } while (i < orig_used); if (start > -1) { /* move the whole chunk of valid nodes together */ if (set->used != (unsigned)start) { memmove(&set->val.nodes[set->used], &set->val.nodes[start], (end - start) * sizeof *set->val.nodes); } set->used += end - start; } } } /** * @brief Check for duplicates in a node set. * * @param[in] set Set to check. * @param[in] node Node to look for in @p set. * @param[in] node_type Type of @p node. * @param[in] skip_idx Index from @p set to skip. * @return LY_ERR */ static LY_ERR set_dup_node_check(const struct lyxp_set *set, const struct lyd_node *node, enum lyxp_node_type node_type, int skip_idx) { uint32_t i; if (set->ht && node) { return set_dup_node_hash_check(set, (struct lyd_node *)node, node_type, skip_idx); } for (i = 0; i < set->used; ++i) { if ((skip_idx > -1) && (i == (unsigned)skip_idx)) { continue; } if ((set->val.nodes[i].node == node) && (set->val.nodes[i].type == node_type)) { return LY_EEXIST; } } return LY_SUCCESS; } ly_bool lyxp_set_scnode_contains(struct lyxp_set *set, const struct lysc_node *node, enum lyxp_node_type node_type, int skip_idx, uint32_t *index_p) { uint32_t i; for (i = 0; i < set->used; ++i) { if ((skip_idx > -1) && (i == (unsigned)skip_idx)) { continue; } if ((set->val.scnodes[i].scnode == node) && (set->val.scnodes[i].type == node_type)) { if (index_p) { *index_p = i; } return 1; } } return 0; } void lyxp_set_scnode_merge(struct lyxp_set *set1, struct lyxp_set *set2) { uint32_t orig_used, i, j; assert((set1->type == LYXP_SET_SCNODE_SET) && (set2->type == LYXP_SET_SCNODE_SET)); if (!set2->used) { return; } if (!set1->used) { /* release hidden allocated data (lyxp_set.size) */ lyxp_set_free_content(set1); /* direct copying of the entire structure */ memcpy(set1, set2, sizeof *set1); return; } if (set1->used + set2->used > set1->size) { set1->size = set1->used + set2->used; set1->val.scnodes = ly_realloc(set1->val.scnodes, set1->size * sizeof *set1->val.scnodes); LY_CHECK_ERR_RET(!set1->val.scnodes, LOGMEM(set1->ctx), ); } orig_used = set1->used; for (i = 0; i < set2->used; ++i) { for (j = 0; j < orig_used; ++j) { /* detect duplicities */ if (set1->val.scnodes[j].scnode == set2->val.scnodes[i].scnode) { break; } } if (j < orig_used) { /* node is there, but update its status if needed */ if (set1->val.scnodes[j].in_ctx == LYXP_SET_SCNODE_START_USED) { set1->val.scnodes[j].in_ctx = set2->val.scnodes[i].in_ctx; } else if ((set1->val.scnodes[j].in_ctx == LYXP_SET_SCNODE_ATOM_NODE) && (set2->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL)) { set1->val.scnodes[j].in_ctx = set2->val.scnodes[i].in_ctx; } } else { memcpy(&set1->val.scnodes[set1->used], &set2->val.scnodes[i], sizeof *set2->val.scnodes); ++set1->used; } } lyxp_set_free_content(set2); set2->type = LYXP_SET_SCNODE_SET; } /** * @brief Insert a node into a set. Context position aware. * * @param[in] set Set to use. * @param[in] node Node to insert to @p set. * @param[in] pos Sort position of @p node. If left 0, it is filled just before sorting. * @param[in] node_type Node type of @p node. * @param[in] idx Index in @p set to insert into. */ static void set_insert_node(struct lyxp_set *set, const struct lyd_node *node, uint32_t pos, enum lyxp_node_type node_type, uint32_t idx) { assert(set && (set->type == LYXP_SET_NODE_SET)); if (!set->size) { /* first item */ if (idx) { /* no real harm done, but it is a bug */ LOGINT(set->ctx); idx = 0; } set->val.nodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.nodes); LY_CHECK_ERR_RET(!set->val.nodes, LOGMEM(set->ctx), ); set->type = LYXP_SET_NODE_SET; set->used = 0; set->size = LYXP_SET_SIZE_START; set->ctx_pos = 1; set->ctx_size = 1; set->ht = NULL; } else { /* not an empty set */ if (set->used == set->size) { /* set is full */ set->val.nodes = ly_realloc(set->val.nodes, (set->size * LYXP_SET_SIZE_MUL_STEP) * sizeof *set->val.nodes); LY_CHECK_ERR_RET(!set->val.nodes, LOGMEM(set->ctx), ); set->size *= LYXP_SET_SIZE_MUL_STEP; } if (idx > set->used) { LOGINT(set->ctx); idx = set->used; } /* make space for the new node */ if (idx < set->used) { memmove(&set->val.nodes[idx + 1], &set->val.nodes[idx], (set->used - idx) * sizeof *set->val.nodes); } } /* finally assign the value */ set->val.nodes[idx].node = (struct lyd_node *)node; set->val.nodes[idx].type = node_type; set->val.nodes[idx].pos = pos; ++set->used; /* add into hash table */ set_insert_node_hash(set, (struct lyd_node *)node, node_type); } /** * @brief Insert schema node into set. * * @param[in] set Set to insert into. * @param[in] node Node to insert. * @param[in] node_type Node type of @p node. * @param[in] axis Axis that @p node was reached on. * @param[out] index_p Optional pointer to store index if the inserted @p node. * @return LY_SUCCESS on success. * @return LY_EMEM on memory allocation failure. */ static LY_ERR set_scnode_insert_node(struct lyxp_set *set, const struct lysc_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, uint32_t *index_p) { uint32_t index; assert(set->type == LYXP_SET_SCNODE_SET); if (!set->size) { /* first item */ set->val.scnodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.scnodes); LY_CHECK_ERR_RET(!set->val.scnodes, LOGMEM(set->ctx), LY_EMEM); set->type = LYXP_SET_SCNODE_SET; set->used = 0; set->size = LYXP_SET_SIZE_START; set->ctx_pos = 1; set->ctx_size = 1; set->ht = NULL; } if (lyxp_set_scnode_contains(set, node, node_type, -1, &index)) { /* BUG if axes differs, this new one is thrown away */ set->val.scnodes[index].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; } else { if (set->used == set->size) { set->val.scnodes = ly_realloc(set->val.scnodes, (set->size * LYXP_SET_SIZE_MUL_STEP) * sizeof *set->val.scnodes); LY_CHECK_ERR_RET(!set->val.scnodes, LOGMEM(set->ctx), LY_EMEM); set->size *= LYXP_SET_SIZE_MUL_STEP; } index = set->used; set->val.scnodes[index].scnode = (struct lysc_node *)node; set->val.scnodes[index].type = node_type; set->val.scnodes[index].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; set->val.scnodes[index].axis = axis; ++set->used; } if (index_p) { *index_p = index; } return LY_SUCCESS; } /** * @brief Set all nodes with ctx 1 to a new unique context value. * * @param[in] set Set to modify. * @return New context value. */ static int32_t set_scnode_new_in_ctx(struct lyxp_set *set) { uint32_t i; int32_t ret_ctx; assert(set->type == LYXP_SET_SCNODE_SET); ret_ctx = LYXP_SET_SCNODE_ATOM_PRED_CTX; retry: for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx >= ret_ctx) { ret_ctx = set->val.scnodes[i].in_ctx + 1; goto retry; } } for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { set->val.scnodes[i].in_ctx = ret_ctx; } } return ret_ctx; } /** * @brief Get unique @p node position in the data. * * @param[in] node Node to find. * @param[in] node_type Node type of @p node. * @param[in] root Root node. * @param[in] root_type Type of the XPath @p root node. * @param[in] prev Node that we think is before @p node in DFS from @p root. Can optionally * be used to increase efficiency and start the DFS from this node. * @param[in] prev_pos Node @p prev position. Optional, but must be set if @p prev is set. * @return Node position. */ static uint32_t get_node_pos(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyd_node *root, enum lyxp_node_type root_type, const struct lyd_node **prev, uint32_t *prev_pos) { const struct lyd_node *elem = NULL, *top_sibling; uint32_t pos = 1; ly_bool found = 0; assert(prev && prev_pos && !root->prev->next); if ((node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ROOT_CONFIG)) { return 0; } if (*prev) { /* start from the previous element instead from the root */ pos = *prev_pos; for (top_sibling = *prev; top_sibling->parent; top_sibling = lyd_parent(top_sibling)) {} goto dfs_search; } LY_LIST_FOR(root, top_sibling) { LYD_TREE_DFS_BEGIN(top_sibling, elem) { dfs_search: LYD_TREE_DFS_continue = 0; if (*prev && !elem) { /* resume previous DFS */ elem = LYD_TREE_DFS_next = (struct lyd_node *)*prev; LYD_TREE_DFS_continue = 0; } if (!elem->schema || ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->schema->flags & LYS_CONFIG_R))) { /* skip */ LYD_TREE_DFS_continue = 1; } else { if (elem == node) { found = 1; break; } ++pos; } LYD_TREE_DFS_END(top_sibling, elem); } /* node found */ if (found) { break; } } if (!found) { if (!(*prev)) { /* we went from root and failed to find it, cannot be */ LOGINT(LYD_CTX(node)); return 0; } else { /* start the search again from the beginning */ *prev = root; top_sibling = root; pos = 1; goto dfs_search; } } /* remember the last found node for next time */ *prev = node; *prev_pos = pos; return pos; } /** * @brief Assign (fill) missing node positions. * * @param[in] set Set to fill positions in. * @param[in] root Context root node. * @param[in] root_type Context root type. * @return LY_ERR */ static LY_ERR set_assign_pos(struct lyxp_set *set, const struct lyd_node *root, enum lyxp_node_type root_type) { const struct lyd_node *prev = NULL, *tmp_node; uint32_t i, tmp_pos = 0; for (i = 0; i < set->used; ++i) { if (!set->val.nodes[i].pos) { tmp_node = NULL; switch (set->val.nodes[i].type) { case LYXP_NODE_META: tmp_node = set->val.meta[i].meta->parent; if (!tmp_node) { LOGINT_RET(root->schema->module->ctx); } /* fall through */ case LYXP_NODE_ELEM: case LYXP_NODE_TEXT: if (!tmp_node) { tmp_node = set->val.nodes[i].node; } set->val.nodes[i].pos = get_node_pos(tmp_node, set->val.nodes[i].type, root, root_type, &prev, &tmp_pos); break; default: /* all roots have position 0 */ break; } } } return LY_SUCCESS; } /** * @brief Get unique @p meta position in the parent metadata. * * @param[in] meta Metadata to use. * @return Metadata position. */ static uint32_t get_meta_pos(struct lyd_meta *meta) { uint32_t pos = 0; struct lyd_meta *meta2; for (meta2 = meta->parent->meta; meta2 && (meta2 != meta); meta2 = meta2->next) { ++pos; } assert(meta2); return pos; } /** * @brief Compare 2 nodes in respect to XPath document order. * * @param[in] item1 1st node. * @param[in] item2 2nd node. * @return If 1st > 2nd returns 1, 1st == 2nd returns 0, and 1st < 2nd returns -1. */ static int set_sort_compare(struct lyxp_set_node *item1, struct lyxp_set_node *item2) { uint32_t meta_pos1 = 0, meta_pos2 = 0; if (item1->pos < item2->pos) { return -1; } if (item1->pos > item2->pos) { return 1; } /* node positions are equal, the fun case */ /* 1st ELEM - == - 2nd TEXT, 1st TEXT - == - 2nd ELEM */ /* special case since text nodes are actually saved as their parents */ if ((item1->node == item2->node) && (item1->type != item2->type)) { if (item1->type == LYXP_NODE_ELEM) { assert(item2->type == LYXP_NODE_TEXT); return -1; } else { assert((item1->type == LYXP_NODE_TEXT) && (item2->type == LYXP_NODE_ELEM)); return 1; } } /* we need meta positions now */ if (item1->type == LYXP_NODE_META) { meta_pos1 = get_meta_pos((struct lyd_meta *)item1->node); } if (item2->type == LYXP_NODE_META) { meta_pos2 = get_meta_pos((struct lyd_meta *)item2->node); } /* 1st ROOT - 2nd ROOT, 1st ELEM - 2nd ELEM, 1st TEXT - 2nd TEXT, 1st META - =pos= - 2nd META */ /* check for duplicates */ if (item1->node == item2->node) { assert((item1->type == item2->type) && ((item1->type != LYXP_NODE_META) || (meta_pos1 == meta_pos2))); return 0; } /* 1st ELEM - 2nd TEXT, 1st ELEM - any pos - 2nd META */ /* elem is always first, 2nd node is after it */ if (item1->type == LYXP_NODE_ELEM) { assert(item2->type != LYXP_NODE_ELEM); return -1; } /* 1st TEXT - 2nd ELEM, 1st TEXT - any pos - 2nd META, 1st META - any pos - 2nd ELEM, 1st META - >pos> - 2nd META */ /* 2nd is before 1st */ if (((item1->type == LYXP_NODE_TEXT) && ((item2->type == LYXP_NODE_ELEM) || (item2->type == LYXP_NODE_META))) || ((item1->type == LYXP_NODE_META) && (item2->type == LYXP_NODE_ELEM)) || (((item1->type == LYXP_NODE_META) && (item2->type == LYXP_NODE_META)) && (meta_pos1 > meta_pos2))) { return 1; } /* 1st META - any pos - 2nd TEXT, 1st META type == LYXP_SET_NODE_SET); set_init(trg, src); /* insert node into target set */ set_insert_node(trg, src->val.nodes[src_idx].node, src->val.nodes[src_idx].pos, src->val.nodes[src_idx].type, 0); /* cast target set appropriately */ return lyxp_set_cast(trg, type); } /** * @brief Set content canonization for comparisons. * * @param[in,out] set Set to canonize. * @param[in] xp_node Source XPath node/meta to use for canonization. * @return LY_SUCCESS on success. * @return LY_ERR value on error. */ static LY_ERR set_comp_canonize(struct lyxp_set *set, const struct lyxp_set_node *xp_node) { const struct lysc_type *type = NULL; struct lyd_value val; struct ly_err_item *err = NULL; LY_ERR rc; /* is there anything to canonize even? */ if (set->type == LYXP_SET_STRING) { /* do we have a type to use for canonization? */ if ((xp_node->type == LYXP_NODE_ELEM) && (xp_node->node->schema->nodetype & LYD_NODE_TERM)) { type = ((struct lyd_node_term *)xp_node->node)->value.realtype; } else if (xp_node->type == LYXP_NODE_META) { type = ((struct lyd_meta *)xp_node->node)->value.realtype; } } if (!type) { /* no canonization needed/possible */ return LY_SUCCESS; } /* check for built-in types without required canonization */ if ((type->basetype == LY_TYPE_STRING) && (type->plugin->store == lyplg_type_store_string)) { /* string */ return LY_SUCCESS; } if ((type->basetype == LY_TYPE_BOOL) && (type->plugin->store == lyplg_type_store_boolean)) { /* boolean */ return LY_SUCCESS; } if ((type->basetype == LY_TYPE_ENUM) && (type->plugin->store == lyplg_type_store_enum)) { /* enumeration */ return LY_SUCCESS; } /* print canonized string, ignore errors, the value may not satisfy schema constraints */ rc = type->plugin->store(set->ctx, type, set->val.str, strlen(set->val.str), 0, set->format, set->prefix_data, LYD_HINT_DATA, xp_node->node->schema, &val, NULL, &err); ly_err_free(err); if (rc) { /* invalid value, function store automaticaly dealloc value when fail */ return LY_SUCCESS; } /* use the canonized string value */ free(set->val.str); set->val.str = strdup(lyd_value_get_canonical(set->ctx, &val)); type->plugin->free(set->ctx, &val); LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), LY_EMEM); return LY_SUCCESS; } /** * @brief Bubble sort @p set into XPath document order. * Context position aware. * * @param[in] set Set to sort. * @return How many times the whole set was traversed - 1 (if set was sorted, returns 0). */ static int set_sort(struct lyxp_set *set) { uint32_t i, j; int ret = 0, cmp; ly_bool inverted, change; const struct lyd_node *root; struct lyxp_set_node item; struct lyxp_set_hash_node hnode; uint64_t hash; if ((set->type != LYXP_SET_NODE_SET) || (set->used < 2)) { return 0; } /* find first top-level node to be used as anchor for positions */ for (root = set->tree; root->parent; root = lyd_parent(root)) {} for ( ; root->prev->next; root = root->prev) {} /* fill positions */ if (set_assign_pos(set, root, set->root_type)) { return -1; } #ifndef NDEBUG LOGDBG(LY_LDGXPATH, "SORT BEGIN"); print_set_debug(set); #endif for (i = 0; i < set->used; ++i) { inverted = 0; change = 0; for (j = 1; j < set->used - i; ++j) { /* compare node positions */ if (inverted) { cmp = set_sort_compare(&set->val.nodes[j], &set->val.nodes[j - 1]); } else { cmp = set_sort_compare(&set->val.nodes[j - 1], &set->val.nodes[j]); } /* swap if needed */ if ((inverted && (cmp < 0)) || (!inverted && (cmp > 0))) { change = 1; item = set->val.nodes[j - 1]; set->val.nodes[j - 1] = set->val.nodes[j]; set->val.nodes[j] = item; } else { /* whether node_pos1 should be smaller than node_pos2 or the other way around */ inverted = !inverted; } } ++ret; if (!change) { break; } } #ifndef NDEBUG LOGDBG(LY_LDGXPATH, "SORT END %d", ret); print_set_debug(set); #endif /* check node hashes */ if (set->used >= LYD_HT_MIN_ITEMS) { assert(set->ht); for (i = 0; i < set->used; ++i) { hnode.node = set->val.nodes[i].node; hnode.type = set->val.nodes[i].type; hash = dict_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); hash = dict_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); hash = dict_hash_multi(hash, NULL, 0); assert(!lyht_find(set->ht, &hnode, hash, NULL)); } } return ret - 1; } /** * @brief Merge 2 sorted sets into one. * * @param[in,out] trg Set to merge into. Duplicates are removed. * @param[in] src Set to be merged into @p trg. It is cast to #LYXP_SET_EMPTY on success. * @return LY_ERR */ static LY_ERR set_sorted_merge(struct lyxp_set *trg, struct lyxp_set *src) { uint32_t i, j, k, count, dup_count; int cmp; const struct lyd_node *root; if ((trg->type != LYXP_SET_NODE_SET) || (src->type != LYXP_SET_NODE_SET)) { return LY_EINVAL; } if (!src->used) { return LY_SUCCESS; } else if (!trg->used) { set_fill_set(trg, src); lyxp_set_free_content(src); return LY_SUCCESS; } /* find first top-level node to be used as anchor for positions */ for (root = trg->tree; root->parent; root = lyd_parent(root)) {} for ( ; root->prev->next; root = root->prev) {} /* fill positions */ if (set_assign_pos(trg, root, trg->root_type) || set_assign_pos(src, root, src->root_type)) { return LY_EINT; } #ifndef NDEBUG LOGDBG(LY_LDGXPATH, "MERGE target"); print_set_debug(trg); LOGDBG(LY_LDGXPATH, "MERGE source"); print_set_debug(src); #endif /* make memory for the merge (duplicates are not detected yet, so space * will likely be wasted on them, too bad) */ if (trg->size - trg->used < src->used) { trg->size = trg->used + src->used; trg->val.nodes = ly_realloc(trg->val.nodes, trg->size * sizeof *trg->val.nodes); LY_CHECK_ERR_RET(!trg->val.nodes, LOGMEM(src->ctx), LY_EMEM); } i = 0; j = 0; count = 0; dup_count = 0; do { cmp = set_sort_compare(&src->val.nodes[i], &trg->val.nodes[j]); if (!cmp) { if (!count) { /* duplicate, just skip it */ ++i; ++j; } else { /* we are copying something already, so let's copy the duplicate too, * we are hoping that afterwards there are some more nodes to * copy and this way we can copy them all together */ ++count; ++dup_count; ++i; ++j; } } else if (cmp < 0) { /* inserting src node into trg, just remember it for now */ ++count; ++i; /* insert the hash now */ set_insert_node_hash(trg, src->val.nodes[i - 1].node, src->val.nodes[i - 1].type); } else if (count) { copy_nodes: /* time to actually copy the nodes, we have found the largest block of nodes */ memmove(&trg->val.nodes[j + (count - dup_count)], &trg->val.nodes[j], (trg->used - j) * sizeof *trg->val.nodes); memcpy(&trg->val.nodes[j - dup_count], &src->val.nodes[i - count], count * sizeof *src->val.nodes); trg->used += count - dup_count; /* do not change i, except the copying above, we are basically doing exactly what is in the else branch below */ j += count - dup_count; count = 0; dup_count = 0; } else { ++j; } } while ((i < src->used) && (j < trg->used)); if ((i < src->used) || count) { /* insert all the hashes first */ for (k = i; k < src->used; ++k) { set_insert_node_hash(trg, src->val.nodes[k].node, src->val.nodes[k].type); } /* loop ended, but we need to copy something at trg end */ count += src->used - i; i = src->used; goto copy_nodes; } /* we are inserting hashes before the actual node insert, which causes * situations when there were initially not enough items for a hash table, * but even after some were inserted, hash table was not created (during * insertion the number of items is not updated yet) */ if (!trg->ht && (trg->used >= LYD_HT_MIN_ITEMS)) { set_insert_node_hash(trg, NULL, 0); } #ifndef NDEBUG LOGDBG(LY_LDGXPATH, "MERGE result"); print_set_debug(trg); #endif lyxp_set_free_content(src); return LY_SUCCESS; } LY_ERR lyxp_check_token(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t tok_idx, enum lyxp_token want_tok) { if (exp->used == tok_idx) { if (ctx) { LOGVAL(ctx, LY_VCODE_XP_EOF); } return LY_EINCOMPLETE; } if (want_tok && (exp->tokens[tok_idx] != want_tok)) { if (ctx) { LOGVAL(ctx, LY_VCODE_XP_INTOK2, lyxp_token2str(exp->tokens[tok_idx]), &exp->expr[exp->tok_pos[tok_idx]], lyxp_token2str(want_tok)); } return LY_ENOT; } return LY_SUCCESS; } LY_ERR lyxp_next_token(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_token want_tok) { LY_CHECK_RET(lyxp_check_token(ctx, exp, *tok_idx, want_tok)); /* skip the token */ ++(*tok_idx); return LY_SUCCESS; } /* just like lyxp_check_token() but tests for 2 tokens */ static LY_ERR exp_check_token2(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t tok_idx, enum lyxp_token want_tok1, enum lyxp_token want_tok2) { if (exp->used == tok_idx) { if (ctx) { LOGVAL(ctx, LY_VCODE_XP_EOF); } return LY_EINCOMPLETE; } if ((exp->tokens[tok_idx] != want_tok1) && (exp->tokens[tok_idx] != want_tok2)) { if (ctx) { LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[tok_idx]), &exp->expr[exp->tok_pos[tok_idx]]); } return LY_ENOT; } return LY_SUCCESS; } LY_ERR lyxp_next_token2(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_token want_tok1, enum lyxp_token want_tok2) { LY_CHECK_RET(exp_check_token2(ctx, exp, *tok_idx, want_tok1, want_tok2)); /* skip the token */ ++(*tok_idx); return LY_SUCCESS; } /** * @brief Stack operation push on the repeat array. * * @param[in] exp Expression to use. * @param[in] tok_idx Position in the expresion \p exp. * @param[in] repeat_op_idx Index from \p exp of the operator token. This value is pushed. */ static void exp_repeat_push(struct lyxp_expr *exp, uint32_t tok_idx, uint32_t repeat_op_idx) { uint32_t i; if (exp->repeat[tok_idx]) { for (i = 0; exp->repeat[tok_idx][i]; ++i) {} exp->repeat[tok_idx] = realloc(exp->repeat[tok_idx], (i + 2) * sizeof *exp->repeat[tok_idx]); LY_CHECK_ERR_RET(!exp->repeat[tok_idx], LOGMEM(NULL), ); exp->repeat[tok_idx][i] = repeat_op_idx; exp->repeat[tok_idx][i + 1] = 0; } else { exp->repeat[tok_idx] = calloc(2, sizeof *exp->repeat[tok_idx]); LY_CHECK_ERR_RET(!exp->repeat[tok_idx], LOGMEM(NULL), ); exp->repeat[tok_idx][0] = repeat_op_idx; } } /** * @brief Reparse Predicate. Logs directly on error. * * [7] Predicate ::= '[' Expr ']' * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_predicate(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { LY_ERR rc; rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_BRACK1); LY_CHECK_RET(rc); ++(*tok_idx); rc = reparse_or_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_BRACK2); LY_CHECK_RET(rc); ++(*tok_idx); return LY_SUCCESS; } /** * @brief Reparse RelativeLocationPath. Logs directly on error. * * [4] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step * [5] Step ::= '@'? NodeTest Predicate* | '.' | '..' * [6] NodeTest ::= NameTest | NodeType '(' ')' * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression \p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR (LY_EINCOMPLETE on forward reference) */ static LY_ERR reparse_relative_location_path(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { LY_ERR rc; rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE); LY_CHECK_RET(rc); goto step; do { /* '/' or '//' */ ++(*tok_idx); rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE); LY_CHECK_RET(rc); step: /* Step */ switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_DOT: ++(*tok_idx); break; case LYXP_TOKEN_DDOT: ++(*tok_idx); break; case LYXP_TOKEN_AXISNAME: ++(*tok_idx); rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_DCOLON); LY_CHECK_RET(rc); /* fall through */ case LYXP_TOKEN_AT: ++(*tok_idx); rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE); LY_CHECK_RET(rc); if ((exp->tokens[*tok_idx] != LYXP_TOKEN_NAMETEST) && (exp->tokens[*tok_idx] != LYXP_TOKEN_NODETYPE)) { LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } if (exp->tokens[*tok_idx] == LYXP_TOKEN_NODETYPE) { goto reparse_nodetype; } /* fall through */ case LYXP_TOKEN_NAMETEST: ++(*tok_idx); goto reparse_predicate; case LYXP_TOKEN_NODETYPE: reparse_nodetype: ++(*tok_idx); /* '(' */ rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR1); LY_CHECK_RET(rc); ++(*tok_idx); /* ')' */ rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2); LY_CHECK_RET(rc); ++(*tok_idx); reparse_predicate: /* Predicate* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) { rc = reparse_predicate(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } break; default: LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } } while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)); return LY_SUCCESS; } /** * @brief Reparse AbsoluteLocationPath. Logs directly on error. * * [3] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression \p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_absolute_location_path(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { LY_ERR rc; LY_CHECK_RET(exp_check_token2(ctx, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)); /* '/' RelativeLocationPath? */ if (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_PATH) { /* '/' */ ++(*tok_idx); if (lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_NONE)) { return LY_SUCCESS; } switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_DOT: case LYXP_TOKEN_DDOT: case LYXP_TOKEN_AXISNAME: case LYXP_TOKEN_AT: case LYXP_TOKEN_NAMETEST: case LYXP_TOKEN_NODETYPE: rc = reparse_relative_location_path(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); /* fall through */ default: break; } } else { /* '//' RelativeLocationPath */ ++(*tok_idx); rc = reparse_relative_location_path(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Reparse FunctionCall. Logs directly on error. * * [9] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')' * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_function_call(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { int8_t min_arg_count = -1; uint32_t arg_count, max_arg_count = 0, func_tok_idx; LY_ERR rc; rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_FUNCNAME); LY_CHECK_RET(rc); func_tok_idx = *tok_idx; switch (exp->tok_len[*tok_idx]) { case 3: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "not", 3)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "sum", 3)) { min_arg_count = 1; max_arg_count = 1; } break; case 4: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "lang", 4)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "last", 4)) { min_arg_count = 0; max_arg_count = 0; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "name", 4)) { min_arg_count = 0; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "true", 4)) { min_arg_count = 0; max_arg_count = 0; } break; case 5: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "count", 5)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "false", 5)) { min_arg_count = 0; max_arg_count = 0; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "floor", 5)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "round", 5)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "deref", 5)) { min_arg_count = 1; max_arg_count = 1; } break; case 6: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "concat", 6)) { min_arg_count = 2; max_arg_count = UINT32_MAX; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "number", 6)) { min_arg_count = 0; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string", 6)) { min_arg_count = 0; max_arg_count = 1; } break; case 7: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "boolean", 7)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "ceiling", 7)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "current", 7)) { min_arg_count = 0; max_arg_count = 0; } break; case 8: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "contains", 8)) { min_arg_count = 2; max_arg_count = 2; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "position", 8)) { min_arg_count = 0; max_arg_count = 0; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "re-match", 8)) { min_arg_count = 2; max_arg_count = 2; } break; case 9: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring", 9)) { min_arg_count = 2; max_arg_count = 3; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "translate", 9)) { min_arg_count = 3; max_arg_count = 3; } break; case 10: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "local-name", 10)) { min_arg_count = 0; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "enum-value", 10)) { min_arg_count = 1; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "bit-is-set", 10)) { min_arg_count = 2; max_arg_count = 2; } break; case 11: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "starts-with", 11)) { min_arg_count = 2; max_arg_count = 2; } break; case 12: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from", 12)) { min_arg_count = 2; max_arg_count = 2; } break; case 13: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "namespace-uri", 13)) { min_arg_count = 0; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string-length", 13)) { min_arg_count = 0; max_arg_count = 1; } break; case 15: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "normalize-space", 15)) { min_arg_count = 0; max_arg_count = 1; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-after", 15)) { min_arg_count = 2; max_arg_count = 2; } break; case 16: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-before", 16)) { min_arg_count = 2; max_arg_count = 2; } break; case 20: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from-or-self", 20)) { min_arg_count = 2; max_arg_count = 2; } break; } if (min_arg_count == -1) { LOGVAL(ctx, LY_VCODE_XP_INFUNC, exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EINVAL; } ++(*tok_idx); /* '(' */ rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR1); LY_CHECK_RET(rc); ++(*tok_idx); /* ( Expr ( ',' Expr )* )? */ arg_count = 0; rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE); LY_CHECK_RET(rc); if (exp->tokens[*tok_idx] != LYXP_TOKEN_PAR2) { ++arg_count; rc = reparse_or_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_COMMA)) { ++(*tok_idx); ++arg_count; rc = reparse_or_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } /* ')' */ rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2); LY_CHECK_RET(rc); ++(*tok_idx); if ((arg_count < (uint32_t)min_arg_count) || (arg_count > max_arg_count)) { LOGVAL(ctx, LY_VCODE_XP_INARGCOUNT, arg_count, exp->tok_len[func_tok_idx], &exp->expr[exp->tok_pos[func_tok_idx]]); return LY_EVALID; } return LY_SUCCESS; } /** * @brief Reparse PathExpr. Logs directly on error. * * [10] PathExpr ::= LocationPath | PrimaryExpr Predicate* * | PrimaryExpr Predicate* '/' RelativeLocationPath * | PrimaryExpr Predicate* '//' RelativeLocationPath * [2] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath * [8] PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_path_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { LY_ERR rc; if (lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE)) { return LY_EVALID; } switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_PAR1: /* '(' Expr ')' Predicate* */ ++(*tok_idx); rc = reparse_or_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2); LY_CHECK_RET(rc); ++(*tok_idx); goto predicate; case LYXP_TOKEN_DOT: case LYXP_TOKEN_DDOT: case LYXP_TOKEN_AXISNAME: case LYXP_TOKEN_AT: case LYXP_TOKEN_NAMETEST: case LYXP_TOKEN_NODETYPE: /* RelativeLocationPath */ rc = reparse_relative_location_path(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); break; case LYXP_TOKEN_VARREF: /* VariableReference */ ++(*tok_idx); goto predicate; case LYXP_TOKEN_FUNCNAME: /* FunctionCall */ rc = reparse_function_call(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); goto predicate; case LYXP_TOKEN_OPER_PATH: case LYXP_TOKEN_OPER_RPATH: /* AbsoluteLocationPath */ rc = reparse_absolute_location_path(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); break; case LYXP_TOKEN_LITERAL: /* Literal */ ++(*tok_idx); goto predicate; case LYXP_TOKEN_NUMBER: /* Number */ ++(*tok_idx); goto predicate; default: LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } return LY_SUCCESS; predicate: /* Predicate* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) { rc = reparse_predicate(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } /* ('/' or '//') RelativeLocationPath */ if (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)) { /* '/' or '//' */ ++(*tok_idx); rc = reparse_relative_location_path(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Reparse UnaryExpr. Logs directly on error. * * [17] UnaryExpr ::= UnionExpr | '-' UnaryExpr * [18] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_unary_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { uint32_t prev_exp; LY_ERR rc; /* ('-')* */ prev_exp = *tok_idx; while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) && (exp->expr[exp->tok_pos[*tok_idx]] == '-')) { exp_repeat_push(exp, prev_exp, LYXP_EXPR_UNARY); ++(*tok_idx); } /* PathExpr */ prev_exp = *tok_idx; rc = reparse_path_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); /* ('|' PathExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_UNI)) { exp_repeat_push(exp, prev_exp, LYXP_EXPR_UNION); ++(*tok_idx); rc = reparse_path_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Reparse AdditiveExpr. Logs directly on error. * * [15] AdditiveExpr ::= MultiplicativeExpr * | AdditiveExpr '+' MultiplicativeExpr * | AdditiveExpr '-' MultiplicativeExpr * [16] MultiplicativeExpr ::= UnaryExpr * | MultiplicativeExpr '*' UnaryExpr * | MultiplicativeExpr 'div' UnaryExpr * | MultiplicativeExpr 'mod' UnaryExpr * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_additive_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { uint32_t prev_add_exp, prev_mul_exp; LY_ERR rc; prev_add_exp = *tok_idx; goto reparse_multiplicative_expr; /* ('+' / '-' MultiplicativeExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) && ((exp->expr[exp->tok_pos[*tok_idx]] == '+') || (exp->expr[exp->tok_pos[*tok_idx]] == '-'))) { exp_repeat_push(exp, prev_add_exp, LYXP_EXPR_ADDITIVE); ++(*tok_idx); reparse_multiplicative_expr: /* UnaryExpr */ prev_mul_exp = *tok_idx; rc = reparse_unary_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); /* ('*' / 'div' / 'mod' UnaryExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) && ((exp->expr[exp->tok_pos[*tok_idx]] == '*') || (exp->tok_len[*tok_idx] == 3))) { exp_repeat_push(exp, prev_mul_exp, LYXP_EXPR_MULTIPLICATIVE); ++(*tok_idx); rc = reparse_unary_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } } return LY_SUCCESS; } /** * @brief Reparse EqualityExpr. Logs directly on error. * * [13] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr * | EqualityExpr '!=' RelationalExpr * [14] RelationalExpr ::= AdditiveExpr * | RelationalExpr '<' AdditiveExpr * | RelationalExpr '>' AdditiveExpr * | RelationalExpr '<=' AdditiveExpr * | RelationalExpr '>=' AdditiveExpr * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_equality_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { uint32_t prev_eq_exp, prev_rel_exp; LY_ERR rc; prev_eq_exp = *tok_idx; goto reparse_additive_expr; /* ('=' / '!=' RelationalExpr)* */ while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_EQUAL, LYXP_TOKEN_OPER_NEQUAL)) { exp_repeat_push(exp, prev_eq_exp, LYXP_EXPR_EQUALITY); ++(*tok_idx); reparse_additive_expr: /* AdditiveExpr */ prev_rel_exp = *tok_idx; rc = reparse_additive_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); /* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_COMP)) { exp_repeat_push(exp, prev_rel_exp, LYXP_EXPR_RELATIONAL); ++(*tok_idx); rc = reparse_additive_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } } return LY_SUCCESS; } /** * @brief Reparse OrExpr. Logs directly on error. * * [11] OrExpr ::= AndExpr | OrExpr 'or' AndExpr * [12] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr * * @param[in] ctx Context for logging. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] depth Current number of nested expressions. * @return LY_ERR */ static LY_ERR reparse_or_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth) { uint32_t prev_or_exp, prev_and_exp; LY_ERR rc; ++depth; LY_CHECK_ERR_RET(depth > LYXP_MAX_BLOCK_DEPTH, LOGVAL(ctx, LY_VCODE_XP_DEPTH), LY_EINVAL); prev_or_exp = *tok_idx; goto reparse_equality_expr; /* ('or' AndExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_LOG) && (exp->tok_len[*tok_idx] == 2)) { exp_repeat_push(exp, prev_or_exp, LYXP_EXPR_OR); ++(*tok_idx); reparse_equality_expr: /* EqualityExpr */ prev_and_exp = *tok_idx; rc = reparse_equality_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); /* ('and' EqualityExpr)* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_LOG) && (exp->tok_len[*tok_idx] == 3)) { exp_repeat_push(exp, prev_and_exp, LYXP_EXPR_AND); ++(*tok_idx); rc = reparse_equality_expr(ctx, exp, tok_idx, depth); LY_CHECK_RET(rc); } } return LY_SUCCESS; } /** * @brief Parse NCName. * * @param[in] ncname Name to parse. * @return Length of @p ncname valid bytes. */ static ssize_t parse_ncname(const char *ncname) { uint32_t uc; size_t size; ssize_t len = 0; LY_CHECK_RET(ly_getutf8(&ncname, &uc, &size), 0); if (!is_xmlqnamestartchar(uc) || (uc == ':')) { return len; } do { len += size; if (!*ncname) { break; } LY_CHECK_RET(ly_getutf8(&ncname, &uc, &size), -len); } while (is_xmlqnamechar(uc) && (uc != ':')); return len; } /** * @brief Add @p token into the expression @p exp. * * @param[in] ctx Context for logging. * @param[in] exp Expression to use. * @param[in] token Token to add. * @param[in] tok_pos Token position in the XPath expression. * @param[in] tok_len Token length in the XPath expression. * @return LY_ERR */ static LY_ERR exp_add_token(const struct ly_ctx *ctx, struct lyxp_expr *exp, enum lyxp_token token, uint32_t tok_pos, uint32_t tok_len) { uint32_t prev; if (exp->used == exp->size) { prev = exp->size; exp->size += LYXP_EXPR_SIZE_STEP; if (prev > exp->size) { LOGINT(ctx); return LY_EINT; } exp->tokens = ly_realloc(exp->tokens, exp->size * sizeof *exp->tokens); LY_CHECK_ERR_RET(!exp->tokens, LOGMEM(ctx), LY_EMEM); exp->tok_pos = ly_realloc(exp->tok_pos, exp->size * sizeof *exp->tok_pos); LY_CHECK_ERR_RET(!exp->tok_pos, LOGMEM(ctx), LY_EMEM); exp->tok_len = ly_realloc(exp->tok_len, exp->size * sizeof *exp->tok_len); LY_CHECK_ERR_RET(!exp->tok_len, LOGMEM(ctx), LY_EMEM); } exp->tokens[exp->used] = token; exp->tok_pos[exp->used] = tok_pos; exp->tok_len[exp->used] = tok_len; ++exp->used; return LY_SUCCESS; } void lyxp_expr_free(const struct ly_ctx *ctx, struct lyxp_expr *expr) { uint32_t i; if (!expr) { return; } lydict_remove(ctx, expr->expr); free(expr->tokens); free(expr->tok_pos); free(expr->tok_len); if (expr->repeat) { for (i = 0; i < expr->used; ++i) { free(expr->repeat[i]); } } free(expr->repeat); free(expr); } /** * @brief Parse Axis name. * * @param[in] str String to parse. * @param[in] str_len Length of @p str. * @return LY_SUCCESS if an axis. * @return LY_ENOT otherwise. */ static LY_ERR expr_parse_axis(const char *str, size_t str_len) { switch (str_len) { case 4: if (!strncmp("self", str, str_len)) { return LY_SUCCESS; } break; case 5: if (!strncmp("child", str, str_len)) { return LY_SUCCESS; } break; case 6: if (!strncmp("parent", str, str_len)) { return LY_SUCCESS; } break; case 8: if (!strncmp("ancestor", str, str_len)) { return LY_SUCCESS; } break; case 9: if (!strncmp("attribute", str, str_len)) { return LY_SUCCESS; } else if (!strncmp("following", str, str_len)) { return LY_SUCCESS; } else if (!strncmp("namespace", str, str_len)) { LOGERR(NULL, LY_EINVAL, "Axis \"namespace\" not supported."); return LY_ENOT; } else if (!strncmp("preceding", str, str_len)) { return LY_SUCCESS; } break; case 10: if (!strncmp("descendant", str, str_len)) { return LY_SUCCESS; } break; case 16: if (!strncmp("ancestor-or-self", str, str_len)) { return LY_SUCCESS; } break; case 17: if (!strncmp("following-sibling", str, str_len)) { return LY_SUCCESS; } else if (!strncmp("preceding-sibling", str, str_len)) { return LY_SUCCESS; } break; case 18: if (!strncmp("descendant-or-self", str, str_len)) { return LY_SUCCESS; } break; } return LY_ENOT; } LY_ERR lyxp_expr_parse(const struct ly_ctx *ctx, const char *expr_str, size_t expr_len, ly_bool reparse, struct lyxp_expr **expr_p) { LY_ERR ret = LY_SUCCESS; struct lyxp_expr *expr; size_t parsed = 0, tok_len; enum lyxp_token tok_type; ly_bool prev_func_check = 0, prev_ntype_check = 0, has_axis; uint32_t tok_idx = 0; ssize_t ncname_len; assert(expr_p); if (!expr_str[0]) { LOGVAL(ctx, LY_VCODE_XP_EOF); return LY_EVALID; } if (!expr_len) { expr_len = strlen(expr_str); } if (expr_len > UINT32_MAX) { LOGVAL(ctx, LYVE_XPATH, "XPath expression cannot be longer than %" PRIu32 " characters.", UINT32_MAX); return LY_EVALID; } /* init lyxp_expr structure */ expr = calloc(1, sizeof *expr); LY_CHECK_ERR_GOTO(!expr, LOGMEM(ctx); ret = LY_EMEM, error); LY_CHECK_GOTO(ret = lydict_insert(ctx, expr_str, expr_len, &expr->expr), error); expr->used = 0; expr->size = LYXP_EXPR_SIZE_START; expr->tokens = malloc(expr->size * sizeof *expr->tokens); LY_CHECK_ERR_GOTO(!expr->tokens, LOGMEM(ctx); ret = LY_EMEM, error); expr->tok_pos = malloc(expr->size * sizeof *expr->tok_pos); LY_CHECK_ERR_GOTO(!expr->tok_pos, LOGMEM(ctx); ret = LY_EMEM, error); expr->tok_len = malloc(expr->size * sizeof *expr->tok_len); LY_CHECK_ERR_GOTO(!expr->tok_len, LOGMEM(ctx); ret = LY_EMEM, error); /* make expr 0-terminated */ expr_str = expr->expr; while (is_xmlws(expr_str[parsed])) { ++parsed; } do { if (expr_str[parsed] == '(') { /* '(' */ tok_len = 1; tok_type = LYXP_TOKEN_PAR1; if (prev_ntype_check && expr->used && (expr->tokens[expr->used - 1] == LYXP_TOKEN_NAMETEST) && (((expr->tok_len[expr->used - 1] == 4) && (!strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "node", 4) || !strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "text", 4))) || ((expr->tok_len[expr->used - 1] == 7) && !strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "comment", 7)))) { /* it is NodeType after all */ expr->tokens[expr->used - 1] = LYXP_TOKEN_NODETYPE; prev_ntype_check = 0; prev_func_check = 0; } else if (prev_func_check && expr->used && (expr->tokens[expr->used - 1] == LYXP_TOKEN_NAMETEST)) { /* it is FunctionName after all */ expr->tokens[expr->used - 1] = LYXP_TOKEN_FUNCNAME; prev_ntype_check = 0; prev_func_check = 0; } } else if (expr_str[parsed] == ')') { /* ')' */ tok_len = 1; tok_type = LYXP_TOKEN_PAR2; } else if (expr_str[parsed] == '[') { /* '[' */ tok_len = 1; tok_type = LYXP_TOKEN_BRACK1; } else if (expr_str[parsed] == ']') { /* ']' */ tok_len = 1; tok_type = LYXP_TOKEN_BRACK2; } else if (!strncmp(&expr_str[parsed], "..", 2)) { /* '..' */ tok_len = 2; tok_type = LYXP_TOKEN_DDOT; } else if ((expr_str[parsed] == '.') && (!isdigit(expr_str[parsed + 1]))) { /* '.' */ tok_len = 1; tok_type = LYXP_TOKEN_DOT; } else if (expr_str[parsed] == '@') { /* '@' */ tok_len = 1; tok_type = LYXP_TOKEN_AT; } else if (expr_str[parsed] == ',') { /* ',' */ tok_len = 1; tok_type = LYXP_TOKEN_COMMA; } else if (expr_str[parsed] == '\'') { /* Literal with ' */ for (tok_len = 1; (expr_str[parsed + tok_len] != '\0') && (expr_str[parsed + tok_len] != '\''); ++tok_len) {} LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == '\0', LOGVAL(ctx, LY_VCODE_XP_EOE, expr_str[parsed], &expr_str[parsed]); ret = LY_EVALID, error); ++tok_len; tok_type = LYXP_TOKEN_LITERAL; } else if (expr_str[parsed] == '\"') { /* Literal with " */ for (tok_len = 1; (expr_str[parsed + tok_len] != '\0') && (expr_str[parsed + tok_len] != '\"'); ++tok_len) {} LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == '\0', LOGVAL(ctx, LY_VCODE_XP_EOE, expr_str[parsed], &expr_str[parsed]); ret = LY_EVALID, error); ++tok_len; tok_type = LYXP_TOKEN_LITERAL; } else if ((expr_str[parsed] == '.') || (isdigit(expr_str[parsed]))) { /* Number */ for (tok_len = 0; isdigit(expr_str[parsed + tok_len]); ++tok_len) {} if (expr_str[parsed + tok_len] == '.') { ++tok_len; for ( ; isdigit(expr_str[parsed + tok_len]); ++tok_len) {} } tok_type = LYXP_TOKEN_NUMBER; } else if (expr_str[parsed] == '$') { /* VariableReference */ parsed++; ncname_len = parse_ncname(&expr_str[parsed]); LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len], parsed - ncname_len + 1, expr_str); ret = LY_EVALID, error); tok_len = ncname_len; LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == ':', LOGVAL(ctx, LYVE_XPATH, "Variable with prefix is not supported."); ret = LY_EVALID, error); tok_type = LYXP_TOKEN_VARREF; } else if (expr_str[parsed] == '/') { /* Operator '/', '//' */ if (!strncmp(&expr_str[parsed], "//", 2)) { tok_len = 2; tok_type = LYXP_TOKEN_OPER_RPATH; } else { tok_len = 1; tok_type = LYXP_TOKEN_OPER_PATH; } } else if (!strncmp(&expr_str[parsed], "!=", 2)) { /* Operator '!=' */ tok_len = 2; tok_type = LYXP_TOKEN_OPER_NEQUAL; } else if (!strncmp(&expr_str[parsed], "<=", 2) || !strncmp(&expr_str[parsed], ">=", 2)) { /* Operator '<=', '>=' */ tok_len = 2; tok_type = LYXP_TOKEN_OPER_COMP; } else if (expr_str[parsed] == '|') { /* Operator '|' */ tok_len = 1; tok_type = LYXP_TOKEN_OPER_UNI; } else if ((expr_str[parsed] == '+') || (expr_str[parsed] == '-')) { /* Operator '+', '-' */ tok_len = 1; tok_type = LYXP_TOKEN_OPER_MATH; } else if (expr_str[parsed] == '=') { /* Operator '=' */ tok_len = 1; tok_type = LYXP_TOKEN_OPER_EQUAL; } else if ((expr_str[parsed] == '<') || (expr_str[parsed] == '>')) { /* Operator '<', '>' */ tok_len = 1; tok_type = LYXP_TOKEN_OPER_COMP; } else if (expr->used && (expr->tokens[expr->used - 1] != LYXP_TOKEN_AT) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_PAR1) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_BRACK1) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_COMMA) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_LOG) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_EQUAL) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_NEQUAL) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_COMP) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_MATH) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_UNI) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_PATH) && (expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_RPATH)) { /* Operator '*', 'or', 'and', 'mod', or 'div' */ if (expr_str[parsed] == '*') { tok_len = 1; tok_type = LYXP_TOKEN_OPER_MATH; } else if (!strncmp(&expr_str[parsed], "or", 2)) { tok_len = 2; tok_type = LYXP_TOKEN_OPER_LOG; } else if (!strncmp(&expr_str[parsed], "and", 3)) { tok_len = 3; tok_type = LYXP_TOKEN_OPER_LOG; } else if (!strncmp(&expr_str[parsed], "mod", 3) || !strncmp(&expr_str[parsed], "div", 3)) { tok_len = 3; tok_type = LYXP_TOKEN_OPER_MATH; } else if (prev_ntype_check || prev_func_check) { LOGVAL(ctx, LYVE_XPATH, "Invalid character 0x%x ('%c'), perhaps \"%.*s\" is supposed to be a function call.", expr_str[parsed], expr_str[parsed], expr->tok_len[expr->used - 1], &expr->expr[expr->tok_pos[expr->used - 1]]); ret = LY_EVALID; goto error; } else { LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed], parsed + 1, expr_str); ret = LY_EVALID; goto error; } } else { /* (AxisName '::')? ((NCName ':')? '*' | QName) or NodeType/FunctionName */ if (expr_str[parsed] == '*') { ncname_len = 1; } else { ncname_len = parse_ncname(&expr_str[parsed]); LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len], parsed - ncname_len + 1, expr_str); ret = LY_EVALID, error); } tok_len = ncname_len; has_axis = 0; if (!strncmp(&expr_str[parsed + tok_len], "::", 2)) { /* axis */ LY_CHECK_ERR_GOTO(expr_parse_axis(&expr_str[parsed], ncname_len), LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed], parsed + 1, expr_str); ret = LY_EVALID, error); tok_type = LYXP_TOKEN_AXISNAME; LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error); parsed += tok_len; /* '::' */ tok_len = 2; tok_type = LYXP_TOKEN_DCOLON; LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error); parsed += tok_len; if (expr_str[parsed] == '*') { ncname_len = 1; } else { ncname_len = parse_ncname(&expr_str[parsed]); LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len], parsed - ncname_len + 1, expr_str); ret = LY_EVALID, error); } tok_len = ncname_len; has_axis = 1; } if (expr_str[parsed + tok_len] == ':') { ++tok_len; if (expr_str[parsed + tok_len] == '*') { ++tok_len; } else { ncname_len = parse_ncname(&expr_str[parsed + tok_len]); LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len], parsed - ncname_len + 1, expr_str); ret = LY_EVALID, error); tok_len += ncname_len; } /* remove old flags to prevent ambiguities */ prev_ntype_check = 0; prev_func_check = 0; tok_type = LYXP_TOKEN_NAMETEST; } else { /* if not '*', there is no prefix so it can still be NodeType/FunctionName, we can't finally decide now */ prev_ntype_check = (expr_str[parsed] == '*') ? 0 : 1; prev_func_check = (prev_ntype_check && !has_axis) ? 1 : 0; tok_type = LYXP_TOKEN_NAMETEST; } } /* store the token, move on to the next one */ LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error); parsed += tok_len; while (is_xmlws(expr_str[parsed])) { ++parsed; } } while (expr_str[parsed]); if (reparse) { /* prealloc repeat */ expr->repeat = calloc(expr->size, sizeof *expr->repeat); LY_CHECK_ERR_GOTO(!expr->repeat, LOGMEM(ctx); ret = LY_EMEM, error); /* fill repeat */ LY_CHECK_ERR_GOTO(reparse_or_expr(ctx, expr, &tok_idx, 0), ret = LY_EVALID, error); if (expr->used > tok_idx) { LOGVAL(ctx, LYVE_XPATH, "Unparsed characters \"%s\" left at the end of an XPath expression.", &expr->expr[expr->tok_pos[tok_idx]]); ret = LY_EVALID; goto error; } } print_expr_struct_debug(expr); *expr_p = expr; return LY_SUCCESS; error: lyxp_expr_free(ctx, expr); return ret; } LY_ERR lyxp_expr_dup(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t start_idx, uint32_t end_idx, struct lyxp_expr **dup_p) { LY_ERR ret = LY_SUCCESS; struct lyxp_expr *dup = NULL; uint32_t used = 0, i, j, expr_len; const char *expr_start; assert((!start_idx && !end_idx) || ((start_idx < exp->used) && (end_idx < exp->used) && (start_idx <= end_idx))); if (!exp) { goto cleanup; } if (!start_idx && !end_idx) { end_idx = exp->used - 1; } expr_start = exp->expr + exp->tok_pos[start_idx]; expr_len = (exp->tok_pos[end_idx] + exp->tok_len[end_idx]) - exp->tok_pos[start_idx]; dup = calloc(1, sizeof *dup); LY_CHECK_ERR_GOTO(!dup, LOGMEM(ctx); ret = LY_EMEM, cleanup); if (exp->used) { used = (end_idx - start_idx) + 1; dup->tokens = malloc(used * sizeof *dup->tokens); LY_CHECK_ERR_GOTO(!dup->tokens, LOGMEM(ctx); ret = LY_EMEM, cleanup); memcpy(dup->tokens, exp->tokens + start_idx, used * sizeof *dup->tokens); dup->tok_pos = malloc(used * sizeof *dup->tok_pos); LY_CHECK_ERR_GOTO(!dup->tok_pos, LOGMEM(ctx); ret = LY_EMEM, cleanup); memcpy(dup->tok_pos, exp->tok_pos + start_idx, used * sizeof *dup->tok_pos); if (start_idx) { /* fix the indices in the expression */ for (i = 0; i < used; ++i) { dup->tok_pos[i] -= expr_start - exp->expr; } } dup->tok_len = malloc(used * sizeof *dup->tok_len); LY_CHECK_ERR_GOTO(!dup->tok_len, LOGMEM(ctx); ret = LY_EMEM, cleanup); memcpy(dup->tok_len, exp->tok_len + start_idx, used * sizeof *dup->tok_len); if (exp->repeat) { dup->repeat = malloc(used * sizeof *dup->repeat); LY_CHECK_ERR_GOTO(!dup->repeat, LOGMEM(ctx); ret = LY_EMEM, cleanup); for (i = start_idx; i <= end_idx; ++i) { if (!exp->repeat[i]) { dup->repeat[i - start_idx] = NULL; } else { for (j = 0; exp->repeat[i][j]; ++j) {} /* the ending 0 as well */ ++j; dup->repeat[i - start_idx] = malloc(j * sizeof **dup->repeat); LY_CHECK_ERR_GOTO(!dup->repeat[i - start_idx], LOGMEM(ctx); ret = LY_EMEM, cleanup); memcpy(dup->repeat[i - start_idx], exp->repeat[i], j * sizeof **dup->repeat); } } } } dup->used = used; dup->size = used; /* copy only subexpression */ LY_CHECK_GOTO(ret = lydict_insert(ctx, expr_start, expr_len, &dup->expr), cleanup); cleanup: if (ret) { lyxp_expr_free(ctx, dup); } else { *dup_p = dup; } return ret; } /** * @brief Get the last-added schema node that is currently in the context. * * @param[in] set Set to search in. * @return Last-added schema context node, NULL if no node is in context. */ static struct lysc_node * warn_get_scnode_in_ctx(struct lyxp_set *set) { uint32_t i; if (!set || (set->type != LYXP_SET_SCNODE_SET)) { return NULL; } i = set->used; do { --i; if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { /* if there are more, simply return the first found (last added) */ return set->val.scnodes[i].scnode; } } while (i); return NULL; } /** * @brief Test whether a type is numeric - integer type or decimal64. * * @param[in] type Type to test. * @return Boolean value whether @p type is numeric type or not. */ static ly_bool warn_is_numeric_type(struct lysc_type *type) { struct lysc_type_union *uni; ly_bool ret; LY_ARRAY_COUNT_TYPE u; switch (type->basetype) { case LY_TYPE_DEC64: case LY_TYPE_INT8: case LY_TYPE_UINT8: case LY_TYPE_INT16: case LY_TYPE_UINT16: case LY_TYPE_INT32: case LY_TYPE_UINT32: case LY_TYPE_INT64: case LY_TYPE_UINT64: return 1; case LY_TYPE_UNION: uni = (struct lysc_type_union *)type; LY_ARRAY_FOR(uni->types, u) { ret = warn_is_numeric_type(uni->types[u]); if (ret) { /* found a suitable type */ return ret; } } /* did not find any suitable type */ return 0; case LY_TYPE_LEAFREF: return warn_is_numeric_type(((struct lysc_type_leafref *)type)->realtype); default: return 0; } } /** * @brief Test whether a type is string-like - no integers, decimal64 or binary. * * @param[in] type Type to test. * @return Boolean value whether @p type's basetype is string type or not. */ static ly_bool warn_is_string_type(struct lysc_type *type) { struct lysc_type_union *uni; ly_bool ret; LY_ARRAY_COUNT_TYPE u; switch (type->basetype) { case LY_TYPE_BITS: case LY_TYPE_ENUM: case LY_TYPE_IDENT: case LY_TYPE_INST: case LY_TYPE_STRING: return 1; case LY_TYPE_UNION: uni = (struct lysc_type_union *)type; LY_ARRAY_FOR(uni->types, u) { ret = warn_is_string_type(uni->types[u]); if (ret) { /* found a suitable type */ return ret; } } /* did not find any suitable type */ return 0; case LY_TYPE_LEAFREF: return warn_is_string_type(((struct lysc_type_leafref *)type)->realtype); default: return 0; } } /** * @brief Test whether a type is one specific type. * * @param[in] type Type to test. * @param[in] base Expected type. * @return Boolean value whether the given @p type is of the specific basetype @p base. */ static ly_bool warn_is_specific_type(struct lysc_type *type, LY_DATA_TYPE base) { struct lysc_type_union *uni; ly_bool ret; LY_ARRAY_COUNT_TYPE u; if (type->basetype == base) { return 1; } else if (type->basetype == LY_TYPE_UNION) { uni = (struct lysc_type_union *)type; LY_ARRAY_FOR(uni->types, u) { ret = warn_is_specific_type(uni->types[u], base); if (ret) { /* found a suitable type */ return ret; } } /* did not find any suitable type */ return 0; } else if (type->basetype == LY_TYPE_LEAFREF) { return warn_is_specific_type(((struct lysc_type_leafref *)type)->realtype, base); } return 0; } /** * @brief Get next type of a (union) type. * * @param[in] type Base type. * @param[in] prev_type Previously returned type. * @return Next type or NULL. */ static struct lysc_type * warn_is_equal_type_next_type(struct lysc_type *type, struct lysc_type *prev_type) { struct lysc_type_union *uni; ly_bool found = 0; LY_ARRAY_COUNT_TYPE u; if (type->basetype == LY_TYPE_UNION) { uni = (struct lysc_type_union *)type; if (!prev_type) { return uni->types[0]; } LY_ARRAY_FOR(uni->types, u) { if (found) { return uni->types[u]; } if (prev_type == uni->types[u]) { found = 1; } } return NULL; } else { if (prev_type) { assert(type == prev_type); return NULL; } else { return type; } } } /** * @brief Test whether 2 types have a common type. * * @param[in] type1 First type. * @param[in] type2 Second type. * @return 1 if they do, 0 otherwise. */ static int warn_is_equal_type(struct lysc_type *type1, struct lysc_type *type2) { struct lysc_type *t1, *rt1, *t2, *rt2; t1 = NULL; while ((t1 = warn_is_equal_type_next_type(type1, t1))) { if (t1->basetype == LY_TYPE_LEAFREF) { rt1 = ((struct lysc_type_leafref *)t1)->realtype; } else { rt1 = t1; } t2 = NULL; while ((t2 = warn_is_equal_type_next_type(type2, t2))) { if (t2->basetype == LY_TYPE_LEAFREF) { rt2 = ((struct lysc_type_leafref *)t2)->realtype; } else { rt2 = t2; } if (rt2->basetype == rt1->basetype) { /* match found */ return 1; } } } return 0; } /** * @brief Print warning with information about the XPath subexpression that caused previous warning. * * @param[in] ctx Context for logging. * @param[in] tok_pos Index of the subexpression in the whole expression. * @param[in] subexpr Subexpression start. * @param[in] subexpr_len Length of @p subexpr to print. * @param[in] cur_scnode Expression context node. */ static void warn_subexpr_log(const struct ly_ctx *ctx, uint32_t tok_pos, const char *subexpr, int subexpr_len, const struct lysc_node *cur_scnode) { char *path; path = lysc_path(cur_scnode, LYSC_PATH_LOG, NULL, 0); LOGWRN(ctx, "Previous warning generated by XPath subexpression[%" PRIu32 "] \"%.*s\" with context node \"%s\".", tok_pos, subexpr_len, subexpr, path); free(path); } /** * @brief Check both operands of comparison operators. * * @param[in] ctx Context for errors. * @param[in] set1 First operand set. * @param[in] set2 Second operand set. * @param[in] numbers_only Whether accept only numbers or other types are fine too (for '=' and '!='). * @param[in] expr Start of the expression to print with the warning. * @param[in] tok_pos Token position. */ static void warn_operands(struct ly_ctx *ctx, struct lyxp_set *set1, struct lyxp_set *set2, ly_bool numbers_only, const char *expr, uint32_t tok_pos) { struct lysc_node_leaf *node1, *node2; ly_bool leaves = 1, warning = 0; node1 = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set1); node2 = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set2); if (!node1 && !node2) { /* no node-sets involved, nothing to do */ return; } if (node1) { if (!(node1->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(ctx, "Node type %s \"%s\" used as operand.", lys_nodetype2str(node1->nodetype), node1->name); warning = 1; leaves = 0; } else if (numbers_only && !warn_is_numeric_type(node1->type)) { LOGWRN(ctx, "Node \"%s\" is not of a numeric type, but used where it was expected.", node1->name); warning = 1; } } if (node2) { if (!(node2->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(ctx, "Node type %s \"%s\" used as operand.", lys_nodetype2str(node2->nodetype), node2->name); warning = 1; leaves = 0; } else if (numbers_only && !warn_is_numeric_type(node2->type)) { LOGWRN(ctx, "Node \"%s\" is not of a numeric type, but used where it was expected.", node2->name); warning = 1; } } if (node1 && node2 && leaves && !numbers_only) { if ((warn_is_numeric_type(node1->type) && !warn_is_numeric_type(node2->type)) || (!warn_is_numeric_type(node1->type) && warn_is_numeric_type(node2->type)) || (!warn_is_numeric_type(node1->type) && !warn_is_numeric_type(node2->type) && !warn_is_equal_type(node1->type, node2->type))) { LOGWRN(ctx, "Incompatible types of operands \"%s\" and \"%s\" for comparison.", node1->name, node2->name); warning = 1; } } if (warning) { warn_subexpr_log(ctx, tok_pos, expr + tok_pos, 20, set1->cur_scnode); } } /** * @brief Check that a value is valid for a leaf. If not applicable, does nothing. * * @param[in] exp Parsed XPath expression. * @param[in] set Set with the leaf/leaf-list. * @param[in] val_exp Index of the value (literal/number) in @p exp. * @param[in] equal_exp Index of the start of the equality expression in @p exp. * @param[in] last_equal_exp Index of the end of the equality expression in @p exp. */ static void warn_equality_value(const struct lyxp_expr *exp, struct lyxp_set *set, uint32_t val_exp, uint32_t equal_exp, uint32_t last_equal_exp) { struct lysc_node *scnode; struct lysc_type *type; char *value; struct lyd_value storage; LY_ERR rc; struct ly_err_item *err = NULL; if ((scnode = warn_get_scnode_in_ctx(set)) && (scnode->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && ((exp->tokens[val_exp] == LYXP_TOKEN_LITERAL) || (exp->tokens[val_exp] == LYXP_TOKEN_NUMBER))) { /* check that the node can have the specified value */ if (exp->tokens[val_exp] == LYXP_TOKEN_LITERAL) { value = strndup(exp->expr + exp->tok_pos[val_exp] + 1, exp->tok_len[val_exp] - 2); } else { value = strndup(exp->expr + exp->tok_pos[val_exp], exp->tok_len[val_exp]); } if (!value) { LOGMEM(set->ctx); return; } if ((((struct lysc_node_leaf *)scnode)->type->basetype == LY_TYPE_IDENT) && !strchr(value, ':')) { LOGWRN(set->ctx, "Identityref \"%s\" comparison with identity \"%s\" without prefix, consider adding" " a prefix or best using \"derived-from(-or-self)()\" functions.", scnode->name, value); warn_subexpr_log(set->ctx, exp->tok_pos[equal_exp], exp->expr + exp->tok_pos[equal_exp], (exp->tok_pos[last_equal_exp] - exp->tok_pos[equal_exp]) + exp->tok_len[last_equal_exp], set->cur_scnode); } type = ((struct lysc_node_leaf *)scnode)->type; if (type->basetype != LY_TYPE_IDENT) { rc = type->plugin->store(set->ctx, type, value, strlen(value), 0, set->format, set->prefix_data, LYD_HINT_DATA, scnode, &storage, NULL, &err); if (rc == LY_EINCOMPLETE) { rc = LY_SUCCESS; } if (err) { LOGWRN(set->ctx, "Invalid value \"%s\" which does not fit the type (%s).", value, err->msg); ly_err_free(err); } else if (rc != LY_SUCCESS) { LOGWRN(set->ctx, "Invalid value \"%s\" which does not fit the type.", value); } if (rc != LY_SUCCESS) { warn_subexpr_log(set->ctx, exp->tok_pos[equal_exp], exp->expr + exp->tok_pos[equal_exp], (exp->tok_pos[last_equal_exp] - exp->tok_pos[equal_exp]) + exp->tok_len[last_equal_exp], set->cur_scnode); } else { type->plugin->free(set->ctx, &storage); } } free(value); } } /* * XPath functions */ /** * @brief Execute the YANG 1.1 bit-is-set(node-set, string) function. Returns LYXP_SET_BOOLEAN * depending on whether the first node bit value from the second argument is set. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_bit_is_set(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lyd_node_term *leaf; struct lysc_node_leaf *sleaf; struct lyd_value_bits *bits; LY_ERR rc = LY_SUCCESS; LY_ARRAY_COUNT_TYPE u; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_BITS)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"bits\".", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "bit-is-set(node-set, string)"); return LY_EVALID; } rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); set_fill_boolean(set, 0); if (args[0]->used) { leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node; if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (leaf->value.realtype->basetype == LY_TYPE_BITS)) { LYD_VALUE_GET(&leaf->value, bits); LY_ARRAY_FOR(bits->items, u) { if (!strcmp(bits->items[u]->name, args[1]->val.str)) { set_fill_boolean(set, 1); break; } } } } return LY_SUCCESS; } /** * @brief Execute the XPath boolean(object) function. Returns LYXP_SET_BOOLEAN * with the argument converted to boolean. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_boolean(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { LY_ERR rc; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } rc = lyxp_set_cast(args[0], LYXP_SET_BOOLEAN); LY_CHECK_RET(rc); set_fill_set(set, args[0]); return LY_SUCCESS; } /** * @brief Execute the XPath ceiling(number) function. Returns LYXP_SET_NUMBER * with the first argument rounded up to the nearest integer. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_ceiling(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_DEC64)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"decimal64\".", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER); LY_CHECK_RET(rc); if ((long long)args[0]->val.num != args[0]->val.num) { set_fill_number(set, ((long long)args[0]->val.num) + 1); } else { set_fill_number(set, args[0]->val.num); } return LY_SUCCESS; } /** * @brief Execute the XPath concat(string, string, string*) function. * Returns LYXP_SET_STRING with the concatenation of all the arguments. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_concat(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { uint32_t i; char *str = NULL; size_t used = 1; LY_ERR rc = LY_SUCCESS; struct lysc_node_leaf *sleaf; if (options & LYXP_SCNODE_ALL) { for (i = 0; i < arg_count; ++i) { if ((args[i]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[i]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #%u of %s is a %s node \"%s\".", i + 1, __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #%u of %s is node \"%s\", not of string-type.", i + 1, __func__, sleaf->name); } } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } for (i = 0; i < arg_count; ++i) { rc = lyxp_set_cast(args[i], LYXP_SET_STRING); if (rc != LY_SUCCESS) { free(str); return rc; } str = ly_realloc(str, (used + strlen(args[i]->val.str)) * sizeof(char)); LY_CHECK_ERR_RET(!str, LOGMEM(set->ctx), LY_EMEM); strcpy(str + used - 1, args[i]->val.str); used += strlen(args[i]->val.str); } /* free, kind of */ lyxp_set_free_content(set); set->type = LYXP_SET_STRING; set->val.str = str; return LY_SUCCESS; } /** * @brief Execute the XPath contains(string, string) function. * Returns LYXP_SET_BOOLEAN whether the second argument can * be found in the first or not. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_contains(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); if (strstr(args[0]->val.str, args[1]->val.str)) { set_fill_boolean(set, 1); } else { set_fill_boolean(set, 0); } return LY_SUCCESS; } /** * @brief Execute the XPath count(node-set) function. Returns LYXP_SET_NUMBER * with the size of the node-set from the argument. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_count(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return rc; } if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "count(node-set)"); return LY_EVALID; } set_fill_number(set, args[0]->used); return LY_SUCCESS; } /** * @brief Execute the XPath current() function. Returns LYXP_SET_NODE_SET * with the context with the intial node. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_current(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { if (arg_count || args) { LOGVAL(set->ctx, LY_VCODE_XP_INARGCOUNT, arg_count, LY_PRI_LENSTR("current()")); return LY_EVALID; } if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); if (set->cur_scnode) { LY_CHECK_RET(set_scnode_insert_node(set, set->cur_scnode, LYXP_NODE_ELEM, LYXP_AXIS_SELF, NULL)); } else { /* root node */ LY_CHECK_RET(set_scnode_insert_node(set, NULL, set->root_type, LYXP_AXIS_SELF, NULL)); } } else { lyxp_set_free_content(set); if (set->cur_node) { /* position is filled later */ set_insert_node(set, set->cur_node, 0, LYXP_NODE_ELEM, 0); } else { /* root node */ set_insert_node(set, NULL, 0, set->root_type, 0); } } return LY_SUCCESS; } /** * @brief Execute the YANG 1.1 deref(node-set) function. Returns LYXP_SET_NODE_SET with either * leafref or instance-identifier target node(s). * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_deref(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lyd_node_term *leaf; struct lysc_node_leaf *sleaf = NULL; struct lysc_type_leafref *lref; const struct lysc_node *target; struct ly_path *p; struct lyd_node *node; char *errmsg = NULL; uint8_t oper; LY_ERR r; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & LYD_NODE_TERM)) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_LEAFREF) && !warn_is_specific_type(sleaf->type, LY_TYPE_INST)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"leafref\" nor \"instance-identifier\".", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); if (sleaf && (sleaf->nodetype & LYD_NODE_TERM) && (sleaf->type->basetype == LY_TYPE_LEAFREF)) { lref = (struct lysc_type_leafref *)sleaf->type; oper = (sleaf->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT; /* it was already evaluated on schema, it must succeed */ r = ly_path_compile_leafref(set->ctx, &sleaf->node, NULL, lref->path, oper, LY_PATH_TARGET_MANY, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &p); if (!r) { /* get the target node */ target = p[LY_ARRAY_COUNT(p) - 1].node; ly_path_free(set->ctx, p); LY_CHECK_RET(set_scnode_insert_node(set, target, LYXP_NODE_ELEM, LYXP_AXIS_SELF, NULL)); } /* else the target was found before but is disabled so it was removed */ } return LY_SUCCESS; } if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "deref(node-set)"); return LY_EVALID; } lyxp_set_free_content(set); if (args[0]->used) { leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node; sleaf = (struct lysc_node_leaf *)leaf->schema; if (sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) { if (sleaf->type->basetype == LY_TYPE_LEAFREF) { /* find leafref target */ if (lyplg_type_resolve_leafref((struct lysc_type_leafref *)sleaf->type, &leaf->node, &leaf->value, set->tree, &node, &errmsg)) { LOGERR(set->ctx, LY_EVALID, "%s", errmsg); free(errmsg); return LY_EVALID; } } else { assert(sleaf->type->basetype == LY_TYPE_INST); if (ly_path_eval(leaf->value.target, set->tree, &node)) { LOGERR(set->ctx, LY_EVALID, "Invalid instance-identifier \"%s\" value - required instance not found.", lyd_get_value(&leaf->node)); return LY_EVALID; } } /* insert it */ set_insert_node(set, node, 0, LYXP_NODE_ELEM, 0); } } return LY_SUCCESS; } static LY_ERR xpath_derived_(struct lyxp_set **args, struct lyxp_set *set, uint32_t options, ly_bool self_match, const char *func) { uint32_t i, id_len; LY_ARRAY_COUNT_TYPE u; struct lyd_node_term *leaf; struct lysc_node_leaf *sleaf; struct lyd_meta *meta; struct lyd_value *val; const struct lys_module *mod; const char *id_name; struct lysc_ident *id; LY_ERR rc = LY_SUCCESS; ly_bool found; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", func); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", func, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_IDENT)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"identityref\".", func, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", func, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", func, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "derived-from(-or-self)(node-set, string)"); return LY_EVALID; } rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); /* parse the identity */ id_name = args[1]->val.str; id_len = strlen(id_name); rc = moveto_resolve_model(&id_name, &id_len, set, set->cur_node ? set->cur_node->schema : NULL, &mod); LY_CHECK_RET(rc); if (!mod) { LOGVAL(set->ctx, LYVE_XPATH, "Identity \"%.*s\" without a prefix.", (int)id_len, id_name); return LY_EVALID; } /* find the identity */ found = 0; LY_ARRAY_FOR(mod->identities, u) { if (!ly_strncmp(mod->identities[u].name, id_name, id_len)) { /* we have match */ found = 1; break; } } if (!found) { LOGVAL(set->ctx, LYVE_XPATH, "Identity \"%.*s\" not found in module \"%s\".", (int)id_len, id_name, mod->name); return LY_EVALID; } id = &mod->identities[u]; set_fill_boolean(set, 0); found = 0; for (i = 0; i < args[0]->used; ++i) { if ((args[0]->val.nodes[i].type != LYXP_NODE_ELEM) && (args[0]->val.nodes[i].type != LYXP_NODE_META)) { continue; } if (args[0]->val.nodes[i].type == LYXP_NODE_ELEM) { leaf = (struct lyd_node_term *)args[0]->val.nodes[i].node; sleaf = (struct lysc_node_leaf *)leaf->schema; val = &leaf->value; if (!(sleaf->nodetype & LYD_NODE_TERM) || (leaf->value.realtype->basetype != LY_TYPE_IDENT)) { /* uninteresting */ continue; } } else { meta = args[0]->val.meta[i].meta; val = &meta->value; if (val->realtype->basetype != LY_TYPE_IDENT) { /* uninteresting */ continue; } } /* check the identity itself */ if (self_match && (id == val->ident)) { set_fill_boolean(set, 1); found = 1; } if (!found && !lyplg_type_identity_isderived(id, val->ident)) { set_fill_boolean(set, 1); found = 1; } if (found) { break; } } return LY_SUCCESS; } /** * @brief Execute the YANG 1.1 derived-from(node-set, string) function. Returns LYXP_SET_BOOLEAN depending * on whether the first argument nodes contain a node of an identity derived from the second * argument identity. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_derived_from(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { return xpath_derived_(args, set, options, 0, __func__); } /** * @brief Execute the YANG 1.1 derived-from-or-self(node-set, string) function. Returns LYXP_SET_BOOLEAN depending * on whether the first argument nodes contain a node of an identity that either is or is derived from * the second argument identity. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_derived_from_or_self(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { return xpath_derived_(args, set, options, 1, __func__); } /** * @brief Execute the YANG 1.1 enum-value(node-set) function. Returns LYXP_SET_NUMBER * with the integer value of the first node's enum value, otherwise NaN. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_enum_value(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lyd_node_term *leaf; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_ENUM)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"enumeration\".", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "enum-value(node-set)"); return LY_EVALID; } set_fill_number(set, NAN); if (args[0]->used) { leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node; sleaf = (struct lysc_node_leaf *)leaf->schema; if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type->basetype == LY_TYPE_ENUM)) { set_fill_number(set, leaf->value.enum_item->value); } } return LY_SUCCESS; } /** * @brief Execute the XPath false() function. Returns LYXP_SET_BOOLEAN * with false value. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_false(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } set_fill_boolean(set, 0); return LY_SUCCESS; } /** * @brief Execute the XPath floor(number) function. Returns LYXP_SET_NUMBER * with the first argument floored (truncated). * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_floor(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t UNUSED(options)) { LY_ERR rc; rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER); LY_CHECK_RET(rc); if (isfinite(args[0]->val.num)) { set_fill_number(set, (long long)args[0]->val.num); } return LY_SUCCESS; } /** * @brief Execute the XPath lang(string) function. Returns LYXP_SET_BOOLEAN * whether the language of the text matches the one from the argument. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_lang(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { const struct lyd_node *node; struct lysc_node_leaf *sleaf; struct lyd_meta *meta = NULL; const char *val; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "lang(string)"); return LY_EVALID; } else if (!set->used) { set_fill_boolean(set, 0); return LY_SUCCESS; } switch (set->val.nodes[0].type) { case LYXP_NODE_ELEM: case LYXP_NODE_TEXT: node = set->val.nodes[0].node; break; case LYXP_NODE_META: node = set->val.meta[0].meta->parent; break; default: /* nothing to do with roots */ set_fill_boolean(set, 0); return LY_SUCCESS; } /* find lang metadata */ for ( ; node; node = lyd_parent(node)) { for (meta = node->meta; meta; meta = meta->next) { /* annotations */ if (meta->name && !strcmp(meta->name, "lang") && !strcmp(meta->annotation->module->name, "xml")) { break; } } if (meta) { break; } } /* compare languages */ if (!meta) { set_fill_boolean(set, 0); } else { uint64_t i; val = lyd_get_meta_value(meta); for (i = 0; args[0]->val.str[i]; ++i) { if (tolower(args[0]->val.str[i]) != tolower(val[i])) { set_fill_boolean(set, 0); break; } } if (!args[0]->val.str[i]) { if (!val[i] || (val[i] == '-')) { set_fill_boolean(set, 1); } else { set_fill_boolean(set, 0); } } } return LY_SUCCESS; } /** * @brief Execute the XPath last() function. Returns LYXP_SET_NUMBER * with the context size. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_last(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "last()"); return LY_EVALID; } else if (!set->used) { set_fill_number(set, 0); return LY_SUCCESS; } set_fill_number(set, set->ctx_size); return LY_SUCCESS; } /** * @brief Execute the XPath local-name(node-set?) function. Returns LYXP_SET_STRING * with the node name without namespace from the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_local_name(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { struct lyxp_set_node *item; /* suppress unused variable warning */ (void)options; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } if (arg_count) { if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "local-name(node-set?)"); return LY_EVALID; } else if (!args[0]->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(args[0])); item = &args[0]->val.nodes[0]; } else { if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "local-name(node-set?)"); return LY_EVALID; } else if (!set->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(set)); item = &set->val.nodes[0]; } switch (item->type) { case LYXP_NODE_NONE: LOGINT_RET(set->ctx); case LYXP_NODE_ROOT: case LYXP_NODE_ROOT_CONFIG: case LYXP_NODE_TEXT: set_fill_string(set, "", 0); break; case LYXP_NODE_ELEM: set_fill_string(set, item->node->schema->name, strlen(item->node->schema->name)); break; case LYXP_NODE_META: set_fill_string(set, ((struct lyd_meta *)item->node)->name, strlen(((struct lyd_meta *)item->node)->name)); break; } return LY_SUCCESS; } /** * @brief Execute the XPath name(node-set?) function. Returns LYXP_SET_STRING * with the node name fully qualified (with namespace) from the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_name(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { struct lyxp_set_node *item; struct lys_module *mod = NULL; char *str; const char *name = NULL; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } if (arg_count) { if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "name(node-set?)"); return LY_EVALID; } else if (!args[0]->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(args[0])); item = &args[0]->val.nodes[0]; } else { if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "name(node-set?)"); return LY_EVALID; } else if (!set->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(set)); item = &set->val.nodes[0]; } switch (item->type) { case LYXP_NODE_NONE: LOGINT_RET(set->ctx); case LYXP_NODE_ROOT: case LYXP_NODE_ROOT_CONFIG: case LYXP_NODE_TEXT: /* keep NULL */ break; case LYXP_NODE_ELEM: mod = item->node->schema->module; name = item->node->schema->name; break; case LYXP_NODE_META: mod = ((struct lyd_meta *)item->node)->annotation->module; name = ((struct lyd_meta *)item->node)->name; break; } if (mod && name) { int rc = asprintf(&str, "%s:%s", ly_get_prefix(mod, set->format, set->prefix_data), name); LY_CHECK_ERR_RET(rc == -1, LOGMEM(set->ctx), LY_EMEM); set_fill_string(set, str, strlen(str)); free(str); } else { set_fill_string(set, "", 0); } return LY_SUCCESS; } /** * @brief Execute the XPath namespace-uri(node-set?) function. Returns LYXP_SET_STRING * with the namespace of the node from the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR (LY_EINVAL for wrong arguments on schema) */ static LY_ERR xpath_namespace_uri(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { struct lyxp_set_node *item; struct lys_module *mod; /* suppress unused variable warning */ (void)options; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return LY_SUCCESS; } if (arg_count) { if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "namespace-uri(node-set?)"); return LY_EVALID; } else if (!args[0]->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(args[0])); item = &args[0]->val.nodes[0]; } else { if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "namespace-uri(node-set?)"); return LY_EVALID; } else if (!set->used) { set_fill_string(set, "", 0); return LY_SUCCESS; } /* we need the set sorted, it affects the result */ assert(!set_sort(set)); item = &set->val.nodes[0]; } switch (item->type) { case LYXP_NODE_NONE: LOGINT_RET(set->ctx); case LYXP_NODE_ROOT: case LYXP_NODE_ROOT_CONFIG: case LYXP_NODE_TEXT: set_fill_string(set, "", 0); break; case LYXP_NODE_ELEM: case LYXP_NODE_META: if (item->type == LYXP_NODE_ELEM) { mod = item->node->schema->module; } else { /* LYXP_NODE_META */ /* annotations */ mod = ((struct lyd_meta *)item->node)->annotation->module; } set_fill_string(set, mod->ns, strlen(mod->ns)); break; } return LY_SUCCESS; } /** * @brief Execute the XPath normalize-space(string?) function. Returns LYXP_SET_STRING * with normalized value (no leading, trailing, double white spaces) of the node * from the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_normalize_space(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { uint32_t i, new_used; char *new; ly_bool have_spaces = 0, space_before = 0; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (arg_count && (args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } if (arg_count) { set_fill_set(set, args[0]); } rc = lyxp_set_cast(set, LYXP_SET_STRING); LY_CHECK_RET(rc); /* is there any normalization necessary? */ for (i = 0; set->val.str[i]; ++i) { if (is_xmlws(set->val.str[i])) { if ((i == 0) || space_before || (!set->val.str[i + 1])) { have_spaces = 1; break; } space_before = 1; } else { space_before = 0; } } /* yep, there is */ if (have_spaces) { /* it's enough, at least one character will go, makes space for ending '\0' */ new = malloc(strlen(set->val.str) * sizeof(char)); LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM); new_used = 0; space_before = 0; for (i = 0; set->val.str[i]; ++i) { if (is_xmlws(set->val.str[i])) { if ((i == 0) || space_before) { space_before = 1; continue; } else { space_before = 1; } } else { space_before = 0; } new[new_used] = (space_before ? ' ' : set->val.str[i]); ++new_used; } /* at worst there is one trailing space now */ if (new_used && is_xmlws(new[new_used - 1])) { --new_used; } new = ly_realloc(new, (new_used + 1) * sizeof(char)); LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM); new[new_used] = '\0'; free(set->val.str); set->val.str = new; } return LY_SUCCESS; } /** * @brief Execute the XPath not(boolean) function. Returns LYXP_SET_BOOLEAN * with the argument converted to boolean and logically inverted. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_not(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } lyxp_set_cast(args[0], LYXP_SET_BOOLEAN); if (args[0]->val.bln) { set_fill_boolean(set, 0); } else { set_fill_boolean(set, 1); } return LY_SUCCESS; } /** * @brief Execute the XPath number(object?) function. Returns LYXP_SET_NUMBER * with the number representation of either the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_number(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { LY_ERR rc; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return LY_SUCCESS; } if (arg_count) { rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER); LY_CHECK_RET(rc); set_fill_set(set, args[0]); } else { rc = lyxp_set_cast(set, LYXP_SET_NUMBER); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Execute the XPath position() function. Returns LYXP_SET_NUMBER * with the context position. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_position(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "position()"); return LY_EVALID; } else if (!set->used) { set_fill_number(set, 0); return LY_SUCCESS; } set_fill_number(set, set->ctx_pos); /* UNUSED in 'Release' build type */ (void)options; return LY_SUCCESS; } /** * @brief Execute the YANG 1.1 re-match(string, string) function. Returns LYXP_SET_BOOLEAN * depending on whether the second argument regex matches the first argument string. For details refer to * YANG 1.1 RFC section 10.2.1. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_re_match(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lysc_pattern **patterns = NULL, **pattern; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; struct ly_err_item *err; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); LY_ARRAY_NEW_RET(set->ctx, patterns, pattern, LY_EMEM); *pattern = calloc(1, sizeof **pattern); LOG_LOCSET(NULL, set->cur_node, NULL, NULL); rc = lys_compile_type_pattern_check(set->ctx, args[1]->val.str, &(*pattern)->code); if (set->cur_node) { LOG_LOCBACK(0, 1, 0, 0); } if (rc != LY_SUCCESS) { LY_ARRAY_FREE(patterns); return rc; } rc = lyplg_type_validate_patterns(patterns, args[0]->val.str, strlen(args[0]->val.str), &err); pcre2_code_free((*pattern)->code); free(*pattern); LY_ARRAY_FREE(patterns); if (rc && (rc != LY_EVALID)) { ly_err_print(set->ctx, err); ly_err_free(err); return rc; } if (rc == LY_EVALID) { ly_err_free(err); set_fill_boolean(set, 0); } else { set_fill_boolean(set, 1); } return LY_SUCCESS; } /** * @brief Execute the XPath round(number) function. Returns LYXP_SET_NUMBER * with the rounded first argument. For details refer to * http://www.w3.org/TR/1999/REC-xpath-19991116/#function-round. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_round(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (args[0]->type != LYXP_SET_SCNODE_SET) { LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__); } else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_specific_type(sleaf->type, LY_TYPE_DEC64)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"decimal64\".", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER); LY_CHECK_RET(rc); /* cover only the cases where floor can't be used */ if ((args[0]->val.num == -0.0f) || ((args[0]->val.num < 0) && (args[0]->val.num >= -0.5))) { set_fill_number(set, -0.0f); } else { args[0]->val.num += 0.5; rc = xpath_floor(args, 1, args[0], options); LY_CHECK_RET(rc); set_fill_number(set, args[0]->val.num); } return LY_SUCCESS; } /** * @brief Execute the XPath starts-with(string, string) function. * Returns LYXP_SET_BOOLEAN whether the second argument is * the prefix of the first or not. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_starts_with(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); if (strncmp(args[0]->val.str, args[1]->val.str, strlen(args[1]->val.str))) { set_fill_boolean(set, 0); } else { set_fill_boolean(set, 1); } return LY_SUCCESS; } /** * @brief Execute the XPath string(object?) function. Returns LYXP_SET_STRING * with the string representation of either the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_string(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { LY_ERR rc; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return LY_SUCCESS; } if (arg_count) { rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); set_fill_set(set, args[0]); } else { rc = lyxp_set_cast(set, LYXP_SET_STRING); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Execute the XPath string-length(string?) function. Returns LYXP_SET_NUMBER * with the length of the string in either the argument or the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_string_length(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (arg_count && (args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if (!arg_count && (set->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #0 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #0 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } if (arg_count) { rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); set_fill_number(set, strlen(args[0]->val.str)); } else { rc = lyxp_set_cast(set, LYXP_SET_STRING); LY_CHECK_RET(rc); set_fill_number(set, strlen(set->val.str)); } return LY_SUCCESS; } /** * @brief Execute the XPath substring(string, number, number?) function. * Returns LYXP_SET_STRING substring of the first argument starting * on the second argument index ending on the third argument index, * indexed from 1. For exact definition refer to * http://www.w3.org/TR/1999/REC-xpath-19991116/#function-substring. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_substring(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options) { int64_t start; int32_t len; uint32_t str_start, str_len, pos; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_numeric_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name); } } if ((arg_count == 3) && (args[2]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[2]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #3 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_numeric_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #3 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); /* start */ if (xpath_round(&args[1], 1, args[1], options)) { return -1; } if (isfinite(args[1]->val.num)) { start = args[1]->val.num - 1; } else if (isinf(args[1]->val.num) && signbit(args[1]->val.num)) { start = INT32_MIN; } else { start = INT32_MAX; } /* len */ if (arg_count == 3) { rc = xpath_round(&args[2], 1, args[2], options); LY_CHECK_RET(rc); if (isnan(args[2]->val.num) || signbit(args[2]->val.num)) { len = 0; } else if (isfinite(args[2]->val.num)) { len = args[2]->val.num; } else { len = INT32_MAX; } } else { len = INT32_MAX; } /* find matching character positions */ str_start = 0; str_len = 0; for (pos = 0; args[0]->val.str[pos]; ++pos) { if (pos < start) { ++str_start; } else if (pos < start + len) { ++str_len; } else { break; } } set_fill_string(set, args[0]->val.str + str_start, str_len); return LY_SUCCESS; } /** * @brief Execute the XPath substring-after(string, string) function. * Returns LYXP_SET_STRING with the string succeeding the occurance * of the second argument in the first or an empty string. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_substring_after(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { char *ptr; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); ptr = strstr(args[0]->val.str, args[1]->val.str); if (ptr) { set_fill_string(set, ptr + strlen(args[1]->val.str), strlen(ptr + strlen(args[1]->val.str))); } else { set_fill_string(set, "", 0); } return LY_SUCCESS; } /** * @brief Execute the XPath substring-before(string, string) function. * Returns LYXP_SET_STRING with the string preceding the occurance * of the second argument in the first or an empty string. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_substring_before(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { char *ptr; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); ptr = strstr(args[0]->val.str, args[1]->val.str); if (ptr) { set_fill_string(set, args[0]->val.str, ptr - args[0]->val.str); } else { set_fill_string(set, "", 0); } return LY_SUCCESS; } /** * @brief Execute the XPath sum(node-set) function. Returns LYXP_SET_NUMBER * with the sum of all the nodes in the context. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_sum(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { long double num; char *str; uint32_t i; struct lyxp_set set_item; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if (args[0]->type == LYXP_SET_SCNODE_SET) { for (i = 0; i < args[0]->used; ++i) { if (args[0]->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { sleaf = (struct lysc_node_leaf *)args[0]->val.scnodes[i].scnode; if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_numeric_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name); } } } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } set_fill_number(set, 0); if (args[0]->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "sum(node-set)"); return LY_EVALID; } else if (!args[0]->used) { return LY_SUCCESS; } set_init(&set_item, set); set_item.type = LYXP_SET_NODE_SET; set_item.val.nodes = calloc(1, sizeof *set_item.val.nodes); LY_CHECK_ERR_RET(!set_item.val.nodes, LOGMEM(set->ctx), LY_EMEM); set_item.used = 1; set_item.size = 1; for (i = 0; i < args[0]->used; ++i) { set_item.val.nodes[0] = args[0]->val.nodes[i]; rc = cast_node_set_to_string(&set_item, &str); LY_CHECK_RET(rc); num = cast_string_to_number(str); free(str); set->val.num += num; } free(set_item.val.nodes); return LY_SUCCESS; } /** * @brief Execute the XPath translate(string, string, string) function. * Returns LYXP_SET_STRING with the first argument with the characters * from the second argument replaced by those on the corresponding * positions in the third argument. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_translate(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { uint32_t i, j, new_used; char *new; ly_bool have_removed; struct lysc_node_leaf *sleaf; LY_ERR rc = LY_SUCCESS; if (options & LYXP_SCNODE_ALL) { if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } if ((args[2]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[2]))) { if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGWRN(set->ctx, "Argument #3 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name); } else if (!warn_is_string_type(sleaf->type)) { LOGWRN(set->ctx, "Argument #3 of %s is node \"%s\", not of string-type.", __func__, sleaf->name); } } set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return rc; } rc = lyxp_set_cast(args[0], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[1], LYXP_SET_STRING); LY_CHECK_RET(rc); rc = lyxp_set_cast(args[2], LYXP_SET_STRING); LY_CHECK_RET(rc); new = malloc((strlen(args[0]->val.str) + 1) * sizeof(char)); LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM); new_used = 0; have_removed = 0; for (i = 0; args[0]->val.str[i]; ++i) { ly_bool found = 0; for (j = 0; args[1]->val.str[j]; ++j) { if (args[0]->val.str[i] == args[1]->val.str[j]) { /* removing this char */ if (j >= strlen(args[2]->val.str)) { have_removed = 1; found = 1; break; } /* replacing this char */ new[new_used] = args[2]->val.str[j]; ++new_used; found = 1; break; } } /* copying this char */ if (!found) { new[new_used] = args[0]->val.str[i]; ++new_used; } } if (have_removed) { new = ly_realloc(new, (new_used + 1) * sizeof(char)); LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM); } new[new_used] = '\0'; lyxp_set_free_content(set); set->type = LYXP_SET_STRING; set->val.str = new; return LY_SUCCESS; } /** * @brief Execute the XPath true() function. Returns LYXP_SET_BOOLEAN * with true value. * * @param[in] args Array of arguments. * @param[in] arg_count Count of elements in @p args. * @param[in,out] set Context and result set at the same time. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_true(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options) { if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); return LY_SUCCESS; } set_fill_boolean(set, 1); return LY_SUCCESS; } /** * @brief Execute the XPath node() processing instruction (node type). Returns LYXP_SET_NODE_SET * with only nodes from the context. * * @param[in,out] set Context and result set at the same time. * @param[in] axis Axis to search on. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_pi_node(struct lyxp_set *set, enum lyxp_axis axis, uint32_t options) { if (options & LYXP_SCNODE_ALL) { return moveto_scnode(set, NULL, NULL, axis, options); } if (set->type != LYXP_SET_NODE_SET) { lyxp_set_free_content(set); return LY_SUCCESS; } /* just like moving to a node with no restrictions */ return moveto_node(set, NULL, NULL, axis, options); } /** * @brief Execute the XPath text() processing instruction (node type). Returns LYXP_SET_NODE_SET * with the text content of the nodes in the context. * * @param[in,out] set Context and result set at the same time. * @param[in] axis Axis to search on. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR xpath_pi_text(struct lyxp_set *set, enum lyxp_axis axis, uint32_t options) { uint32_t i; if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "text()"); return LY_EVALID; } if (axis != LYXP_AXIS_CHILD) { /* even following and preceding axescan return text nodes, but whatever */ lyxp_set_free_content(set); return LY_SUCCESS; } for (i = 0; i < set->used; ++i) { switch (set->val.nodes[i].type) { case LYXP_NODE_NONE: LOGINT_RET(set->ctx); case LYXP_NODE_ELEM: if (set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) { set->val.nodes[i].type = LYXP_NODE_TEXT; break; } /* fall through */ case LYXP_NODE_ROOT: case LYXP_NODE_ROOT_CONFIG: case LYXP_NODE_TEXT: case LYXP_NODE_META: set_remove_node_none(set, i); break; } } set_remove_nodes_none(set); return LY_SUCCESS; } /** * @brief Skip prefix and return corresponding model if there is a prefix. Logs directly. * * XPath @p set is expected to be a (sc)node set! * * @param[in,out] qname Qualified node name. If includes prefix, it is skipped. * @param[in,out] qname_len Length of @p qname, is updated accordingly. * @param[in] set Set with general XPath context. * @param[in] ctx_scnode Context node to inherit module for unprefixed node for ::LY_PREF_JSON. * @param[out] moveto_mod Expected module of a matching node. * @return LY_ERR */ static LY_ERR moveto_resolve_model(const char **qname, uint32_t *qname_len, const struct lyxp_set *set, const struct lysc_node *ctx_scnode, const struct lys_module **moveto_mod) { const struct lys_module *mod = NULL; const char *ptr; size_t pref_len; assert((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_SCNODE_SET)); if ((ptr = ly_strnchr(*qname, ':', *qname_len))) { /* specific module */ pref_len = ptr - *qname; mod = ly_resolve_prefix(set->ctx, *qname, pref_len, set->format, set->prefix_data); /* check for errors and non-implemented modules, as they are not valid */ if (!mod || !mod->implemented) { LOGVAL(set->ctx, LY_VCODE_XP_INMOD, pref_len, *qname); return LY_EVALID; } *qname += pref_len + 1; *qname_len -= pref_len + 1; } else if (((*qname)[0] == '*') && (*qname_len == 1)) { /* all modules - special case */ mod = NULL; } else { switch (set->format) { case LY_VALUE_SCHEMA: case LY_VALUE_SCHEMA_RESOLVED: /* current module */ mod = set->cur_mod; break; case LY_VALUE_CANON: case LY_VALUE_JSON: case LY_VALUE_LYB: case LY_VALUE_STR_NS: /* inherit parent (context node) module */ if (ctx_scnode) { mod = ctx_scnode->module; } else { mod = NULL; } break; case LY_VALUE_XML: /* all nodes need to be prefixed */ LOGVAL(set->ctx, LYVE_DATA, "Non-prefixed node \"%.*s\" in XML xpath found.", *qname_len, *qname); return LY_EVALID; } } *moveto_mod = mod; return LY_SUCCESS; } /** * @brief Move context @p set to the root. Handles absolute path. * Result is LYXP_SET_NODE_SET. * * @param[in,out] set Set to use. * @param[in] options Xpath options. * @return LY_ERR value. */ static LY_ERR moveto_root(struct lyxp_set *set, uint32_t options) { assert(!(options & LYXP_SKIP_EXPR)); if (options & LYXP_SCNODE_ALL) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); LY_CHECK_RET(set_scnode_insert_node(set, NULL, set->root_type, LYXP_AXIS_SELF, NULL)); } else { set->type = LYXP_SET_NODE_SET; set->used = 0; set_insert_node(set, NULL, 0, set->root_type, 0); set->non_child_axis = 0; } return LY_SUCCESS; } /** * @brief Check @p node as a part of NameTest processing. * * @param[in] node Node to check. * @param[in] node_type Node type of @p node. * @param[in] set Set to read general context from. * @param[in] node_name Node name in the dictionary to move to, NULL for any node. * @param[in] moveto_mod Expected module of the node, NULL for no prefix. * @param[in] options XPath options. * @return LY_ERR (LY_ENOT if node does not match, LY_EINCOMPLETE on unresolved when, * LY_EINVAL if neither node nor any children match) */ static LY_ERR moveto_node_check(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyxp_set *set, const char *node_name, const struct lys_module *moveto_mod, uint32_t options) { if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) { assert(node_type == set->root_type); if (node_name || moveto_mod) { /* root will not match a specific node */ return LY_ENOT; } return LY_SUCCESS; } else if (node_type != LYXP_NODE_ELEM) { /* other types will not match */ return LY_ENOT; } if (!node->schema) { /* opaque node never matches */ return LY_ENOT; } /* module check */ if (moveto_mod) { if ((set->ctx == LYD_CTX(node)) && (node->schema->module != moveto_mod)) { return LY_ENOT; } else if ((set->ctx != LYD_CTX(node)) && strcmp(node->schema->module->name, moveto_mod->name)) { return LY_ENOT; } } /* context check */ if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (node->schema->flags & LYS_CONFIG_R)) { return LY_EINVAL; } else if (set->context_op && (node->schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && (node->schema != set->context_op)) { return LY_EINVAL; } /* name check */ if (node_name) { if ((set->ctx == LYD_CTX(node)) && (node->schema->name != node_name)) { return LY_ENOT; } else if ((set->ctx != LYD_CTX(node)) && strcmp(node->schema->name, node_name)) { return LY_ENOT; } } /* when check, accept the context node because it should only be the path ".", we have checked the when is valid before */ if (!(options & LYXP_IGNORE_WHEN) && lysc_has_when(node->schema) && !(node->flags & LYD_WHEN_TRUE) && (node != set->cur_node)) { return LY_EINCOMPLETE; } /* match */ return LY_SUCCESS; } /** * @brief Get the next node in a forward DFS. * * @param[in] iter Last returned node. * @param[in] stop Node to stop the search on and not return. * @return Next node, NULL if there are no more. */ static const struct lyd_node * moveto_axis_node_next_dfs_forward(const struct lyd_node *iter, const struct lyd_node *stop) { const struct lyd_node *next = NULL; /* 1) child */ next = lyd_child(iter); if (!next) { if (iter == stop) { /* reached stop, no more descendants */ return NULL; } /* 2) child next sibling */ next = iter->next; } while (!next) { iter = lyd_parent(iter); if ((!stop && !iter) || (stop && (lyd_parent(iter) == lyd_parent(stop)))) { return NULL; } next = iter->next; } return next; } /** * @brief Get the next node in a backward DFS. * * @param[in] iter Last returned node. * @param[in] stop Node to stop the search on and not return. * @return Next node, NULL if there are no more. */ static const struct lyd_node * moveto_axis_node_next_dfs_backward(const struct lyd_node *iter, const struct lyd_node *stop) { const struct lyd_node *next = NULL; /* 1) previous sibling innermost last child */ next = iter->prev->next ? iter->prev : NULL; while (next && lyd_child(next)) { next = lyd_child(next); next = next->prev; } if (!next) { /* 2) parent */ iter = lyd_parent(iter); if ((!stop && !iter) || (stop && (lyd_parent(iter) == lyd_parent(stop)))) { return NULL; } next = iter; } return next; } /** * @brief Get the first node on an axis for a context node. * * @param[in,out] iter NULL, updated to the next node. * @param[in,out] iter_type Node type 0 of @p iter, updated to the node type of the next node. * @param[in] node Context node. * @param[in] node_type Type of @p node. * @param[in] axis Axis to use. * @param[in] set XPath set with the general context. * @return LY_SUCCESS on success. * @return LY_ENOTFOUND if no next node found. */ static LY_ERR moveto_axis_node_next_first(const struct lyd_node **iter, enum lyxp_node_type *iter_type, const struct lyd_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set) { const struct lyd_node *next = NULL; enum lyxp_node_type next_type = 0; assert(!*iter); assert(!*iter_type); switch (axis) { case LYXP_AXIS_ANCESTOR_OR_SELF: case LYXP_AXIS_DESCENDANT_OR_SELF: case LYXP_AXIS_SELF: /* return the context node */ next = node; next_type = node_type; break; case LYXP_AXIS_ANCESTOR: case LYXP_AXIS_PARENT: if (node_type == LYXP_NODE_ELEM) { next = lyd_parent(node); next_type = next ? LYXP_NODE_ELEM : set->root_type; } else if (node_type == LYXP_NODE_TEXT) { next = node; next_type = LYXP_NODE_ELEM; } else if (node_type == LYXP_NODE_META) { next = ((struct lyd_meta *)node)->parent; next_type = LYXP_NODE_ELEM; } /* else root does not have a parent */ break; case LYXP_AXIS_CHILD: if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) { assert(!node); /* search in all the trees */ next = set->tree; next_type = next ? LYXP_NODE_ELEM : 0; } else { /* search in children */ next = lyd_child(node); next_type = next ? LYXP_NODE_ELEM : 0; } break; case LYXP_AXIS_DESCENDANT: if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) { /* top-level nodes */ next = set->tree; next_type = LYXP_NODE_ELEM; } else if (node_type == LYXP_NODE_ELEM) { /* start from the context node */ next = moveto_axis_node_next_dfs_forward(node, node); next_type = next ? LYXP_NODE_ELEM : 0; } /* else no children */ break; case LYXP_AXIS_FOLLOWING: case LYXP_AXIS_FOLLOWING_SIBLING: if (node_type == LYXP_NODE_ELEM) { /* first next sibling */ next = node->next; next_type = next ? LYXP_NODE_ELEM : 0; } /* else no sibling */ break; case LYXP_AXIS_PRECEDING: if ((node_type == LYXP_NODE_ELEM) && node->prev->next) { /* skip ancestors */ next = moveto_axis_node_next_dfs_backward(node, NULL); assert(next); next_type = LYXP_NODE_ELEM; } /* else no sibling */ break; case LYXP_AXIS_PRECEDING_SIBLING: if (node_type == LYXP_NODE_ELEM) { /* first previous sibling */ next = node->prev->next ? node->prev : NULL; next_type = next ? LYXP_NODE_ELEM : 0; } /* else no sibling */ break; case LYXP_AXIS_ATTRIBUTE: /* handled specially */ assert(0); LOGINT(set->ctx); break; } *iter = next; *iter_type = next_type; return next_type ? LY_SUCCESS : LY_ENOTFOUND; } /** * @brief Iterate over all nodes on an axis for a context node. * * @param[in,out] iter Last returned node, start with NULL, updated to the next node. * @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node. * @param[in] node Context node. * @param[in] node_type Type of @p node. * @param[in] axis Axis to use. * @param[in] set XPath set with the general context. * @return LY_SUCCESS on success. * @return LY_ENOTFOUND if no next node found. */ static LY_ERR moveto_axis_node_next(const struct lyd_node **iter, enum lyxp_node_type *iter_type, const struct lyd_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set) { const struct lyd_node *next = NULL; enum lyxp_node_type next_type = 0; if (!*iter_type) { /* first returned node */ return moveto_axis_node_next_first(iter, iter_type, node, node_type, axis, set); } switch (axis) { case LYXP_AXIS_ANCESTOR_OR_SELF: if ((*iter == node) && (*iter_type == node_type)) { /* fake first ancestor, we returned self before */ *iter = NULL; *iter_type = 0; return moveto_axis_node_next_first(iter, iter_type, node, node_type, LYXP_AXIS_ANCESTOR, set); } /* else continue ancestor */ /* fallthrough */ case LYXP_AXIS_ANCESTOR: if (*iter_type == LYXP_NODE_ELEM) { /* iter parent */ next = lyd_parent(*iter); next_type = next ? LYXP_NODE_ELEM : set->root_type; } /* else root, no ancestors */ break; case LYXP_AXIS_CHILD: assert(*iter_type == LYXP_NODE_ELEM); /* next sibling (child) */ next = (*iter)->next; next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_DESCENDANT_OR_SELF: if ((*iter == node) && (*iter_type == node_type)) { /* fake first descendant, we returned self before */ *iter = NULL; *iter_type = 0; return moveto_axis_node_next_first(iter, iter_type, node, node_type, LYXP_AXIS_DESCENDANT, set); } /* else continue descendant */ /* fallthrough */ case LYXP_AXIS_DESCENDANT: assert(*iter_type == LYXP_NODE_ELEM); next = moveto_axis_node_next_dfs_forward(*iter, node); next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_FOLLOWING: assert(*iter_type == LYXP_NODE_ELEM); next = moveto_axis_node_next_dfs_forward(*iter, NULL); next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_FOLLOWING_SIBLING: assert(*iter_type == LYXP_NODE_ELEM); /* next sibling */ next = (*iter)->next; next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_PARENT: case LYXP_AXIS_SELF: /* parent/self was returned before */ break; case LYXP_AXIS_PRECEDING: assert(*iter_type == LYXP_NODE_ELEM); next = moveto_axis_node_next_dfs_backward(*iter, NULL); next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_PRECEDING_SIBLING: assert(*iter_type == LYXP_NODE_ELEM); /* previous sibling */ next = (*iter)->prev->next ? (*iter)->prev : NULL; next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_ATTRIBUTE: /* handled specially */ assert(0); LOGINT(set->ctx); break; } *iter = next; *iter_type = next_type; return next_type ? LY_SUCCESS : LY_ENOTFOUND; } /** * @brief Move context @p set to a node. Result is LYXP_SET_NODE_SET. Context position aware. * * @param[in,out] set Set to use. * @param[in] moveto_mod Matching node module, NULL for no prefix. * @param[in] ncname Matching node name in the dictionary, NULL for any. * @param[in] axis Axis to search on. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR moveto_node(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis, uint32_t options) { LY_ERR r, rc = LY_SUCCESS; const struct lyd_node *iter; enum lyxp_node_type iter_type; struct lyxp_set result; uint32_t i; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } /* init result set */ set_init(&result, set); for (i = 0; i < set->used; ++i) { /* iterate over all the nodes on the axis of the node */ iter = NULL; iter_type = 0; while (!moveto_axis_node_next(&iter, &iter_type, set->val.nodes[i].node, set->val.nodes[i].type, axis, set)) { r = moveto_node_check(iter, iter_type, set, ncname, moveto_mod, options); if (r == LY_EINCOMPLETE) { rc = r; goto cleanup; } else if (r) { continue; } /* check for duplicates if they are possible */ switch (axis) { case LYXP_AXIS_ANCESTOR: case LYXP_AXIS_ANCESTOR_OR_SELF: case LYXP_AXIS_DESCENDANT: case LYXP_AXIS_DESCENDANT_OR_SELF: case LYXP_AXIS_FOLLOWING: case LYXP_AXIS_FOLLOWING_SIBLING: case LYXP_AXIS_PARENT: case LYXP_AXIS_PRECEDING: case LYXP_AXIS_PRECEDING_SIBLING: result.non_child_axis = 1; if (set_dup_node_check(&result, iter, iter_type, -1)) { continue; } break; case LYXP_AXIS_CHILD: case LYXP_AXIS_SELF: break; case LYXP_AXIS_ATTRIBUTE: /* handled specially */ assert(0); LOGINT(set->ctx); break; } /* matching node */ set_insert_node(&result, iter, 0, iter_type, result.used); } } /* move result to the set */ lyxp_set_free_content(set); *set = result; result.type = LYXP_SET_NUMBER; /* sort the final set if the document order could have been broken */ if (set->non_child_axis) { set_sort(set); } else { assert(!set_sort(set)); } cleanup: lyxp_set_free_content(&result); return rc; } /** * @brief Move context @p set to child nodes using hashes. Result is LYXP_SET_NODE_SET. Context position aware. * * @param[in,out] set Set to use. * @param[in] scnode Matching node schema. * @param[in] predicates If @p scnode is ::LYS_LIST or ::LYS_LEAFLIST, the predicates specifying a single instance. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR moveto_node_hash_child(struct lyxp_set *set, const struct lysc_node *scnode, const struct ly_path_predicate *predicates, uint32_t options) { LY_ERR ret = LY_SUCCESS, r; uint32_t i; const struct lyd_node *siblings; struct lyxp_set result; struct lyd_node *sub, *inst = NULL; assert(scnode && (!(scnode->nodetype & (LYS_LIST | LYS_LEAFLIST)) || predicates)); /* init result set */ set_init(&result, set); if (options & LYXP_SKIP_EXPR) { goto cleanup; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); ret = LY_EVALID; goto cleanup; } /* context check for all the nodes since we have the schema node */ if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (scnode->flags & LYS_CONFIG_R)) { lyxp_set_free_content(set); goto cleanup; } else if (set->context_op && (scnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && (scnode != set->context_op)) { lyxp_set_free_content(set); goto cleanup; } /* create specific data instance if needed */ if (scnode->nodetype == LYS_LIST) { LY_CHECK_GOTO(ret = lyd_create_list(scnode, predicates, &inst), cleanup); } else if (scnode->nodetype == LYS_LEAFLIST) { LY_CHECK_GOTO(ret = lyd_create_term2(scnode, &predicates[0].value, &inst), cleanup); } for (i = 0; i < set->used; ++i) { siblings = NULL; if ((set->val.nodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.nodes[i].type == LYXP_NODE_ROOT)) { assert(!set->val.nodes[i].node); /* search in all the trees */ siblings = set->tree; } else if (set->val.nodes[i].type == LYXP_NODE_ELEM) { /* search in children */ siblings = lyd_child(set->val.nodes[i].node); } /* find the node using hashes */ if (inst) { r = lyd_find_sibling_first(siblings, inst, &sub); } else { r = lyd_find_sibling_val(siblings, scnode, NULL, 0, &sub); } LY_CHECK_ERR_GOTO(r && (r != LY_ENOTFOUND), ret = r, cleanup); /* when check */ if (!(options & LYXP_IGNORE_WHEN) && sub && lysc_has_when(sub->schema) && !(sub->flags & LYD_WHEN_TRUE)) { ret = LY_EINCOMPLETE; goto cleanup; } if (sub) { /* pos filled later */ set_insert_node(&result, sub, 0, LYXP_NODE_ELEM, result.used); } } /* move result to the set */ lyxp_set_free_content(set); *set = result; result.type = LYXP_SET_NUMBER; assert(!set_sort(set)); cleanup: lyxp_set_free_content(&result); lyd_free_tree(inst); return ret; } /** * @brief Check @p node as a part of schema NameTest processing. * * @param[in] node Schema node to check. * @param[in] ctx_scnode Context node. * @param[in] set Set to read general context from. * @param[in] node_name Node name in the dictionary to move to, NULL for any nodes. * @param[in] moveto_mod Expected module of the node, NULL for no prefix. * @return LY_ERR (LY_ENOT if node does not match, LY_EINVAL if neither node nor any children match) */ static LY_ERR moveto_scnode_check(const struct lysc_node *node, const struct lysc_node *ctx_scnode, const struct lyxp_set *set, const char *node_name, const struct lys_module *moveto_mod) { if (!moveto_mod && node_name) { switch (set->format) { case LY_VALUE_SCHEMA: case LY_VALUE_SCHEMA_RESOLVED: /* use current module */ moveto_mod = set->cur_mod; break; case LY_VALUE_JSON: case LY_VALUE_LYB: case LY_VALUE_STR_NS: /* inherit module of the context node, if any */ if (ctx_scnode) { moveto_mod = ctx_scnode->module; } break; case LY_VALUE_CANON: case LY_VALUE_XML: /* not defined */ LOGINT(set->ctx); return LY_EINVAL; } } if (!node) { /* root will not match a specific node */ if (node_name || moveto_mod) { return LY_ENOT; } return LY_SUCCESS; } /* module check */ if (moveto_mod && (node->module != moveto_mod)) { return LY_ENOT; } /* context check */ if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (node->flags & LYS_CONFIG_R)) { return LY_EINVAL; } else if (set->context_op && (node->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && (node != set->context_op)) { return LY_EINVAL; } /* name check */ if (node_name && (node->name != node_name)) { return LY_ENOT; } /* match */ return LY_SUCCESS; } /** * @brief Get the next node in a forward schema node DFS. * * @param[in] iter Last returned node. * @param[in] stop Node to stop the search on and not return. * @param[in] getnext_opts Options for ::lys_getnext(). * @return Next node, NULL if there are no more. */ static const struct lysc_node * moveto_axis_scnode_next_dfs_forward(const struct lysc_node *iter, const struct lysc_node *stop, uint32_t getnext_opts) { const struct lysc_node *next = NULL; next = lysc_node_child(iter); if (!next) { /* no children, try siblings */ if ((iter == stop) || !lysc_data_parent(iter)) { /* we are done, no next element to process */ return NULL; } next = lys_getnext(iter, lysc_data_parent(iter), NULL, getnext_opts); } while (!next && iter) { /* parent is already processed, go to its sibling */ iter = iter->parent; if ((iter == stop) || !lysc_data_parent(iter)) { /* we are done, no next element to process */ return NULL; } next = lys_getnext(iter, lysc_data_parent(iter), NULL, getnext_opts); } return next; } /** * @brief Consider schema node based on its in_ctx enum value. * * @param[in,out] in_ctx In_ctx enum of the schema node, may be updated. * @param[in] axis Axis to use. * @return LY_SUCCESS on success. * @return LY_ENOT if the node should not be returned. */ static LY_ERR moveto_axis_scnode_next_in_ctx(int32_t *in_ctx, enum lyxp_axis axis) { switch (axis) { case LYXP_AXIS_SELF: if ((*in_ctx == LYXP_SET_SCNODE_START) || (*in_ctx == LYXP_SET_SCNODE_ATOM_CTX)) { /* additionally put the start node into context */ *in_ctx = LYXP_SET_SCNODE_ATOM_CTX; return LY_SUCCESS; } break; case LYXP_AXIS_PARENT: case LYXP_AXIS_ANCESTOR_OR_SELF: case LYXP_AXIS_ANCESTOR: case LYXP_AXIS_DESCENDANT_OR_SELF: case LYXP_AXIS_DESCENDANT: case LYXP_AXIS_FOLLOWING: case LYXP_AXIS_FOLLOWING_SIBLING: case LYXP_AXIS_PRECEDING: case LYXP_AXIS_PRECEDING_SIBLING: case LYXP_AXIS_CHILD: if (*in_ctx == LYXP_SET_SCNODE_START) { /* remember that context node was used */ *in_ctx = LYXP_SET_SCNODE_START_USED; return LY_SUCCESS; } else if (*in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { /* traversed */ *in_ctx = LYXP_SET_SCNODE_ATOM_NODE; return LY_SUCCESS; } break; case LYXP_AXIS_ATTRIBUTE: /* unreachable */ assert(0); LOGINT(NULL); break; } return LY_ENOT; } /** * @brief Get previous sibling for a schema node. * * @param[in] scnode Schema node. * @param[in] getnext_opts Options for ::lys_getnext(). * @return Previous sibling, NULL if none. */ static const struct lysc_node * moveto_axis_scnode_preceding_sibling(const struct lysc_node *scnode, uint32_t getnext_opts) { const struct lysc_node *next = NULL, *prev = NULL; while ((next = lys_getnext(next, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts))) { if (next == scnode) { break; } prev = next; } return prev; } /** * @brief Get the first schema node on an axis for a context node. * * @param[in,out] iter Last returned node, start with NULL, updated to the next node. * @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node. * @param[in,out] iter_mod Internal module iterator, do not change. * @param[in,out] iter_mod_idx Internal module index iterator, do not change. * @param[in] scnode Context node. * @param[in] node_type Type of @p scnode. * @param[in] in_ctx In_ctx enum of @p scnode. * @param[in] axis Axis to use. * @param[in] set XPath set with the general context. * @param[in] getnext_opts Options for ::lys_getnext(). * @return LY_SUCCESS on success. * @return LY_ENOTFOUND if no next node found. */ static LY_ERR moveto_axis_scnode_next_first(const struct lysc_node **iter, enum lyxp_node_type *iter_type, const struct lys_module **iter_mod, uint32_t *iter_mod_idx, const struct lysc_node *scnode, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set, uint32_t getnext_opts) { const struct lysc_node *next = NULL; enum lyxp_node_type next_type = 0; assert(!*iter); assert(!*iter_type); *iter_mod = NULL; *iter_mod_idx = 0; switch (axis) { case LYXP_AXIS_ANCESTOR_OR_SELF: case LYXP_AXIS_DESCENDANT_OR_SELF: case LYXP_AXIS_SELF: if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ELEM)) { /* just return the node */ next = scnode; next_type = node_type; } break; case LYXP_AXIS_ANCESTOR: case LYXP_AXIS_PARENT: if (node_type == LYXP_NODE_ELEM) { next = lysc_data_parent(scnode); next_type = next ? LYXP_NODE_ELEM : set->root_type; } /* else no parent */ break; case LYXP_AXIS_DESCENDANT: case LYXP_AXIS_CHILD: if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) { /* it can actually be in any module, it's all , and even if it's moveto_mod (if set), * it can be in a top-level augment */ while ((*iter_mod = ly_ctx_get_module_iter(set->ctx, iter_mod_idx))) { /* module may not be implemented or not compiled yet */ if (!(*iter_mod)->compiled) { continue; } /* get next node */ if ((next = lys_getnext(NULL, NULL, (*iter_mod)->compiled, getnext_opts))) { next_type = LYXP_NODE_ELEM; break; } } } else if (node_type == LYXP_NODE_ELEM) { /* get next node */ next = lys_getnext(NULL, scnode, NULL, getnext_opts); next_type = next ? LYXP_NODE_ELEM : 0; } break; case LYXP_AXIS_FOLLOWING: case LYXP_AXIS_FOLLOWING_SIBLING: if (node_type == LYXP_NODE_ELEM) { /* first next sibling */ next = lys_getnext(scnode, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts); next_type = next ? LYXP_NODE_ELEM : 0; } /* else no sibling */ break; case LYXP_AXIS_PRECEDING: case LYXP_AXIS_PRECEDING_SIBLING: if (node_type == LYXP_NODE_ELEM) { /* first parent sibling */ next = lys_getnext(NULL, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts); if (next == scnode) { /* no preceding sibling */ next = NULL; } next_type = next ? LYXP_NODE_ELEM : 0; } /* else no sibling */ break; case LYXP_AXIS_ATTRIBUTE: /* unreachable */ assert(0); LOGINT(set->ctx); break; } *iter = next; *iter_type = next_type; return next_type ? LY_SUCCESS : LY_ENOTFOUND; } /** * @brief Iterate over all schema nodes on an axis for a context node. * * @param[in,out] iter Last returned node, start with NULL, updated to the next node. * @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node. * @param[in,out] iter_mod Internal module iterator, do not change. * @param[in,out] iter_mod_idx Internal module index iterator, do not change. * @param[in] scnode Context node. * @param[in] node_type Type of @p scnode. * @param[in] axis Axis to use. * @param[in] set XPath set with the general context. * @param[in] getnext_opts Options for ::lys_getnext(). * @return LY_SUCCESS on success. * @return LY_ENOTFOUND if no next node found. */ static LY_ERR moveto_axis_scnode_next(const struct lysc_node **iter, enum lyxp_node_type *iter_type, const struct lys_module **iter_mod, uint32_t *iter_mod_idx, const struct lysc_node *scnode, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set, uint32_t getnext_opts) { const struct lysc_node *next = NULL, *dfs_stop; enum lyxp_node_type next_type = 0; if (!*iter_type) { /* first returned node */ return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type, axis, set, getnext_opts); } switch (axis) { case LYXP_AXIS_PARENT: case LYXP_AXIS_SELF: /* parent/self was returned before */ break; case LYXP_AXIS_ANCESTOR_OR_SELF: if ((*iter == scnode) && (*iter_type == node_type)) { /* fake first ancestor, we returned self before */ *iter = NULL; *iter_type = 0; return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type, LYXP_AXIS_ANCESTOR, set, getnext_opts); } /* else continue ancestor */ /* fallthrough */ case LYXP_AXIS_ANCESTOR: if (*iter_type == LYXP_NODE_ELEM) { next = lysc_data_parent(*iter); next_type = next ? LYXP_NODE_ELEM : set->root_type; } /* else no ancestor */ break; case LYXP_AXIS_DESCENDANT_OR_SELF: if ((*iter == scnode) && (*iter_type == node_type)) { /* fake first descendant, we returned self before */ *iter = NULL; *iter_type = 0; return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type, LYXP_AXIS_DESCENDANT, set, getnext_opts); } /* else DFS until context node */ dfs_stop = scnode; /* fallthrough */ case LYXP_AXIS_DESCENDANT: if (axis == LYXP_AXIS_DESCENDANT) { /* DFS until the context node */ dfs_stop = scnode; } /* fallthrough */ case LYXP_AXIS_PRECEDING: if (axis == LYXP_AXIS_PRECEDING) { /* DFS until the previous sibling */ dfs_stop = moveto_axis_scnode_preceding_sibling(scnode, getnext_opts); assert(dfs_stop); if (*iter == dfs_stop) { /* we are done */ break; } } /* fallthrough */ case LYXP_AXIS_FOLLOWING: if (axis == LYXP_AXIS_FOLLOWING) { /* DFS through the whole module */ dfs_stop = NULL; } /* nested nodes */ assert(*iter); next = moveto_axis_scnode_next_dfs_forward(*iter, dfs_stop, getnext_opts); if (next) { next_type = LYXP_NODE_ELEM; break; } /* else get next top-level node just like a child */ /* fallthrough */ case LYXP_AXIS_CHILD: case LYXP_AXIS_FOLLOWING_SIBLING: if (!*iter_mod) { /* nodes from a single module */ if ((next = lys_getnext(*iter, lysc_data_parent(*iter), (*iter)->module->compiled, getnext_opts))) { next_type = LYXP_NODE_ELEM; break; } assert(scnode); if ((axis != LYXP_AXIS_CHILD) && !lysc_data_parent(scnode)) { /* iterating over top-level nodes, find next */ while (lysc_data_parent(*iter)) { *iter = lysc_data_parent(*iter); } if ((next = lys_getnext(*iter, NULL, (*iter)->module->compiled, getnext_opts))) { next_type = LYXP_NODE_ELEM; break; } } } while (*iter_mod) { /* module top-level nodes */ if ((next = lys_getnext(*iter, NULL, (*iter_mod)->compiled, getnext_opts))) { next_type = LYXP_NODE_ELEM; break; } /* get next module */ while ((*iter_mod = ly_ctx_get_module_iter(set->ctx, iter_mod_idx))) { /* module may not be implemented or not compiled yet */ if ((*iter_mod)->compiled) { break; } } /* new module, start over */ *iter = NULL; } break; case LYXP_AXIS_PRECEDING_SIBLING: assert(*iter); /* next parent sibling until scnode */ next = lys_getnext(*iter, lysc_data_parent(*iter), (*iter)->module->compiled, getnext_opts); if (next == scnode) { /* no previous sibling */ next = NULL; } next_type = next ? LYXP_NODE_ELEM : 0; break; case LYXP_AXIS_ATTRIBUTE: /* unreachable */ assert(0); LOGINT(set->ctx); break; } *iter = next; *iter_type = next_type; return next_type ? LY_SUCCESS : LY_ENOTFOUND; } /** * @brief Move context @p set to a schema node. Result is LYXP_SET_SCNODE_SET (or LYXP_SET_EMPTY). * * @param[in,out] set Set to use. * @param[in] moveto_mod Matching node module, NULL for no prefix. * @param[in] ncname Matching node name in the dictionary, NULL for any. * @param[in] axis Axis to search on. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR moveto_scnode(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis, uint32_t options) { ly_bool temp_ctx = 0; uint32_t getnext_opts, orig_used, i, mod_idx, idx; const struct lys_module *mod; const struct lysc_node *iter; enum lyxp_node_type iter_type; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_SCNODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } /* getnext opts */ getnext_opts = 0; if (options & LYXP_SCNODE_OUTPUT) { getnext_opts |= LYS_GETNEXT_OUTPUT; } orig_used = set->used; for (i = 0; i < orig_used; ++i) { /* update in_ctx first */ if (moveto_axis_scnode_next_in_ctx(&set->val.scnodes[i].in_ctx, axis)) { /* not usable, skip */ continue; } iter = NULL; iter_type = 0; while (!moveto_axis_scnode_next(&iter, &iter_type, &mod, &mod_idx, set->val.scnodes[i].scnode, set->val.scnodes[i].type, axis, set, getnext_opts)) { if (moveto_scnode_check(iter, NULL, set, ncname, moveto_mod)) { continue; } /* insert */ LY_CHECK_RET(set_scnode_insert_node(set, iter, iter_type, axis, &idx)); /* we need to prevent these nodes from being considered in this moveto */ if ((idx < orig_used) && (idx > i)) { set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_NEW_CTX; temp_ctx = 1; } } if (moveto_mod && ncname && ((axis == LYXP_AXIS_DESCENDANT) || (axis == LYXP_AXIS_CHILD)) && (set->val.scnodes[i].type == LYXP_NODE_ELEM) && !ly_nested_ext_schema(NULL, set->val.scnodes[i].scnode, moveto_mod->name, strlen(moveto_mod->name), LY_VALUE_JSON, NULL, ncname, strlen(ncname), &iter, NULL)) { /* there is a matching node from an extension, use it */ LY_CHECK_RET(set_scnode_insert_node(set, iter, LYXP_NODE_ELEM, axis, &idx)); if ((idx < orig_used) && (idx > i)) { set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_NEW_CTX; temp_ctx = 1; } } } /* correct temporary in_ctx values */ if (temp_ctx) { for (i = 0; i < orig_used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_NEW_CTX) { set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; } } } return LY_SUCCESS; } /** * @brief Move context @p set to a child node and all its descendants. Result is LYXP_SET_NODE_SET. * Context position aware. * * @param[in] set Set to use. * @param[in] moveto_mod Matching node module, NULL for no prefix. * @param[in] ncname Matching node name in the dictionary, NULL for any. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR moveto_node_alldesc_child(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, uint32_t options) { uint32_t i; const struct lyd_node *next, *elem, *start; struct lyxp_set ret_set; LY_ERR rc; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } /* replace the original nodes (and throws away all text and meta nodes, root is replaced by a child) */ rc = xpath_pi_node(set, LYXP_AXIS_CHILD, options); LY_CHECK_RET(rc); /* this loop traverses all the nodes in the set and adds/keeps only those that match qname */ set_init(&ret_set, set); for (i = 0; i < set->used; ++i) { /* TREE DFS */ start = set->val.nodes[i].node; for (elem = next = start; elem; elem = next) { rc = moveto_node_check(elem, LYXP_NODE_ELEM, set, ncname, moveto_mod, options); if (!rc) { /* add matching node into result set */ set_insert_node(&ret_set, elem, 0, LYXP_NODE_ELEM, ret_set.used); if (set_dup_node_check(set, elem, LYXP_NODE_ELEM, i)) { /* the node is a duplicate, we'll process it later in the set */ goto skip_children; } } else if (rc == LY_EINCOMPLETE) { return rc; } else if (rc == LY_EINVAL) { goto skip_children; } /* TREE DFS NEXT ELEM */ /* select element for the next run - children first */ next = lyd_child(elem); if (!next) { skip_children: /* no children, so try siblings, but only if it's not the start, * that is considered to be the root and it's siblings are not traversed */ if (elem != start) { next = elem->next; } else { break; } } while (!next) { /* no siblings, go back through the parents */ if (lyd_parent(elem) == start) { /* we are done, no next element to process */ break; } /* parent is already processed, go to its sibling */ elem = lyd_parent(elem); next = elem->next; } } } /* make the temporary set the current one */ ret_set.ctx_pos = set->ctx_pos; ret_set.ctx_size = set->ctx_size; lyxp_set_free_content(set); memcpy(set, &ret_set, sizeof *set); assert(!set_sort(set)); return LY_SUCCESS; } /** * @brief Move context @p set to a child schema node and all its descendants starting from a node. * Result is LYXP_SET_NODE_SET. * * @param[in] set Set to use. * @param[in] start Start node whose subtree to add. * @param[in] start_idx Index of @p start in @p set. * @param[in] moveto_mod Matching node module, NULL for no prefix. * @param[in] ncname Matching node name in the dictionary, NULL for any. * @param[in] options XPath options. * @return LY_ERR value. */ static LY_ERR moveto_scnode_dfs(struct lyxp_set *set, const struct lysc_node *start, uint32_t start_idx, const struct lys_module *moveto_mod, const char *ncname, uint32_t options) { const struct lysc_node *next, *elem; uint32_t idx; LY_ERR rc; /* TREE DFS */ for (elem = next = start; elem; elem = next) { if ((elem == start) || (elem->nodetype & (LYS_CHOICE | LYS_CASE))) { /* schema-only nodes, skip root */ goto next_iter; } rc = moveto_scnode_check(elem, start, set, ncname, moveto_mod); if (!rc) { if (lyxp_set_scnode_contains(set, elem, LYXP_NODE_ELEM, start_idx, &idx)) { set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; if (idx > start_idx) { /* we will process it later in the set */ goto skip_children; } } else { LY_CHECK_RET(set_scnode_insert_node(set, elem, LYXP_NODE_ELEM, LYXP_AXIS_DESCENDANT, NULL)); } } else if (rc == LY_EINVAL) { goto skip_children; } next_iter: /* TREE DFS NEXT ELEM */ /* select element for the next run - children first */ next = lysc_node_child(elem); if (next && (next->nodetype == LYS_INPUT) && (options & LYXP_SCNODE_OUTPUT)) { next = next->next; } else if (next && (next->nodetype == LYS_OUTPUT) && !(options & LYXP_SCNODE_OUTPUT)) { next = next->next; } if (!next) { skip_children: /* no children, so try siblings, but only if it's not the start, * that is considered to be the root and it's siblings are not traversed */ if (elem != start) { next = elem->next; } else { break; } } while (!next) { /* no siblings, go back through the parents */ if (elem->parent == start) { /* we are done, no next element to process */ break; } /* parent is already processed, go to its sibling */ elem = elem->parent; next = elem->next; } } return LY_SUCCESS; } /** * @brief Move context @p set to a child schema node and all its descendants. Result is LYXP_SET_NODE_SET. * * @param[in] set Set to use. * @param[in] moveto_mod Matching node module, NULL for no prefix. * @param[in] ncname Matching node name in the dictionary, NULL for any. * @param[in] options XPath options. * @return LY_ERR value. */ static LY_ERR moveto_scnode_alldesc_child(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, uint32_t options) { uint32_t i, orig_used, mod_idx; const struct lys_module *mod; const struct lysc_node *root; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_SCNODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } orig_used = set->used; for (i = 0; i < orig_used; ++i) { if (set->val.scnodes[i].in_ctx != LYXP_SET_SCNODE_ATOM_CTX) { if (set->val.scnodes[i].in_ctx != LYXP_SET_SCNODE_START) { continue; } /* remember context node */ set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_START_USED; } else { set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE; } if ((set->val.scnodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.scnodes[i].type == LYXP_NODE_ROOT)) { /* traverse all top-level nodes in all the modules */ mod_idx = 0; while ((mod = ly_ctx_get_module_iter(set->ctx, &mod_idx))) { /* module may not be implemented or not compiled yet */ if (!mod->compiled) { continue; } root = NULL; /* no getnext opts needed */ while ((root = lys_getnext(root, NULL, mod->compiled, 0))) { LY_CHECK_RET(moveto_scnode_dfs(set, root, i, moveto_mod, ncname, options)); } } } else if (set->val.scnodes[i].type == LYXP_NODE_ELEM) { /* add all the descendants recursively */ LY_CHECK_RET(moveto_scnode_dfs(set, set->val.scnodes[i].scnode, i, moveto_mod, ncname, options)); } } return LY_SUCCESS; } /** * @brief Move context @p set to an attribute. Result is LYXP_SET_NODE_SET. * Indirectly context position aware. * * @param[in,out] set Set to use. * @param[in] mod Matching metadata module, NULL for any. * @param[in] ncname Matching metadata name in the dictionary, NULL for any. * @param[in] options XPath options. * @return LY_ERR */ static LY_ERR moveto_attr(struct lyxp_set *set, const struct lys_module *mod, const char *ncname, uint32_t options) { struct lyd_meta *sub; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } for (uint32_t i = 0; i < set->used; ) { ly_bool replaced = 0; /* only attributes of an elem (not dummy) can be in the result, skip all the rest; * our attributes are always qualified */ if (set->val.nodes[i].type == LYXP_NODE_ELEM) { for (sub = set->val.nodes[i].node->meta; sub; sub = sub->next) { /* check "namespace" */ if (mod && (sub->annotation->module != mod)) { continue; } if (!ncname || (sub->name == ncname)) { /* match */ if (!replaced) { set->val.meta[i].meta = sub; set->val.meta[i].type = LYXP_NODE_META; /* pos does not change */ replaced = 1; } else { set_insert_node(set, (struct lyd_node *)sub, set->val.nodes[i].pos, LYXP_NODE_META, i + 1); } ++i; } } } if (!replaced) { /* no match */ set_remove_node(set, i); } } return LY_SUCCESS; } /** * @brief Move context @p set1 to union with @p set2. @p set2 is emptied afterwards. * Result is LYXP_SET_NODE_SET. Context position aware. * * @param[in,out] set1 Set to use for the result. * @param[in] set2 Set that is copied to @p set1. * @return LY_ERR */ static LY_ERR moveto_union(struct lyxp_set *set1, struct lyxp_set *set2) { LY_ERR rc; if ((set1->type != LYXP_SET_NODE_SET) || (set2->type != LYXP_SET_NODE_SET)) { LOGVAL(set1->ctx, LY_VCODE_XP_INOP_2, "union", print_set_type(set1), print_set_type(set2)); return LY_EVALID; } /* set2 is empty or both set1 and set2 */ if (!set2->used) { return LY_SUCCESS; } if (!set1->used) { /* release hidden allocated data (lyxp_set.size) */ lyxp_set_free_content(set1); /* direct copying of the entire structure */ memcpy(set1, set2, sizeof *set1); /* dynamic memory belongs to set1 now, do not free */ memset(set2, 0, sizeof *set2); return LY_SUCCESS; } /* we assume sets are sorted */ assert(!set_sort(set1) && !set_sort(set2)); /* sort, remove duplicates */ rc = set_sorted_merge(set1, set2); LY_CHECK_RET(rc); /* final set must be sorted */ assert(!set_sort(set1)); return LY_SUCCESS; } /** * @brief Move context @p set to an attribute in any of the descendants. Result is LYXP_SET_NODE_SET. * Context position aware. * * @param[in,out] set Set to use. * @param[in] mod Matching metadata module, NULL for any. * @param[in] ncname Matching metadata name in the dictionary, NULL for any. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static int moveto_attr_alldesc(struct lyxp_set *set, const struct lys_module *mod, const char *ncname, uint32_t options) { struct lyd_meta *sub; struct lyxp_set *set_all_desc = NULL; LY_ERR rc; if (options & LYXP_SKIP_EXPR) { return LY_SUCCESS; } if (set->type != LYXP_SET_NODE_SET) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); return LY_EVALID; } /* can be optimized similarly to moveto_node_alldesc() and save considerable amount of memory, * but it likely won't be used much, so it's a waste of time */ /* copy the context */ set_all_desc = set_copy(set); /* get all descendant nodes (the original context nodes are removed) */ rc = moveto_node_alldesc_child(set_all_desc, NULL, NULL, options); if (rc != LY_SUCCESS) { lyxp_set_free(set_all_desc); return rc; } /* prepend the original context nodes */ rc = moveto_union(set, set_all_desc); if (rc != LY_SUCCESS) { lyxp_set_free(set_all_desc); return rc; } lyxp_set_free(set_all_desc); for (uint32_t i = 0; i < set->used; ) { ly_bool replaced = 0; /* only attributes of an elem can be in the result, skip all the rest, * we have all attributes qualified in lyd tree */ if (set->val.nodes[i].type == LYXP_NODE_ELEM) { for (sub = set->val.nodes[i].node->meta; sub; sub = sub->next) { /* check "namespace" */ if (mod && (sub->annotation->module != mod)) { continue; } if (!ncname || (sub->name == ncname)) { /* match */ if (!replaced) { set->val.meta[i].meta = sub; set->val.meta[i].type = LYXP_NODE_META; /* pos does not change */ replaced = 1; } else { set_insert_node(set, (struct lyd_node *)sub, set->val.meta[i].pos, LYXP_NODE_META, i + 1); } ++i; } } } if (!replaced) { /* no match */ set_remove_node(set, i); } } return LY_SUCCESS; } /** * @brief Move context @p set1 single item to the result of a comparison. * * @param[in] set1 First set with the item to compare. * @param[in] idx1 Index of the item in @p set1. * @param[in] set2 Second set. * @param[in] op Comparison operator to process. * @param[in] switch_operands Whether to switch sets as operands; whether it is `set1 op set2` or `set2 op set1`. * @param[out] result Result of the comparison. * @return LY_ERR value. */ static LY_ERR moveto_op_comp_item(const struct lyxp_set *set1, uint32_t idx1, struct lyxp_set *set2, const char *op, ly_bool switch_operands, ly_bool *result) { struct lyxp_set tmp1 = {0}; LY_ERR rc = LY_SUCCESS; assert(set1->type == LYXP_SET_NODE_SET); /* cast set1 */ switch (set2->type) { case LYXP_SET_NUMBER: rc = set_comp_cast(&tmp1, set1, LYXP_SET_NUMBER, idx1); break; case LYXP_SET_BOOLEAN: rc = set_comp_cast(&tmp1, set1, LYXP_SET_BOOLEAN, idx1); break; default: rc = set_comp_cast(&tmp1, set1, LYXP_SET_STRING, idx1); break; } LY_CHECK_GOTO(rc, cleanup); /* canonize set2 */ LY_CHECK_GOTO(rc = set_comp_canonize(set2, &set1->val.nodes[idx1]), cleanup); /* compare recursively and store the result */ if (switch_operands) { LY_CHECK_GOTO(rc = moveto_op_comp(set2, &tmp1, op, result), cleanup); } else { LY_CHECK_GOTO(rc = moveto_op_comp(&tmp1, set2, op, result), cleanup); } cleanup: lyxp_set_free_content(&tmp1); return rc; } /** * @brief Move context @p set1 to the result of a comparison. Handles '=', '!=', '<=', '<', '>=', or '>'. * Result is LYXP_SET_BOOLEAN. Indirectly context position aware. * * @param[in] set1 Set acting as the first operand for @p op. * @param[in] set2 Set acting as the second operand for @p op. * @param[in] op Comparison operator to process. * @param[out] result Result of the comparison. * @return LY_ERR */ static LY_ERR moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, ly_bool *result) { /* * NODE SET + NODE SET = NODE SET + STRING /(1 NODE SET) 2 STRING * NODE SET + STRING = STRING + STRING /1 STRING (2 STRING) * NODE SET + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) * NODE SET + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) * STRING + NODE SET = STRING + STRING /(1 STRING) 2 STRING * NUMBER + NODE SET = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER * BOOLEAN + NODE SET = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN * * '=' or '!=' * BOOLEAN + BOOLEAN * BOOLEAN + STRING = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN * BOOLEAN + NUMBER = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN * STRING + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) * NUMBER + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) * NUMBER + NUMBER * NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER * STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) * STRING + STRING * * '<=', '<', '>=', '>' * NUMBER + NUMBER * BOOLEAN + BOOLEAN = NUMBER + NUMBER /1 NUMBER, 2 NUMBER * BOOLEAN + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) * BOOLEAN + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER * NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER * STRING + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER * STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) * NUMBER + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER * STRING + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER */ uint32_t i; LY_ERR rc; /* iterative evaluation with node-sets */ if ((set1->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_NODE_SET)) { if (set1->type == LYXP_SET_NODE_SET) { for (i = 0; i < set1->used; ++i) { /* evaluate for the single item */ LY_CHECK_RET(moveto_op_comp_item(set1, i, set2, op, 0, result)); /* lazy evaluation until true */ if (*result) { return LY_SUCCESS; } } } else { for (i = 0; i < set2->used; ++i) { /* evaluate for the single item */ LY_CHECK_RET(moveto_op_comp_item(set2, i, set1, op, 1, result)); /* lazy evaluation until true */ if (*result) { return LY_SUCCESS; } } } /* false for all the nodes */ *result = 0; return LY_SUCCESS; } /* first convert properly */ if ((op[0] == '=') || (op[0] == '!')) { if ((set1->type == LYXP_SET_BOOLEAN) || (set2->type == LYXP_SET_BOOLEAN)) { lyxp_set_cast(set1, LYXP_SET_BOOLEAN); lyxp_set_cast(set2, LYXP_SET_BOOLEAN); } else if ((set1->type == LYXP_SET_NUMBER) || (set2->type == LYXP_SET_NUMBER)) { rc = lyxp_set_cast(set1, LYXP_SET_NUMBER); LY_CHECK_RET(rc); rc = lyxp_set_cast(set2, LYXP_SET_NUMBER); LY_CHECK_RET(rc); } /* else we have 2 strings */ } else { rc = lyxp_set_cast(set1, LYXP_SET_NUMBER); LY_CHECK_RET(rc); rc = lyxp_set_cast(set2, LYXP_SET_NUMBER); LY_CHECK_RET(rc); } assert(set1->type == set2->type); /* compute result */ if (op[0] == '=') { if (set1->type == LYXP_SET_BOOLEAN) { *result = (set1->val.bln == set2->val.bln); } else if (set1->type == LYXP_SET_NUMBER) { *result = (set1->val.num == set2->val.num); } else { assert(set1->type == LYXP_SET_STRING); *result = strcmp(set1->val.str, set2->val.str) ? 0 : 1; } } else if (op[0] == '!') { if (set1->type == LYXP_SET_BOOLEAN) { *result = (set1->val.bln != set2->val.bln); } else if (set1->type == LYXP_SET_NUMBER) { *result = (set1->val.num != set2->val.num); } else { assert(set1->type == LYXP_SET_STRING); *result = strcmp(set1->val.str, set2->val.str) ? 1 : 0; } } else { assert(set1->type == LYXP_SET_NUMBER); if (op[0] == '<') { if (op[1] == '=') { *result = (set1->val.num <= set2->val.num); } else { *result = (set1->val.num < set2->val.num); } } else { if (op[1] == '=') { *result = (set1->val.num >= set2->val.num); } else { *result = (set1->val.num > set2->val.num); } } } return LY_SUCCESS; } /** * @brief Move context @p set to the result of a basic operation. Handles '+', '-', unary '-', '*', 'div', * or 'mod'. Result is LYXP_SET_NUMBER. Indirectly context position aware. * * @param[in,out] set1 Set to use for the result. * @param[in] set2 Set acting as the second operand for @p op. * @param[in] op Operator to process. * @return LY_ERR */ static LY_ERR moveto_op_math(struct lyxp_set *set1, struct lyxp_set *set2, const char *op) { LY_ERR rc; /* unary '-' */ if (!set2 && (op[0] == '-')) { rc = lyxp_set_cast(set1, LYXP_SET_NUMBER); LY_CHECK_RET(rc); set1->val.num *= -1; lyxp_set_free(set2); return LY_SUCCESS; } assert(set1 && set2); rc = lyxp_set_cast(set1, LYXP_SET_NUMBER); LY_CHECK_RET(rc); rc = lyxp_set_cast(set2, LYXP_SET_NUMBER); LY_CHECK_RET(rc); switch (op[0]) { /* '+' */ case '+': set1->val.num += set2->val.num; break; /* '-' */ case '-': set1->val.num -= set2->val.num; break; /* '*' */ case '*': set1->val.num *= set2->val.num; break; /* 'div' */ case 'd': set1->val.num /= set2->val.num; break; /* 'mod' */ case 'm': set1->val.num = ((long long)set1->val.num) % ((long long)set2->val.num); break; default: LOGINT_RET(set1->ctx); } return LY_SUCCESS; } /** * @brief Evaluate Predicate. Logs directly on error. * * [9] Predicate ::= '[' Expr ']' * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @param[in] axis Axis to search on. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options, enum lyxp_axis axis) { LY_ERR rc; uint32_t i, orig_exp, orig_pos, orig_size; int32_t pred_in_ctx; ly_bool reverse_axis = 0; struct lyxp_set set2 = {0}; /* '[' */ LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { only_parse: rc = eval_expr_select(exp, tok_idx, 0, set, options | LYXP_SKIP_EXPR); LY_CHECK_RET(rc); } else if (set->type == LYXP_SET_NODE_SET) { /* we (possibly) need the set sorted, it can affect the result (if the predicate result is a number) */ assert(!set_sort(set)); /* empty set, nothing to evaluate */ if (!set->used) { goto only_parse; } /* decide forward or reverse axis */ switch (axis) { case LYXP_AXIS_ANCESTOR: case LYXP_AXIS_ANCESTOR_OR_SELF: case LYXP_AXIS_PRECEDING: case LYXP_AXIS_PRECEDING_SIBLING: reverse_axis = 1; break; case LYXP_AXIS_DESCENDANT: case LYXP_AXIS_DESCENDANT_OR_SELF: case LYXP_AXIS_FOLLOWING: case LYXP_AXIS_FOLLOWING_SIBLING: case LYXP_AXIS_PARENT: case LYXP_AXIS_CHILD: case LYXP_AXIS_SELF: case LYXP_AXIS_ATTRIBUTE: reverse_axis = 0; break; } orig_exp = *tok_idx; orig_pos = reverse_axis ? set->used + 1 : 0; orig_size = set->used; for (i = 0; i < set->used; ++i) { set_init(&set2, set); set_insert_node(&set2, set->val.nodes[i].node, set->val.nodes[i].pos, set->val.nodes[i].type, 0); /* remember the node context position for position() and context size for last() */ orig_pos += reverse_axis ? -1 : 1; set2.ctx_pos = orig_pos; set2.ctx_size = orig_size; *tok_idx = orig_exp; rc = eval_expr_select(exp, tok_idx, 0, &set2, options); if (rc != LY_SUCCESS) { lyxp_set_free_content(&set2); return rc; } /* number is a proximity position */ if (set2.type == LYXP_SET_NUMBER) { if ((long long)set2.val.num == orig_pos) { set2.val.num = 1; } else { set2.val.num = 0; } } lyxp_set_cast(&set2, LYXP_SET_BOOLEAN); /* predicate satisfied or not? */ if (!set2.val.bln) { set_remove_node_none(set, i); } } set_remove_nodes_none(set); } else if (set->type == LYXP_SET_SCNODE_SET) { for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { /* there is a currently-valid node */ break; } } /* empty set, nothing to evaluate */ if (i == set->used) { goto only_parse; } orig_exp = *tok_idx; /* set special in_ctx to all the valid snodes */ pred_in_ctx = set_scnode_new_in_ctx(set); /* use the valid snodes one-by-one */ for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx != pred_in_ctx) { continue; } set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; *tok_idx = orig_exp; rc = eval_expr_select(exp, tok_idx, 0, set, options); LY_CHECK_RET(rc); set->val.scnodes[i].in_ctx = pred_in_ctx; } /* restore the state as it was before the predicate */ for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE; } else if (set->val.scnodes[i].in_ctx == pred_in_ctx) { set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; } } } else { set2.type = LYXP_SET_NODE_SET; set_fill_set(&set2, set); rc = eval_expr_select(exp, tok_idx, 0, &set2, options); if (rc != LY_SUCCESS) { lyxp_set_free_content(&set2); return rc; } lyxp_set_cast(&set2, LYXP_SET_BOOLEAN); if (!set2.val.bln) { lyxp_set_free_content(set); } lyxp_set_free_content(&set2); } /* ']' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_BRACK2); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); return LY_SUCCESS; } /** * @brief Evaluate Literal. Logs directly on error. * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. On NULL the rule is only parsed. */ static void eval_literal(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set) { if (set) { if (exp->tok_len[*tok_idx] == 2) { set_fill_string(set, "", 0); } else { set_fill_string(set, &exp->expr[exp->tok_pos[*tok_idx] + 1], exp->tok_len[*tok_idx] - 2); } } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); } /** * @brief Check that a nametest in a predicate matches a key node. * * @param[in] nametest Nametest to check. * @param[in] len Length of @p nametest. * @param[in] ctx_scnode Found schema node as the context for the predicate. * @param[in] set Context set. * @param[in] key Expected key node. * @return LY_SUCCESS on success, * @return LY_ENOT if a predicate could not be compiled. * @return LY_ERR on any error. */ static LY_ERR eval_name_test_try_compile_predicate_key(const char *nametest, uint32_t len, const struct lysc_node *ctx_scnode, const struct lyxp_set *set, const struct lysc_node *key) { const struct lys_module *mod; /* prefix (module) */ LY_CHECK_RET(moveto_resolve_model(&nametest, &len, set, ctx_scnode, &mod)); if (mod != key->module) { return LY_ENOT; } /* node name */ if (ly_strncmp(key->name, nametest, len)) { return LY_ENOT; } return LY_SUCCESS; } /** * @brief Append a simple predicate for the node. * * @param[in] exp Full parsed XPath expression. * @param[in] tok_idx Predicate start index in @p exp. * @param[in] end_tok_idx Predicate end index in @p exp. * @param[in] ctx_scnode Found schema node as the context for the predicate. * @param[in] set Context set. * @param[in] pred_node Node with the value referenced in the predicate. * @param[in,out] pred Predicate to append to. * @param[in,out] pred_len Length of @p pred, is updated. * @return LY_SUCCESS on success, * @return LY_ENOT if a predicate could not be compiled. * @return LY_ERR on any error. */ static LY_ERR eval_name_test_try_compile_predicate_append(const struct lyxp_expr *exp, uint32_t tok_idx, uint32_t end_tok_idx, const struct lysc_node *ctx_scnode, const struct lyxp_set *set, const struct lysc_node *pred_node, char **pred, uint32_t *pred_len) { LY_ERR rc = LY_SUCCESS; uint32_t i; const struct lyd_node *siblings; struct lyd_node *ctx_node; const struct lysc_node *sparent, *cur_scnode; struct lyxp_expr *val_exp = NULL; struct lyxp_set set2 = {0}; char quot; /* duplicate the value expression */ LY_CHECK_GOTO(rc = lyxp_expr_dup(set->ctx, exp, tok_idx, end_tok_idx, &val_exp), cleanup); /* get its atoms */ cur_scnode = set->cur_node ? set->cur_node->schema : NULL; LY_CHECK_GOTO(rc = lyxp_atomize(set->ctx, val_exp, set->cur_mod, set->format, set->prefix_data, cur_scnode, ctx_scnode, &set2, LYXP_SCNODE), cleanup); /* check whether we can compile a single predicate (evaluation result value is always the same) */ for (i = 0; i < set2.used; ++i) { if ((set2.val.scnodes[i].type != LYXP_NODE_ELEM) || (set2.val.scnodes[i].in_ctx < LYXP_SET_SCNODE_ATOM_NODE)) { /* skip root and context node */ continue; } /* 1) context node descendants are traversed - do best-effort detection of the value dependency on the * context node instance */ if ((set2.val.scnodes[i].axis == LYXP_AXIS_CHILD) && (set2.val.scnodes[i].scnode->parent == ctx_scnode)) { /* 1.1) context node child was accessed on the child axis, certain dependency */ rc = LY_ENOT; goto cleanup; } if ((set2.val.scnodes[i].axis == LYXP_AXIS_DESCENDANT) || (set2.val.scnodes[i].axis == LYXP_AXIS_DESCENDANT_OR_SELF)) { for (sparent = set2.val.scnodes[i].scnode->parent; sparent && (sparent != ctx_scnode); sparent = sparent->parent) {} if (sparent) { /* 1.2) context node descendant was accessed on the descendant axis, probable dependency */ rc = LY_ENOT; goto cleanup; } } /* 2) multi-instance nodes (list or leaf-list) are traversed - all the instances need to be considered, * but the current node can be safely ignored, it is always the same data instance */ if ((set2.val.scnodes[i].scnode->nodetype & (LYS_LIST | LYS_LEAFLIST)) && (cur_scnode != set2.val.scnodes[i].scnode)) { rc = LY_ENOT; goto cleanup; } } /* get any data instance of the context node, we checked it makes no difference */ siblings = set->val.nodes[0].node ? lyd_child(set->val.nodes[0].node) : set->tree; LY_CHECK_GOTO(rc = lyd_find_sibling_schema(siblings, ctx_scnode, &ctx_node), cleanup); /* evaluate the value subexpression with the root context node */ lyxp_set_free_content(&set2); LY_CHECK_GOTO(rc = lyxp_eval(set->ctx, val_exp, set->cur_mod, set->format, set->prefix_data, set->cur_node, ctx_node, set->tree, NULL, &set2, 0), cleanup); /* cast it into a string */ LY_CHECK_GOTO(rc = lyxp_set_cast(&set2, LYXP_SET_STRING), cleanup); /* append the JSON predicate */ *pred = ly_realloc(*pred, *pred_len + 1 + strlen(pred_node->name) + 2 + strlen(set2.val.str) + 3); LY_CHECK_ERR_GOTO(!*pred, LOGMEM(set->ctx); rc = LY_EMEM, cleanup); quot = strchr(set2.val.str, '\'') ? '\"' : '\''; *pred_len += sprintf(*pred + *pred_len, "[%s=%c%s%c]", pred_node->name, quot, set2.val.str, quot); cleanup: lyxp_expr_free(set->ctx, val_exp); lyxp_set_free_content(&set2); return rc; } /** * @brief Try to compile list or leaf-list predicate in the known format to be used for hash-based instance search. * * @param[in] exp Full parsed XPath expression. * @param[in,out] tok_idx Index in @p exp at the beginning of the predicate, is updated on success. * @param[in] ctx_scnode Found schema node as the context for the predicate. * @param[in] set Context set. * @param[out] predicates Parsed predicates. * @param[out] pred_type Type of @p predicates. * @return LY_SUCCESS on success, * @return LY_ENOT if a predicate could not be compiled. * @return LY_ERR on any error. */ static LY_ERR eval_name_test_try_compile_predicates(const struct lyxp_expr *exp, uint32_t *tok_idx, const struct lysc_node *ctx_scnode, const struct lyxp_set *set, struct ly_path_predicate **predicates, enum ly_path_pred_type *pred_type) { LY_ERR rc = LY_SUCCESS; uint32_t e_idx, val_start_idx, pred_idx = 0, temp_lo = 0, pred_len = 0, nested_pred; const struct lysc_node *key; char *pred = NULL; struct lyxp_expr *exp2 = NULL; assert(ctx_scnode->nodetype & (LYS_LIST | LYS_LEAFLIST)); /* turn logging off */ ly_temp_log_options(&temp_lo); if (ctx_scnode->nodetype == LYS_LIST) { /* check for predicates "[key1=...][key2=...]..." */ /* get key count */ if (ctx_scnode->flags & LYS_KEYLESS) { rc = LY_ENOT; goto cleanup; } /* learn where the predicates end */ e_idx = *tok_idx; for (key = lysc_node_child(ctx_scnode); key && (key->flags & LYS_KEY); key = key->next) { /* '[' */ if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) { rc = LY_ENOT; goto cleanup; } ++e_idx; if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_NAMETEST)) { /* not a key */ rc = LY_ENOT; goto cleanup; } /* check key */ LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_key(exp->expr + exp->tok_pos[e_idx], exp->tok_len[e_idx], ctx_scnode, set, key), cleanup); ++e_idx; if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_EQUAL)) { /* not '=' */ rc = LY_ENOT; goto cleanup; } ++e_idx; /* value start */ val_start_idx = e_idx; /* ']' */ nested_pred = 1; do { ++e_idx; if ((nested_pred == 1) && !lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_LOG)) { /* higher priority than '=' */ rc = LY_ENOT; goto cleanup; } else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) { /* nested predicate */ ++nested_pred; } else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK2)) { /* predicate end */ --nested_pred; } } while (nested_pred); /* try to evaluate the value */ LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_append(exp, val_start_idx, e_idx - 1, ctx_scnode, set, key, &pred, &pred_len), cleanup); ++e_idx; } } else { /* check for predicate "[.=...]" */ /* learn just where this single predicate ends */ e_idx = *tok_idx; /* '[' */ if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) { rc = LY_ENOT; goto cleanup; } ++e_idx; if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_DOT)) { /* not the node value */ rc = LY_ENOT; goto cleanup; } ++e_idx; if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_EQUAL)) { /* not '=' */ rc = LY_ENOT; goto cleanup; } ++e_idx; /* value start */ val_start_idx = e_idx; /* ']' */ nested_pred = 1; do { ++e_idx; if ((nested_pred == 1) && !lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_LOG)) { /* higher priority than '=' */ rc = LY_ENOT; goto cleanup; } else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) { /* nested predicate */ ++nested_pred; } else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK2)) { /* predicate end */ --nested_pred; } } while (nested_pred); /* try to evaluate the value */ LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_append(exp, val_start_idx, e_idx - 1, ctx_scnode, set, ctx_scnode, &pred, &pred_len), cleanup); ++e_idx; } /* parse the predicate(s) */ LY_CHECK_GOTO(rc = ly_path_parse_predicate(set->ctx, ctx_scnode, pred, pred_len, LY_PATH_PREFIX_OPTIONAL, LY_PATH_PRED_SIMPLE, &exp2), cleanup); /* compile */ rc = ly_path_compile_predicate(set->ctx, set->cur_node ? set->cur_node->schema : NULL, set->cur_mod, ctx_scnode, exp2, &pred_idx, LY_VALUE_JSON, NULL, predicates, pred_type); LY_CHECK_GOTO(rc, cleanup); /* success, the predicate must include all the needed information for hash-based search */ *tok_idx = e_idx; cleanup: ly_temp_log_options(NULL); lyxp_expr_free(set->ctx, exp2); free(pred); return rc; } /** * @brief Search for/check the next schema node that could be the only matching schema node meaning the * data node(s) could be found using a single hash-based search. * * @param[in] ctx libyang context. * @param[in] node Next context node to check. * @param[in] name Expected node name. * @param[in] name_len Length of @p name. * @param[in] moveto_mod Expected node module, can be NULL for JSON format with no prefix. * @param[in] root_type XPath root type. * @param[in] format Prefix format. * @param[in,out] found Previously found node, is updated. * @return LY_SUCCESS on success, * @return LY_ENOT if the whole check failed and hashes cannot be used. */ static LY_ERR eval_name_test_with_predicate_get_scnode(const struct ly_ctx *ctx, const struct lyd_node *node, const char *name, uint32_t name_len, const struct lys_module *moveto_mod, enum lyxp_node_type root_type, LY_VALUE_FORMAT format, const struct lysc_node **found) { const struct lysc_node *scnode; const struct lys_module *mod; uint32_t idx = 0; assert((format == LY_VALUE_JSON) || moveto_mod); continue_search: scnode = NULL; if (!node) { if ((format == LY_VALUE_JSON) && !moveto_mod) { /* search all modules for a single match */ while ((mod = ly_ctx_get_module_iter(ctx, &idx))) { if (!mod->implemented) { continue; } scnode = lys_find_child(NULL, mod, name, name_len, 0, 0); if (scnode) { /* we have found a match */ break; } } if (!scnode) { /* all modules searched */ idx = 0; } } else { /* search in top-level */ scnode = lys_find_child(NULL, moveto_mod, name, name_len, 0, 0); } } else if (!*found || (lysc_data_parent(*found) != node->schema)) { if ((format == LY_VALUE_JSON) && !moveto_mod) { /* we must adjust the module to inherit the one from the context node */ moveto_mod = node->schema->module; } /* search in children, do not repeat the same search */ scnode = lys_find_child(node->schema, moveto_mod, name, name_len, 0, 0); } /* else skip redundant search */ /* additional context check */ if (scnode && (root_type == LYXP_NODE_ROOT_CONFIG) && (scnode->flags & LYS_CONFIG_R)) { scnode = NULL; } if (scnode) { if (*found) { /* we found a schema node with the same name but at different level, give up, too complicated * (more hash-based searches would be required, not supported) */ return LY_ENOT; } else { /* remember the found schema node and continue to make sure it can be used */ *found = scnode; } } if (idx) { /* continue searching all the following models */ goto continue_search; } return LY_SUCCESS; } /** * @brief Generate message when no matching schema nodes were found for a path segment. * * @param[in] set XPath set. * @param[in] scparent Previous schema parent in the context, if only one. * @param[in] ncname XPath NCName being evaluated. * @param[in] ncname_len Length of @p ncname. * @param[in] expr Whole XPath expression. * @param[in] options XPath options. */ static void eval_name_test_scnode_no_match_msg(struct lyxp_set *set, const struct lyxp_set_scnode *scparent, const char *ncname, uint32_t ncname_len, const char *expr, uint32_t options) { const char *format; char *path = NULL, *ppath = NULL; path = lysc_path(set->cur_scnode, LYSC_PATH_LOG, NULL, 0); if (scparent) { /* generate path for the parent */ if (scparent->type == LYXP_NODE_ELEM) { ppath = lysc_path(scparent->scnode, LYSC_PATH_LOG, NULL, 0); } else if (scparent->type == LYXP_NODE_ROOT) { ppath = strdup(""); } else if (scparent->type == LYXP_NODE_ROOT_CONFIG) { ppath = strdup(""); } } if (ppath) { format = "Schema node \"%.*s\" for parent \"%s\" not found; in expr \"%.*s\" with context node \"%s\"."; if (options & LYXP_SCNODE_ERROR) { LOGERR(set->ctx, LY_EVALID, format, ncname_len, ncname, ppath, (ncname - expr) + ncname_len, expr, path); } else { LOGWRN(set->ctx, format, ncname_len, ncname, ppath, (ncname - expr) + ncname_len, expr, path); } } else { format = "Schema node \"%.*s\" not found; in expr \"%.*s\" with context node \"%s\"."; if (options & LYXP_SCNODE_ERROR) { LOGERR(set->ctx, LY_EVALID, format, ncname_len, ncname, (ncname - expr) + ncname_len, expr, path); } else { LOGWRN(set->ctx, format, ncname_len, ncname, (ncname - expr) + ncname_len, expr, path); } } free(path); free(ppath); } /** * @brief Evaluate NameTest and any following Predicates. Logs directly on error. * * [5] Step ::= '@'? NodeTest Predicate* | '.' | '..' * [6] NodeTest ::= NameTest | NodeType '(' ')' * [7] NameTest ::= '*' | NCName ':' '*' | QName * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] axis What axis to search on. * @param[in] all_desc Whether to search all the descendants or children only. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when, LY_ENOT for not found schema node) */ static LY_ERR eval_name_test_with_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_axis axis, ly_bool all_desc, struct lyxp_set *set, uint32_t options) { LY_ERR rc = LY_SUCCESS, r; const char *ncname, *ncname_dict = NULL; uint32_t i, ncname_len; const struct lys_module *moveto_mod = NULL; const struct lysc_node *scnode = NULL; struct ly_path_predicate *predicates = NULL; enum ly_path_pred_type pred_type = 0; int scnode_skip_pred = 0; LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { goto moveto; } ncname = &exp->expr[exp->tok_pos[*tok_idx - 1]]; ncname_len = exp->tok_len[*tok_idx - 1]; if ((ncname[0] == '*') && (ncname_len == 1)) { /* all nodes will match */ goto moveto; } /* parse (and skip) module name */ rc = moveto_resolve_model(&ncname, &ncname_len, set, NULL, &moveto_mod); LY_CHECK_GOTO(rc, cleanup); if ((ncname[0] == '*') && (ncname_len == 1)) { /* all nodes from the module will match */ goto moveto; } if (((set->format == LY_VALUE_JSON) || moveto_mod) && (axis == LYXP_AXIS_CHILD) && !all_desc && (set->type == LYXP_SET_NODE_SET)) { /* find the matching schema node in some parent in the context */ for (i = 0; i < set->used; ++i) { if (eval_name_test_with_predicate_get_scnode(set->ctx, set->val.nodes[i].node, ncname, ncname_len, moveto_mod, set->root_type, set->format, &scnode)) { /* check failed */ scnode = NULL; break; } } if (scnode && (scnode->nodetype & (LYS_LIST | LYS_LEAFLIST))) { /* try to create the predicates */ if (eval_name_test_try_compile_predicates(exp, tok_idx, scnode, set, &predicates, &pred_type)) { /* hashes cannot be used */ scnode = NULL; } } } if (!scnode) { /* we are not able to match based on a schema node and not all the modules match ("*"), * use dictionary for efficient comparison */ LY_CHECK_GOTO(rc = lydict_insert(set->ctx, ncname, ncname_len, &ncname_dict), cleanup); } moveto: /* move to the attribute(s), data node(s), or schema node(s) */ if (axis == LYXP_AXIS_ATTRIBUTE) { if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); } else { if (all_desc) { rc = moveto_attr_alldesc(set, moveto_mod, ncname_dict, options); } else { rc = moveto_attr(set, moveto_mod, ncname_dict, options); } LY_CHECK_GOTO(rc, cleanup); } } else { if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) { const struct lyxp_set_scnode *scparent = NULL; ly_bool found = 0; /* remember parent if there is only one, to print in the warning */ for (i = 0; i < set->used; ++i) { if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) { if (!scparent) { /* remember the context node */ scparent = &set->val.scnodes[i]; } else { /* several context nodes, no reasonable error possible */ scparent = NULL; break; } } } if (all_desc && (axis == LYXP_AXIS_CHILD)) { /* efficient evaluation that does not add all the descendants into the set */ rc = moveto_scnode_alldesc_child(set, moveto_mod, ncname_dict, options); } else { if (all_desc) { /* "//" == "/descendant-or-self::node()/" */ rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options); LY_CHECK_GOTO(rc, cleanup); } rc = moveto_scnode(set, moveto_mod, ncname_dict, axis, options); } LY_CHECK_GOTO(rc, cleanup); i = set->used; do { --i; if (set->val.scnodes[i].in_ctx > LYXP_SET_SCNODE_ATOM_NODE) { found = 1; break; } } while (i); if (!found) { /* generate message */ eval_name_test_scnode_no_match_msg(set, scparent, ncname, ncname_len, exp->expr, options); if (options & LYXP_SCNODE_ERROR) { /* error */ rc = LY_EVALID; goto cleanup; } /* skip the predicates and the rest of this path to not generate invalid warnings */ rc = LY_ENOT; scnode_skip_pred = 1; } } else { if (all_desc && (axis == LYXP_AXIS_CHILD)) { /* efficient evaluation */ rc = moveto_node_alldesc_child(set, moveto_mod, ncname_dict, options); } else if (scnode && (axis == LYXP_AXIS_CHILD)) { /* we can find the child nodes using hashes */ rc = moveto_node_hash_child(set, scnode, predicates, options); } else { if (all_desc) { /* "//" == "/descendant-or-self::node()/" */ rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options); LY_CHECK_GOTO(rc, cleanup); } rc = moveto_node(set, moveto_mod, ncname_dict, axis, options); } LY_CHECK_GOTO(rc, cleanup); } } if (scnode_skip_pred) { /* skip predicates */ options |= LYXP_SKIP_EXPR; } /* Predicate* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) { r = eval_predicate(exp, tok_idx, set, options, axis); LY_CHECK_ERR_GOTO(r, rc = r, cleanup); } cleanup: if (scnode_skip_pred) { /* restore options */ options &= ~LYXP_SKIP_EXPR; } if (!(options & LYXP_SKIP_EXPR)) { lydict_remove(set->ctx, ncname_dict); ly_path_predicates_free(set->ctx, pred_type, predicates); } return rc; } /** * @brief Evaluate NodeType and any following Predicates. Logs directly on error. * * [5] Step ::= '@'? NodeTest Predicate* | '.' | '..' * [6] NodeTest ::= NameTest | NodeType '(' ')' * [8] NodeType ::= 'text' | 'node' * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] axis Axis to search on. * @param[in] all_desc Whether to search all the descendants or axis only. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_node_type_with_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_axis axis, ly_bool all_desc, struct lyxp_set *set, uint32_t options) { LY_ERR rc; (void)all_desc; if (!(options & LYXP_SKIP_EXPR)) { assert(exp->tok_len[*tok_idx] == 4); if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "node", 4)) { rc = xpath_pi_node(set, axis, options); } else { assert(!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "text", 4)); rc = xpath_pi_text(set, axis, options); } LY_CHECK_RET(rc); } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* '(' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR1); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* ')' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* Predicate* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) { rc = eval_predicate(exp, tok_idx, set, options, axis); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Evaluate RelativeLocationPath. Logs directly on error. * * [4] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step * [5] Step ::= '@'? NodeTest Predicate* | '.' | '..' * [6] NodeTest ::= NameTest | NodeType '(' ')' * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] all_desc Whether to search all the descendants or children only. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (YL_EINCOMPLETE on unresolved when) */ static LY_ERR eval_relative_location_path(const struct lyxp_expr *exp, uint32_t *tok_idx, ly_bool all_desc, struct lyxp_set *set, uint32_t options) { LY_ERR rc = LY_SUCCESS; enum lyxp_axis axis; int scnode_skip_path = 0; goto step; do { /* evaluate '/' or '//' */ if (exp->tok_len[*tok_idx] == 1) { all_desc = 0; } else { assert(exp->tok_len[*tok_idx] == 2); all_desc = 1; } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); step: /* AxisSpecifier */ if (exp->tokens[*tok_idx] == LYXP_TOKEN_AXISNAME) { axis = str2axis(exp->expr + exp->tok_pos[*tok_idx], exp->tok_len[*tok_idx]); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); assert(exp->tokens[*tok_idx] == LYXP_TOKEN_DCOLON); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); } else if (exp->tokens[*tok_idx] == LYXP_TOKEN_AT) { axis = LYXP_AXIS_ATTRIBUTE; LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); } else { /* default */ axis = LYXP_AXIS_CHILD; } /* NodeTest Predicate* */ switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_DOT: /* evaluate '.' */ if (!(options & LYXP_SKIP_EXPR)) { if (((options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_SCNODE_SET)) || (!(options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_NODE_SET))) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); rc = LY_EVALID; goto cleanup; } if (all_desc) { rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options); LY_CHECK_GOTO(rc, cleanup); } rc = xpath_pi_node(set, LYXP_AXIS_SELF, options); LY_CHECK_GOTO(rc, cleanup); } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); break; case LYXP_TOKEN_DDOT: /* evaluate '..' */ if (!(options & LYXP_SKIP_EXPR)) { if (((options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_SCNODE_SET)) || (!(options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_NODE_SET))) { LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set)); rc = LY_EVALID; goto cleanup; } if (all_desc) { rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options); LY_CHECK_GOTO(rc, cleanup); } rc = xpath_pi_node(set, LYXP_AXIS_PARENT, options); LY_CHECK_GOTO(rc, cleanup); } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); break; case LYXP_TOKEN_NAMETEST: /* evaluate NameTest Predicate* */ rc = eval_name_test_with_predicate(exp, tok_idx, axis, all_desc, set, options); if (rc == LY_ENOT) { assert(options & LYXP_SCNODE_ALL); /* skip the rest of this path */ rc = LY_SUCCESS; scnode_skip_path = 1; options |= LYXP_SKIP_EXPR; } LY_CHECK_GOTO(rc, cleanup); break; case LYXP_TOKEN_NODETYPE: /* evaluate NodeType Predicate* */ rc = eval_node_type_with_predicate(exp, tok_idx, axis, all_desc, set, options); LY_CHECK_GOTO(rc, cleanup); break; default: LOGINT(set->ctx); rc = LY_EINT; goto cleanup; } } while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)); cleanup: if (scnode_skip_path) { options &= ~LYXP_SKIP_EXPR; } return rc; } /** * @brief Evaluate AbsoluteLocationPath. Logs directly on error. * * [3] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_absolute_location_path(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options) { ly_bool all_desc; if (!(options & LYXP_SKIP_EXPR)) { /* no matter what tokens follow, we need to be at the root */ LY_CHECK_RET(moveto_root(set, options)); } /* '/' RelativeLocationPath? */ if (exp->tok_len[*tok_idx] == 1) { /* evaluate '/' - deferred */ all_desc = 0; LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_NONE)) { return LY_SUCCESS; } switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_DOT: case LYXP_TOKEN_DDOT: case LYXP_TOKEN_AXISNAME: case LYXP_TOKEN_AT: case LYXP_TOKEN_NAMETEST: case LYXP_TOKEN_NODETYPE: LY_CHECK_RET(eval_relative_location_path(exp, tok_idx, all_desc, set, options)); break; default: break; } } else { /* '//' RelativeLocationPath */ /* evaluate '//' - deferred so as not to waste memory by remembering all the nodes */ all_desc = 1; LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); LY_CHECK_RET(eval_relative_location_path(exp, tok_idx, all_desc, set, options)); } return LY_SUCCESS; } /** * @brief Evaluate FunctionCall. Logs directly on error. * * [11] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')' * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_function_call(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options) { LY_ERR rc; LY_ERR (*xpath_func)(struct lyxp_set **, uint32_t, struct lyxp_set *, uint32_t) = NULL; uint32_t arg_count = 0, i; struct lyxp_set **args = NULL, **args_aux; if (!(options & LYXP_SKIP_EXPR)) { /* FunctionName */ switch (exp->tok_len[*tok_idx]) { case 3: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "not", 3)) { xpath_func = &xpath_not; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "sum", 3)) { xpath_func = &xpath_sum; } break; case 4: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "lang", 4)) { xpath_func = &xpath_lang; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "last", 4)) { xpath_func = &xpath_last; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "name", 4)) { xpath_func = &xpath_name; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "true", 4)) { xpath_func = &xpath_true; } break; case 5: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "count", 5)) { xpath_func = &xpath_count; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "false", 5)) { xpath_func = &xpath_false; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "floor", 5)) { xpath_func = &xpath_floor; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "round", 5)) { xpath_func = &xpath_round; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "deref", 5)) { xpath_func = &xpath_deref; } break; case 6: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "concat", 6)) { xpath_func = &xpath_concat; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "number", 6)) { xpath_func = &xpath_number; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string", 6)) { xpath_func = &xpath_string; } break; case 7: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "boolean", 7)) { xpath_func = &xpath_boolean; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "ceiling", 7)) { xpath_func = &xpath_ceiling; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "current", 7)) { xpath_func = &xpath_current; } break; case 8: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "contains", 8)) { xpath_func = &xpath_contains; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "position", 8)) { xpath_func = &xpath_position; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "re-match", 8)) { xpath_func = &xpath_re_match; } break; case 9: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring", 9)) { xpath_func = &xpath_substring; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "translate", 9)) { xpath_func = &xpath_translate; } break; case 10: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "local-name", 10)) { xpath_func = &xpath_local_name; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "enum-value", 10)) { xpath_func = &xpath_enum_value; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "bit-is-set", 10)) { xpath_func = &xpath_bit_is_set; } break; case 11: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "starts-with", 11)) { xpath_func = &xpath_starts_with; } break; case 12: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from", 12)) { xpath_func = &xpath_derived_from; } break; case 13: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "namespace-uri", 13)) { xpath_func = &xpath_namespace_uri; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string-length", 13)) { xpath_func = &xpath_string_length; } break; case 15: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "normalize-space", 15)) { xpath_func = &xpath_normalize_space; } else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-after", 15)) { xpath_func = &xpath_substring_after; } break; case 16: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-before", 16)) { xpath_func = &xpath_substring_before; } break; case 20: if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from-or-self", 20)) { xpath_func = &xpath_derived_from_or_self; } break; } if (!xpath_func) { LOGVAL(set->ctx, LY_VCODE_XP_INFUNC, exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* '(' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR1); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* ( Expr ( ',' Expr )* )? */ if (exp->tokens[*tok_idx] != LYXP_TOKEN_PAR2) { if (!(options & LYXP_SKIP_EXPR)) { args = malloc(sizeof *args); LY_CHECK_ERR_GOTO(!args, LOGMEM(set->ctx); rc = LY_EMEM, cleanup); arg_count = 1; args[0] = set_copy(set); if (!args[0]) { rc = LY_EMEM; goto cleanup; } rc = eval_expr_select(exp, tok_idx, 0, args[0], options); LY_CHECK_GOTO(rc, cleanup); } else { rc = eval_expr_select(exp, tok_idx, 0, set, options | LYXP_SKIP_EXPR); LY_CHECK_GOTO(rc, cleanup); } } while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_COMMA)) { LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (!(options & LYXP_SKIP_EXPR)) { ++arg_count; args_aux = realloc(args, arg_count * sizeof *args); LY_CHECK_ERR_GOTO(!args_aux, arg_count--; LOGMEM(set->ctx); rc = LY_EMEM, cleanup); args = args_aux; args[arg_count - 1] = set_copy(set); if (!args[arg_count - 1]) { rc = LY_EMEM; goto cleanup; } rc = eval_expr_select(exp, tok_idx, 0, args[arg_count - 1], options); LY_CHECK_GOTO(rc, cleanup); } else { rc = eval_expr_select(exp, tok_idx, 0, set, options | LYXP_SKIP_EXPR); LY_CHECK_GOTO(rc, cleanup); } } /* ')' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (!(options & LYXP_SKIP_EXPR)) { /* evaluate function */ rc = xpath_func(args, arg_count, set, options); if (options & LYXP_SCNODE_ALL) { /* merge all nodes from arg evaluations */ for (i = 0; i < arg_count; ++i) { set_scnode_clear_ctx(args[i], LYXP_SET_SCNODE_ATOM_NODE); lyxp_set_scnode_merge(set, args[i]); } } } else { rc = LY_SUCCESS; } cleanup: for (i = 0; i < arg_count; ++i) { lyxp_set_free(args[i]); } free(args); return rc; } /** * @brief Evaluate Number. Logs directly on error. * * @param[in] ctx Context for errors. * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. On NULL the rule is only parsed. * @return LY_ERR */ static LY_ERR eval_number(struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set) { long double num; char *endptr; if (set) { errno = 0; num = strtold(&exp->expr[exp->tok_pos[*tok_idx]], &endptr); if (errno) { LOGVAL(ctx, LY_VCODE_XP_INTOK, "Unknown", &exp->expr[exp->tok_pos[*tok_idx]]); LOGVAL(ctx, LYVE_XPATH, "Failed to convert \"%.*s\" into a long double (%s).", exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]], strerror(errno)); return LY_EVALID; } else if (endptr - &exp->expr[exp->tok_pos[*tok_idx]] != exp->tok_len[*tok_idx]) { LOGVAL(ctx, LY_VCODE_XP_INTOK, "Unknown", &exp->expr[exp->tok_pos[*tok_idx]]); LOGVAL(ctx, LYVE_XPATH, "Failed to convert \"%.*s\" into a long double.", exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } set_fill_number(set, num); } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); return LY_SUCCESS; } LY_ERR lyxp_vars_find(struct lyxp_var *vars, const char *name, size_t name_len, struct lyxp_var **var) { LY_ERR ret = LY_ENOTFOUND; LY_ARRAY_COUNT_TYPE u; assert(vars && name); name_len = name_len ? name_len : strlen(name); LY_ARRAY_FOR(vars, u) { if (!strncmp(vars[u].name, name, name_len)) { ret = LY_SUCCESS; break; } } if (var && !ret) { *var = &vars[u]; } return ret; } /** * @brief Evaluate VariableReference. * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] vars [Sized array](@ref sizedarrays) of XPath variables. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR value. */ static LY_ERR eval_variable_reference(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options) { LY_ERR ret; const char *name; struct lyxp_var *var; const struct lyxp_var *vars; struct lyxp_expr *tokens = NULL; uint32_t token_index, name_len; vars = set->vars; /* find out the name and value of the variable */ name = &exp->expr[exp->tok_pos[*tok_idx]]; name_len = exp->tok_len[*tok_idx]; ret = lyxp_vars_find((struct lyxp_var *)vars, name, name_len, &var); LY_CHECK_ERR_RET(ret, LOGERR(set->ctx, ret, "XPath variable \"%.*s\" not defined.", (int)name_len, name), ret); /* parse value */ ret = lyxp_expr_parse(set->ctx, var->value, 0, 1, &tokens); LY_CHECK_GOTO(ret, cleanup); /* evaluate value */ token_index = 0; ret = eval_expr_select(tokens, &token_index, 0, set, options); LY_CHECK_GOTO(ret, cleanup); cleanup: lyxp_expr_free(set->ctx, tokens); return ret; } /** * @brief Evaluate PathExpr. Logs directly on error. * * [12] PathExpr ::= LocationPath | PrimaryExpr Predicate* * | PrimaryExpr Predicate* '/' RelativeLocationPath * | PrimaryExpr Predicate* '//' RelativeLocationPath * [2] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath * [10] PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_path_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options) { ly_bool all_desc; LY_ERR rc; switch (exp->tokens[*tok_idx]) { case LYXP_TOKEN_PAR1: /* '(' Expr ')' */ /* '(' */ LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* Expr */ rc = eval_expr_select(exp, tok_idx, 0, set, options); LY_CHECK_RET(rc); /* ')' */ assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); goto predicate; case LYXP_TOKEN_DOT: case LYXP_TOKEN_DDOT: case LYXP_TOKEN_AXISNAME: case LYXP_TOKEN_AT: case LYXP_TOKEN_NAMETEST: case LYXP_TOKEN_NODETYPE: /* RelativeLocationPath */ rc = eval_relative_location_path(exp, tok_idx, 0, set, options); LY_CHECK_RET(rc); break; case LYXP_TOKEN_VARREF: /* VariableReference */ rc = eval_variable_reference(exp, tok_idx, set, options); LY_CHECK_RET(rc); ++(*tok_idx); goto predicate; case LYXP_TOKEN_FUNCNAME: /* FunctionCall */ rc = eval_function_call(exp, tok_idx, set, options); LY_CHECK_RET(rc); goto predicate; case LYXP_TOKEN_OPER_PATH: case LYXP_TOKEN_OPER_RPATH: /* AbsoluteLocationPath */ rc = eval_absolute_location_path(exp, tok_idx, set, options); LY_CHECK_RET(rc); break; case LYXP_TOKEN_LITERAL: /* Literal */ if ((options & LYXP_SKIP_EXPR) || (options & LYXP_SCNODE_ALL)) { if (!(options & LYXP_SKIP_EXPR)) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } eval_literal(exp, tok_idx, NULL); } else { eval_literal(exp, tok_idx, set); } goto predicate; case LYXP_TOKEN_NUMBER: /* Number */ if ((options & LYXP_SKIP_EXPR) || (options & LYXP_SCNODE_ALL)) { if (!(options & LYXP_SKIP_EXPR)) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } rc = eval_number(NULL, exp, tok_idx, NULL); } else { rc = eval_number(set->ctx, exp, tok_idx, set); } LY_CHECK_RET(rc); goto predicate; default: LOGVAL(set->ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]); return LY_EVALID; } return LY_SUCCESS; predicate: /* Predicate* */ while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) { rc = eval_predicate(exp, tok_idx, set, options, LYXP_AXIS_CHILD); LY_CHECK_RET(rc); } /* ('/' or '//') RelativeLocationPath */ if (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)) { /* evaluate '/' or '//' */ if (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_PATH) { all_desc = 0; } else { all_desc = 1; } LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); rc = eval_relative_location_path(exp, tok_idx, all_desc, set, options); LY_CHECK_RET(rc); } return LY_SUCCESS; } /** * @brief Evaluate UnionExpr. Logs directly on error. * * [20] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_union_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc = LY_SUCCESS; struct lyxp_set orig_set, set2; uint32_t i; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, set, options); LY_CHECK_GOTO(rc, cleanup); /* ('|' PathExpr)* */ for (i = 0; i < repeat; ++i) { assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_UNI); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, set, options); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval */ if (options & LYXP_SCNODE_ALL) { lyxp_set_scnode_merge(set, &set2); } else { rc = moveto_union(set, &set2); LY_CHECK_GOTO(rc, cleanup); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate UnaryExpr. Logs directly on error. * * [19] UnaryExpr ::= UnionExpr | '-' UnaryExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_unary_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; uint32_t this_op, i; assert(repeat); /* ('-')+ */ this_op = *tok_idx; for (i = 0; i < repeat; ++i) { assert(!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) && (exp->expr[exp->tok_pos[*tok_idx]] == '-')); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); } rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNARY, set, options); LY_CHECK_RET(rc); if (!(options & LYXP_SKIP_EXPR) && (repeat % 2)) { if (options & LYXP_SCNODE_ALL) { warn_operands(set->ctx, set, NULL, 1, exp->expr, exp->tok_pos[this_op]); } else { rc = moveto_op_math(set, NULL, &exp->expr[exp->tok_pos[this_op]]); LY_CHECK_RET(rc); } } return LY_SUCCESS; } /** * @brief Evaluate MultiplicativeExpr. Logs directly on error. * * [18] MultiplicativeExpr ::= UnaryExpr * | MultiplicativeExpr '*' UnaryExpr * | MultiplicativeExpr 'div' UnaryExpr * | MultiplicativeExpr 'mod' UnaryExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_multiplicative_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; uint32_t i, this_op; struct lyxp_set orig_set, set2; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, set, options); LY_CHECK_GOTO(rc, cleanup); /* ('*' / 'div' / 'mod' UnaryExpr)* */ for (i = 0; i < repeat; ++i) { this_op = *tok_idx; assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_MATH); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, set, options); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval */ if (options & LYXP_SCNODE_ALL) { warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]); lyxp_set_scnode_merge(set, &set2); set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } else { rc = moveto_op_math(set, &set2, &exp->expr[exp->tok_pos[this_op]]); LY_CHECK_GOTO(rc, cleanup); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate AdditiveExpr. Logs directly on error. * * [17] AdditiveExpr ::= MultiplicativeExpr * | AdditiveExpr '+' MultiplicativeExpr * | AdditiveExpr '-' MultiplicativeExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_additive_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; uint32_t i, this_op; struct lyxp_set orig_set, set2; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, set, options); LY_CHECK_GOTO(rc, cleanup); /* ('+' / '-' MultiplicativeExpr)* */ for (i = 0; i < repeat; ++i) { this_op = *tok_idx; assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_MATH); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, set, options); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval */ if (options & LYXP_SCNODE_ALL) { warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]); lyxp_set_scnode_merge(set, &set2); set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } else { rc = moveto_op_math(set, &set2, &exp->expr[exp->tok_pos[this_op]]); LY_CHECK_GOTO(rc, cleanup); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate RelationalExpr. Logs directly on error. * * [16] RelationalExpr ::= AdditiveExpr * | RelationalExpr '<' AdditiveExpr * | RelationalExpr '>' AdditiveExpr * | RelationalExpr '<=' AdditiveExpr * | RelationalExpr '>=' AdditiveExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_relational_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; uint32_t i, this_op; struct lyxp_set orig_set, set2; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, set, options); LY_CHECK_GOTO(rc, cleanup); /* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */ for (i = 0; i < repeat; ++i) { this_op = *tok_idx; assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_COMP); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, set, options); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval */ if (options & LYXP_SCNODE_ALL) { warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]); lyxp_set_scnode_merge(set, &set2); set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } else { ly_bool result; rc = moveto_op_comp(set, &set2, &exp->expr[exp->tok_pos[this_op]], &result); LY_CHECK_GOTO(rc, cleanup); set_fill_boolean(set, result); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate EqualityExpr. Logs directly on error. * * [15] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr * | EqualityExpr '!=' RelationalExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_equality_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; uint32_t i, this_op; struct lyxp_set orig_set, set2; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, set, options); LY_CHECK_GOTO(rc, cleanup); /* ('=' / '!=' RelationalExpr)* */ for (i = 0; i < repeat; ++i) { this_op = *tok_idx; assert((exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_EQUAL) || (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_NEQUAL)); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); if (options & LYXP_SKIP_EXPR) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, set, options); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval */ if (options & LYXP_SCNODE_ALL) { warn_operands(set->ctx, set, &set2, 0, exp->expr, exp->tok_pos[this_op - 1]); warn_equality_value(exp, set, *tok_idx - 1, this_op - 1, *tok_idx - 1); warn_equality_value(exp, &set2, this_op - 1, this_op - 1, *tok_idx - 1); lyxp_set_scnode_merge(set, &set2); set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL); } else { ly_bool result; rc = moveto_op_comp(set, &set2, &exp->expr[exp->tok_pos[this_op]], &result); LY_CHECK_GOTO(rc, cleanup); set_fill_boolean(set, result); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate AndExpr. Logs directly on error. * * [14] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_and_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; struct lyxp_set orig_set, set2; uint32_t i; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, set, options); LY_CHECK_GOTO(rc, cleanup); /* cast to boolean, we know that will be the final result */ if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); } else { lyxp_set_cast(set, LYXP_SET_BOOLEAN); } /* ('and' EqualityExpr)* */ for (i = 0; i < repeat; ++i) { assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_LOG); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, ((options & LYXP_SKIP_EXPR) || !set->val.bln ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* lazy evaluation */ if ((options & LYXP_SKIP_EXPR) || ((set->type == LYXP_SET_BOOLEAN) && !set->val.bln)) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, set, options | LYXP_SKIP_EXPR); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval - just get boolean value actually */ if (set->type == LYXP_SET_SCNODE_SET) { set_scnode_clear_ctx(&set2, LYXP_SET_SCNODE_ATOM_NODE); lyxp_set_scnode_merge(set, &set2); } else { lyxp_set_cast(&set2, LYXP_SET_BOOLEAN); set_fill_set(set, &set2); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Evaluate OrExpr. Logs directly on error. * * [13] OrExpr ::= AndExpr | OrExpr 'or' AndExpr * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] repeat How many times this expression is repeated. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_or_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options) { LY_ERR rc; struct lyxp_set orig_set, set2; uint32_t i; assert(repeat); set_init(&orig_set, set); set_init(&set2, set); set_fill_set(&orig_set, set); rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, set, options); LY_CHECK_GOTO(rc, cleanup); /* cast to boolean, we know that will be the final result */ if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) { set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE); } else { lyxp_set_cast(set, LYXP_SET_BOOLEAN); } /* ('or' AndExpr)* */ for (i = 0; i < repeat; ++i) { assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_LOG); LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, ((options & LYXP_SKIP_EXPR) || set->val.bln ? "skipped" : "parsed"), lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]); ++(*tok_idx); /* lazy evaluation */ if ((options & LYXP_SKIP_EXPR) || ((set->type == LYXP_SET_BOOLEAN) && set->val.bln)) { rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, set, options | LYXP_SKIP_EXPR); LY_CHECK_GOTO(rc, cleanup); continue; } set_fill_set(&set2, &orig_set); /* expr_type cound have been LYXP_EXPR_NONE in all these later calls (except for the first one), * but it does not matter */ rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, &set2, options); LY_CHECK_GOTO(rc, cleanup); /* eval - just get boolean value actually */ if (set->type == LYXP_SET_SCNODE_SET) { set_scnode_clear_ctx(&set2, LYXP_SET_SCNODE_ATOM_NODE); lyxp_set_scnode_merge(set, &set2); } else { lyxp_set_cast(&set2, LYXP_SET_BOOLEAN); set_fill_set(set, &set2); } } cleanup: lyxp_set_free_content(&orig_set); lyxp_set_free_content(&set2); return rc; } /** * @brief Decide what expression is at the pointer @p tok_idx and evaluate it accordingly. * * @param[in] exp Parsed XPath expression. * @param[in] tok_idx Position in the expression @p exp. * @param[in] etype Expression type to evaluate. * @param[in,out] set Context and result set. * @param[in] options XPath options. * @return LY_ERR (LY_EINCOMPLETE on unresolved when) */ static LY_ERR eval_expr_select(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_expr_type etype, struct lyxp_set *set, uint32_t options) { uint32_t i, count; enum lyxp_expr_type next_etype; LY_ERR rc; /* process operator repeats */ if (!exp->repeat[*tok_idx]) { next_etype = LYXP_EXPR_NONE; } else { /* find etype repeat */ for (i = 0; exp->repeat[*tok_idx][i] > etype; ++i) {} /* select one-priority lower because etype expression called us */ if (i) { next_etype = exp->repeat[*tok_idx][i - 1]; /* count repeats for that expression */ for (count = 0; i && exp->repeat[*tok_idx][i - 1] == next_etype; ++count, --i) {} } else { next_etype = LYXP_EXPR_NONE; } } /* decide what expression are we parsing based on the repeat */ switch (next_etype) { case LYXP_EXPR_OR: rc = eval_or_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_AND: rc = eval_and_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_EQUALITY: rc = eval_equality_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_RELATIONAL: rc = eval_relational_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_ADDITIVE: rc = eval_additive_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_MULTIPLICATIVE: rc = eval_multiplicative_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_UNARY: rc = eval_unary_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_UNION: rc = eval_union_expr(exp, tok_idx, count, set, options); break; case LYXP_EXPR_NONE: rc = eval_path_expr(exp, tok_idx, set, options); break; default: LOGINT_RET(set->ctx); } return rc; } /** * @brief Get root type. * * @param[in] ctx_node Context node. * @param[in] ctx_scnode Schema context node. * @param[in] options XPath options. * @return Root type. */ static enum lyxp_node_type lyxp_get_root_type(const struct lyd_node *ctx_node, const struct lysc_node *ctx_scnode, uint32_t options) { const struct lysc_node *op; /* explicit */ if (options & LYXP_ACCESS_TREE_ALL) { return LYXP_NODE_ROOT; } else if (options & LYXP_ACCESS_TREE_CONFIG) { return LYXP_NODE_ROOT_CONFIG; } if (options & LYXP_SCNODE_ALL) { /* schema */ for (op = ctx_scnode; op && !(op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); op = op->parent) {} if (op || (options & LYXP_SCNODE)) { /* general root that can access everything */ return LYXP_NODE_ROOT; } else if (!ctx_scnode || (ctx_scnode->flags & LYS_CONFIG_W)) { /* root context node can access only config data (because we said so, it is unspecified) */ return LYXP_NODE_ROOT_CONFIG; } return LYXP_NODE_ROOT; } /* data */ op = ctx_node ? ctx_node->schema : NULL; for ( ; op && !(op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); op = op->parent) {} if (op || !(options & LYXP_SCHEMA)) { /* general root that can access everything */ return LYXP_NODE_ROOT; } else if (!ctx_node || !ctx_node->schema || (ctx_node->schema->flags & LYS_CONFIG_W)) { /* root context node can access only config data (because we said so, it is unspecified) */ return LYXP_NODE_ROOT_CONFIG; } return LYXP_NODE_ROOT; } LY_ERR lyxp_eval(const struct ly_ctx *ctx, const struct lyxp_expr *exp, const struct lys_module *cur_mod, LY_VALUE_FORMAT format, void *prefix_data, const struct lyd_node *cur_node, const struct lyd_node *ctx_node, const struct lyd_node *tree, const struct lyxp_var *vars, struct lyxp_set *set, uint32_t options) { uint32_t tok_idx = 0; LY_ERR rc; LY_CHECK_ARG_RET(ctx, ctx, exp, set, LY_EINVAL); if (!cur_mod && ((format == LY_VALUE_SCHEMA) || (format == LY_VALUE_SCHEMA_RESOLVED))) { LOGERR(ctx, LY_EINVAL, "Current module must be set if schema format is used."); return LY_EINVAL; } if (tree) { /* adjust the pointer to be the first top-level sibling */ while (tree->parent) { tree = lyd_parent(tree); } tree = lyd_first_sibling(tree); if (lysc_data_parent(tree->schema)) { /* unable to evaluate absolute paths */ LOGERR(ctx, LY_EINVAL, "Data node \"%s\" has no parent but is not instance of a top-level schema node.", LYD_NAME(tree)); return LY_EINVAL; } } /* prepare set for evaluation */ memset(set, 0, sizeof *set); set->type = LYXP_SET_NODE_SET; set->root_type = lyxp_get_root_type(ctx_node, NULL, options); set_insert_node(set, (struct lyd_node *)ctx_node, 0, ctx_node ? LYXP_NODE_ELEM : set->root_type, 0); set->ctx = (struct ly_ctx *)ctx; set->cur_node = cur_node; for (set->context_op = cur_node ? cur_node->schema : NULL; set->context_op && !(set->context_op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); set->context_op = set->context_op->parent) {} set->tree = tree; set->cur_mod = cur_mod; set->format = format; set->prefix_data = prefix_data; set->vars = vars; LOG_LOCSET(NULL, set->cur_node, NULL, NULL); /* evaluate */ rc = eval_expr_select(exp, &tok_idx, 0, set, options); if (rc != LY_SUCCESS) { lyxp_set_free_content(set); } if (set->cur_node) { LOG_LOCBACK(0, 1, 0, 0); } return rc; } #if 0 /* full xml printing of set elements, not used currently */ void lyxp_set_print_xml(FILE *f, struct lyxp_set *set) { uint32_t i; char *str_num; struct lyout out; memset(&out, 0, sizeof out); out.type = LYOUT_STREAM; out.method.f = f; switch (set->type) { case LYXP_SET_EMPTY: ly_print_(&out, "Empty XPath set\n\n"); break; case LYXP_SET_BOOLEAN: ly_print_(&out, "Boolean XPath set:\n"); ly_print_(&out, "%s\n\n", set->value.bool ? "true" : "false"); break; case LYXP_SET_STRING: ly_print_(&out, "String XPath set:\n"); ly_print_(&out, "\"%s\"\n\n", set->value.str); break; case LYXP_SET_NUMBER: ly_print_(&out, "Number XPath set:\n"); if (isnan(set->value.num)) { str_num = strdup("NaN"); } else if ((set->value.num == 0) || (set->value.num == -0.0f)) { str_num = strdup("0"); } else if (isinf(set->value.num) && !signbit(set->value.num)) { str_num = strdup("Infinity"); } else if (isinf(set->value.num) && signbit(set->value.num)) { str_num = strdup("-Infinity"); } else if ((long long)set->value.num == set->value.num) { if (asprintf(&str_num, "%lld", (long long)set->value.num) == -1) { str_num = NULL; } } else { if (asprintf(&str_num, "%03.1Lf", set->value.num) == -1) { str_num = NULL; } } if (!str_num) { LOGMEM; return; } ly_print_(&out, "%s\n\n", str_num); free(str_num); break; case LYXP_SET_NODE_SET: ly_print_(&out, "Node XPath set:\n"); for (i = 0; i < set->used; ++i) { ly_print_(&out, "%d. ", i + 1); switch (set->node_type[i]) { case LYXP_NODE_ROOT_ALL: ly_print_(&out, "ROOT all\n\n"); break; case LYXP_NODE_ROOT_CONFIG: ly_print_(&out, "ROOT config\n\n"); break; case LYXP_NODE_ROOT_STATE: ly_print_(&out, "ROOT state\n\n"); break; case LYXP_NODE_ROOT_NOTIF: ly_print_(&out, "ROOT notification \"%s\"\n\n", set->value.nodes[i]->schema->name); break; case LYXP_NODE_ROOT_RPC: ly_print_(&out, "ROOT rpc \"%s\"\n\n", set->value.nodes[i]->schema->name); break; case LYXP_NODE_ROOT_OUTPUT: ly_print_(&out, "ROOT output \"%s\"\n\n", set->value.nodes[i]->schema->name); break; case LYXP_NODE_ELEM: ly_print_(&out, "ELEM \"%s\"\n", set->value.nodes[i]->schema->name); xml_print_node(&out, 1, set->value.nodes[i], 1, LYP_FORMAT); ly_print_(&out, "\n"); break; case LYXP_NODE_TEXT: ly_print_(&out, "TEXT \"%s\"\n\n", ((struct lyd_node_leaf_list *)set->value.nodes[i])->value_str); break; case LYXP_NODE_ATTR: ly_print_(&out, "ATTR \"%s\" = \"%s\"\n\n", set->value.attrs[i]->name, set->value.attrs[i]->value); break; } } break; } } #endif LY_ERR lyxp_set_cast(struct lyxp_set *set, enum lyxp_set_type target) { long double num; char *str; LY_ERR rc; if (!set || (set->type == target)) { return LY_SUCCESS; } /* it's not possible to convert anything into a node set */ assert(target != LYXP_SET_NODE_SET); if (set->type == LYXP_SET_SCNODE_SET) { lyxp_set_free_content(set); return LY_EINVAL; } /* to STRING */ if ((target == LYXP_SET_STRING) || ((target == LYXP_SET_NUMBER) && (set->type == LYXP_SET_NODE_SET))) { switch (set->type) { case LYXP_SET_NUMBER: if (isnan(set->val.num)) { set->val.str = strdup("NaN"); LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1); } else if ((set->val.num == 0) || (set->val.num == -0.0f)) { set->val.str = strdup("0"); LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1); } else if (isinf(set->val.num) && !signbit(set->val.num)) { set->val.str = strdup("Infinity"); LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1); } else if (isinf(set->val.num) && signbit(set->val.num)) { set->val.str = strdup("-Infinity"); LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1); } else if ((long long)set->val.num == set->val.num) { if (asprintf(&str, "%lld", (long long)set->val.num) == -1) { LOGMEM_RET(set->ctx); } set->val.str = str; } else { if (asprintf(&str, "%03.1Lf", set->val.num) == -1) { LOGMEM_RET(set->ctx); } set->val.str = str; } break; case LYXP_SET_BOOLEAN: if (set->val.bln) { set->val.str = strdup("true"); } else { set->val.str = strdup("false"); } LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), LY_EMEM); break; case LYXP_SET_NODE_SET: /* we need the set sorted, it affects the result */ assert(!set_sort(set)); rc = cast_node_set_to_string(set, &str); LY_CHECK_RET(rc); lyxp_set_free_content(set); set->val.str = str; break; default: LOGINT_RET(set->ctx); } set->type = LYXP_SET_STRING; } /* to NUMBER */ if (target == LYXP_SET_NUMBER) { switch (set->type) { case LYXP_SET_STRING: num = cast_string_to_number(set->val.str); lyxp_set_free_content(set); set->val.num = num; break; case LYXP_SET_BOOLEAN: if (set->val.bln) { set->val.num = 1; } else { set->val.num = 0; } break; default: LOGINT_RET(set->ctx); } set->type = LYXP_SET_NUMBER; } /* to BOOLEAN */ if (target == LYXP_SET_BOOLEAN) { switch (set->type) { case LYXP_SET_NUMBER: if ((set->val.num == 0) || (set->val.num == -0.0f) || isnan(set->val.num)) { set->val.bln = 0; } else { set->val.bln = 1; } break; case LYXP_SET_STRING: if (set->val.str[0]) { lyxp_set_free_content(set); set->val.bln = 1; } else { lyxp_set_free_content(set); set->val.bln = 0; } break; case LYXP_SET_NODE_SET: if (set->used) { lyxp_set_free_content(set); set->val.bln = 1; } else { lyxp_set_free_content(set); set->val.bln = 0; } break; default: LOGINT_RET(set->ctx); } set->type = LYXP_SET_BOOLEAN; } return LY_SUCCESS; } LY_ERR lyxp_atomize(const struct ly_ctx *ctx, const struct lyxp_expr *exp, const struct lys_module *cur_mod, LY_VALUE_FORMAT format, void *prefix_data, const struct lysc_node *cur_scnode, const struct lysc_node *ctx_scnode, struct lyxp_set *set, uint32_t options) { LY_ERR ret; uint32_t tok_idx = 0; LY_CHECK_ARG_RET(ctx, ctx, exp, set, LY_EINVAL); if (!cur_mod && ((format == LY_VALUE_SCHEMA) || (format == LY_VALUE_SCHEMA_RESOLVED))) { LOGARG(NULL, "Current module must be set if schema format is used."); return LY_EINVAL; } /* prepare set for evaluation */ memset(set, 0, sizeof *set); set->type = LYXP_SET_SCNODE_SET; set->root_type = lyxp_get_root_type(NULL, ctx_scnode, options); LY_CHECK_RET(set_scnode_insert_node(set, ctx_scnode, ctx_scnode ? LYXP_NODE_ELEM : set->root_type, LYXP_AXIS_SELF, NULL)); set->val.scnodes[0].in_ctx = LYXP_SET_SCNODE_START; set->ctx = (struct ly_ctx *)ctx; set->cur_scnode = cur_scnode; for (set->context_op = cur_scnode; set->context_op && !(set->context_op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); set->context_op = set->context_op->parent) {} set->cur_mod = cur_mod; set->format = format; set->prefix_data = prefix_data; LOG_LOCSET(set->cur_scnode, NULL, NULL, NULL); /* evaluate */ ret = eval_expr_select(exp, &tok_idx, 0, set, options); LOG_LOCBACK(set->cur_scnode ? 1 : 0, 0, 0, 0); return ret; } LIBYANG_API_DEF const char * lyxp_get_expr(const struct lyxp_expr *path) { if (!path) { return NULL; } return path->expr; }