summaryrefslogtreecommitdiffstats
path: root/Documentation/livepatch
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/livepatch
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/livepatch/api.rst30
-rw-r--r--Documentation/livepatch/callbacks.rst133
-rw-r--r--Documentation/livepatch/cumulative-patches.rst102
-rw-r--r--Documentation/livepatch/index.rst24
-rw-r--r--Documentation/livepatch/livepatch.rst448
-rw-r--r--Documentation/livepatch/module-elf-format.rst309
-rw-r--r--Documentation/livepatch/reliable-stacktrace.rst309
-rw-r--r--Documentation/livepatch/shadow-vars.rst226
-rw-r--r--Documentation/livepatch/system-state.rst167
9 files changed, 1748 insertions, 0 deletions
diff --git a/Documentation/livepatch/api.rst b/Documentation/livepatch/api.rst
new file mode 100644
index 000000000..78944b63d
--- /dev/null
+++ b/Documentation/livepatch/api.rst
@@ -0,0 +1,30 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=================
+Livepatching APIs
+=================
+
+Livepatch Enablement
+====================
+
+.. kernel-doc:: kernel/livepatch/core.c
+ :export:
+
+
+Shadow Variables
+================
+
+.. kernel-doc:: kernel/livepatch/shadow.c
+ :export:
+
+System State Changes
+====================
+
+.. kernel-doc:: kernel/livepatch/state.c
+ :export:
+
+Object Types
+============
+
+.. kernel-doc:: include/linux/livepatch.h
+ :identifiers: klp_patch klp_object klp_func klp_callbacks klp_state
diff --git a/Documentation/livepatch/callbacks.rst b/Documentation/livepatch/callbacks.rst
new file mode 100644
index 000000000..470944aa8
--- /dev/null
+++ b/Documentation/livepatch/callbacks.rst
@@ -0,0 +1,133 @@
+======================
+(Un)patching Callbacks
+======================
+
+Livepatch (un)patch-callbacks provide a mechanism for livepatch modules
+to execute callback functions when a kernel object is (un)patched. They
+can be considered a **power feature** that **extends livepatching abilities**
+to include:
+
+ - Safe updates to global data
+
+ - "Patches" to init and probe functions
+
+ - Patching otherwise unpatchable code (i.e. assembly)
+
+In most cases, (un)patch callbacks will need to be used in conjunction
+with memory barriers and kernel synchronization primitives, like
+mutexes/spinlocks, or even stop_machine(), to avoid concurrency issues.
+
+1. Motivation
+=============
+
+Callbacks differ from existing kernel facilities:
+
+ - Module init/exit code doesn't run when disabling and re-enabling a
+ patch.
+
+ - A module notifier can't stop a to-be-patched module from loading.
+
+Callbacks are part of the klp_object structure and their implementation
+is specific to that klp_object. Other livepatch objects may or may not
+be patched, irrespective of the target klp_object's current state.
+
+2. Callback types
+=================
+
+Callbacks can be registered for the following livepatch actions:
+
+ * Pre-patch
+ - before a klp_object is patched
+
+ * Post-patch
+ - after a klp_object has been patched and is active
+ across all tasks
+
+ * Pre-unpatch
+ - before a klp_object is unpatched (ie, patched code is
+ active), used to clean up post-patch callback
+ resources
+
+ * Post-unpatch
+ - after a klp_object has been patched, all code has
+ been restored and no tasks are running patched code,
+ used to cleanup pre-patch callback resources
+
+3. How it works
+===============
+
+Each callback is optional, omitting one does not preclude specifying any
+other. However, the livepatching core executes the handlers in
+symmetry: pre-patch callbacks have a post-unpatch counterpart and
+post-patch callbacks have a pre-unpatch counterpart. An unpatch
+callback will only be executed if its corresponding patch callback was
+executed. Typical use cases pair a patch handler that acquires and
+configures resources with an unpatch handler tears down and releases
+those same resources.
+
+A callback is only executed if its host klp_object is loaded. For
+in-kernel vmlinux targets, this means that callbacks will always execute
+when a livepatch is enabled/disabled. For patch target kernel modules,
+callbacks will only execute if the target module is loaded. When a
+module target is (un)loaded, its callbacks will execute only if the
+livepatch module is enabled.
+
+The pre-patch callback, if specified, is expected to return a status
+code (0 for success, -ERRNO on error). An error status code indicates
+to the livepatching core that patching of the current klp_object is not
+safe and to stop the current patching request. (When no pre-patch
+callback is provided, the transition is assumed to be safe.) If a
+pre-patch callback returns failure, the kernel's module loader will:
+
+ - Refuse to load a livepatch, if the livepatch is loaded after
+ targeted code.
+
+ or:
+
+ - Refuse to load a module, if the livepatch was already successfully
+ loaded.
+
+No post-patch, pre-unpatch, or post-unpatch callbacks will be executed
+for a given klp_object if the object failed to patch, due to a failed
+pre_patch callback or for any other reason.
+
+If a patch transition is reversed, no pre-unpatch handlers will be run
+(this follows the previously mentioned symmetry -- pre-unpatch callbacks
+will only occur if their corresponding post-patch callback executed).
+
+If the object did successfully patch, but the patch transition never
+started for some reason (e.g., if another object failed to patch),
+only the post-unpatch callback will be called.
+
+4. Use cases
+============
+
+Sample livepatch modules demonstrating the callback API can be found in
+samples/livepatch/ directory. These samples were modified for use in
+kselftests and can be found in the lib/livepatch directory.
+
+Global data update
+------------------
+
+A pre-patch callback can be useful to update a global variable. For
+example, 75ff39ccc1bd ("tcp: make challenge acks less predictable")
+changes a global sysctl, as well as patches the tcp_send_challenge_ack()
+function.
+
+In this case, if we're being super paranoid, it might make sense to
+patch the data *after* patching is complete with a post-patch callback,
+so that tcp_send_challenge_ack() could first be changed to read
+sysctl_tcp_challenge_ack_limit with READ_ONCE.
+
+__init and probe function patches support
+-----------------------------------------
+
+Although __init and probe functions are not directly livepatch-able, it
+may be possible to implement similar updates via pre/post-patch
+callbacks.
+
+The commit ``48900cb6af42 ("virtio-net: drop NETIF_F_FRAGLIST")`` change the way that
+virtnet_probe() initialized its driver's net_device features. A
+pre/post-patch callback could iterate over all such devices, making a
+similar change to their hw_features value. (Client functions of the
+value may need to be updated accordingly.)
diff --git a/Documentation/livepatch/cumulative-patches.rst b/Documentation/livepatch/cumulative-patches.rst
new file mode 100644
index 000000000..1931f3189
--- /dev/null
+++ b/Documentation/livepatch/cumulative-patches.rst
@@ -0,0 +1,102 @@
+===================================
+Atomic Replace & Cumulative Patches
+===================================
+
+There might be dependencies between livepatches. If multiple patches need
+to do different changes to the same function(s) then we need to define
+an order in which the patches will be installed. And function implementations
+from any newer livepatch must be done on top of the older ones.
+
+This might become a maintenance nightmare. Especially when more patches
+modified the same function in different ways.
+
+An elegant solution comes with the feature called "Atomic Replace". It allows
+creation of so called "Cumulative Patches". They include all wanted changes
+from all older livepatches and completely replace them in one transition.
+
+Usage
+-----
+
+The atomic replace can be enabled by setting "replace" flag in struct klp_patch,
+for example::
+
+ static struct klp_patch patch = {
+ .mod = THIS_MODULE,
+ .objs = objs,
+ .replace = true,
+ };
+
+All processes are then migrated to use the code only from the new patch.
+Once the transition is finished, all older patches are automatically
+disabled.
+
+Ftrace handlers are transparently removed from functions that are no
+longer modified by the new cumulative patch.
+
+As a result, the livepatch authors might maintain sources only for one
+cumulative patch. It helps to keep the patch consistent while adding or
+removing various fixes or features.
+
+Users could keep only the last patch installed on the system after
+the transition to has finished. It helps to clearly see what code is
+actually in use. Also the livepatch might then be seen as a "normal"
+module that modifies the kernel behavior. The only difference is that
+it can be updated at runtime without breaking its functionality.
+
+
+Features
+--------
+
+The atomic replace allows:
+
+ - Atomically revert some functions in a previous patch while
+ upgrading other functions.
+
+ - Remove eventual performance impact caused by core redirection
+ for functions that are no longer patched.
+
+ - Decrease user confusion about dependencies between livepatches.
+
+
+Limitations:
+------------
+
+ - Once the operation finishes, there is no straightforward way
+ to reverse it and restore the replaced patches atomically.
+
+ A good practice is to set .replace flag in any released livepatch.
+ Then re-adding an older livepatch is equivalent to downgrading
+ to that patch. This is safe as long as the livepatches do _not_ do
+ extra modifications in (un)patching callbacks or in the module_init()
+ or module_exit() functions, see below.
+
+ Also note that the replaced patch can be removed and loaded again
+ only when the transition was not forced.
+
+
+ - Only the (un)patching callbacks from the _new_ cumulative livepatch are
+ executed. Any callbacks from the replaced patches are ignored.
+
+ In other words, the cumulative patch is responsible for doing any actions
+ that are necessary to properly replace any older patch.
+
+ As a result, it might be dangerous to replace newer cumulative patches by
+ older ones. The old livepatches might not provide the necessary callbacks.
+
+ This might be seen as a limitation in some scenarios. But it makes life
+ easier in many others. Only the new cumulative livepatch knows what
+ fixes/features are added/removed and what special actions are necessary
+ for a smooth transition.
+
+ In any case, it would be a nightmare to think about the order of
+ the various callbacks and their interactions if the callbacks from all
+ enabled patches were called.
+
+
+ - There is no special handling of shadow variables. Livepatch authors
+ must create their own rules how to pass them from one cumulative
+ patch to the other. Especially that they should not blindly remove
+ them in module_exit() functions.
+
+ A good practice might be to remove shadow variables in the post-unpatch
+ callback. It is called only when the livepatch is properly disabled.
diff --git a/Documentation/livepatch/index.rst b/Documentation/livepatch/index.rst
new file mode 100644
index 000000000..cebf1c71d
--- /dev/null
+++ b/Documentation/livepatch/index.rst
@@ -0,0 +1,24 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================
+Kernel Livepatching
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ livepatch
+ callbacks
+ cumulative-patches
+ module-elf-format
+ shadow-vars
+ system-state
+ reliable-stacktrace
+ api
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/livepatch/livepatch.rst b/Documentation/livepatch/livepatch.rst
new file mode 100644
index 000000000..68e3651e8
--- /dev/null
+++ b/Documentation/livepatch/livepatch.rst
@@ -0,0 +1,448 @@
+=========
+Livepatch
+=========
+
+This document outlines basic information about kernel livepatching.
+
+.. Table of Contents:
+
+.. contents:: :local:
+
+
+1. Motivation
+=============
+
+There are many situations where users are reluctant to reboot a system. It may
+be because their system is performing complex scientific computations or under
+heavy load during peak usage. In addition to keeping systems up and running,
+users want to also have a stable and secure system. Livepatching gives users
+both by allowing for function calls to be redirected; thus, fixing critical
+functions without a system reboot.
+
+
+2. Kprobes, Ftrace, Livepatching
+================================
+
+There are multiple mechanisms in the Linux kernel that are directly related
+to redirection of code execution; namely: kernel probes, function tracing,
+and livepatching:
+
+ - The kernel probes are the most generic. The code can be redirected by
+ putting a breakpoint instruction instead of any instruction.
+
+ - The function tracer calls the code from a predefined location that is
+ close to the function entry point. This location is generated by the
+ compiler using the '-pg' gcc option.
+
+ - Livepatching typically needs to redirect the code at the very beginning
+ of the function entry before the function parameters or the stack
+ are in any way modified.
+
+All three approaches need to modify the existing code at runtime. Therefore
+they need to be aware of each other and not step over each other's toes.
+Most of these problems are solved by using the dynamic ftrace framework as
+a base. A Kprobe is registered as a ftrace handler when the function entry
+is probed, see CONFIG_KPROBES_ON_FTRACE. Also an alternative function from
+a live patch is called with the help of a custom ftrace handler. But there are
+some limitations, see below.
+
+
+3. Consistency model
+====================
+
+Functions are there for a reason. They take some input parameters, get or
+release locks, read, process, and even write some data in a defined way,
+have return values. In other words, each function has a defined semantic.
+
+Many fixes do not change the semantic of the modified functions. For
+example, they add a NULL pointer or a boundary check, fix a race by adding
+a missing memory barrier, or add some locking around a critical section.
+Most of these changes are self contained and the function presents itself
+the same way to the rest of the system. In this case, the functions might
+be updated independently one by one.
+
+But there are more complex fixes. For example, a patch might change
+ordering of locking in multiple functions at the same time. Or a patch
+might exchange meaning of some temporary structures and update
+all the relevant functions. In this case, the affected unit
+(thread, whole kernel) need to start using all new versions of
+the functions at the same time. Also the switch must happen only
+when it is safe to do so, e.g. when the affected locks are released
+or no data are stored in the modified structures at the moment.
+
+The theory about how to apply functions a safe way is rather complex.
+The aim is to define a so-called consistency model. It attempts to define
+conditions when the new implementation could be used so that the system
+stays consistent.
+
+Livepatch has a consistency model which is a hybrid of kGraft and
+kpatch: it uses kGraft's per-task consistency and syscall barrier
+switching combined with kpatch's stack trace switching. There are also
+a number of fallback options which make it quite flexible.
+
+Patches are applied on a per-task basis, when the task is deemed safe to
+switch over. When a patch is enabled, livepatch enters into a
+transition state where tasks are converging to the patched state.
+Usually this transition state can complete in a few seconds. The same
+sequence occurs when a patch is disabled, except the tasks converge from
+the patched state to the unpatched state.
+
+An interrupt handler inherits the patched state of the task it
+interrupts. The same is true for forked tasks: the child inherits the
+patched state of the parent.
+
+Livepatch uses several complementary approaches to determine when it's
+safe to patch tasks:
+
+1. The first and most effective approach is stack checking of sleeping
+ tasks. If no affected functions are on the stack of a given task,
+ the task is patched. In most cases this will patch most or all of
+ the tasks on the first try. Otherwise it'll keep trying
+ periodically. This option is only available if the architecture has
+ reliable stacks (HAVE_RELIABLE_STACKTRACE).
+
+2. The second approach, if needed, is kernel exit switching. A
+ task is switched when it returns to user space from a system call, a
+ user space IRQ, or a signal. It's useful in the following cases:
+
+ a) Patching I/O-bound user tasks which are sleeping on an affected
+ function. In this case you have to send SIGSTOP and SIGCONT to
+ force it to exit the kernel and be patched.
+ b) Patching CPU-bound user tasks. If the task is highly CPU-bound
+ then it will get patched the next time it gets interrupted by an
+ IRQ.
+
+3. For idle "swapper" tasks, since they don't ever exit the kernel, they
+ instead have a klp_update_patch_state() call in the idle loop which
+ allows them to be patched before the CPU enters the idle state.
+
+ (Note there's not yet such an approach for kthreads.)
+
+Architectures which don't have HAVE_RELIABLE_STACKTRACE solely rely on
+the second approach. It's highly likely that some tasks may still be
+running with an old version of the function, until that function
+returns. In this case you would have to signal the tasks. This
+especially applies to kthreads. They may not be woken up and would need
+to be forced. See below for more information.
+
+Unless we can come up with another way to patch kthreads, architectures
+without HAVE_RELIABLE_STACKTRACE are not considered fully supported by
+the kernel livepatching.
+
+The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
+is in transition. Only a single patch can be in transition at a given
+time. A patch can remain in transition indefinitely, if any of the tasks
+are stuck in the initial patch state.
+
+A transition can be reversed and effectively canceled by writing the
+opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
+the transition is in progress. Then all the tasks will attempt to
+converge back to the original patch state.
+
+There's also a /proc/<pid>/patch_state file which can be used to
+determine which tasks are blocking completion of a patching operation.
+If a patch is in transition, this file shows 0 to indicate the task is
+unpatched and 1 to indicate it's patched. Otherwise, if no patch is in
+transition, it shows -1. Any tasks which are blocking the transition
+can be signaled with SIGSTOP and SIGCONT to force them to change their
+patched state. This may be harmful to the system though. Sending a fake signal
+to all remaining blocking tasks is a better alternative. No proper signal is
+actually delivered (there is no data in signal pending structures). Tasks are
+interrupted or woken up, and forced to change their patched state. The fake
+signal is automatically sent every 15 seconds.
+
+Administrator can also affect a transition through
+/sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears
+TIF_PATCH_PENDING flag of all tasks and thus forces the tasks to the patched
+state. Important note! The force attribute is intended for cases when the
+transition gets stuck for a long time because of a blocking task. Administrator
+is expected to collect all necessary data (namely stack traces of such blocking
+tasks) and request a clearance from a patch distributor to force the transition.
+Unauthorized usage may cause harm to the system. It depends on the nature of the
+patch, which functions are (un)patched, and which functions the blocking tasks
+are sleeping in (/proc/<pid>/stack may help here). Removal (rmmod) of patch
+modules is permanently disabled when the force feature is used. It cannot be
+guaranteed there is no task sleeping in such module. It implies unbounded
+reference count if a patch module is disabled and enabled in a loop.
+
+Moreover, the usage of force may also affect future applications of live
+patches and cause even more harm to the system. Administrator should first
+consider to simply cancel a transition (see above). If force is used, reboot
+should be planned and no more live patches applied.
+
+3.1 Adding consistency model support to new architectures
+---------------------------------------------------------
+
+For adding consistency model support to new architectures, there are a
+few options:
+
+1) Add CONFIG_HAVE_RELIABLE_STACKTRACE. This means porting objtool, and
+ for non-DWARF unwinders, also making sure there's a way for the stack
+ tracing code to detect interrupts on the stack.
+
+2) Alternatively, ensure that every kthread has a call to
+ klp_update_patch_state() in a safe location. Kthreads are typically
+ in an infinite loop which does some action repeatedly. The safe
+ location to switch the kthread's patch state would be at a designated
+ point in the loop where there are no locks taken and all data
+ structures are in a well-defined state.
+
+ The location is clear when using workqueues or the kthread worker
+ API. These kthreads process independent actions in a generic loop.
+
+ It's much more complicated with kthreads which have a custom loop.
+ There the safe location must be carefully selected on a case-by-case
+ basis.
+
+ In that case, arches without HAVE_RELIABLE_STACKTRACE would still be
+ able to use the non-stack-checking parts of the consistency model:
+
+ a) patching user tasks when they cross the kernel/user space
+ boundary; and
+
+ b) patching kthreads and idle tasks at their designated patch points.
+
+ This option isn't as good as option 1 because it requires signaling
+ user tasks and waking kthreads to patch them. But it could still be
+ a good backup option for those architectures which don't have
+ reliable stack traces yet.
+
+
+4. Livepatch module
+===================
+
+Livepatches are distributed using kernel modules, see
+samples/livepatch/livepatch-sample.c.
+
+The module includes a new implementation of functions that we want
+to replace. In addition, it defines some structures describing the
+relation between the original and the new implementation. Then there
+is code that makes the kernel start using the new code when the livepatch
+module is loaded. Also there is code that cleans up before the
+livepatch module is removed. All this is explained in more details in
+the next sections.
+
+
+4.1. New functions
+------------------
+
+New versions of functions are typically just copied from the original
+sources. A good practice is to add a prefix to the names so that they
+can be distinguished from the original ones, e.g. in a backtrace. Also
+they can be declared as static because they are not called directly
+and do not need the global visibility.
+
+The patch contains only functions that are really modified. But they
+might want to access functions or data from the original source file
+that may only be locally accessible. This can be solved by a special
+relocation section in the generated livepatch module, see
+Documentation/livepatch/module-elf-format.rst for more details.
+
+
+4.2. Metadata
+-------------
+
+The patch is described by several structures that split the information
+into three levels:
+
+ - struct klp_func is defined for each patched function. It describes
+ the relation between the original and the new implementation of a
+ particular function.
+
+ The structure includes the name, as a string, of the original function.
+ The function address is found via kallsyms at runtime.
+
+ Then it includes the address of the new function. It is defined
+ directly by assigning the function pointer. Note that the new
+ function is typically defined in the same source file.
+
+ As an optional parameter, the symbol position in the kallsyms database can
+ be used to disambiguate functions of the same name. This is not the
+ absolute position in the database, but rather the order it has been found
+ only for a particular object ( vmlinux or a kernel module ). Note that
+ kallsyms allows for searching symbols according to the object name.
+
+ - struct klp_object defines an array of patched functions (struct
+ klp_func) in the same object. Where the object is either vmlinux
+ (NULL) or a module name.
+
+ The structure helps to group and handle functions for each object
+ together. Note that patched modules might be loaded later than
+ the patch itself and the relevant functions might be patched
+ only when they are available.
+
+
+ - struct klp_patch defines an array of patched objects (struct
+ klp_object).
+
+ This structure handles all patched functions consistently and eventually,
+ synchronously. The whole patch is applied only when all patched
+ symbols are found. The only exception are symbols from objects
+ (kernel modules) that have not been loaded yet.
+
+ For more details on how the patch is applied on a per-task basis,
+ see the "Consistency model" section.
+
+
+5. Livepatch life-cycle
+=======================
+
+Livepatching can be described by five basic operations:
+loading, enabling, replacing, disabling, removing.
+
+Where the replacing and the disabling operations are mutually
+exclusive. They have the same result for the given patch but
+not for the system.
+
+
+5.1. Loading
+------------
+
+The only reasonable way is to enable the patch when the livepatch kernel
+module is being loaded. For this, klp_enable_patch() has to be called
+in the module_init() callback. There are two main reasons:
+
+First, only the module has an easy access to the related struct klp_patch.
+
+Second, the error code might be used to refuse loading the module when
+the patch cannot get enabled.
+
+
+5.2. Enabling
+-------------
+
+The livepatch gets enabled by calling klp_enable_patch() from
+the module_init() callback. The system will start using the new
+implementation of the patched functions at this stage.
+
+First, the addresses of the patched functions are found according to their
+names. The special relocations, mentioned in the section "New functions",
+are applied. The relevant entries are created under
+/sys/kernel/livepatch/<name>. The patch is rejected when any above
+operation fails.
+
+Second, livepatch enters into a transition state where tasks are converging
+to the patched state. If an original function is patched for the first
+time, a function specific struct klp_ops is created and an universal
+ftrace handler is registered\ [#]_. This stage is indicated by a value of '1'
+in /sys/kernel/livepatch/<name>/transition. For more information about
+this process, see the "Consistency model" section.
+
+Finally, once all tasks have been patched, the 'transition' value changes
+to '0'.
+
+.. [#]
+
+ Note that functions might be patched multiple times. The ftrace handler
+ is registered only once for a given function. Further patches just add
+ an entry to the list (see field `func_stack`) of the struct klp_ops.
+ The right implementation is selected by the ftrace handler, see
+ the "Consistency model" section.
+
+ That said, it is highly recommended to use cumulative livepatches
+ because they help keeping the consistency of all changes. In this case,
+ functions might be patched two times only during the transition period.
+
+
+5.3. Replacing
+--------------
+
+All enabled patches might get replaced by a cumulative patch that
+has the .replace flag set.
+
+Once the new patch is enabled and the 'transition' finishes then
+all the functions (struct klp_func) associated with the replaced
+patches are removed from the corresponding struct klp_ops. Also
+the ftrace handler is unregistered and the struct klp_ops is
+freed when the related function is not modified by the new patch
+and func_stack list becomes empty.
+
+See Documentation/livepatch/cumulative-patches.rst for more details.
+
+
+5.4. Disabling
+--------------
+
+Enabled patches might get disabled by writing '0' to
+/sys/kernel/livepatch/<name>/enabled.
+
+First, livepatch enters into a transition state where tasks are converging
+to the unpatched state. The system starts using either the code from
+the previously enabled patch or even the original one. This stage is
+indicated by a value of '1' in /sys/kernel/livepatch/<name>/transition.
+For more information about this process, see the "Consistency model"
+section.
+
+Second, once all tasks have been unpatched, the 'transition' value changes
+to '0'. All the functions (struct klp_func) associated with the to-be-disabled
+patch are removed from the corresponding struct klp_ops. The ftrace handler
+is unregistered and the struct klp_ops is freed when the func_stack list
+becomes empty.
+
+Third, the sysfs interface is destroyed.
+
+
+5.5. Removing
+-------------
+
+Module removal is only safe when there are no users of functions provided
+by the module. This is the reason why the force feature permanently
+disables the removal. Only when the system is successfully transitioned
+to a new patch state (patched/unpatched) without being forced it is
+guaranteed that no task sleeps or runs in the old code.
+
+
+6. Sysfs
+========
+
+Information about the registered patches can be found under
+/sys/kernel/livepatch. The patches could be enabled and disabled
+by writing there.
+
+/sys/kernel/livepatch/<patch>/force attributes allow administrator to affect a
+patching operation.
+
+See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
+
+
+7. Limitations
+==============
+
+The current Livepatch implementation has several limitations:
+
+ - Only functions that can be traced could be patched.
+
+ Livepatch is based on the dynamic ftrace. In particular, functions
+ implementing ftrace or the livepatch ftrace handler could not be
+ patched. Otherwise, the code would end up in an infinite loop. A
+ potential mistake is prevented by marking the problematic functions
+ by "notrace".
+
+
+
+ - Livepatch works reliably only when the dynamic ftrace is located at
+ the very beginning of the function.
+
+ The function need to be redirected before the stack or the function
+ parameters are modified in any way. For example, livepatch requires
+ using -fentry gcc compiler option on x86_64.
+
+ One exception is the PPC port. It uses relative addressing and TOC.
+ Each function has to handle TOC and save LR before it could call
+ the ftrace handler. This operation has to be reverted on return.
+ Fortunately, the generic ftrace code has the same problem and all
+ this is handled on the ftrace level.
+
+
+ - Kretprobes using the ftrace framework conflict with the patched
+ functions.
+
+ Both kretprobes and livepatches use a ftrace handler that modifies
+ the return address. The first user wins. Either the probe or the patch
+ is rejected when the handler is already in use by the other.
+
+
+ - Kprobes in the original function are ignored when the code is
+ redirected to the new implementation.
+
+ There is a work in progress to add warnings about this situation.
diff --git a/Documentation/livepatch/module-elf-format.rst b/Documentation/livepatch/module-elf-format.rst
new file mode 100644
index 000000000..734763889
--- /dev/null
+++ b/Documentation/livepatch/module-elf-format.rst
@@ -0,0 +1,309 @@
+===========================
+Livepatch module Elf format
+===========================
+
+This document outlines the Elf format requirements that livepatch modules must follow.
+
+
+.. Table of Contents
+
+.. contents:: :local:
+
+
+1. Background and motivation
+============================
+
+Formerly, livepatch required separate architecture-specific code to write
+relocations. However, arch-specific code to write relocations already
+exists in the module loader, so this former approach produced redundant
+code. So, instead of duplicating code and re-implementing what the module
+loader can already do, livepatch leverages existing code in the module
+loader to perform the all the arch-specific relocation work. Specifically,
+livepatch reuses the apply_relocate_add() function in the module loader to
+write relocations. The patch module Elf format described in this document
+enables livepatch to be able to do this. The hope is that this will make
+livepatch more easily portable to other architectures and reduce the amount
+of arch-specific code required to port livepatch to a particular
+architecture.
+
+Since apply_relocate_add() requires access to a module's section header
+table, symbol table, and relocation section indices, Elf information is
+preserved for livepatch modules (see section 5). Livepatch manages its own
+relocation sections and symbols, which are described in this document. The
+Elf constants used to mark livepatch symbols and relocation sections were
+selected from OS-specific ranges according to the definitions from glibc.
+
+Why does livepatch need to write its own relocations?
+-----------------------------------------------------
+A typical livepatch module contains patched versions of functions that can
+reference non-exported global symbols and non-included local symbols.
+Relocations referencing these types of symbols cannot be left in as-is
+since the kernel module loader cannot resolve them and will therefore
+reject the livepatch module. Furthermore, we cannot apply relocations that
+affect modules not yet loaded at patch module load time (e.g. a patch to a
+driver that is not loaded). Formerly, livepatch solved this problem by
+embedding special "dynrela" (dynamic rela) sections in the resulting patch
+module Elf output. Using these dynrela sections, livepatch could resolve
+symbols while taking into account its scope and what module the symbol
+belongs to, and then manually apply the dynamic relocations. However this
+approach required livepatch to supply arch-specific code in order to write
+these relocations. In the new format, livepatch manages its own SHT_RELA
+relocation sections in place of dynrela sections, and the symbols that the
+relas reference are special livepatch symbols (see section 2 and 3). The
+arch-specific livepatch relocation code is replaced by a call to
+apply_relocate_add().
+
+2. Livepatch modinfo field
+==========================
+
+Livepatch modules are required to have the "livepatch" modinfo attribute.
+See the sample livepatch module in samples/livepatch/ for how this is done.
+
+Livepatch modules can be identified by users by using the 'modinfo' command
+and looking for the presence of the "livepatch" field. This field is also
+used by the kernel module loader to identify livepatch modules.
+
+Example:
+--------
+
+**Modinfo output:**
+
+::
+
+ % modinfo livepatch-meminfo.ko
+ filename: livepatch-meminfo.ko
+ livepatch: Y
+ license: GPL
+ depends:
+ vermagic: 4.3.0+ SMP mod_unload
+
+3. Livepatch relocation sections
+================================
+
+A livepatch module manages its own Elf relocation sections to apply
+relocations to modules as well as to the kernel (vmlinux) at the
+appropriate time. For example, if a patch module patches a driver that is
+not currently loaded, livepatch will apply the corresponding livepatch
+relocation section(s) to the driver once it loads.
+
+Each "object" (e.g. vmlinux, or a module) within a patch module may have
+multiple livepatch relocation sections associated with it (e.g. patches to
+multiple functions within the same object). There is a 1-1 correspondence
+between a livepatch relocation section and the target section (usually the
+text section of a function) to which the relocation(s) apply. It is
+also possible for a livepatch module to have no livepatch relocation
+sections, as in the case of the sample livepatch module (see
+samples/livepatch).
+
+Since Elf information is preserved for livepatch modules (see Section 5), a
+livepatch relocation section can be applied simply by passing in the
+appropriate section index to apply_relocate_add(), which then uses it to
+access the relocation section and apply the relocations.
+
+Every symbol referenced by a rela in a livepatch relocation section is a
+livepatch symbol. These must be resolved before livepatch can call
+apply_relocate_add(). See Section 3 for more information.
+
+3.1 Livepatch relocation section format
+=======================================
+
+Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH
+section flag. See include/uapi/linux/elf.h for the definition. The module
+loader recognizes this flag and will avoid applying those relocation sections
+at patch module load time. These sections must also be marked with SHF_ALLOC,
+so that the module loader doesn't discard them on module load (i.e. they will
+be copied into memory along with the other SHF_ALLOC sections).
+
+The name of a livepatch relocation section must conform to the following
+format::
+
+ .klp.rela.objname.section_name
+ ^ ^^ ^ ^ ^
+ |________||_____| |__________|
+ [A] [B] [C]
+
+[A]
+ The relocation section name is prefixed with the string ".klp.rela."
+
+[B]
+ The name of the object (i.e. "vmlinux" or name of module) to
+ which the relocation section belongs follows immediately after the prefix.
+
+[C]
+ The actual name of the section to which this relocation section applies.
+
+Examples:
+---------
+
+**Livepatch relocation section names:**
+
+::
+
+ .klp.rela.ext4.text.ext4_attr_store
+ .klp.rela.vmlinux.text.cmdline_proc_show
+
+**`readelf --sections` output for a patch
+module that patches vmlinux and modules 9p, btrfs, ext4:**
+
+::
+
+ Section Headers:
+ [Nr] Name Type Address Off Size ES Flg Lk Inf Al
+ [ snip ]
+ [29] .klp.rela.9p.text.caches.show RELA 0000000000000000 002d58 0000c0 18 AIo 64 9 8
+ [30] .klp.rela.btrfs.text.btrfs.feature.attr.show RELA 0000000000000000 002e18 000060 18 AIo 64 11 8
+ [ snip ]
+ [34] .klp.rela.ext4.text.ext4.attr.store RELA 0000000000000000 002fd8 0000d8 18 AIo 64 13 8
+ [35] .klp.rela.ext4.text.ext4.attr.show RELA 0000000000000000 0030b0 000150 18 AIo 64 15 8
+ [36] .klp.rela.vmlinux.text.cmdline.proc.show RELA 0000000000000000 003200 000018 18 AIo 64 17 8
+ [37] .klp.rela.vmlinux.text.meminfo.proc.show RELA 0000000000000000 003218 0000f0 18 AIo 64 19 8
+ [ snip ] ^ ^
+ | |
+ [*] [*]
+
+[*]
+ Livepatch relocation sections are SHT_RELA sections but with a few special
+ characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
+ not be discarded when the module is loaded into memory, as well as with the
+ SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
+
+**`readelf --relocs` output for a patch module:**
+
+::
+
+ Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
+ Offset Info Type Symbol's Value Symbol's Name + Addend
+ 000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
+ 0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0
+ 0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4
+ 000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
+ [ snip ] ^
+ |
+ [*]
+
+[*]
+ Every symbol referenced by a relocation is a livepatch symbol.
+
+4. Livepatch symbols
+====================
+
+Livepatch symbols are symbols referred to by livepatch relocation sections.
+These are symbols accessed from new versions of functions for patched
+objects, whose addresses cannot be resolved by the module loader (because
+they are local or unexported global syms). Since the module loader only
+resolves exported syms, and not every symbol referenced by the new patched
+functions is exported, livepatch symbols were introduced. They are used
+also in cases where we cannot immediately know the address of a symbol when
+a patch module loads. For example, this is the case when livepatch patches
+a module that is not loaded yet. In this case, the relevant livepatch
+symbols are resolved simply when the target module loads. In any case, for
+any livepatch relocation section, all livepatch symbols referenced by that
+section must be resolved before livepatch can call apply_relocate_add() for
+that reloc section.
+
+Livepatch symbols must be marked with SHN_LIVEPATCH so that the module
+loader can identify and ignore them. Livepatch modules keep these symbols
+in their symbol tables, and the symbol table is made accessible through
+module->symtab.
+
+4.1 A livepatch module's symbol table
+=====================================
+Normally, a stripped down copy of a module's symbol table (containing only
+"core" symbols) is made available through module->symtab (See layout_symtab()
+in kernel/module/kallsyms.c). For livepatch modules, the symbol table copied
+into memory on module load must be exactly the same as the symbol table produced
+when the patch module was compiled. This is because the relocations in each
+livepatch relocation section refer to their respective symbols with their symbol
+indices, and the original symbol indices (and thus the symtab ordering) must be
+preserved in order for apply_relocate_add() to find the right symbol.
+
+For example, take this particular rela from a livepatch module:::
+
+ Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
+ Offset Info Type Symbol's Value Symbol's Name + Addend
+ 000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
+
+ This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded
+ in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the
+ symbol index 94.
+ And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol:
+ [ snip ]
+ 94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
+ [ snip ]
+
+4.2 Livepatch symbol format
+===========================
+
+Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so
+that the module loader can identify them and not attempt to resolve them.
+See include/uapi/linux/elf.h for the actual definitions.
+
+Livepatch symbol names must conform to the following format::
+
+ .klp.sym.objname.symbol_name,sympos
+ ^ ^^ ^ ^ ^ ^
+ |_______||_____| |_________| |
+ [A] [B] [C] [D]
+
+[A]
+ The symbol name is prefixed with the string ".klp.sym."
+
+[B]
+ The name of the object (i.e. "vmlinux" or name of module) to
+ which the symbol belongs follows immediately after the prefix.
+
+[C]
+ The actual name of the symbol.
+
+[D]
+ The position of the symbol in the object (as according to kallsyms)
+ This is used to differentiate duplicate symbols within the same
+ object. The symbol position is expressed numerically (0, 1, 2...).
+ The symbol position of a unique symbol is 0.
+
+Examples:
+---------
+
+**Livepatch symbol names:**
+
+::
+
+ .klp.sym.vmlinux.snprintf,0
+ .klp.sym.vmlinux.printk,0
+ .klp.sym.btrfs.btrfs_ktype,0
+
+**`readelf --symbols` output for a patch module:**
+
+::
+
+ Symbol table '.symtab' contains 127 entries:
+ Num: Value Size Type Bind Vis Ndx Name
+ [ snip ]
+ 73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0
+ 74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0
+ 75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0
+ 76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0
+ [ snip ] ^
+ |
+ [*]
+
+[*]
+ Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
+ "OS" means OS-specific.
+
+5. Symbol table and Elf section access
+======================================
+A livepatch module's symbol table is accessible through module->symtab.
+
+Since apply_relocate_add() requires access to a module's section headers,
+symbol table, and relocation section indices, Elf information is preserved for
+livepatch modules and is made accessible by the module loader through
+module->klp_info, which is a klp_modinfo struct. When a livepatch module loads,
+this struct is filled in by the module loader. Its fields are documented below::
+
+ struct klp_modinfo {
+ Elf_Ehdr hdr; /* Elf header */
+ Elf_Shdr *sechdrs; /* Section header table */
+ char *secstrings; /* String table for the section headers */
+ unsigned int symndx; /* The symbol table section index */
+ };
diff --git a/Documentation/livepatch/reliable-stacktrace.rst b/Documentation/livepatch/reliable-stacktrace.rst
new file mode 100644
index 000000000..67459d2ca
--- /dev/null
+++ b/Documentation/livepatch/reliable-stacktrace.rst
@@ -0,0 +1,309 @@
+===================
+Reliable Stacktrace
+===================
+
+This document outlines basic information about reliable stacktracing.
+
+.. Table of Contents:
+
+.. contents:: :local:
+
+1. Introduction
+===============
+
+The kernel livepatch consistency model relies on accurately identifying which
+functions may have live state and therefore may not be safe to patch. One way
+to identify which functions are live is to use a stacktrace.
+
+Existing stacktrace code may not always give an accurate picture of all
+functions with live state, and best-effort approaches which can be helpful for
+debugging are unsound for livepatching. Livepatching depends on architectures
+to provide a *reliable* stacktrace which ensures it never omits any live
+functions from a trace.
+
+
+2. Requirements
+===============
+
+Architectures must implement one of the reliable stacktrace functions.
+Architectures using CONFIG_ARCH_STACKWALK must implement
+'arch_stack_walk_reliable', and other architectures must implement
+'save_stack_trace_tsk_reliable'.
+
+Principally, the reliable stacktrace function must ensure that either:
+
+* The trace includes all functions that the task may be returned to, and the
+ return code is zero to indicate that the trace is reliable.
+
+* The return code is non-zero to indicate that the trace is not reliable.
+
+.. note::
+ In some cases it is legitimate to omit specific functions from the trace,
+ but all other functions must be reported. These cases are described in
+ futher detail below.
+
+Secondly, the reliable stacktrace function must be robust to cases where
+the stack or other unwind state is corrupt or otherwise unreliable. The
+function should attempt to detect such cases and return a non-zero error
+code, and should not get stuck in an infinite loop or access memory in
+an unsafe way. Specific cases are described in further detail below.
+
+
+3. Compile-time analysis
+========================
+
+To ensure that kernel code can be correctly unwound in all cases,
+architectures may need to verify that code has been compiled in a manner
+expected by the unwinder. For example, an unwinder may expect that
+functions manipulate the stack pointer in a limited way, or that all
+functions use specific prologue and epilogue sequences. Architectures
+with such requirements should verify the kernel compilation using
+objtool.
+
+In some cases, an unwinder may require metadata to correctly unwind.
+Where necessary, this metadata should be generated at build time using
+objtool.
+
+
+4. Considerations
+=================
+
+The unwinding process varies across architectures, their respective procedure
+call standards, and kernel configurations. This section describes common
+details that architectures should consider.
+
+4.1 Identifying successful termination
+--------------------------------------
+
+Unwinding may terminate early for a number of reasons, including:
+
+* Stack or frame pointer corruption.
+
+* Missing unwind support for an uncommon scenario, or a bug in the unwinder.
+
+* Dynamically generated code (e.g. eBPF) or foreign code (e.g. EFI runtime
+ services) not following the conventions expected by the unwinder.
+
+To ensure that this does not result in functions being omitted from the trace,
+even if not caught by other checks, it is strongly recommended that
+architectures verify that a stacktrace ends at an expected location, e.g.
+
+* Within a specific function that is an entry point to the kernel.
+
+* At a specific location on a stack expected for a kernel entry point.
+
+* On a specific stack expected for a kernel entry point (e.g. if the
+ architecture has separate task and IRQ stacks).
+
+4.2 Identifying unwindable code
+-------------------------------
+
+Unwinding typically relies on code following specific conventions (e.g.
+manipulating a frame pointer), but there can be code which may not follow these
+conventions and may require special handling in the unwinder, e.g.
+
+* Exception vectors and entry assembly.
+
+* Procedure Linkage Table (PLT) entries and veneer functions.
+
+* Trampoline assembly (e.g. ftrace, kprobes).
+
+* Dynamically generated code (e.g. eBPF, optprobe trampolines).
+
+* Foreign code (e.g. EFI runtime services).
+
+To ensure that such cases do not result in functions being omitted from a
+trace, it is strongly recommended that architectures positively identify code
+which is known to be reliable to unwind from, and reject unwinding from all
+other code.
+
+Kernel code including modules and eBPF can be distinguished from foreign code
+using '__kernel_text_address()'. Checking for this also helps to detect stack
+corruption.
+
+There are several ways an architecture may identify kernel code which is deemed
+unreliable to unwind from, e.g.
+
+* Placing such code into special linker sections, and rejecting unwinding from
+ any code in these sections.
+
+* Identifying specific portions of code using bounds information.
+
+4.3 Unwinding across interrupts and exceptions
+----------------------------------------------
+
+At function call boundaries the stack and other unwind state is expected to be
+in a consistent state suitable for reliable unwinding, but this may not be the
+case part-way through a function. For example, during a function prologue or
+epilogue a frame pointer may be transiently invalid, or during the function
+body the return address may be held in an arbitrary general purpose register.
+For some architectures this may change at runtime as a result of dynamic
+instrumentation.
+
+If an interrupt or other exception is taken while the stack or other unwind
+state is in an inconsistent state, it may not be possible to reliably unwind,
+and it may not be possible to identify whether such unwinding will be reliable.
+See below for examples.
+
+Architectures which cannot identify when it is reliable to unwind such cases
+(or where it is never reliable) must reject unwinding across exception
+boundaries. Note that it may be reliable to unwind across certain
+exceptions (e.g. IRQ) but unreliable to unwind across other exceptions
+(e.g. NMI).
+
+Architectures which can identify when it is reliable to unwind such cases (or
+have no such cases) should attempt to unwind across exception boundaries, as
+doing so can prevent unnecessarily stalling livepatch consistency checks and
+permits livepatch transitions to complete more quickly.
+
+4.4 Rewriting of return addresses
+---------------------------------
+
+Some trampolines temporarily modify the return address of a function in order
+to intercept when that function returns with a return trampoline, e.g.
+
+* An ftrace trampoline may modify the return address so that function graph
+ tracing can intercept returns.
+
+* A kprobes (or optprobes) trampoline may modify the return address so that
+ kretprobes can intercept returns.
+
+When this happens, the original return address will not be in its usual
+location. For trampolines which are not subject to live patching, where an
+unwinder can reliably determine the original return address and no unwind state
+is altered by the trampoline, the unwinder may report the original return
+address in place of the trampoline and report this as reliable. Otherwise, an
+unwinder must report these cases as unreliable.
+
+Special care is required when identifying the original return address, as this
+information is not in a consistent location for the duration of the entry
+trampoline or return trampoline. For example, considering the x86_64
+'return_to_handler' return trampoline:
+
+.. code-block:: none
+
+ SYM_CODE_START(return_to_handler)
+ UNWIND_HINT_EMPTY
+ subq $24, %rsp
+
+ /* Save the return values */
+ movq %rax, (%rsp)
+ movq %rdx, 8(%rsp)
+ movq %rbp, %rdi
+
+ call ftrace_return_to_handler
+
+ movq %rax, %rdi
+ movq 8(%rsp), %rdx
+ movq (%rsp), %rax
+ addq $24, %rsp
+ JMP_NOSPEC rdi
+ SYM_CODE_END(return_to_handler)
+
+While the traced function runs its return address on the stack points to
+the start of return_to_handler, and the original return address is stored in
+the task's cur_ret_stack. During this time the unwinder can find the return
+address using ftrace_graph_ret_addr().
+
+When the traced function returns to return_to_handler, there is no longer a
+return address on the stack, though the original return address is still stored
+in the task's cur_ret_stack. Within ftrace_return_to_handler(), the original
+return address is removed from cur_ret_stack and is transiently moved
+arbitrarily by the compiler before being returned in rax. The return_to_handler
+trampoline moves this into rdi before jumping to it.
+
+Architectures might not always be able to unwind such sequences, such as when
+ftrace_return_to_handler() has removed the address from cur_ret_stack, and the
+location of the return address cannot be reliably determined.
+
+It is recommended that architectures unwind cases where return_to_handler has
+not yet been returned to, but architectures are not required to unwind from the
+middle of return_to_handler and can report this as unreliable. Architectures
+are not required to unwind from other trampolines which modify the return
+address.
+
+4.5 Obscuring of return addresses
+---------------------------------
+
+Some trampolines do not rewrite the return address in order to intercept
+returns, but do transiently clobber the return address or other unwind state.
+
+For example, the x86_64 implementation of optprobes patches the probed function
+with a JMP instruction which targets the associated optprobe trampoline. When
+the probe is hit, the CPU will branch to the optprobe trampoline, and the
+address of the probed function is not held in any register or on the stack.
+
+Similarly, the arm64 implementation of DYNAMIC_FTRACE_WITH_REGS patches traced
+functions with the following:
+
+.. code-block:: none
+
+ MOV X9, X30
+ BL <trampoline>
+
+The MOV saves the link register (X30) into X9 to preserve the return address
+before the BL clobbers the link register and branches to the trampoline. At the
+start of the trampoline, the address of the traced function is in X9 rather
+than the link register as would usually be the case.
+
+Architectures must either ensure that unwinders either reliably unwind
+such cases, or report the unwinding as unreliable.
+
+4.6 Link register unreliability
+-------------------------------
+
+On some other architectures, 'call' instructions place the return address into a
+link register, and 'return' instructions consume the return address from the
+link register without modifying the register. On these architectures software
+must save the return address to the stack prior to making a function call. Over
+the duration of a function call, the return address may be held in the link
+register alone, on the stack alone, or in both locations.
+
+Unwinders typically assume the link register is always live, but this
+assumption can lead to unreliable stack traces. For example, consider the
+following arm64 assembly for a simple function:
+
+.. code-block:: none
+
+ function:
+ STP X29, X30, [SP, -16]!
+ MOV X29, SP
+ BL <other_function>
+ LDP X29, X30, [SP], #16
+ RET
+
+At entry to the function, the link register (x30) points to the caller, and the
+frame pointer (X29) points to the caller's frame including the caller's return
+address. The first two instructions create a new stackframe and update the
+frame pointer, and at this point the link register and the frame pointer both
+describe this function's return address. A trace at this point may describe
+this function twice, and if the function return is being traced, the unwinder
+may consume two entries from the fgraph return stack rather than one entry.
+
+The BL invokes 'other_function' with the link register pointing to this
+function's LDR and the frame pointer pointing to this function's stackframe.
+When 'other_function' returns, the link register is left pointing at the BL,
+and so a trace at this point could result in 'function' appearing twice in the
+backtrace.
+
+Similarly, a function may deliberately clobber the LR, e.g.
+
+.. code-block:: none
+
+ caller:
+ STP X29, X30, [SP, -16]!
+ MOV X29, SP
+ ADR LR, <callee>
+ BLR LR
+ LDP X29, X30, [SP], #16
+ RET
+
+The ADR places the address of 'callee' into the LR, before the BLR branches to
+this address. If a trace is made immediately after the ADR, 'callee' will
+appear to be the parent of 'caller', rather than the child.
+
+Due to cases such as the above, it may only be possible to reliably consume a
+link register value at a function call boundary. Architectures where this is
+the case must reject unwinding across exception boundaries unless they can
+reliably identify when the LR or stack value should be used (e.g. using
+metadata generated by objtool).
diff --git a/Documentation/livepatch/shadow-vars.rst b/Documentation/livepatch/shadow-vars.rst
new file mode 100644
index 000000000..7a7098bfb
--- /dev/null
+++ b/Documentation/livepatch/shadow-vars.rst
@@ -0,0 +1,226 @@
+================
+Shadow Variables
+================
+
+Shadow variables are a simple way for livepatch modules to associate
+additional "shadow" data with existing data structures. Shadow data is
+allocated separately from parent data structures, which are left
+unmodified. The shadow variable API described in this document is used
+to allocate/add and remove/free shadow variables to/from their parents.
+
+The implementation introduces a global, in-kernel hashtable that
+associates pointers to parent objects and a numeric identifier of the
+shadow data. The numeric identifier is a simple enumeration that may be
+used to describe shadow variable version, class or type, etc. More
+specifically, the parent pointer serves as the hashtable key while the
+numeric id subsequently filters hashtable queries. Multiple shadow
+variables may attach to the same parent object, but their numeric
+identifier distinguishes between them.
+
+
+1. Brief API summary
+====================
+
+(See the full API usage docbook notes in livepatch/shadow.c.)
+
+A hashtable references all shadow variables. These references are
+stored and retrieved through a <obj, id> pair.
+
+* The klp_shadow variable data structure encapsulates both tracking
+ meta-data and shadow-data:
+
+ - meta-data
+
+ - obj - pointer to parent object
+ - id - data identifier
+
+ - data[] - storage for shadow data
+
+It is important to note that the klp_shadow_alloc() and
+klp_shadow_get_or_alloc() are zeroing the variable by default.
+They also allow to call a custom constructor function when a non-zero
+value is needed. Callers should provide whatever mutual exclusion
+is required.
+
+Note that the constructor is called under klp_shadow_lock spinlock. It allows
+to do actions that can be done only once when a new variable is allocated.
+
+* klp_shadow_get() - retrieve a shadow variable data pointer
+ - search hashtable for <obj, id> pair
+
+* klp_shadow_alloc() - allocate and add a new shadow variable
+ - search hashtable for <obj, id> pair
+
+ - if exists
+
+ - WARN and return NULL
+
+ - if <obj, id> doesn't already exist
+
+ - allocate a new shadow variable
+ - initialize the variable using a custom constructor and data when provided
+ - add <obj, id> to the global hashtable
+
+* klp_shadow_get_or_alloc() - get existing or alloc a new shadow variable
+ - search hashtable for <obj, id> pair
+
+ - if exists
+
+ - return existing shadow variable
+
+ - if <obj, id> doesn't already exist
+
+ - allocate a new shadow variable
+ - initialize the variable using a custom constructor and data when provided
+ - add <obj, id> pair to the global hashtable
+
+* klp_shadow_free() - detach and free a <obj, id> shadow variable
+ - find and remove a <obj, id> reference from global hashtable
+
+ - if found
+
+ - call destructor function if defined
+ - free shadow variable
+
+* klp_shadow_free_all() - detach and free all <_, id> shadow variables
+ - find and remove any <_, id> references from global hashtable
+
+ - if found
+
+ - call destructor function if defined
+ - free shadow variable
+
+
+2. Use cases
+============
+
+(See the example shadow variable livepatch modules in samples/livepatch/
+for full working demonstrations.)
+
+For the following use-case examples, consider commit 1d147bfa6429
+("mac80211: fix AP powersave TX vs. wakeup race"), which added a
+spinlock to net/mac80211/sta_info.h :: struct sta_info. Each use-case
+example can be considered a stand-alone livepatch implementation of this
+fix.
+
+
+Matching parent's lifecycle
+---------------------------
+
+If parent data structures are frequently created and destroyed, it may
+be easiest to align their shadow variables lifetimes to the same
+allocation and release functions. In this case, the parent data
+structure is typically allocated, initialized, then registered in some
+manner. Shadow variable allocation and setup can then be considered
+part of the parent's initialization and should be completed before the
+parent "goes live" (ie, any shadow variable get-API requests are made
+for this <obj, id> pair.)
+
+For commit 1d147bfa6429, when a parent sta_info structure is allocated,
+allocate a shadow copy of the ps_lock pointer, then initialize it::
+
+ #define PS_LOCK 1
+ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
+ const u8 *addr, gfp_t gfp)
+ {
+ struct sta_info *sta;
+ spinlock_t *ps_lock;
+
+ /* Parent structure is created */
+ sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
+
+ /* Attach a corresponding shadow variable, then initialize it */
+ ps_lock = klp_shadow_alloc(sta, PS_LOCK, sizeof(*ps_lock), gfp,
+ NULL, NULL);
+ if (!ps_lock)
+ goto shadow_fail;
+ spin_lock_init(ps_lock);
+ ...
+
+When requiring a ps_lock, query the shadow variable API to retrieve one
+for a specific struct sta_info:::
+
+ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
+ {
+ spinlock_t *ps_lock;
+
+ /* sync with ieee80211_tx_h_unicast_ps_buf */
+ ps_lock = klp_shadow_get(sta, PS_LOCK);
+ if (ps_lock)
+ spin_lock(ps_lock);
+ ...
+
+When the parent sta_info structure is freed, first free the shadow
+variable::
+
+ void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
+ {
+ klp_shadow_free(sta, PS_LOCK, NULL);
+ kfree(sta);
+ ...
+
+
+In-flight parent objects
+------------------------
+
+Sometimes it may not be convenient or possible to allocate shadow
+variables alongside their parent objects. Or a livepatch fix may
+require shadow variables for only a subset of parent object instances.
+In these cases, the klp_shadow_get_or_alloc() call can be used to attach
+shadow variables to parents already in-flight.
+
+For commit 1d147bfa6429, a good spot to allocate a shadow spinlock is
+inside ieee80211_sta_ps_deliver_wakeup()::
+
+ int ps_lock_shadow_ctor(void *obj, void *shadow_data, void *ctor_data)
+ {
+ spinlock_t *lock = shadow_data;
+
+ spin_lock_init(lock);
+ return 0;
+ }
+
+ #define PS_LOCK 1
+ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
+ {
+ spinlock_t *ps_lock;
+
+ /* sync with ieee80211_tx_h_unicast_ps_buf */
+ ps_lock = klp_shadow_get_or_alloc(sta, PS_LOCK,
+ sizeof(*ps_lock), GFP_ATOMIC,
+ ps_lock_shadow_ctor, NULL);
+
+ if (ps_lock)
+ spin_lock(ps_lock);
+ ...
+
+This usage will create a shadow variable, only if needed, otherwise it
+will use one that was already created for this <obj, id> pair.
+
+Like the previous use-case, the shadow spinlock needs to be cleaned up.
+A shadow variable can be freed just before its parent object is freed,
+or even when the shadow variable itself is no longer required.
+
+
+Other use-cases
+---------------
+
+Shadow variables can also be used as a flag indicating that a data
+structure was allocated by new, livepatched code. In this case, it
+doesn't matter what data value the shadow variable holds, its existence
+suggests how to handle the parent object.
+
+
+3. References
+=============
+
+* https://github.com/dynup/kpatch
+
+ The livepatch implementation is based on the kpatch version of shadow
+ variables.
+
+* http://files.mkgnu.net/files/dynamos/doc/papers/dynamos_eurosys_07.pdf
+
+ Dynamic and Adaptive Updates of Non-Quiescent Subsystems in Commodity
+ Operating System Kernels (Kritis Makris, Kyung Dong Ryu 2007) presented
+ a datatype update technique called "shadow data structures".
diff --git a/Documentation/livepatch/system-state.rst b/Documentation/livepatch/system-state.rst
new file mode 100644
index 000000000..7a3935fd8
--- /dev/null
+++ b/Documentation/livepatch/system-state.rst
@@ -0,0 +1,167 @@
+====================
+System State Changes
+====================
+
+Some users are really reluctant to reboot a system. This brings the need
+to provide more livepatches and maintain some compatibility between them.
+
+Maintaining more livepatches is much easier with cumulative livepatches.
+Each new livepatch completely replaces any older one. It can keep,
+add, and even remove fixes. And it is typically safe to replace any version
+of the livepatch with any other one thanks to the atomic replace feature.
+
+The problems might come with shadow variables and callbacks. They might
+change the system behavior or state so that it is no longer safe to
+go back and use an older livepatch or the original kernel code. Also
+any new livepatch must be able to detect what changes have already been
+done by the already installed livepatches.
+
+This is where the livepatch system state tracking gets useful. It
+allows to:
+
+ - store data needed to manipulate and restore the system state
+
+ - define compatibility between livepatches using a change id
+ and version
+
+
+1. Livepatch system state API
+=============================
+
+The state of the system might get modified either by several livepatch callbacks
+or by the newly used code. Also it must be possible to find changes done by
+already installed livepatches.
+
+Each modified state is described by struct klp_state, see
+include/linux/livepatch.h.
+
+Each livepatch defines an array of struct klp_states. They mention
+all states that the livepatch modifies.
+
+The livepatch author must define the following two fields for each
+struct klp_state:
+
+ - *id*
+
+ - Non-zero number used to identify the affected system state.
+
+ - *version*
+
+ - Number describing the variant of the system state change that
+ is supported by the given livepatch.
+
+The state can be manipulated using two functions:
+
+ - klp_get_state()
+
+ - Get struct klp_state associated with the given livepatch
+ and state id.
+
+ - klp_get_prev_state()
+
+ - Get struct klp_state associated with the given feature id and
+ already installed livepatches.
+
+2. Livepatch compatibility
+==========================
+
+The system state version is used to prevent loading incompatible livepatches.
+The check is done when the livepatch is enabled. The rules are:
+
+ - Any completely new system state modification is allowed.
+
+ - System state modifications with the same or higher version are allowed
+ for already modified system states.
+
+ - Cumulative livepatches must handle all system state modifications from
+ already installed livepatches.
+
+ - Non-cumulative livepatches are allowed to touch already modified
+ system states.
+
+3. Supported scenarios
+======================
+
+Livepatches have their life-cycle and the same is true for the system
+state changes. Every compatible livepatch has to support the following
+scenarios:
+
+ - Modify the system state when the livepatch gets enabled and the state
+ has not been already modified by a livepatches that are being
+ replaced.
+
+ - Take over or update the system state modification when is has already
+ been done by a livepatch that is being replaced.
+
+ - Restore the original state when the livepatch is disabled.
+
+ - Restore the previous state when the transition is reverted.
+ It might be the original system state or the state modification
+ done by livepatches that were being replaced.
+
+ - Remove any already made changes when error occurs and the livepatch
+ cannot get enabled.
+
+4. Expected usage
+=================
+
+System states are usually modified by livepatch callbacks. The expected
+role of each callback is as follows:
+
+*pre_patch()*
+
+ - Allocate *state->data* when necessary. The allocation might fail
+ and *pre_patch()* is the only callback that could stop loading
+ of the livepatch. The allocation is not needed when the data
+ are already provided by previously installed livepatches.
+
+ - Do any other preparatory action that is needed by
+ the new code even before the transition gets finished.
+ For example, initialize *state->data*.
+
+ The system state itself is typically modified in *post_patch()*
+ when the entire system is able to handle it.
+
+ - Clean up its own mess in case of error. It might be done by a custom
+ code or by calling *post_unpatch()* explicitly.
+
+*post_patch()*
+
+ - Copy *state->data* from the previous livepatch when they are
+ compatible.
+
+ - Do the actual system state modification. Eventually allow
+ the new code to use it.
+
+ - Make sure that *state->data* has all necessary information.
+
+ - Free *state->data* from replaces livepatches when they are
+ not longer needed.
+
+*pre_unpatch()*
+
+ - Prevent the code, added by the livepatch, relying on the system
+ state change.
+
+ - Revert the system state modification..
+
+*post_unpatch()*
+
+ - Distinguish transition reverse and livepatch disabling by
+ checking *klp_get_prev_state()*.
+
+ - In case of transition reverse, restore the previous system
+ state. It might mean doing nothing.
+
+ - Remove any not longer needed setting or data.
+
+.. note::
+
+ *pre_unpatch()* typically does symmetric operations to *post_patch()*.
+ Except that it is called only when the livepatch is being disabled.
+ Therefore it does not need to care about any previously installed
+ livepatch.
+
+ *post_unpatch()* typically does symmetric operations to *pre_patch()*.
+ It might be called also during the transition reverse. Therefore it
+ has to handle the state of the previously installed livepatches.