diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c')
-rw-r--r-- | drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c | 545 |
1 files changed, 545 insertions, 0 deletions
diff --git a/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c b/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c new file mode 100644 index 000000000..d28292762 --- /dev/null +++ b/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c @@ -0,0 +1,545 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC + * + * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> + * + * This file add support for MD5 and SHA1. + * + * You could find the datasheet in Documentation/arm/sunxi.rst + */ +#include "sun4i-ss.h" +#include <asm/unaligned.h> +#include <linux/scatterlist.h> + +/* This is a totally arbitrary value */ +#define SS_TIMEOUT 100 + +int sun4i_hash_crainit(struct crypto_tfm *tfm) +{ + struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); + struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); + struct sun4i_ss_alg_template *algt; + int err; + + memset(op, 0, sizeof(struct sun4i_tfm_ctx)); + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); + op->ss = algt->ss; + + err = pm_runtime_resume_and_get(op->ss->dev); + if (err < 0) + return err; + + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), + sizeof(struct sun4i_req_ctx)); + return 0; +} + +void sun4i_hash_craexit(struct crypto_tfm *tfm) +{ + struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); + + pm_runtime_put(op->ss->dev); +} + +/* sun4i_hash_init: initialize request context */ +int sun4i_hash_init(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); + struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); + struct sun4i_ss_alg_template *algt; + + memset(op, 0, sizeof(struct sun4i_req_ctx)); + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); + op->mode = algt->mode; + + return 0; +} + +int sun4i_hash_export_md5(struct ahash_request *areq, void *out) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct md5_state *octx = out; + int i; + + octx->byte_count = op->byte_count + op->len; + + memcpy(octx->block, op->buf, op->len); + + if (op->byte_count) { + for (i = 0; i < 4; i++) + octx->hash[i] = op->hash[i]; + } else { + octx->hash[0] = SHA1_H0; + octx->hash[1] = SHA1_H1; + octx->hash[2] = SHA1_H2; + octx->hash[3] = SHA1_H3; + } + + return 0; +} + +int sun4i_hash_import_md5(struct ahash_request *areq, const void *in) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + const struct md5_state *ictx = in; + int i; + + sun4i_hash_init(areq); + + op->byte_count = ictx->byte_count & ~0x3F; + op->len = ictx->byte_count & 0x3F; + + memcpy(op->buf, ictx->block, op->len); + + for (i = 0; i < 4; i++) + op->hash[i] = ictx->hash[i]; + + return 0; +} + +int sun4i_hash_export_sha1(struct ahash_request *areq, void *out) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct sha1_state *octx = out; + int i; + + octx->count = op->byte_count + op->len; + + memcpy(octx->buffer, op->buf, op->len); + + if (op->byte_count) { + for (i = 0; i < 5; i++) + octx->state[i] = op->hash[i]; + } else { + octx->state[0] = SHA1_H0; + octx->state[1] = SHA1_H1; + octx->state[2] = SHA1_H2; + octx->state[3] = SHA1_H3; + octx->state[4] = SHA1_H4; + } + + return 0; +} + +int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + const struct sha1_state *ictx = in; + int i; + + sun4i_hash_init(areq); + + op->byte_count = ictx->count & ~0x3F; + op->len = ictx->count & 0x3F; + + memcpy(op->buf, ictx->buffer, op->len); + + for (i = 0; i < 5; i++) + op->hash[i] = ictx->state[i]; + + return 0; +} + +#define SS_HASH_UPDATE 1 +#define SS_HASH_FINAL 2 + +/* + * sun4i_hash_update: update hash engine + * + * Could be used for both SHA1 and MD5 + * Write data by step of 32bits and put then in the SS. + * + * Since we cannot leave partial data and hash state in the engine, + * we need to get the hash state at the end of this function. + * We can get the hash state every 64 bytes + * + * So the first work is to get the number of bytes to write to SS modulo 64 + * The extra bytes will go to a temporary buffer op->buf storing op->len bytes + * + * So at the begin of update() + * if op->len + areq->nbytes < 64 + * => all data will be written to wait buffer (op->buf) and end=0 + * if not, write all data from op->buf to the device and position end to + * complete to 64bytes + * + * example 1: + * update1 60o => op->len=60 + * update2 60o => need one more word to have 64 bytes + * end=4 + * so write all data from op->buf and one word of SGs + * write remaining data in op->buf + * final state op->len=56 + */ +static int sun4i_hash(struct ahash_request *areq) +{ + /* + * i is the total bytes read from SGs, to be compared to areq->nbytes + * i is important because we cannot rely on SG length since the sum of + * SG->length could be greater than areq->nbytes + * + * end is the position when we need to stop writing to the device, + * to be compared to i + * + * in_i: advancement in the current SG + */ + unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo; + unsigned int in_i = 0; + u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0; + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); + struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); + struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm); + struct sun4i_ss_ctx *ss = tfmctx->ss; + struct sun4i_ss_alg_template *algt; + struct scatterlist *in_sg = areq->src; + struct sg_mapping_iter mi; + int in_r, err = 0; + size_t copied = 0; + u32 wb = 0; + + dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x", + __func__, crypto_tfm_alg_name(areq->base.tfm), + op->byte_count, areq->nbytes, op->mode, + op->len, op->hash[0]); + + if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL)) + return 0; + + /* protect against overflow */ + if (unlikely(areq->nbytes > UINT_MAX - op->len)) { + dev_err(ss->dev, "Cannot process too large request\n"); + return -EINVAL; + } + + if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) { + /* linearize data to op->buf */ + copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), + op->buf + op->len, areq->nbytes, 0); + op->len += copied; + return 0; + } + + spin_lock_bh(&ss->slock); + + /* + * if some data have been processed before, + * we need to restore the partial hash state + */ + if (op->byte_count) { + ivmode = SS_IV_ARBITRARY; + for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) + writel(op->hash[i], ss->base + SS_IV0 + i * 4); + } + /* Enable the device */ + writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); + + if (!(op->flags & SS_HASH_UPDATE)) + goto hash_final; + + /* start of handling data */ + if (!(op->flags & SS_HASH_FINAL)) { + end = ((areq->nbytes + op->len) / 64) * 64 - op->len; + + if (end > areq->nbytes || areq->nbytes - end > 63) { + dev_err(ss->dev, "ERROR: Bound error %u %u\n", + end, areq->nbytes); + err = -EINVAL; + goto release_ss; + } + } else { + /* Since we have the flag final, we can go up to modulo 4 */ + if (areq->nbytes < 4) + end = 0; + else + end = ((areq->nbytes + op->len) / 4) * 4 - op->len; + } + + /* TODO if SGlen % 4 and !op->len then DMA */ + i = 1; + while (in_sg && i == 1) { + if (in_sg->length % 4) + i = 0; + in_sg = sg_next(in_sg); + } + if (i == 1 && !op->len && areq->nbytes) + dev_dbg(ss->dev, "We can DMA\n"); + + i = 0; + sg_miter_start(&mi, areq->src, sg_nents(areq->src), + SG_MITER_FROM_SG | SG_MITER_ATOMIC); + sg_miter_next(&mi); + in_i = 0; + + do { + /* + * we need to linearize in two case: + * - the buffer is already used + * - the SG does not have enough byte remaining ( < 4) + */ + if (op->len || (mi.length - in_i) < 4) { + /* + * if we have entered here we have two reason to stop + * - the buffer is full + * - reach the end + */ + while (op->len < 64 && i < end) { + /* how many bytes we can read from current SG */ + in_r = min(end - i, 64 - op->len); + in_r = min_t(size_t, mi.length - in_i, in_r); + memcpy(op->buf + op->len, mi.addr + in_i, in_r); + op->len += in_r; + i += in_r; + in_i += in_r; + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + if (op->len > 3 && !(op->len % 4)) { + /* write buf to the device */ + writesl(ss->base + SS_RXFIFO, op->buf, + op->len / 4); + op->byte_count += op->len; + op->len = 0; + } + } + if (mi.length - in_i > 3 && i < end) { + /* how many bytes we can read from current SG */ + in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i); + in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r); + /* how many bytes we can write in the device*/ + todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4); + writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo); + op->byte_count += todo * 4; + i += todo * 4; + in_i += todo * 4; + rx_cnt -= todo; + if (!rx_cnt) { + spaces = readl(ss->base + SS_FCSR); + rx_cnt = SS_RXFIFO_SPACES(spaces); + } + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + } while (i < end); + + /* + * Now we have written to the device all that we can, + * store the remaining bytes in op->buf + */ + if ((areq->nbytes - i) < 64) { + while (i < areq->nbytes && in_i < mi.length && op->len < 64) { + /* how many bytes we can read from current SG */ + in_r = min(areq->nbytes - i, 64 - op->len); + in_r = min_t(size_t, mi.length - in_i, in_r); + memcpy(op->buf + op->len, mi.addr + in_i, in_r); + op->len += in_r; + i += in_r; + in_i += in_r; + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + } + + sg_miter_stop(&mi); + + /* + * End of data process + * Now if we have the flag final go to finalize part + * If not, store the partial hash + */ + if (op->flags & SS_HASH_FINAL) + goto hash_final; + + writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); + i = 0; + do { + v = readl(ss->base + SS_CTL); + i++; + } while (i < SS_TIMEOUT && (v & SS_DATA_END)); + if (unlikely(i >= SS_TIMEOUT)) { + dev_err_ratelimited(ss->dev, + "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", + i, SS_TIMEOUT, v, areq->nbytes); + err = -EIO; + goto release_ss; + } + + /* + * The datasheet isn't very clear about when to retrieve the digest. The + * bit SS_DATA_END is cleared when the engine has processed the data and + * when the digest is computed *but* it doesn't mean the digest is + * available in the digest registers. Hence the delay to be sure we can + * read it. + */ + ndelay(1); + + for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) + op->hash[i] = readl(ss->base + SS_MD0 + i * 4); + + goto release_ss; + +/* + * hash_final: finalize hashing operation + * + * If we have some remaining bytes, we write them. + * Then ask the SS for finalizing the hashing operation + * + * I do not check RX FIFO size in this function since the size is 32 + * after each enabling and this function neither write more than 32 words. + * If we come from the update part, we cannot have more than + * 3 remaining bytes to write and SS is fast enough to not care about it. + */ + +hash_final: + if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) { + algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); + algt->stat_req++; + } + + /* write the remaining words of the wait buffer */ + if (op->len) { + nwait = op->len / 4; + if (nwait) { + writesl(ss->base + SS_RXFIFO, op->buf, nwait); + op->byte_count += 4 * nwait; + } + + nbw = op->len - 4 * nwait; + if (nbw) { + wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4)); + wb &= GENMASK((nbw * 8) - 1, 0); + + op->byte_count += nbw; + } + } + + /* write the remaining bytes of the nbw buffer */ + wb |= ((1 << 7) << (nbw * 8)); + ((__le32 *)bf)[j++] = cpu_to_le32(wb); + + /* + * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) + * I take the operations from other MD5/SHA1 implementations + */ + + /* last block size */ + fill = 64 - (op->byte_count % 64); + min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32)); + + /* if we can't fill all data, jump to the next 64 block */ + if (fill < min_fill) + fill += 64; + + j += (fill - min_fill) / sizeof(u32); + + /* write the length of data */ + if (op->mode == SS_OP_SHA1) { + __be64 *bits = (__be64 *)&bf[j]; + *bits = cpu_to_be64(op->byte_count << 3); + j += 2; + } else { + __le64 *bits = (__le64 *)&bf[j]; + *bits = cpu_to_le64(op->byte_count << 3); + j += 2; + } + writesl(ss->base + SS_RXFIFO, bf, j); + + /* Tell the SS to stop the hashing */ + writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); + + /* + * Wait for SS to finish the hash. + * The timeout could happen only in case of bad overclocking + * or driver bug. + */ + i = 0; + do { + v = readl(ss->base + SS_CTL); + i++; + } while (i < SS_TIMEOUT && (v & SS_DATA_END)); + if (unlikely(i >= SS_TIMEOUT)) { + dev_err_ratelimited(ss->dev, + "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", + i, SS_TIMEOUT, v, areq->nbytes); + err = -EIO; + goto release_ss; + } + + /* + * The datasheet isn't very clear about when to retrieve the digest. The + * bit SS_DATA_END is cleared when the engine has processed the data and + * when the digest is computed *but* it doesn't mean the digest is + * available in the digest registers. Hence the delay to be sure we can + * read it. + */ + ndelay(1); + + /* Get the hash from the device */ + if (op->mode == SS_OP_SHA1) { + for (i = 0; i < 5; i++) { + v = readl(ss->base + SS_MD0 + i * 4); + if (ss->variant->sha1_in_be) + put_unaligned_le32(v, areq->result + i * 4); + else + put_unaligned_be32(v, areq->result + i * 4); + } + } else { + for (i = 0; i < 4; i++) { + v = readl(ss->base + SS_MD0 + i * 4); + put_unaligned_le32(v, areq->result + i * 4); + } + } + +release_ss: + writel(0, ss->base + SS_CTL); + spin_unlock_bh(&ss->slock); + return err; +} + +int sun4i_hash_final(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_FINAL; + return sun4i_hash(areq); +} + +int sun4i_hash_update(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_UPDATE; + return sun4i_hash(areq); +} + +/* sun4i_hash_finup: finalize hashing operation after an update */ +int sun4i_hash_finup(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; + return sun4i_hash(areq); +} + +/* combo of init/update/final functions */ +int sun4i_hash_digest(struct ahash_request *areq) +{ + int err; + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + err = sun4i_hash_init(areq); + if (err) + return err; + + op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; + return sun4i_hash(areq); +} |