diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/arm64/kernel/cpufeature.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kernel/cpufeature.c')
-rw-r--r-- | arch/arm64/kernel/cpufeature.c | 3494 |
1 files changed, 3494 insertions, 0 deletions
diff --git a/arch/arm64/kernel/cpufeature.c b/arch/arm64/kernel/cpufeature.c new file mode 100644 index 000000000..770a31c6e --- /dev/null +++ b/arch/arm64/kernel/cpufeature.c @@ -0,0 +1,3494 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Contains CPU feature definitions + * + * Copyright (C) 2015 ARM Ltd. + * + * A note for the weary kernel hacker: the code here is confusing and hard to + * follow! That's partly because it's solving a nasty problem, but also because + * there's a little bit of over-abstraction that tends to obscure what's going + * on behind a maze of helper functions and macros. + * + * The basic problem is that hardware folks have started gluing together CPUs + * with distinct architectural features; in some cases even creating SoCs where + * user-visible instructions are available only on a subset of the available + * cores. We try to address this by snapshotting the feature registers of the + * boot CPU and comparing these with the feature registers of each secondary + * CPU when bringing them up. If there is a mismatch, then we update the + * snapshot state to indicate the lowest-common denominator of the feature, + * known as the "safe" value. This snapshot state can be queried to view the + * "sanitised" value of a feature register. + * + * The sanitised register values are used to decide which capabilities we + * have in the system. These may be in the form of traditional "hwcaps" + * advertised to userspace or internal "cpucaps" which are used to configure + * things like alternative patching and static keys. While a feature mismatch + * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch + * may prevent a CPU from being onlined at all. + * + * Some implementation details worth remembering: + * + * - Mismatched features are *always* sanitised to a "safe" value, which + * usually indicates that the feature is not supported. + * + * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" + * warning when onlining an offending CPU and the kernel will be tainted + * with TAINT_CPU_OUT_OF_SPEC. + * + * - Features marked as FTR_VISIBLE have their sanitised value visible to + * userspace. FTR_VISIBLE features in registers that are only visible + * to EL0 by trapping *must* have a corresponding HWCAP so that late + * onlining of CPUs cannot lead to features disappearing at runtime. + * + * - A "feature" is typically a 4-bit register field. A "capability" is the + * high-level description derived from the sanitised field value. + * + * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID + * scheme for fields in ID registers") to understand when feature fields + * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). + * + * - KVM exposes its own view of the feature registers to guest operating + * systems regardless of FTR_VISIBLE. This is typically driven from the + * sanitised register values to allow virtual CPUs to be migrated between + * arbitrary physical CPUs, but some features not present on the host are + * also advertised and emulated. Look at sys_reg_descs[] for the gory + * details. + * + * - If the arm64_ftr_bits[] for a register has a missing field, then this + * field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). + * This is stronger than FTR_HIDDEN and can be used to hide features from + * KVM guests. + */ + +#define pr_fmt(fmt) "CPU features: " fmt + +#include <linux/bsearch.h> +#include <linux/cpumask.h> +#include <linux/crash_dump.h> +#include <linux/sort.h> +#include <linux/stop_machine.h> +#include <linux/sysfs.h> +#include <linux/types.h> +#include <linux/minmax.h> +#include <linux/mm.h> +#include <linux/cpu.h> +#include <linux/kasan.h> +#include <linux/percpu.h> + +#include <asm/cpu.h> +#include <asm/cpufeature.h> +#include <asm/cpu_ops.h> +#include <asm/fpsimd.h> +#include <asm/hwcap.h> +#include <asm/insn.h> +#include <asm/kvm_host.h> +#include <asm/mmu_context.h> +#include <asm/mte.h> +#include <asm/processor.h> +#include <asm/smp.h> +#include <asm/sysreg.h> +#include <asm/traps.h> +#include <asm/vectors.h> +#include <asm/virt.h> + +/* Kernel representation of AT_HWCAP and AT_HWCAP2 */ +static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly; + +#ifdef CONFIG_COMPAT +#define COMPAT_ELF_HWCAP_DEFAULT \ + (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ + COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ + COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ + COMPAT_HWCAP_LPAE) +unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; +unsigned int compat_elf_hwcap2 __read_mostly; +#endif + +DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); +EXPORT_SYMBOL(cpu_hwcaps); +static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; + +DECLARE_BITMAP(boot_capabilities, ARM64_NCAPS); + +bool arm64_use_ng_mappings = false; +EXPORT_SYMBOL(arm64_use_ng_mappings); + +DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors; + +/* + * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs + * support it? + */ +static bool __read_mostly allow_mismatched_32bit_el0; + +/* + * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have + * seen at least one CPU capable of 32-bit EL0. + */ +DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); + +/* + * Mask of CPUs supporting 32-bit EL0. + * Only valid if arm64_mismatched_32bit_el0 is enabled. + */ +static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly; + +void dump_cpu_features(void) +{ + /* file-wide pr_fmt adds "CPU features: " prefix */ + pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); +} + +#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ + { \ + .sign = SIGNED, \ + .visible = VISIBLE, \ + .strict = STRICT, \ + .type = TYPE, \ + .shift = SHIFT, \ + .width = WIDTH, \ + .safe_val = SAFE_VAL, \ + } + +/* Define a feature with unsigned values */ +#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ + __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) + +/* Define a feature with a signed value */ +#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ + __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) + +#define ARM64_FTR_END \ + { \ + .width = 0, \ + } + +static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); + +static bool __system_matches_cap(unsigned int n); + +/* + * NOTE: Any changes to the visibility of features should be kept in + * sync with the documentation of the CPU feature register ABI. + */ +static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64isar2[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0), + S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI), + S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), + FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = { + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0), + ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), + FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0), + /* + * Page size not being supported at Stage-2 is not fatal. You + * just give up KVM if PAGE_SIZE isn't supported there. Go fix + * your favourite nesting hypervisor. + * + * There is a small corner case where the hypervisor explicitly + * advertises a given granule size at Stage-2 (value 2) on some + * vCPUs, and uses the fallback to Stage-1 (value 0) for other + * vCPUs. Although this is not forbidden by the architecture, it + * indicates that the hypervisor is being silly (or buggy). + * + * We make no effort to cope with this and pretend that if these + * fields are inconsistent across vCPUs, then it isn't worth + * trying to bring KVM up. + */ + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1), + /* + * We already refuse to boot CPUs that don't support our configured + * page size, so we can only detect mismatches for a page size other + * than the one we're currently using. Unfortunately, SoCs like this + * exist in the wild so, even though we don't like it, we'll have to go + * along with it and treat them as non-strict. + */ + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI), + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI), + + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0), + /* Linux shouldn't care about secure memory */ + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0), + /* + * Differing PARange is fine as long as all peripherals and memory are mapped + * within the minimum PARange of all CPUs + */ + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_ctr[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1), + /* + * Linux can handle differing I-cache policies. Userspace JITs will + * make use of *minLine. + * If we have differing I-cache policies, report it as the weakest - VIPT. + */ + ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */ + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static struct arm64_ftr_override __ro_after_init no_override = { }; + +struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { + .name = "SYS_CTR_EL0", + .ftr_bits = ftr_ctr, + .override = &no_override, +}; + +static const struct arm64_ftr_bits ftr_id_mmfr0[] = { + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0), + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0), + /* + * We can instantiate multiple PMU instances with different levels + * of support. + */ + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_mvfr0[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPROUND_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSHVEC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSQRT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPDIVIDE_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPTRAP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPDP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_FPSP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_SIMD_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_mvfr1[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDFMAC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPHP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDHP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDSP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDINT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_SIMDLS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPDNAN_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_FPFTZ_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_mvfr2[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_dczid[] = { + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_gmid[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_isar0[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_isar5[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_mmfr4[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0), + + /* + * SpecSEI = 1 indicates that the PE might generate an SError on an + * external abort on speculative read. It is safe to assume that an + * SError might be generated than it will not be. Hence it has been + * classified as FTR_HIGHER_SAFE. + */ + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_isar4[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_mmfr5[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_isar6[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_pfr0[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_pfr1[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_pfr2[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_dfr0[] = { + /* [31:28] TraceFilt */ + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_id_dfr1[] = { + S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_zcr[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, + ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */ + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_smcr[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, + SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */ + ARM64_FTR_END, +}; + +/* + * Common ftr bits for a 32bit register with all hidden, strict + * attributes, with 4bit feature fields and a default safe value of + * 0. Covers the following 32bit registers: + * id_isar[1-3], id_mmfr[1-3] + */ +static const struct arm64_ftr_bits ftr_generic_32bits[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), + ARM64_FTR_END, +}; + +/* Table for a single 32bit feature value */ +static const struct arm64_ftr_bits ftr_single32[] = { + ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), + ARM64_FTR_END, +}; + +static const struct arm64_ftr_bits ftr_raz[] = { + ARM64_FTR_END, +}; + +#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \ + .sys_id = id, \ + .reg = &(struct arm64_ftr_reg){ \ + .name = id_str, \ + .override = (ovr), \ + .ftr_bits = &((table)[0]), \ + }} + +#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \ + __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr) + +#define ARM64_FTR_REG(id, table) \ + __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override) + +struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override; +struct arm64_ftr_override __ro_after_init id_aa64pfr0_override; +struct arm64_ftr_override __ro_after_init id_aa64pfr1_override; +struct arm64_ftr_override __ro_after_init id_aa64zfr0_override; +struct arm64_ftr_override __ro_after_init id_aa64smfr0_override; +struct arm64_ftr_override __ro_after_init id_aa64isar1_override; +struct arm64_ftr_override __ro_after_init id_aa64isar2_override; + +static const struct __ftr_reg_entry { + u32 sys_id; + struct arm64_ftr_reg *reg; +} arm64_ftr_regs[] = { + + /* Op1 = 0, CRn = 0, CRm = 1 */ + ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), + ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), + ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), + ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), + ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), + ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), + ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), + + /* Op1 = 0, CRn = 0, CRm = 2 */ + ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), + ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), + ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), + ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), + ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), + ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), + ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), + ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), + + /* Op1 = 0, CRn = 0, CRm = 3 */ + ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0), + ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1), + ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), + ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), + ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), + ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), + + /* Op1 = 0, CRn = 0, CRm = 4 */ + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0, + &id_aa64pfr0_override), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1, + &id_aa64pfr1_override), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0, + &id_aa64zfr0_override), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0, + &id_aa64smfr0_override), + + /* Op1 = 0, CRn = 0, CRm = 5 */ + ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), + ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), + + /* Op1 = 0, CRn = 0, CRm = 6 */ + ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1, + &id_aa64isar1_override), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2, + &id_aa64isar2_override), + + /* Op1 = 0, CRn = 0, CRm = 7 */ + ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), + ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1, + &id_aa64mmfr1_override), + ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), + + /* Op1 = 0, CRn = 1, CRm = 2 */ + ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), + ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr), + + /* Op1 = 1, CRn = 0, CRm = 0 */ + ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), + + /* Op1 = 3, CRn = 0, CRm = 0 */ + { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, + ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), + + /* Op1 = 3, CRn = 14, CRm = 0 */ + ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), +}; + +static int search_cmp_ftr_reg(const void *id, const void *regp) +{ + return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; +} + +/* + * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using + * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the + * ascending order of sys_id, we use binary search to find a matching + * entry. + * + * returns - Upon success, matching ftr_reg entry for id. + * - NULL on failure. It is upto the caller to decide + * the impact of a failure. + */ +static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) +{ + const struct __ftr_reg_entry *ret; + + ret = bsearch((const void *)(unsigned long)sys_id, + arm64_ftr_regs, + ARRAY_SIZE(arm64_ftr_regs), + sizeof(arm64_ftr_regs[0]), + search_cmp_ftr_reg); + if (ret) + return ret->reg; + return NULL; +} + +/* + * get_arm64_ftr_reg - Looks up a feature register entry using + * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). + * + * returns - Upon success, matching ftr_reg entry for id. + * - NULL on failure but with an WARN_ON(). + */ +struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) +{ + struct arm64_ftr_reg *reg; + + reg = get_arm64_ftr_reg_nowarn(sys_id); + + /* + * Requesting a non-existent register search is an error. Warn + * and let the caller handle it. + */ + WARN_ON(!reg); + return reg; +} + +static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, + s64 ftr_val) +{ + u64 mask = arm64_ftr_mask(ftrp); + + reg &= ~mask; + reg |= (ftr_val << ftrp->shift) & mask; + return reg; +} + +static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, + s64 cur) +{ + s64 ret = 0; + + switch (ftrp->type) { + case FTR_EXACT: + ret = ftrp->safe_val; + break; + case FTR_LOWER_SAFE: + ret = min(new, cur); + break; + case FTR_HIGHER_OR_ZERO_SAFE: + if (!cur || !new) + break; + fallthrough; + case FTR_HIGHER_SAFE: + ret = max(new, cur); + break; + default: + BUG(); + } + + return ret; +} + +static void __init sort_ftr_regs(void) +{ + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { + const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; + const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; + unsigned int j = 0; + + /* + * Features here must be sorted in descending order with respect + * to their shift values and should not overlap with each other. + */ + for (; ftr_bits->width != 0; ftr_bits++, j++) { + unsigned int width = ftr_reg->ftr_bits[j].width; + unsigned int shift = ftr_reg->ftr_bits[j].shift; + unsigned int prev_shift; + + WARN((shift + width) > 64, + "%s has invalid feature at shift %d\n", + ftr_reg->name, shift); + + /* + * Skip the first feature. There is nothing to + * compare against for now. + */ + if (j == 0) + continue; + + prev_shift = ftr_reg->ftr_bits[j - 1].shift; + WARN((shift + width) > prev_shift, + "%s has feature overlap at shift %d\n", + ftr_reg->name, shift); + } + + /* + * Skip the first register. There is nothing to + * compare against for now. + */ + if (i == 0) + continue; + /* + * Registers here must be sorted in ascending order with respect + * to sys_id for subsequent binary search in get_arm64_ftr_reg() + * to work correctly. + */ + BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id); + } +} + +/* + * Initialise the CPU feature register from Boot CPU values. + * Also initiliases the strict_mask for the register. + * Any bits that are not covered by an arm64_ftr_bits entry are considered + * RES0 for the system-wide value, and must strictly match. + */ +static void init_cpu_ftr_reg(u32 sys_reg, u64 new) +{ + u64 val = 0; + u64 strict_mask = ~0x0ULL; + u64 user_mask = 0; + u64 valid_mask = 0; + + const struct arm64_ftr_bits *ftrp; + struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); + + if (!reg) + return; + + for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { + u64 ftr_mask = arm64_ftr_mask(ftrp); + s64 ftr_new = arm64_ftr_value(ftrp, new); + s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val); + + if ((ftr_mask & reg->override->mask) == ftr_mask) { + s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new); + char *str = NULL; + + if (ftr_ovr != tmp) { + /* Unsafe, remove the override */ + reg->override->mask &= ~ftr_mask; + reg->override->val &= ~ftr_mask; + tmp = ftr_ovr; + str = "ignoring override"; + } else if (ftr_new != tmp) { + /* Override was valid */ + ftr_new = tmp; + str = "forced"; + } else if (ftr_ovr == tmp) { + /* Override was the safe value */ + str = "already set"; + } + + if (str) + pr_warn("%s[%d:%d]: %s to %llx\n", + reg->name, + ftrp->shift + ftrp->width - 1, + ftrp->shift, str, tmp); + } else if ((ftr_mask & reg->override->val) == ftr_mask) { + reg->override->val &= ~ftr_mask; + pr_warn("%s[%d:%d]: impossible override, ignored\n", + reg->name, + ftrp->shift + ftrp->width - 1, + ftrp->shift); + } + + val = arm64_ftr_set_value(ftrp, val, ftr_new); + + valid_mask |= ftr_mask; + if (!ftrp->strict) + strict_mask &= ~ftr_mask; + if (ftrp->visible) + user_mask |= ftr_mask; + else + reg->user_val = arm64_ftr_set_value(ftrp, + reg->user_val, + ftrp->safe_val); + } + + val &= valid_mask; + + reg->sys_val = val; + reg->strict_mask = strict_mask; + reg->user_mask = user_mask; +} + +extern const struct arm64_cpu_capabilities arm64_errata[]; +static const struct arm64_cpu_capabilities arm64_features[]; + +static void __init +init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) +{ + for (; caps->matches; caps++) { + if (WARN(caps->capability >= ARM64_NCAPS, + "Invalid capability %d\n", caps->capability)) + continue; + if (WARN(cpu_hwcaps_ptrs[caps->capability], + "Duplicate entry for capability %d\n", + caps->capability)) + continue; + cpu_hwcaps_ptrs[caps->capability] = caps; + } +} + +static void __init init_cpu_hwcaps_indirect_list(void) +{ + init_cpu_hwcaps_indirect_list_from_array(arm64_features); + init_cpu_hwcaps_indirect_list_from_array(arm64_errata); +} + +static void __init setup_boot_cpu_capabilities(void); + +static void init_32bit_cpu_features(struct cpuinfo_32bit *info) +{ + init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); + init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); + init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); + init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); + init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); + init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); + init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); + init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); + init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); + init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); + init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); + init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); + init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); + init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); + init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); + init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); + init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); + init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); + init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); + init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); + init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); +} + +void __init init_cpu_features(struct cpuinfo_arm64 *info) +{ + /* Before we start using the tables, make sure it is sorted */ + sort_ftr_regs(); + + init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); + init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); + init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); + init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); + init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); + init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); + init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); + init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2); + init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); + init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); + init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); + init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); + init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); + init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); + init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0); + + if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) + init_32bit_cpu_features(&info->aarch32); + + if (IS_ENABLED(CONFIG_ARM64_SVE) && + id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { + info->reg_zcr = read_zcr_features(); + init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); + vec_init_vq_map(ARM64_VEC_SVE); + } + + if (IS_ENABLED(CONFIG_ARM64_SME) && + id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { + info->reg_smcr = read_smcr_features(); + /* + * We mask out SMPS since even if the hardware + * supports priorities the kernel does not at present + * and we block access to them. + */ + info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; + init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr); + vec_init_vq_map(ARM64_VEC_SME); + } + + if (id_aa64pfr1_mte(info->reg_id_aa64pfr1)) + init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid); + + /* + * Initialize the indirect array of CPU hwcaps capabilities pointers + * before we handle the boot CPU below. + */ + init_cpu_hwcaps_indirect_list(); + + /* + * Detect and enable early CPU capabilities based on the boot CPU, + * after we have initialised the CPU feature infrastructure. + */ + setup_boot_cpu_capabilities(); +} + +static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) +{ + const struct arm64_ftr_bits *ftrp; + + for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { + s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); + s64 ftr_new = arm64_ftr_value(ftrp, new); + + if (ftr_cur == ftr_new) + continue; + /* Find a safe value */ + ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); + reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); + } + +} + +static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) +{ + struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); + + if (!regp) + return 0; + + update_cpu_ftr_reg(regp, val); + if ((boot & regp->strict_mask) == (val & regp->strict_mask)) + return 0; + pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", + regp->name, boot, cpu, val); + return 1; +} + +static void relax_cpu_ftr_reg(u32 sys_id, int field) +{ + const struct arm64_ftr_bits *ftrp; + struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); + + if (!regp) + return; + + for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { + if (ftrp->shift == field) { + regp->strict_mask &= ~arm64_ftr_mask(ftrp); + break; + } + } + + /* Bogus field? */ + WARN_ON(!ftrp->width); +} + +static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info, + struct cpuinfo_arm64 *boot) +{ + static bool boot_cpu_32bit_regs_overridden = false; + + if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden) + return; + + if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0)) + return; + + boot->aarch32 = info->aarch32; + init_32bit_cpu_features(&boot->aarch32); + boot_cpu_32bit_regs_overridden = true; +} + +static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info, + struct cpuinfo_32bit *boot) +{ + int taint = 0; + u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + /* + * If we don't have AArch32 at EL1, then relax the strictness of + * EL1-dependent register fields to avoid spurious sanity check fails. + */ + if (!id_aa64pfr0_32bit_el1(pfr0)) { + relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT); + relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT); + relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT); + relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT); + relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT); + relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT); + } + + taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, + info->reg_id_dfr0, boot->reg_id_dfr0); + taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, + info->reg_id_dfr1, boot->reg_id_dfr1); + taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, + info->reg_id_isar0, boot->reg_id_isar0); + taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, + info->reg_id_isar1, boot->reg_id_isar1); + taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, + info->reg_id_isar2, boot->reg_id_isar2); + taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, + info->reg_id_isar3, boot->reg_id_isar3); + taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, + info->reg_id_isar4, boot->reg_id_isar4); + taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, + info->reg_id_isar5, boot->reg_id_isar5); + taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, + info->reg_id_isar6, boot->reg_id_isar6); + + /* + * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and + * ACTLR formats could differ across CPUs and therefore would have to + * be trapped for virtualization anyway. + */ + taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, + info->reg_id_mmfr0, boot->reg_id_mmfr0); + taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, + info->reg_id_mmfr1, boot->reg_id_mmfr1); + taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, + info->reg_id_mmfr2, boot->reg_id_mmfr2); + taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, + info->reg_id_mmfr3, boot->reg_id_mmfr3); + taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, + info->reg_id_mmfr4, boot->reg_id_mmfr4); + taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, + info->reg_id_mmfr5, boot->reg_id_mmfr5); + taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, + info->reg_id_pfr0, boot->reg_id_pfr0); + taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, + info->reg_id_pfr1, boot->reg_id_pfr1); + taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, + info->reg_id_pfr2, boot->reg_id_pfr2); + taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, + info->reg_mvfr0, boot->reg_mvfr0); + taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, + info->reg_mvfr1, boot->reg_mvfr1); + taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, + info->reg_mvfr2, boot->reg_mvfr2); + + return taint; +} + +/* + * Update system wide CPU feature registers with the values from a + * non-boot CPU. Also performs SANITY checks to make sure that there + * aren't any insane variations from that of the boot CPU. + */ +void update_cpu_features(int cpu, + struct cpuinfo_arm64 *info, + struct cpuinfo_arm64 *boot) +{ + int taint = 0; + + /* + * The kernel can handle differing I-cache policies, but otherwise + * caches should look identical. Userspace JITs will make use of + * *minLine. + */ + taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, + info->reg_ctr, boot->reg_ctr); + + /* + * Userspace may perform DC ZVA instructions. Mismatched block sizes + * could result in too much or too little memory being zeroed if a + * process is preempted and migrated between CPUs. + */ + taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, + info->reg_dczid, boot->reg_dczid); + + /* If different, timekeeping will be broken (especially with KVM) */ + taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, + info->reg_cntfrq, boot->reg_cntfrq); + + /* + * The kernel uses self-hosted debug features and expects CPUs to + * support identical debug features. We presently need CTX_CMPs, WRPs, + * and BRPs to be identical. + * ID_AA64DFR1 is currently RES0. + */ + taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, + info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); + taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, + info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); + /* + * Even in big.LITTLE, processors should be identical instruction-set + * wise. + */ + taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, + info->reg_id_aa64isar0, boot->reg_id_aa64isar0); + taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, + info->reg_id_aa64isar1, boot->reg_id_aa64isar1); + taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu, + info->reg_id_aa64isar2, boot->reg_id_aa64isar2); + + /* + * Differing PARange support is fine as long as all peripherals and + * memory are mapped within the minimum PARange of all CPUs. + * Linux should not care about secure memory. + */ + taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, + info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); + taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, + info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); + taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, + info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); + + taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, + info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); + taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, + info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); + + taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, + info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); + + taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu, + info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0); + + if (IS_ENABLED(CONFIG_ARM64_SVE) && + id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { + info->reg_zcr = read_zcr_features(); + taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, + info->reg_zcr, boot->reg_zcr); + + /* Probe vector lengths */ + if (!system_capabilities_finalized()) + vec_update_vq_map(ARM64_VEC_SVE); + } + + if (IS_ENABLED(CONFIG_ARM64_SME) && + id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { + info->reg_smcr = read_smcr_features(); + /* + * We mask out SMPS since even if the hardware + * supports priorities the kernel does not at present + * and we block access to them. + */ + info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; + taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu, + info->reg_smcr, boot->reg_smcr); + + /* Probe vector lengths */ + if (!system_capabilities_finalized()) + vec_update_vq_map(ARM64_VEC_SME); + } + + /* + * The kernel uses the LDGM/STGM instructions and the number of tags + * they read/write depends on the GMID_EL1.BS field. Check that the + * value is the same on all CPUs. + */ + if (IS_ENABLED(CONFIG_ARM64_MTE) && + id_aa64pfr1_mte(info->reg_id_aa64pfr1)) { + taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu, + info->reg_gmid, boot->reg_gmid); + } + + /* + * If we don't have AArch32 at all then skip the checks entirely + * as the register values may be UNKNOWN and we're not going to be + * using them for anything. + * + * This relies on a sanitised view of the AArch64 ID registers + * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. + */ + if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { + lazy_init_32bit_cpu_features(info, boot); + taint |= update_32bit_cpu_features(cpu, &info->aarch32, + &boot->aarch32); + } + + /* + * Mismatched CPU features are a recipe for disaster. Don't even + * pretend to support them. + */ + if (taint) { + pr_warn_once("Unsupported CPU feature variation detected.\n"); + add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); + } +} + +u64 read_sanitised_ftr_reg(u32 id) +{ + struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); + + if (!regp) + return 0; + return regp->sys_val; +} +EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); + +#define read_sysreg_case(r) \ + case r: val = read_sysreg_s(r); break; + +/* + * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. + * Read the system register on the current CPU + */ +u64 __read_sysreg_by_encoding(u32 sys_id) +{ + struct arm64_ftr_reg *regp; + u64 val; + + switch (sys_id) { + read_sysreg_case(SYS_ID_PFR0_EL1); + read_sysreg_case(SYS_ID_PFR1_EL1); + read_sysreg_case(SYS_ID_PFR2_EL1); + read_sysreg_case(SYS_ID_DFR0_EL1); + read_sysreg_case(SYS_ID_DFR1_EL1); + read_sysreg_case(SYS_ID_MMFR0_EL1); + read_sysreg_case(SYS_ID_MMFR1_EL1); + read_sysreg_case(SYS_ID_MMFR2_EL1); + read_sysreg_case(SYS_ID_MMFR3_EL1); + read_sysreg_case(SYS_ID_MMFR4_EL1); + read_sysreg_case(SYS_ID_MMFR5_EL1); + read_sysreg_case(SYS_ID_ISAR0_EL1); + read_sysreg_case(SYS_ID_ISAR1_EL1); + read_sysreg_case(SYS_ID_ISAR2_EL1); + read_sysreg_case(SYS_ID_ISAR3_EL1); + read_sysreg_case(SYS_ID_ISAR4_EL1); + read_sysreg_case(SYS_ID_ISAR5_EL1); + read_sysreg_case(SYS_ID_ISAR6_EL1); + read_sysreg_case(SYS_MVFR0_EL1); + read_sysreg_case(SYS_MVFR1_EL1); + read_sysreg_case(SYS_MVFR2_EL1); + + read_sysreg_case(SYS_ID_AA64PFR0_EL1); + read_sysreg_case(SYS_ID_AA64PFR1_EL1); + read_sysreg_case(SYS_ID_AA64ZFR0_EL1); + read_sysreg_case(SYS_ID_AA64SMFR0_EL1); + read_sysreg_case(SYS_ID_AA64DFR0_EL1); + read_sysreg_case(SYS_ID_AA64DFR1_EL1); + read_sysreg_case(SYS_ID_AA64MMFR0_EL1); + read_sysreg_case(SYS_ID_AA64MMFR1_EL1); + read_sysreg_case(SYS_ID_AA64MMFR2_EL1); + read_sysreg_case(SYS_ID_AA64ISAR0_EL1); + read_sysreg_case(SYS_ID_AA64ISAR1_EL1); + read_sysreg_case(SYS_ID_AA64ISAR2_EL1); + + read_sysreg_case(SYS_CNTFRQ_EL0); + read_sysreg_case(SYS_CTR_EL0); + read_sysreg_case(SYS_DCZID_EL0); + + default: + BUG(); + return 0; + } + + regp = get_arm64_ftr_reg(sys_id); + if (regp) { + val &= ~regp->override->mask; + val |= (regp->override->val & regp->override->mask); + } + + return val; +} + +#include <linux/irqchip/arm-gic-v3.h> + +static bool +has_always(const struct arm64_cpu_capabilities *entry, int scope) +{ + return true; +} + +static bool +feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) +{ + int val = cpuid_feature_extract_field_width(reg, entry->field_pos, + entry->field_width, + entry->sign); + + return val >= entry->min_field_value; +} + +static u64 +read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope) +{ + WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); + if (scope == SCOPE_SYSTEM) + return read_sanitised_ftr_reg(entry->sys_reg); + else + return __read_sysreg_by_encoding(entry->sys_reg); +} + +static bool +has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) +{ + int mask; + struct arm64_ftr_reg *regp; + u64 val = read_scoped_sysreg(entry, scope); + + regp = get_arm64_ftr_reg(entry->sys_reg); + if (!regp) + return false; + + mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask, + entry->field_pos, + entry->field_width); + if (!mask) + return false; + + return feature_matches(val, entry); +} + +static bool +has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) +{ + u64 val = read_scoped_sysreg(entry, scope); + return feature_matches(val, entry); +} + +const struct cpumask *system_32bit_el0_cpumask(void) +{ + if (!system_supports_32bit_el0()) + return cpu_none_mask; + + if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) + return cpu_32bit_el0_mask; + + return cpu_possible_mask; +} + +static int __init parse_32bit_el0_param(char *str) +{ + allow_mismatched_32bit_el0 = true; + return 0; +} +early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param); + +static ssize_t aarch32_el0_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + const struct cpumask *mask = system_32bit_el0_cpumask(); + + return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask)); +} +static const DEVICE_ATTR_RO(aarch32_el0); + +static int __init aarch32_el0_sysfs_init(void) +{ + if (!allow_mismatched_32bit_el0) + return 0; + + return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0); +} +device_initcall(aarch32_el0_sysfs_init); + +static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope) +{ + if (!has_cpuid_feature(entry, scope)) + return allow_mismatched_32bit_el0; + + if (scope == SCOPE_SYSTEM) + pr_info("detected: 32-bit EL0 Support\n"); + + return true; +} + +static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) +{ + bool has_sre; + + if (!has_cpuid_feature(entry, scope)) + return false; + + has_sre = gic_enable_sre(); + if (!has_sre) + pr_warn_once("%s present but disabled by higher exception level\n", + entry->desc); + + return has_sre; +} + +static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) +{ + u32 midr = read_cpuid_id(); + + /* Cavium ThunderX pass 1.x and 2.x */ + return midr_is_cpu_model_range(midr, MIDR_THUNDERX, + MIDR_CPU_VAR_REV(0, 0), + MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); +} + +static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) +{ + u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + return cpuid_feature_extract_signed_field(pfr0, + ID_AA64PFR0_EL1_FP_SHIFT) < 0; +} + +static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, + int scope) +{ + u64 ctr; + + if (scope == SCOPE_SYSTEM) + ctr = arm64_ftr_reg_ctrel0.sys_val; + else + ctr = read_cpuid_effective_cachetype(); + + return ctr & BIT(CTR_EL0_IDC_SHIFT); +} + +static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) +{ + /* + * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively + * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses + * to the CTR_EL0 on this CPU and emulate it with the real/safe + * value. + */ + if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT))) + sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); +} + +static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, + int scope) +{ + u64 ctr; + + if (scope == SCOPE_SYSTEM) + ctr = arm64_ftr_reg_ctrel0.sys_val; + else + ctr = read_cpuid_cachetype(); + + return ctr & BIT(CTR_EL0_DIC_SHIFT); +} + +static bool __maybe_unused +has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) +{ + /* + * Kdump isn't guaranteed to power-off all secondary CPUs, CNP + * may share TLB entries with a CPU stuck in the crashed + * kernel. + */ + if (is_kdump_kernel()) + return false; + + if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP)) + return false; + + return has_cpuid_feature(entry, scope); +} + +/* + * This check is triggered during the early boot before the cpufeature + * is initialised. Checking the status on the local CPU allows the boot + * CPU to detect the need for non-global mappings and thus avoiding a + * pagetable re-write after all the CPUs are booted. This check will be + * anyway run on individual CPUs, allowing us to get the consistent + * state once the SMP CPUs are up and thus make the switch to non-global + * mappings if required. + */ +bool kaslr_requires_kpti(void) +{ + if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) + return false; + + /* + * E0PD does a similar job to KPTI so can be used instead + * where available. + */ + if (IS_ENABLED(CONFIG_ARM64_E0PD)) { + u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); + if (cpuid_feature_extract_unsigned_field(mmfr2, + ID_AA64MMFR2_EL1_E0PD_SHIFT)) + return false; + } + + /* + * Systems affected by Cavium erratum 24756 are incompatible + * with KPTI. + */ + if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { + extern const struct midr_range cavium_erratum_27456_cpus[]; + + if (is_midr_in_range_list(read_cpuid_id(), + cavium_erratum_27456_cpus)) + return false; + } + + return kaslr_offset() > 0; +} + +static bool __meltdown_safe = true; +static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ + +static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, + int scope) +{ + /* List of CPUs that are not vulnerable and don't need KPTI */ + static const struct midr_range kpti_safe_list[] = { + MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), + MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), + MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), + MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), + MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), + MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), + MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), + MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), + MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), + MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), + { /* sentinel */ } + }; + char const *str = "kpti command line option"; + bool meltdown_safe; + + meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); + + /* Defer to CPU feature registers */ + if (has_cpuid_feature(entry, scope)) + meltdown_safe = true; + + if (!meltdown_safe) + __meltdown_safe = false; + + /* + * For reasons that aren't entirely clear, enabling KPTI on Cavium + * ThunderX leads to apparent I-cache corruption of kernel text, which + * ends as well as you might imagine. Don't even try. We cannot rely + * on the cpus_have_*cap() helpers here to detect the CPU erratum + * because cpucap detection order may change. However, since we know + * affected CPUs are always in a homogeneous configuration, it is + * safe to rely on this_cpu_has_cap() here. + */ + if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) { + str = "ARM64_WORKAROUND_CAVIUM_27456"; + __kpti_forced = -1; + } + + /* Useful for KASLR robustness */ + if (kaslr_requires_kpti()) { + if (!__kpti_forced) { + str = "KASLR"; + __kpti_forced = 1; + } + } + + if (cpu_mitigations_off() && !__kpti_forced) { + str = "mitigations=off"; + __kpti_forced = -1; + } + + if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { + pr_info_once("kernel page table isolation disabled by kernel configuration\n"); + return false; + } + + /* Forced? */ + if (__kpti_forced) { + pr_info_once("kernel page table isolation forced %s by %s\n", + __kpti_forced > 0 ? "ON" : "OFF", str); + return __kpti_forced > 0; + } + + return !meltdown_safe; +} + +#ifdef CONFIG_UNMAP_KERNEL_AT_EL0 +#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT)) + +extern +void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt, + phys_addr_t size, pgprot_t prot, + phys_addr_t (*pgtable_alloc)(int), int flags); + +static phys_addr_t kpti_ng_temp_alloc; + +static phys_addr_t kpti_ng_pgd_alloc(int shift) +{ + kpti_ng_temp_alloc -= PAGE_SIZE; + return kpti_ng_temp_alloc; +} + +static void +kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) +{ + typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long); + extern kpti_remap_fn idmap_kpti_install_ng_mappings; + kpti_remap_fn *remap_fn; + + int cpu = smp_processor_id(); + int levels = CONFIG_PGTABLE_LEVELS; + int order = order_base_2(levels); + u64 kpti_ng_temp_pgd_pa = 0; + pgd_t *kpti_ng_temp_pgd; + u64 alloc = 0; + + if (__this_cpu_read(this_cpu_vector) == vectors) { + const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI); + + __this_cpu_write(this_cpu_vector, v); + } + + /* + * We don't need to rewrite the page-tables if either we've done + * it already or we have KASLR enabled and therefore have not + * created any global mappings at all. + */ + if (arm64_use_ng_mappings) + return; + + remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); + + if (!cpu) { + alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); + kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE); + kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd); + + // + // Create a minimal page table hierarchy that permits us to map + // the swapper page tables temporarily as we traverse them. + // + // The physical pages are laid out as follows: + // + // +--------+-/-------+-/------ +-\\--------+ + // : PTE[] : | PMD[] : | PUD[] : || PGD[] : + // +--------+-\-------+-\------ +-//--------+ + // ^ + // The first page is mapped into this hierarchy at a PMD_SHIFT + // aligned virtual address, so that we can manipulate the PTE + // level entries while the mapping is active. The first entry + // covers the PTE[] page itself, the remaining entries are free + // to be used as a ad-hoc fixmap. + // + create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc), + KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL, + kpti_ng_pgd_alloc, 0); + } + + cpu_install_idmap(); + remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA); + cpu_uninstall_idmap(); + + if (!cpu) { + free_pages(alloc, order); + arm64_use_ng_mappings = true; + } +} +#else +static void +kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) +{ +} +#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ + +static int __init parse_kpti(char *str) +{ + bool enabled; + int ret = strtobool(str, &enabled); + + if (ret) + return ret; + + __kpti_forced = enabled ? 1 : -1; + return 0; +} +early_param("kpti", parse_kpti); + +#ifdef CONFIG_ARM64_HW_AFDBM +static inline void __cpu_enable_hw_dbm(void) +{ + u64 tcr = read_sysreg(tcr_el1) | TCR_HD; + + write_sysreg(tcr, tcr_el1); + isb(); + local_flush_tlb_all(); +} + +static bool cpu_has_broken_dbm(void) +{ + /* List of CPUs which have broken DBM support. */ + static const struct midr_range cpus[] = { +#ifdef CONFIG_ARM64_ERRATUM_1024718 + MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), + /* Kryo4xx Silver (rdpe => r1p0) */ + MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), +#endif +#ifdef CONFIG_ARM64_ERRATUM_2051678 + MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2), +#endif + {}, + }; + + return is_midr_in_range_list(read_cpuid_id(), cpus); +} + +static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) +{ + return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && + !cpu_has_broken_dbm(); +} + +static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) +{ + if (cpu_can_use_dbm(cap)) + __cpu_enable_hw_dbm(); +} + +static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, + int __unused) +{ + static bool detected = false; + /* + * DBM is a non-conflicting feature. i.e, the kernel can safely + * run a mix of CPUs with and without the feature. So, we + * unconditionally enable the capability to allow any late CPU + * to use the feature. We only enable the control bits on the + * CPU, if it actually supports. + * + * We have to make sure we print the "feature" detection only + * when at least one CPU actually uses it. So check if this CPU + * can actually use it and print the message exactly once. + * + * This is safe as all CPUs (including secondary CPUs - due to the + * LOCAL_CPU scope - and the hotplugged CPUs - via verification) + * goes through the "matches" check exactly once. Also if a CPU + * matches the criteria, it is guaranteed that the CPU will turn + * the DBM on, as the capability is unconditionally enabled. + */ + if (!detected && cpu_can_use_dbm(cap)) { + detected = true; + pr_info("detected: Hardware dirty bit management\n"); + } + + return true; +} + +#endif + +#ifdef CONFIG_ARM64_AMU_EXTN + +/* + * The "amu_cpus" cpumask only signals that the CPU implementation for the + * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide + * information regarding all the events that it supports. When a CPU bit is + * set in the cpumask, the user of this feature can only rely on the presence + * of the 4 fixed counters for that CPU. But this does not guarantee that the + * counters are enabled or access to these counters is enabled by code + * executed at higher exception levels (firmware). + */ +static struct cpumask amu_cpus __read_mostly; + +bool cpu_has_amu_feat(int cpu) +{ + return cpumask_test_cpu(cpu, &amu_cpus); +} + +int get_cpu_with_amu_feat(void) +{ + return cpumask_any(&amu_cpus); +} + +static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) +{ + if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { + pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", + smp_processor_id()); + cpumask_set_cpu(smp_processor_id(), &amu_cpus); + + /* 0 reference values signal broken/disabled counters */ + if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168)) + update_freq_counters_refs(); + } +} + +static bool has_amu(const struct arm64_cpu_capabilities *cap, + int __unused) +{ + /* + * The AMU extension is a non-conflicting feature: the kernel can + * safely run a mix of CPUs with and without support for the + * activity monitors extension. Therefore, unconditionally enable + * the capability to allow any late CPU to use the feature. + * + * With this feature unconditionally enabled, the cpu_enable + * function will be called for all CPUs that match the criteria, + * including secondary and hotplugged, marking this feature as + * present on that respective CPU. The enable function will also + * print a detection message. + */ + + return true; +} +#else +int get_cpu_with_amu_feat(void) +{ + return nr_cpu_ids; +} +#endif + +static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) +{ + return is_kernel_in_hyp_mode(); +} + +static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) +{ + /* + * Copy register values that aren't redirected by hardware. + * + * Before code patching, we only set tpidr_el1, all CPUs need to copy + * this value to tpidr_el2 before we patch the code. Once we've done + * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to + * do anything here. + */ + if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) + write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); +} + +#ifdef CONFIG_ARM64_PAN +static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) +{ + /* + * We modify PSTATE. This won't work from irq context as the PSTATE + * is discarded once we return from the exception. + */ + WARN_ON_ONCE(in_interrupt()); + + sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); + set_pstate_pan(1); +} +#endif /* CONFIG_ARM64_PAN */ + +#ifdef CONFIG_ARM64_RAS_EXTN +static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) +{ + /* Firmware may have left a deferred SError in this register. */ + write_sysreg_s(0, SYS_DISR_EL1); +} +#endif /* CONFIG_ARM64_RAS_EXTN */ + +#ifdef CONFIG_ARM64_PTR_AUTH +static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) +{ + int boot_val, sec_val; + + /* We don't expect to be called with SCOPE_SYSTEM */ + WARN_ON(scope == SCOPE_SYSTEM); + /* + * The ptr-auth feature levels are not intercompatible with lower + * levels. Hence we must match ptr-auth feature level of the secondary + * CPUs with that of the boot CPU. The level of boot cpu is fetched + * from the sanitised register whereas direct register read is done for + * the secondary CPUs. + * The sanitised feature state is guaranteed to match that of the + * boot CPU as a mismatched secondary CPU is parked before it gets + * a chance to update the state, with the capability. + */ + boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), + entry->field_pos, entry->sign); + if (scope & SCOPE_BOOT_CPU) + return boot_val >= entry->min_field_value; + /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ + sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), + entry->field_pos, entry->sign); + return (sec_val >= entry->min_field_value) && (sec_val == boot_val); +} + +static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, + int scope) +{ + bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); + bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope); + bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope); + + return apa || apa3 || api; +} + +static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, + int __unused) +{ + bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); + bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5); + bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3); + + return gpa || gpa3 || gpi; +} +#endif /* CONFIG_ARM64_PTR_AUTH */ + +#ifdef CONFIG_ARM64_E0PD +static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) +{ + if (this_cpu_has_cap(ARM64_HAS_E0PD)) + sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); +} +#endif /* CONFIG_ARM64_E0PD */ + +#ifdef CONFIG_ARM64_PSEUDO_NMI +static bool enable_pseudo_nmi; + +static int __init early_enable_pseudo_nmi(char *p) +{ + return strtobool(p, &enable_pseudo_nmi); +} +early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); + +static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, + int scope) +{ + return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); +} +#endif + +#ifdef CONFIG_ARM64_BTI +static void bti_enable(const struct arm64_cpu_capabilities *__unused) +{ + /* + * Use of X16/X17 for tail-calls and trampolines that jump to + * function entry points using BR is a requirement for + * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. + * So, be strict and forbid other BRs using other registers to + * jump onto a PACIxSP instruction: + */ + sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); + isb(); +} +#endif /* CONFIG_ARM64_BTI */ + +#ifdef CONFIG_ARM64_MTE +static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) +{ + sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0); + + mte_cpu_setup(); + + /* + * Clear the tags in the zero page. This needs to be done via the + * linear map which has the Tagged attribute. + */ + if (!page_mte_tagged(ZERO_PAGE(0))) { + mte_clear_page_tags(lm_alias(empty_zero_page)); + set_page_mte_tagged(ZERO_PAGE(0)); + } + + kasan_init_hw_tags_cpu(); +} +#endif /* CONFIG_ARM64_MTE */ + +static void elf_hwcap_fixup(void) +{ +#ifdef CONFIG_ARM64_ERRATUM_1742098 + if (cpus_have_const_cap(ARM64_WORKAROUND_1742098)) + compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES; +#endif /* ARM64_ERRATUM_1742098 */ +} + +#ifdef CONFIG_KVM +static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused) +{ + return kvm_get_mode() == KVM_MODE_PROTECTED; +} +#endif /* CONFIG_KVM */ + +static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused) +{ + sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP); +} + +/* Internal helper functions to match cpu capability type */ +static bool +cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) +{ + return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); +} + +static bool +cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) +{ + return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); +} + +static bool +cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) +{ + return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); +} + +static const struct arm64_cpu_capabilities arm64_features[] = { + { + .capability = ARM64_ALWAYS_BOOT, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .matches = has_always, + }, + { + .capability = ARM64_ALWAYS_SYSTEM, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_always, + }, + { + .desc = "GIC system register CPU interface", + .capability = ARM64_HAS_SYSREG_GIC_CPUIF, + .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, + .matches = has_useable_gicv3_cpuif, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .field_pos = ID_AA64PFR0_EL1_GIC_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + }, + { + .desc = "Enhanced Counter Virtualization", + .capability = ARM64_HAS_ECV, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64MMFR0_EL1, + .field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + }, +#ifdef CONFIG_ARM64_PAN + { + .desc = "Privileged Access Never", + .capability = ARM64_HAS_PAN, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64MMFR1_EL1, + .field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + .cpu_enable = cpu_enable_pan, + }, +#endif /* CONFIG_ARM64_PAN */ +#ifdef CONFIG_ARM64_EPAN + { + .desc = "Enhanced Privileged Access Never", + .capability = ARM64_HAS_EPAN, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64MMFR1_EL1, + .field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 3, + }, +#endif /* CONFIG_ARM64_EPAN */ +#ifdef CONFIG_ARM64_LSE_ATOMICS + { + .desc = "LSE atomic instructions", + .capability = ARM64_HAS_LSE_ATOMICS, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR0_EL1, + .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 2, + }, +#endif /* CONFIG_ARM64_LSE_ATOMICS */ + { + .desc = "Software prefetching using PRFM", + .capability = ARM64_HAS_NO_HW_PREFETCH, + .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, + .matches = has_no_hw_prefetch, + }, + { + .desc = "Virtualization Host Extensions", + .capability = ARM64_HAS_VIRT_HOST_EXTN, + .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, + .matches = runs_at_el2, + .cpu_enable = cpu_copy_el2regs, + }, + { + .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_32bit_el0, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR0_EL1_EL0_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT, + }, +#ifdef CONFIG_KVM + { + .desc = "32-bit EL1 Support", + .capability = ARM64_HAS_32BIT_EL1, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR0_EL1_EL1_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT, + }, + { + .desc = "Protected KVM", + .capability = ARM64_KVM_PROTECTED_MODE, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = is_kvm_protected_mode, + }, +#endif + { + .desc = "Kernel page table isolation (KPTI)", + .capability = ARM64_UNMAP_KERNEL_AT_EL0, + .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, + /* + * The ID feature fields below are used to indicate that + * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for + * more details. + */ + .sys_reg = SYS_ID_AA64PFR0_EL1, + .field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT, + .field_width = 4, + .min_field_value = 1, + .matches = unmap_kernel_at_el0, + .cpu_enable = kpti_install_ng_mappings, + }, + { + /* FP/SIMD is not implemented */ + .capability = ARM64_HAS_NO_FPSIMD, + .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, + .min_field_value = 0, + .matches = has_no_fpsimd, + }, +#ifdef CONFIG_ARM64_PMEM + { + .desc = "Data cache clean to Point of Persistence", + .capability = ARM64_HAS_DCPOP, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT, + .field_width = 4, + .min_field_value = 1, + }, + { + .desc = "Data cache clean to Point of Deep Persistence", + .capability = ARM64_HAS_DCPODP, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT, + .field_width = 4, + .min_field_value = 2, + }, +#endif +#ifdef CONFIG_ARM64_SVE + { + .desc = "Scalable Vector Extension", + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .capability = ARM64_SVE, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR0_EL1_SVE_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR0_EL1_SVE_IMP, + .matches = has_cpuid_feature, + .cpu_enable = sve_kernel_enable, + }, +#endif /* CONFIG_ARM64_SVE */ +#ifdef CONFIG_ARM64_RAS_EXTN + { + .desc = "RAS Extension Support", + .capability = ARM64_HAS_RAS_EXTN, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR0_EL1_RAS_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR0_EL1_RAS_IMP, + .cpu_enable = cpu_clear_disr, + }, +#endif /* CONFIG_ARM64_RAS_EXTN */ +#ifdef CONFIG_ARM64_AMU_EXTN + { + /* + * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. + * Therefore, don't provide .desc as we don't want the detection + * message to be shown until at least one CPU is detected to + * support the feature. + */ + .capability = ARM64_HAS_AMU_EXTN, + .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, + .matches = has_amu, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR0_EL1_AMU_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR0_EL1_AMU_IMP, + .cpu_enable = cpu_amu_enable, + }, +#endif /* CONFIG_ARM64_AMU_EXTN */ + { + .desc = "Data cache clean to the PoU not required for I/D coherence", + .capability = ARM64_HAS_CACHE_IDC, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cache_idc, + .cpu_enable = cpu_emulate_effective_ctr, + }, + { + .desc = "Instruction cache invalidation not required for I/D coherence", + .capability = ARM64_HAS_CACHE_DIC, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cache_dic, + }, + { + .desc = "Stage-2 Force Write-Back", + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .capability = ARM64_HAS_STAGE2_FWB, + .sys_reg = SYS_ID_AA64MMFR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT, + .field_width = 4, + .min_field_value = 1, + .matches = has_cpuid_feature, + }, + { + .desc = "ARMv8.4 Translation Table Level", + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .capability = ARM64_HAS_ARMv8_4_TTL, + .sys_reg = SYS_ID_AA64MMFR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT, + .field_width = 4, + .min_field_value = 1, + .matches = has_cpuid_feature, + }, + { + .desc = "TLB range maintenance instructions", + .capability = ARM64_HAS_TLB_RANGE, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR0_EL1, + .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE, + }, +#ifdef CONFIG_ARM64_HW_AFDBM + { + /* + * Since we turn this on always, we don't want the user to + * think that the feature is available when it may not be. + * So hide the description. + * + * .desc = "Hardware pagetable Dirty Bit Management", + * + */ + .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, + .capability = ARM64_HW_DBM, + .sys_reg = SYS_ID_AA64MMFR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT, + .field_width = 4, + .min_field_value = 2, + .matches = has_hw_dbm, + .cpu_enable = cpu_enable_hw_dbm, + }, +#endif + { + .desc = "CRC32 instructions", + .capability = ARM64_HAS_CRC32, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR0_EL1, + .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT, + .field_width = 4, + .min_field_value = 1, + }, + { + .desc = "Speculative Store Bypassing Safe (SSBS)", + .capability = ARM64_SSBS, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64PFR1_EL1, + .field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = ID_AA64PFR1_EL1_SSBS_IMP, + }, +#ifdef CONFIG_ARM64_CNP + { + .desc = "Common not Private translations", + .capability = ARM64_HAS_CNP, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_useable_cnp, + .sys_reg = SYS_ID_AA64MMFR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT, + .field_width = 4, + .min_field_value = 1, + .cpu_enable = cpu_enable_cnp, + }, +#endif + { + .desc = "Speculation barrier (SB)", + .capability = ARM64_HAS_SB, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .field_pos = ID_AA64ISAR1_EL1_SB_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + }, +#ifdef CONFIG_ARM64_PTR_AUTH + { + .desc = "Address authentication (architected QARMA5 algorithm)", + .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_APA_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR1_EL1_APA_PAuth, + .matches = has_address_auth_cpucap, + }, + { + .desc = "Address authentication (architected QARMA3 algorithm)", + .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .sys_reg = SYS_ID_AA64ISAR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth, + .matches = has_address_auth_cpucap, + }, + { + .desc = "Address authentication (IMP DEF algorithm)", + .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_API_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR1_EL1_API_PAuth, + .matches = has_address_auth_cpucap, + }, + { + .capability = ARM64_HAS_ADDRESS_AUTH, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .matches = has_address_auth_metacap, + }, + { + .desc = "Generic authentication (architected QARMA5 algorithm)", + .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR1_EL1_GPA_IMP, + .matches = has_cpuid_feature, + }, + { + .desc = "Generic authentication (architected QARMA3 algorithm)", + .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64ISAR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP, + .matches = has_cpuid_feature, + }, + { + .desc = "Generic authentication (IMP DEF algorithm)", + .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64ISAR1_EL1_GPI_IMP, + .matches = has_cpuid_feature, + }, + { + .capability = ARM64_HAS_GENERIC_AUTH, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_generic_auth, + }, +#endif /* CONFIG_ARM64_PTR_AUTH */ +#ifdef CONFIG_ARM64_PSEUDO_NMI + { + /* + * Depends on having GICv3 + */ + .desc = "IRQ priority masking", + .capability = ARM64_HAS_IRQ_PRIO_MASKING, + .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, + .matches = can_use_gic_priorities, + .sys_reg = SYS_ID_AA64PFR0_EL1, + .field_pos = ID_AA64PFR0_EL1_GIC_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + }, +#endif +#ifdef CONFIG_ARM64_E0PD + { + .desc = "E0PD", + .capability = ARM64_HAS_E0PD, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64MMFR2_EL1, + .sign = FTR_UNSIGNED, + .field_width = 4, + .field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT, + .matches = has_cpuid_feature, + .min_field_value = 1, + .cpu_enable = cpu_enable_e0pd, + }, +#endif + { + .desc = "Random Number Generator", + .capability = ARM64_HAS_RNG, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64ISAR0_EL1, + .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT, + .field_width = 4, + .sign = FTR_UNSIGNED, + .min_field_value = 1, + }, +#ifdef CONFIG_ARM64_BTI + { + .desc = "Branch Target Identification", + .capability = ARM64_BTI, +#ifdef CONFIG_ARM64_BTI_KERNEL + .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, +#else + .type = ARM64_CPUCAP_SYSTEM_FEATURE, +#endif + .matches = has_cpuid_feature, + .cpu_enable = bti_enable, + .sys_reg = SYS_ID_AA64PFR1_EL1, + .field_pos = ID_AA64PFR1_EL1_BT_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR1_EL1_BT_IMP, + .sign = FTR_UNSIGNED, + }, +#endif +#ifdef CONFIG_ARM64_MTE + { + .desc = "Memory Tagging Extension", + .capability = ARM64_MTE, + .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64PFR1_EL1, + .field_pos = ID_AA64PFR1_EL1_MTE_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR1_EL1_MTE_MTE2, + .sign = FTR_UNSIGNED, + .cpu_enable = cpu_enable_mte, + }, + { + .desc = "Asymmetric MTE Tag Check Fault", + .capability = ARM64_MTE_ASYMM, + .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, + .matches = has_cpuid_feature, + .sys_reg = SYS_ID_AA64PFR1_EL1, + .field_pos = ID_AA64PFR1_EL1_MTE_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR1_EL1_MTE_MTE3, + .sign = FTR_UNSIGNED, + }, +#endif /* CONFIG_ARM64_MTE */ + { + .desc = "RCpc load-acquire (LDAPR)", + .capability = ARM64_HAS_LDAPR, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64ISAR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT, + .field_width = 4, + .matches = has_cpuid_feature, + .min_field_value = 1, + }, +#ifdef CONFIG_ARM64_SME + { + .desc = "Scalable Matrix Extension", + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .capability = ARM64_SME, + .sys_reg = SYS_ID_AA64PFR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64PFR1_EL1_SME_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64PFR1_EL1_SME_IMP, + .matches = has_cpuid_feature, + .cpu_enable = sme_kernel_enable, + }, + /* FA64 should be sorted after the base SME capability */ + { + .desc = "FA64", + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .capability = ARM64_SME_FA64, + .sys_reg = SYS_ID_AA64SMFR0_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT, + .field_width = 1, + .min_field_value = ID_AA64SMFR0_EL1_FA64_IMP, + .matches = has_cpuid_feature, + .cpu_enable = fa64_kernel_enable, + }, +#endif /* CONFIG_ARM64_SME */ + { + .desc = "WFx with timeout", + .capability = ARM64_HAS_WFXT, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64ISAR2_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT, + .field_width = 4, + .matches = has_cpuid_feature, + .min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP, + }, + { + .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality", + .capability = ARM64_HAS_TIDCP1, + .type = ARM64_CPUCAP_SYSTEM_FEATURE, + .sys_reg = SYS_ID_AA64MMFR1_EL1, + .sign = FTR_UNSIGNED, + .field_pos = ID_AA64MMFR1_EL1_TIDCP1_SHIFT, + .field_width = 4, + .min_field_value = ID_AA64MMFR1_EL1_TIDCP1_IMP, + .matches = has_cpuid_feature, + .cpu_enable = cpu_trap_el0_impdef, + }, + {}, +}; + +#define HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \ + .matches = has_user_cpuid_feature, \ + .sys_reg = reg, \ + .field_pos = field, \ + .field_width = width, \ + .sign = s, \ + .min_field_value = min_value, + +#define __HWCAP_CAP(name, cap_type, cap) \ + .desc = name, \ + .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ + .hwcap_type = cap_type, \ + .hwcap = cap, \ + +#define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap) \ + { \ + __HWCAP_CAP(#cap, cap_type, cap) \ + HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \ + } + +#define HWCAP_MULTI_CAP(list, cap_type, cap) \ + { \ + __HWCAP_CAP(#cap, cap_type, cap) \ + .matches = cpucap_multi_entry_cap_matches, \ + .match_list = list, \ + } + +#define HWCAP_CAP_MATCH(match, cap_type, cap) \ + { \ + __HWCAP_CAP(#cap, cap_type, cap) \ + .matches = match, \ + } + +#ifdef CONFIG_ARM64_PTR_AUTH +static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT, + 4, FTR_UNSIGNED, + ID_AA64ISAR1_EL1_APA_PAuth) + }, + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT, + 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth) + }, + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT, + 4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth) + }, + {}, +}; + +static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT, + 4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP) + }, + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT, + 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP) + }, + { + HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT, + 4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP) + }, + {}, +}; +#endif + +static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), + HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG), + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_DIT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_EBF16), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH), + HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM), + HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_EL1_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), +#ifdef CONFIG_ARM64_SVE + HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_EL1_SVE_IMP, CAP_HWCAP, KERNEL_HWCAP_SVE), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), + HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), +#endif + HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SSBS_SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS), +#ifdef CONFIG_ARM64_BTI + HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI), +#endif +#ifdef CONFIG_ARM64_PTR_AUTH + HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), + HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), +#endif +#ifdef CONFIG_ARM64_MTE + HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE), + HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3), +#endif /* CONFIG_ARM64_MTE */ + HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV), + HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP), + HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES), + HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT), +#ifdef CONFIG_ARM64_SME + HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SME_IMP, CAP_HWCAP, KERNEL_HWCAP_SME), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32), + HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32), +#endif /* CONFIG_ARM64_SME */ + {}, +}; + +#ifdef CONFIG_COMPAT +static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) +{ + /* + * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, + * in line with that of arm32 as in vfp_init(). We make sure that the + * check is future proof, by making sure value is non-zero. + */ + u32 mvfr1; + + WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); + if (scope == SCOPE_SYSTEM) + mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); + else + mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); + + return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) && + cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) && + cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT); +} +#endif + +static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { +#ifdef CONFIG_COMPAT + HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), + HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), + /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ + HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), + HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), + HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), + HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), + HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), + HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), + HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), +#endif + {}, +}; + +static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) +{ + switch (cap->hwcap_type) { + case CAP_HWCAP: + cpu_set_feature(cap->hwcap); + break; +#ifdef CONFIG_COMPAT + case CAP_COMPAT_HWCAP: + compat_elf_hwcap |= (u32)cap->hwcap; + break; + case CAP_COMPAT_HWCAP2: + compat_elf_hwcap2 |= (u32)cap->hwcap; + break; +#endif + default: + WARN_ON(1); + break; + } +} + +/* Check if we have a particular HWCAP enabled */ +static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) +{ + bool rc; + + switch (cap->hwcap_type) { + case CAP_HWCAP: + rc = cpu_have_feature(cap->hwcap); + break; +#ifdef CONFIG_COMPAT + case CAP_COMPAT_HWCAP: + rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; + break; + case CAP_COMPAT_HWCAP2: + rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; + break; +#endif + default: + WARN_ON(1); + rc = false; + } + + return rc; +} + +static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) +{ + /* We support emulation of accesses to CPU ID feature registers */ + cpu_set_named_feature(CPUID); + for (; hwcaps->matches; hwcaps++) + if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) + cap_set_elf_hwcap(hwcaps); +} + +static void update_cpu_capabilities(u16 scope_mask) +{ + int i; + const struct arm64_cpu_capabilities *caps; + + scope_mask &= ARM64_CPUCAP_SCOPE_MASK; + for (i = 0; i < ARM64_NCAPS; i++) { + caps = cpu_hwcaps_ptrs[i]; + if (!caps || !(caps->type & scope_mask) || + cpus_have_cap(caps->capability) || + !caps->matches(caps, cpucap_default_scope(caps))) + continue; + + if (caps->desc) + pr_info("detected: %s\n", caps->desc); + cpus_set_cap(caps->capability); + + if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) + set_bit(caps->capability, boot_capabilities); + } +} + +/* + * Enable all the available capabilities on this CPU. The capabilities + * with BOOT_CPU scope are handled separately and hence skipped here. + */ +static int cpu_enable_non_boot_scope_capabilities(void *__unused) +{ + int i; + u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; + + for_each_available_cap(i) { + const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; + + if (WARN_ON(!cap)) + continue; + + if (!(cap->type & non_boot_scope)) + continue; + + if (cap->cpu_enable) + cap->cpu_enable(cap); + } + return 0; +} + +/* + * Run through the enabled capabilities and enable() it on all active + * CPUs + */ +static void __init enable_cpu_capabilities(u16 scope_mask) +{ + int i; + const struct arm64_cpu_capabilities *caps; + bool boot_scope; + + scope_mask &= ARM64_CPUCAP_SCOPE_MASK; + boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); + + for (i = 0; i < ARM64_NCAPS; i++) { + unsigned int num; + + caps = cpu_hwcaps_ptrs[i]; + if (!caps || !(caps->type & scope_mask)) + continue; + num = caps->capability; + if (!cpus_have_cap(num)) + continue; + + if (boot_scope && caps->cpu_enable) + /* + * Capabilities with SCOPE_BOOT_CPU scope are finalised + * before any secondary CPU boots. Thus, each secondary + * will enable the capability as appropriate via + * check_local_cpu_capabilities(). The only exception is + * the boot CPU, for which the capability must be + * enabled here. This approach avoids costly + * stop_machine() calls for this case. + */ + caps->cpu_enable(caps); + } + + /* + * For all non-boot scope capabilities, use stop_machine() + * as it schedules the work allowing us to modify PSTATE, + * instead of on_each_cpu() which uses an IPI, giving us a + * PSTATE that disappears when we return. + */ + if (!boot_scope) + stop_machine(cpu_enable_non_boot_scope_capabilities, + NULL, cpu_online_mask); +} + +/* + * Run through the list of capabilities to check for conflicts. + * If the system has already detected a capability, take necessary + * action on this CPU. + */ +static void verify_local_cpu_caps(u16 scope_mask) +{ + int i; + bool cpu_has_cap, system_has_cap; + const struct arm64_cpu_capabilities *caps; + + scope_mask &= ARM64_CPUCAP_SCOPE_MASK; + + for (i = 0; i < ARM64_NCAPS; i++) { + caps = cpu_hwcaps_ptrs[i]; + if (!caps || !(caps->type & scope_mask)) + continue; + + cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); + system_has_cap = cpus_have_cap(caps->capability); + + if (system_has_cap) { + /* + * Check if the new CPU misses an advertised feature, + * which is not safe to miss. + */ + if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) + break; + /* + * We have to issue cpu_enable() irrespective of + * whether the CPU has it or not, as it is enabeld + * system wide. It is upto the call back to take + * appropriate action on this CPU. + */ + if (caps->cpu_enable) + caps->cpu_enable(caps); + } else { + /* + * Check if the CPU has this capability if it isn't + * safe to have when the system doesn't. + */ + if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) + break; + } + } + + if (i < ARM64_NCAPS) { + pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", + smp_processor_id(), caps->capability, + caps->desc, system_has_cap, cpu_has_cap); + + if (cpucap_panic_on_conflict(caps)) + cpu_panic_kernel(); + else + cpu_die_early(); + } +} + +/* + * Check for CPU features that are used in early boot + * based on the Boot CPU value. + */ +static void check_early_cpu_features(void) +{ + verify_cpu_asid_bits(); + + verify_local_cpu_caps(SCOPE_BOOT_CPU); +} + +static void +__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) +{ + + for (; caps->matches; caps++) + if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { + pr_crit("CPU%d: missing HWCAP: %s\n", + smp_processor_id(), caps->desc); + cpu_die_early(); + } +} + +static void verify_local_elf_hwcaps(void) +{ + __verify_local_elf_hwcaps(arm64_elf_hwcaps); + + if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1))) + __verify_local_elf_hwcaps(compat_elf_hwcaps); +} + +static void verify_sve_features(void) +{ + u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); + u64 zcr = read_zcr_features(); + + unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; + unsigned int len = zcr & ZCR_ELx_LEN_MASK; + + if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) { + pr_crit("CPU%d: SVE: vector length support mismatch\n", + smp_processor_id()); + cpu_die_early(); + } + + /* Add checks on other ZCR bits here if necessary */ +} + +static void verify_sme_features(void) +{ + u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); + u64 smcr = read_smcr_features(); + + unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK; + unsigned int len = smcr & SMCR_ELx_LEN_MASK; + + if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) { + pr_crit("CPU%d: SME: vector length support mismatch\n", + smp_processor_id()); + cpu_die_early(); + } + + /* Add checks on other SMCR bits here if necessary */ +} + +static void verify_hyp_capabilities(void) +{ + u64 safe_mmfr1, mmfr0, mmfr1; + int parange, ipa_max; + unsigned int safe_vmid_bits, vmid_bits; + + if (!IS_ENABLED(CONFIG_KVM)) + return; + + safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); + mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); + + /* Verify VMID bits */ + safe_vmid_bits = get_vmid_bits(safe_mmfr1); + vmid_bits = get_vmid_bits(mmfr1); + if (vmid_bits < safe_vmid_bits) { + pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); + cpu_die_early(); + } + + /* Verify IPA range */ + parange = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_PARANGE_SHIFT); + ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); + if (ipa_max < get_kvm_ipa_limit()) { + pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); + cpu_die_early(); + } +} + +/* + * Run through the enabled system capabilities and enable() it on this CPU. + * The capabilities were decided based on the available CPUs at the boot time. + * Any new CPU should match the system wide status of the capability. If the + * new CPU doesn't have a capability which the system now has enabled, we + * cannot do anything to fix it up and could cause unexpected failures. So + * we park the CPU. + */ +static void verify_local_cpu_capabilities(void) +{ + /* + * The capabilities with SCOPE_BOOT_CPU are checked from + * check_early_cpu_features(), as they need to be verified + * on all secondary CPUs. + */ + verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); + verify_local_elf_hwcaps(); + + if (system_supports_sve()) + verify_sve_features(); + + if (system_supports_sme()) + verify_sme_features(); + + if (is_hyp_mode_available()) + verify_hyp_capabilities(); +} + +void check_local_cpu_capabilities(void) +{ + /* + * All secondary CPUs should conform to the early CPU features + * in use by the kernel based on boot CPU. + */ + check_early_cpu_features(); + + /* + * If we haven't finalised the system capabilities, this CPU gets + * a chance to update the errata work arounds and local features. + * Otherwise, this CPU should verify that it has all the system + * advertised capabilities. + */ + if (!system_capabilities_finalized()) + update_cpu_capabilities(SCOPE_LOCAL_CPU); + else + verify_local_cpu_capabilities(); +} + +static void __init setup_boot_cpu_capabilities(void) +{ + /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ + update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); + /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ + enable_cpu_capabilities(SCOPE_BOOT_CPU); +} + +bool this_cpu_has_cap(unsigned int n) +{ + if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { + const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; + + if (cap) + return cap->matches(cap, SCOPE_LOCAL_CPU); + } + + return false; +} +EXPORT_SYMBOL_GPL(this_cpu_has_cap); + +/* + * This helper function is used in a narrow window when, + * - The system wide safe registers are set with all the SMP CPUs and, + * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. + * In all other cases cpus_have_{const_}cap() should be used. + */ +static bool __maybe_unused __system_matches_cap(unsigned int n) +{ + if (n < ARM64_NCAPS) { + const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; + + if (cap) + return cap->matches(cap, SCOPE_SYSTEM); + } + return false; +} + +void cpu_set_feature(unsigned int num) +{ + set_bit(num, elf_hwcap); +} + +bool cpu_have_feature(unsigned int num) +{ + return test_bit(num, elf_hwcap); +} +EXPORT_SYMBOL_GPL(cpu_have_feature); + +unsigned long cpu_get_elf_hwcap(void) +{ + /* + * We currently only populate the first 32 bits of AT_HWCAP. Please + * note that for userspace compatibility we guarantee that bits 62 + * and 63 will always be returned as 0. + */ + return elf_hwcap[0]; +} + +unsigned long cpu_get_elf_hwcap2(void) +{ + return elf_hwcap[1]; +} + +static void __init setup_system_capabilities(void) +{ + /* + * We have finalised the system-wide safe feature + * registers, finalise the capabilities that depend + * on it. Also enable all the available capabilities, + * that are not enabled already. + */ + update_cpu_capabilities(SCOPE_SYSTEM); + enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); +} + +void __init setup_cpu_features(void) +{ + u32 cwg; + + setup_system_capabilities(); + setup_elf_hwcaps(arm64_elf_hwcaps); + + if (system_supports_32bit_el0()) { + setup_elf_hwcaps(compat_elf_hwcaps); + elf_hwcap_fixup(); + } + + if (system_uses_ttbr0_pan()) + pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); + + sve_setup(); + sme_setup(); + minsigstksz_setup(); + + /* + * Check for sane CTR_EL0.CWG value. + */ + cwg = cache_type_cwg(); + if (!cwg) + pr_warn("No Cache Writeback Granule information, assuming %d\n", + ARCH_DMA_MINALIGN); +} + +static int enable_mismatched_32bit_el0(unsigned int cpu) +{ + /* + * The first 32-bit-capable CPU we detected and so can no longer + * be offlined by userspace. -1 indicates we haven't yet onlined + * a 32-bit-capable CPU. + */ + static int lucky_winner = -1; + + struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); + bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0); + + if (cpu_32bit) { + cpumask_set_cpu(cpu, cpu_32bit_el0_mask); + static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0); + } + + if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit) + return 0; + + if (lucky_winner >= 0) + return 0; + + /* + * We've detected a mismatch. We need to keep one of our CPUs with + * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting + * every CPU in the system for a 32-bit task. + */ + lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask, + cpu_active_mask); + get_cpu_device(lucky_winner)->offline_disabled = true; + setup_elf_hwcaps(compat_elf_hwcaps); + elf_hwcap_fixup(); + pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n", + cpu, lucky_winner); + return 0; +} + +static int __init init_32bit_el0_mask(void) +{ + if (!allow_mismatched_32bit_el0) + return 0; + + if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL)) + return -ENOMEM; + + return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, + "arm64/mismatched_32bit_el0:online", + enable_mismatched_32bit_el0, NULL); +} +subsys_initcall_sync(init_32bit_el0_mask); + +static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) +{ + cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir); +} + +/* + * We emulate only the following system register space. + * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7] + * See Table C5-6 System instruction encodings for System register accesses, + * ARMv8 ARM(ARM DDI 0487A.f) for more details. + */ +static inline bool __attribute_const__ is_emulated(u32 id) +{ + return (sys_reg_Op0(id) == 0x3 && + sys_reg_CRn(id) == 0x0 && + sys_reg_Op1(id) == 0x0 && + (sys_reg_CRm(id) == 0 || + ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7)))); +} + +/* + * With CRm == 0, reg should be one of : + * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. + */ +static inline int emulate_id_reg(u32 id, u64 *valp) +{ + switch (id) { + case SYS_MIDR_EL1: + *valp = read_cpuid_id(); + break; + case SYS_MPIDR_EL1: + *valp = SYS_MPIDR_SAFE_VAL; + break; + case SYS_REVIDR_EL1: + /* IMPLEMENTATION DEFINED values are emulated with 0 */ + *valp = 0; + break; + default: + return -EINVAL; + } + + return 0; +} + +static int emulate_sys_reg(u32 id, u64 *valp) +{ + struct arm64_ftr_reg *regp; + + if (!is_emulated(id)) + return -EINVAL; + + if (sys_reg_CRm(id) == 0) + return emulate_id_reg(id, valp); + + regp = get_arm64_ftr_reg_nowarn(id); + if (regp) + *valp = arm64_ftr_reg_user_value(regp); + else + /* + * The untracked registers are either IMPLEMENTATION DEFINED + * (e.g, ID_AFR0_EL1) or reserved RAZ. + */ + *valp = 0; + return 0; +} + +int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) +{ + int rc; + u64 val; + + rc = emulate_sys_reg(sys_reg, &val); + if (!rc) { + pt_regs_write_reg(regs, rt, val); + arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); + } + return rc; +} + +static int emulate_mrs(struct pt_regs *regs, u32 insn) +{ + u32 sys_reg, rt; + + /* + * sys_reg values are defined as used in mrs/msr instruction. + * shift the imm value to get the encoding. + */ + sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; + rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); + return do_emulate_mrs(regs, sys_reg, rt); +} + +static struct undef_hook mrs_hook = { + .instr_mask = 0xffff0000, + .instr_val = 0xd5380000, + .pstate_mask = PSR_AA32_MODE_MASK, + .pstate_val = PSR_MODE_EL0t, + .fn = emulate_mrs, +}; + +static int __init enable_mrs_emulation(void) +{ + register_undef_hook(&mrs_hook); + return 0; +} + +core_initcall(enable_mrs_emulation); + +enum mitigation_state arm64_get_meltdown_state(void) +{ + if (__meltdown_safe) + return SPECTRE_UNAFFECTED; + + if (arm64_kernel_unmapped_at_el0()) + return SPECTRE_MITIGATED; + + return SPECTRE_VULNERABLE; +} + +ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, + char *buf) +{ + switch (arm64_get_meltdown_state()) { + case SPECTRE_UNAFFECTED: + return sprintf(buf, "Not affected\n"); + + case SPECTRE_MITIGATED: + return sprintf(buf, "Mitigation: PTI\n"); + + default: + return sprintf(buf, "Vulnerable\n"); + } +} |