/** * @file test_tree_data.c * @author: Radek Krejci * @brief unit tests for functions from tress_data.c * * Copyright (c) 2018-2019 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _UTEST_MAIN_ #include "utests.h" #include "common.h" #include "libyang.h" #include "path.h" #include "xpath.h" static int setup(void **state) { const char *schema1 = "module a {namespace urn:tests:a;prefix a;yang-version 1.1;" "revision 2014-05-08;" "leaf bar {type string;}" "list l1 { key \"a b\"; leaf a {type string;} leaf b {type string;} leaf c {type string;}}" "leaf foo { type string;}" "leaf-list ll { type string;}" "container c {leaf-list x {type string;}}" "anydata any {config false;}" "list l2 {config false;" " container c{leaf x {type string;} leaf-list d {type string;}}" "}}"; const char *schema2 = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "list l2 {config false;" " container c{leaf x {type string;}}}" "anydata any {config false;}" "}"; const char *schema3 = "module c {yang-version 1.1; namespace \"http://example.com/main\";prefix m;" "import \"ietf-inet-types\" {prefix inet;}" "typedef optional-ip-address {type union {" " type inet:ip-address;" " type string;" "}}" "container cont {" " list nexthop {min-elements 1; key \"gateway\";" " leaf gateway {type optional-ip-address;}" " }" " leaf-list pref {type inet:ipv6-prefix;}" "}}"; UTEST_SETUP; UTEST_ADD_MODULE(schema1, LYS_IN_YANG, NULL, NULL); UTEST_ADD_MODULE(schema2, LYS_IN_YANG, NULL, NULL); UTEST_ADD_MODULE(schema3, LYS_IN_YANG, NULL, NULL); return 0; } #define CHECK_PARSE_LYD(INPUT, PARSE_OPTION, VALIDATE_OPTION, TREE) \ CHECK_PARSE_LYD_PARAM(INPUT, LYD_XML, PARSE_OPTION, VALIDATE_OPTION, LY_SUCCESS, TREE) #define CHECK_PARSE_LYD_PARAM_CTX(CTX, INPUT, PARSE_OPTION, OUT_NODE) \ assert_int_equal(LY_SUCCESS, lyd_parse_data_mem(CTX, INPUT, LYD_XML, PARSE_OPTION, LYD_VALIDATE_PRESENT, &OUT_NODE)); \ assert_non_null(OUT_NODE); #define RECREATE_CTX_WITH_MODULE(CTX, MODULE) \ ly_ctx_destroy(CTX); \ assert_int_equal(LY_SUCCESS, ly_ctx_new(NULL, 0, &CTX)); \ assert_int_equal(LY_SUCCESS, ly_in_new_memory(MODULE, &_UC->in)); \ assert_int_equal(LY_SUCCESS, lys_parse(CTX, _UC->in, LYS_IN_YANG, NULL, NULL)); \ ly_in_free(_UC->in, 0); static void test_compare(void **state) { struct lyd_node *tree1, *tree2; const char *data1; const char *data2; assert_int_equal(LY_SUCCESS, lyd_compare_single(NULL, NULL, 0)); data1 = "abx"; data2 = "aby"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, 0)); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); assert_int_equal(LY_ENOT, lyd_compare_single(((struct lyd_node_inner *)tree1)->child, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); data1 = "ab"; data2 = "b"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1->next, tree2->next, 0)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next->next, tree2->next, 0)); lyd_free_all(tree1); lyd_free_all(tree2); data1 = "ab"; data2 = "b"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); assert_int_equal(LY_ENOT, lyd_compare_single(NULL, tree2, 0)); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, NULL, 0)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); data1 = "x"; data2 = "y"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, 0)); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data1 = "x"; data2 = "xy"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, 0)); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data1 = "x"; data2 = "xy"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); CHECK_PARSE_LYD(data2, 0, LYD_VALIDATE_PRESENT, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1->next, tree2->next, 0)); lyd_free_all(tree1); data1 = "xy"; CHECK_PARSE_LYD(data1, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); } static void test_compare_diff_ctx(void **state) { struct lyd_node *tree1, *tree2; const char *data1, *data2; struct ly_ctx *ctx2 = NULL; const char *module; /* create second context with the same schema */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "list l2 {config false;" " container c{leaf x {type string;}}" "}}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "b"; data2 = "b"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, 0, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, 0, tree2); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with schema that has a different name */ module = "module c {namespace urn:tests:c;prefix c;yang-version 1.1;" "revision 2014-05-08;" "list l2 {config false;" " container c{leaf x {type string;}}" "}}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "b"; data2 = "b"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, 0, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, 0, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with schema that has a different revision */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2015-05-08;" "list l2 {config false;" " container c{leaf x {type string;}}" "}}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "b"; data2 = "b"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, 0, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, 0, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with schema that has no revision */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "list l2 {config false;" " container c{leaf x {type string;}}" "}}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "b"; data2 = "b"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, 0, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, 0, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with schema that has a different parent nodetype */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "container l2 {config false;" " container c{leaf x {type string;}}" "}}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "b"; data2 = "b"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, 0, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, 0, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(lyd_child(lyd_child(tree1)), lyd_child(lyd_child(tree2)), 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with the same opaq data nodes */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "anydata any {config false;}" "}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "aa:x"; data2 = "bb:x"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, LYD_PARSE_ONLY, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, LYD_PARSE_ONLY, tree2); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with the different opaq data node value */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "anydata any {config false;}" "}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "aa:x"; data2 = "bb:y"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, LYD_PARSE_ONLY, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, LYD_PARSE_ONLY, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* recreate second context with the wrong prefix in opaq data node value */ module = "module b {namespace urn:tests:b;prefix b;yang-version 1.1;" "revision 2014-05-08;" "anydata any {config false;}" "}"; RECREATE_CTX_WITH_MODULE(ctx2, module); data1 = "aa:x"; data2 = "cc:x"; CHECK_PARSE_LYD_PARAM_CTX(UTEST_LYCTX, data1, LYD_PARSE_ONLY, tree1); CHECK_PARSE_LYD_PARAM_CTX(ctx2, data2, LYD_PARSE_ONLY, tree2); assert_int_equal(LY_ENOT, lyd_compare_single(tree1, tree2, 0)); lyd_free_all(tree1); lyd_free_all(tree2); /* clean up */ ly_ctx_destroy(ctx2); _UC->in = NULL; } static void test_dup(void **state) { struct lyd_node *tree1, *tree2; const char *result; const char *data; data = "abx"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1, NULL, LYD_DUP_RECURSIVE, &tree2)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "abx"; result = "ab"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1, NULL, 0, &tree2)); lyd_free_all(tree1); CHECK_PARSE_LYD(result, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "ab"; result = "a"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_siblings(tree1, NULL, LYD_DUP_RECURSIVE, &tree2)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next, tree2->next, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree2); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1->next, NULL, LYD_DUP_RECURSIVE, &tree2)); lyd_free_all(tree1); CHECK_PARSE_LYD(result, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree2); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1->next, NULL, 0, &tree2)); lyd_free_all(tree1); result = ""; CHECK_PARSE_LYD_PARAM(result, LYD_XML, LYD_PARSE_ONLY, 0, LY_SUCCESS, tree1); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "a"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1, NULL, 0, &tree2)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "b"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(((struct lyd_node_inner *)((struct lyd_node_inner *)tree1->next)->child)->child, NULL, LYD_DUP_WITH_PARENTS, &tree2)); int unsigned flag = LYS_CONFIG_R | LYS_SET_ENUM; CHECK_LYSC_NODE(tree2->schema, NULL, 0, flag, 1, "x", 1, LYS_LEAF, 1, 0, NULL, 0); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next, (struct lyd_node *)tree2->parent->parent, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "abc"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(((struct lyd_node_inner *)tree1)->child->prev, NULL, LYD_DUP_WITH_PARENTS, &tree2)); flag = LYS_CONFIG_W | LYS_SET_ENUM; CHECK_LYSC_NODE(tree2->schema, NULL, 0, flag, 1, "c", 0, LYS_LEAF, 1, 0, NULL, 0); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1, (struct lyd_node *)tree2->parent, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); data = "b"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_SUCCESS, lyd_dup_single(tree1->next, NULL, 0, &tree2)); assert_int_equal(LY_SUCCESS, lyd_dup_single(((struct lyd_node_inner *)((struct lyd_node_inner *)tree1->next)->child)->child, (struct lyd_node_inner *)tree2, LYD_DUP_WITH_PARENTS, NULL)); assert_int_equal(LY_SUCCESS, lyd_compare_single(tree1->next, tree2, LYD_COMPARE_FULL_RECURSION)); lyd_free_all(tree1); lyd_free_all(tree2); /* invalid */ data = "abcb"; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree1); assert_int_equal(LY_EINVAL, lyd_dup_single(((struct lyd_node_inner *)tree1)->child->prev, (struct lyd_node_inner *)tree1->next, LYD_DUP_WITH_PARENTS, NULL)); lyd_free_all(tree1); } static void test_target(void **state) { const struct lyd_node_term *term; struct lyd_node *tree; struct lyxp_expr *exp; struct ly_path *path; const char *path_str = "/a:l2[2]/c/d[3]"; const char *data = "" " a" " " "" " a" " b" " b" " c" "" "" ""; CHECK_PARSE_LYD(data, 0, LYD_VALIDATE_PRESENT, tree); assert_int_equal(LY_SUCCESS, ly_path_parse(UTEST_LYCTX, NULL, path_str, strlen(path_str), 0, LY_PATH_BEGIN_EITHER, LY_PATH_PREFIX_OPTIONAL, LY_PATH_PRED_SIMPLE, &exp)); assert_int_equal(LY_SUCCESS, ly_path_compile(UTEST_LYCTX, NULL, NULL, NULL, exp, LY_PATH_OPER_INPUT, LY_PATH_TARGET_SINGLE, 1, LY_VALUE_JSON, NULL, &path)); term = lyd_target(path, tree); const int unsigned flag = LYS_CONFIG_R | LYS_SET_ENUM | LYS_ORDBY_USER; CHECK_LYSC_NODE(term->schema, NULL, 0, flag, 1, "d", 0, LYS_LEAFLIST, 1, 0, NULL, 0); assert_string_equal(lyd_get_value(&term->node), "b"); assert_string_equal(lyd_get_value(term->prev), "b"); lyd_free_all(tree); ly_path_free(UTEST_LYCTX, path); lyxp_expr_free(UTEST_LYCTX, exp); } static void test_list_pos(void **state) { const char *data; struct lyd_node *tree; data = "test" "oneone" "twotwo" "test"; assert_int_equal(LY_SUCCESS, lyd_parse_data_mem(UTEST_LYCTX, data, LYD_XML, 0, LYD_VALIDATE_PRESENT, &tree)); assert_int_equal(0, lyd_list_pos(tree)); assert_int_equal(1, lyd_list_pos(tree->next)); assert_int_equal(2, lyd_list_pos(tree->next->next)); assert_int_equal(0, lyd_list_pos(tree->next->next->next)); lyd_free_all(tree); data = "one" "two" "three"; assert_int_equal(LY_SUCCESS, lyd_parse_data_mem(UTEST_LYCTX, data, LYD_XML, 0, LYD_VALIDATE_PRESENT, &tree)); assert_int_equal(1, lyd_list_pos(tree)); assert_int_equal(2, lyd_list_pos(tree->next)); assert_int_equal(3, lyd_list_pos(tree->next->next)); lyd_free_all(tree); data = "one" "oneone" "two" "twotwo" "three" "threethree"; assert_int_equal(LY_SUCCESS, lyd_parse_data_mem(UTEST_LYCTX, data, LYD_XML, 0, LYD_VALIDATE_PRESENT, &tree)); assert_string_equal("l1", tree->schema->name); assert_int_equal(1, lyd_list_pos(tree)); assert_int_equal(2, lyd_list_pos(tree->next)); assert_int_equal(3, lyd_list_pos(tree->next->next)); assert_string_equal("ll", tree->next->next->next->schema->name); assert_int_equal(1, lyd_list_pos(tree->next->next->next)); assert_int_equal(2, lyd_list_pos(tree->next->next->next->next)); assert_int_equal(3, lyd_list_pos(tree->next->next->next->next->next)); lyd_free_all(tree); } static void test_first_sibling(void **state) { const char *data; struct lyd_node *tree; struct lyd_node_inner *parent; data = "test" "oneoneone" "test"; assert_int_equal(LY_SUCCESS, lyd_parse_data_mem(UTEST_LYCTX, data, LYD_XML, 0, LYD_VALIDATE_PRESENT, &tree)); assert_ptr_equal(tree, lyd_first_sibling(tree->next)); assert_ptr_equal(tree, lyd_first_sibling(tree)); assert_ptr_equal(tree, lyd_first_sibling(tree->prev)); parent = (struct lyd_node_inner *)tree->next; assert_int_equal(LYS_LIST, parent->schema->nodetype); assert_ptr_equal(parent->child, lyd_first_sibling(parent->child->next)); assert_ptr_equal(parent->child, lyd_first_sibling(parent->child)); assert_ptr_equal(parent->child, lyd_first_sibling(parent->child->prev)); lyd_free_all(tree); } static void test_find_path(void **state) { struct lyd_node *root; const struct lys_module *mod; mod = ly_ctx_get_module_implemented(UTEST_LYCTX, "c"); assert_non_null(mod); assert_int_equal(LY_SUCCESS, lyd_new_inner(NULL, mod, "cont", 0, &root)); assert_int_equal(LY_SUCCESS, lyd_new_path(root, NULL, "/c:cont/nexthop[gateway='10.0.0.1']", NULL, LYD_NEW_PATH_UPDATE, NULL)); assert_int_equal(LY_SUCCESS, lyd_new_path(root, NULL, "/c:cont/nexthop[gateway='2100::1']", NULL, LYD_NEW_PATH_UPDATE, NULL)); assert_int_equal(LY_SUCCESS, lyd_new_path(root, NULL, "/c:cont/pref[.='fc00::/64']", NULL, 0, NULL)); assert_int_equal(LY_SUCCESS, lyd_find_path(root, "/c:cont/nexthop[gateway='10.0.0.1']", 0, NULL)); assert_int_equal(LY_SUCCESS, lyd_find_path(root, "/c:cont/nexthop[gateway='2100::1']", 0, NULL)); assert_int_equal(LY_SUCCESS, lyd_find_path(root, "/c:cont/pref[.='fc00::/64']", 0, NULL)); lyd_free_all(root); } static void test_data_hash(void **state) { struct lyd_node *tree; const char *schema, *data; schema = "module test-data-hash {" " yang-version 1.1;" " namespace \"urn:tests:tdh\";" " prefix t;" " container c {" " leaf-list ll {" " type string;" " }" " }" "}"; UTEST_ADD_MODULE(schema, LYS_IN_YANG, NULL, NULL); /* The number of must be greater or equal to LYD_HT_MIN_ITEMS * for the correct test run. It should guarantee the creation of a hash table. */ assert_true(LYD_HT_MIN_ITEMS <= 4); data = "" " " " " " " " " ""; /* The run must not crash due to the assert that checks the hash. */ CHECK_PARSE_LYD_PARAM(data, LYD_XML, 0, LYD_VALIDATE_PRESENT, LY_EVALID, tree); lyd_free_all(tree); } static void test_lyxp_vars(void **UNUSED(state)) { struct lyxp_var *vars; /* Test free. */ vars = NULL; lyxp_vars_free(vars); /* Bad arguments for lyxp_vars_add(). */ assert_int_equal(LY_EINVAL, lyxp_vars_set(NULL, "var1", "val1")); assert_int_equal(LY_EINVAL, lyxp_vars_set(&vars, NULL, "val1")); assert_int_equal(LY_EINVAL, lyxp_vars_set(&vars, "var1", NULL)); lyxp_vars_free(vars); vars = NULL; /* Add one item. */ assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var1", "val1")); assert_int_equal(LY_ARRAY_COUNT(vars), 1); assert_string_equal(vars[0].name, "var1"); assert_string_equal(vars[0].value, "val1"); lyxp_vars_free(vars); vars = NULL; /* Add three items. */ assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var1", "val1")); assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var2", "val2")); assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var3", "val3")); assert_int_equal(LY_ARRAY_COUNT(vars), 3); assert_string_equal(vars[0].name, "var1"); assert_string_equal(vars[0].value, "val1"); assert_string_equal(vars[1].name, "var2"); assert_string_equal(vars[1].value, "val2"); assert_string_equal(vars[2].name, "var3"); assert_string_equal(vars[2].value, "val3"); lyxp_vars_free(vars); vars = NULL; /* Change value of a variable. */ assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var1", "val1")); assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var2", "val2")); assert_int_equal(LY_SUCCESS, lyxp_vars_set(&vars, "var1", "new_value")); assert_string_equal(vars[0].name, "var1"); assert_string_equal(vars[0].value, "new_value"); assert_string_equal(vars[1].name, "var2"); assert_string_equal(vars[1].value, "val2"); lyxp_vars_free(vars); vars = NULL; } int main(void) { const struct CMUnitTest tests[] = { UTEST(test_compare, setup), UTEST(test_compare_diff_ctx, setup), UTEST(test_dup, setup), UTEST(test_target, setup), UTEST(test_list_pos, setup), UTEST(test_first_sibling, setup), UTEST(test_find_path, setup), UTEST(test_data_hash, setup), UTEST(test_lyxp_vars), }; return cmocka_run_group_tests(tests, NULL, NULL); }