diff options
Diffstat (limited to 'arch/x86/events/intel/ds.c')
-rw-r--r-- | arch/x86/events/intel/ds.c | 2369 |
1 files changed, 2369 insertions, 0 deletions
diff --git a/arch/x86/events/intel/ds.c b/arch/x86/events/intel/ds.c new file mode 100644 index 000000000..3ff38e740 --- /dev/null +++ b/arch/x86/events/intel/ds.c @@ -0,0 +1,2369 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/bitops.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/sched/clock.h> + +#include <asm/cpu_entry_area.h> +#include <asm/perf_event.h> +#include <asm/tlbflush.h> +#include <asm/insn.h> +#include <asm/io.h> +#include <asm/timer.h> + +#include "../perf_event.h" + +/* Waste a full page so it can be mapped into the cpu_entry_area */ +DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); + +/* The size of a BTS record in bytes: */ +#define BTS_RECORD_SIZE 24 + +#define PEBS_FIXUP_SIZE PAGE_SIZE + +/* + * pebs_record_32 for p4 and core not supported + +struct pebs_record_32 { + u32 flags, ip; + u32 ax, bc, cx, dx; + u32 si, di, bp, sp; +}; + + */ + +union intel_x86_pebs_dse { + u64 val; + struct { + unsigned int ld_dse:4; + unsigned int ld_stlb_miss:1; + unsigned int ld_locked:1; + unsigned int ld_data_blk:1; + unsigned int ld_addr_blk:1; + unsigned int ld_reserved:24; + }; + struct { + unsigned int st_l1d_hit:1; + unsigned int st_reserved1:3; + unsigned int st_stlb_miss:1; + unsigned int st_locked:1; + unsigned int st_reserved2:26; + }; + struct { + unsigned int st_lat_dse:4; + unsigned int st_lat_stlb_miss:1; + unsigned int st_lat_locked:1; + unsigned int ld_reserved3:26; + }; +}; + + +/* + * Map PEBS Load Latency Data Source encodings to generic + * memory data source information + */ +#define P(a, b) PERF_MEM_S(a, b) +#define OP_LH (P(OP, LOAD) | P(LVL, HIT)) +#define LEVEL(x) P(LVLNUM, x) +#define REM P(REMOTE, REMOTE) +#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) + +/* Version for Sandy Bridge and later */ +static u64 pebs_data_source[] = { + P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ + OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ + OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ + OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ + OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ + OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ + OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ + OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ + OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ + OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ + OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ + OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ + OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ + OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ + OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ + OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ +}; + +/* Patch up minor differences in the bits */ +void __init intel_pmu_pebs_data_source_nhm(void) +{ + pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); + pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); + pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); +} + +static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) +{ + u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); + + data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); + data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); + data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); + data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); + data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); +} + +void __init intel_pmu_pebs_data_source_skl(bool pmem) +{ + __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); +} + +static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) +{ + data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); + data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); + data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); +} + +void __init intel_pmu_pebs_data_source_grt(void) +{ + __intel_pmu_pebs_data_source_grt(pebs_data_source); +} + +void __init intel_pmu_pebs_data_source_adl(void) +{ + u64 *data_source; + + data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; + memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); + __intel_pmu_pebs_data_source_skl(false, data_source); + + data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; + memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); + __intel_pmu_pebs_data_source_grt(data_source); +} + +static u64 precise_store_data(u64 status) +{ + union intel_x86_pebs_dse dse; + u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); + + dse.val = status; + + /* + * bit 4: TLB access + * 1 = stored missed 2nd level TLB + * + * so it either hit the walker or the OS + * otherwise hit 2nd level TLB + */ + if (dse.st_stlb_miss) + val |= P(TLB, MISS); + else + val |= P(TLB, HIT); + + /* + * bit 0: hit L1 data cache + * if not set, then all we know is that + * it missed L1D + */ + if (dse.st_l1d_hit) + val |= P(LVL, HIT); + else + val |= P(LVL, MISS); + + /* + * bit 5: Locked prefix + */ + if (dse.st_locked) + val |= P(LOCK, LOCKED); + + return val; +} + +static u64 precise_datala_hsw(struct perf_event *event, u64 status) +{ + union perf_mem_data_src dse; + + dse.val = PERF_MEM_NA; + + if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) + dse.mem_op = PERF_MEM_OP_STORE; + else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) + dse.mem_op = PERF_MEM_OP_LOAD; + + /* + * L1 info only valid for following events: + * + * MEM_UOPS_RETIRED.STLB_MISS_STORES + * MEM_UOPS_RETIRED.LOCK_STORES + * MEM_UOPS_RETIRED.SPLIT_STORES + * MEM_UOPS_RETIRED.ALL_STORES + */ + if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { + if (status & 1) + dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; + else + dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; + } + return dse.val; +} + +static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) +{ + /* + * TLB access + * 0 = did not miss 2nd level TLB + * 1 = missed 2nd level TLB + */ + if (tlb) + *val |= P(TLB, MISS) | P(TLB, L2); + else + *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); + + /* locked prefix */ + if (lock) + *val |= P(LOCK, LOCKED); +} + +/* Retrieve the latency data for e-core of ADL */ +u64 adl_latency_data_small(struct perf_event *event, u64 status) +{ + union intel_x86_pebs_dse dse; + u64 val; + + WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big); + + dse.val = status; + + val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; + + /* + * For the atom core on ADL, + * bit 4: lock, bit 5: TLB access. + */ + pebs_set_tlb_lock(&val, dse.ld_locked, dse.ld_stlb_miss); + + if (dse.ld_data_blk) + val |= P(BLK, DATA); + else + val |= P(BLK, NA); + + return val; +} + +static u64 load_latency_data(struct perf_event *event, u64 status) +{ + union intel_x86_pebs_dse dse; + u64 val; + + dse.val = status; + + /* + * use the mapping table for bit 0-3 + */ + val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; + + /* + * Nehalem models do not support TLB, Lock infos + */ + if (x86_pmu.pebs_no_tlb) { + val |= P(TLB, NA) | P(LOCK, NA); + return val; + } + + pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); + + /* + * Ice Lake and earlier models do not support block infos. + */ + if (!x86_pmu.pebs_block) { + val |= P(BLK, NA); + return val; + } + /* + * bit 6: load was blocked since its data could not be forwarded + * from a preceding store + */ + if (dse.ld_data_blk) + val |= P(BLK, DATA); + + /* + * bit 7: load was blocked due to potential address conflict with + * a preceding store + */ + if (dse.ld_addr_blk) + val |= P(BLK, ADDR); + + if (!dse.ld_data_blk && !dse.ld_addr_blk) + val |= P(BLK, NA); + + return val; +} + +static u64 store_latency_data(struct perf_event *event, u64 status) +{ + union intel_x86_pebs_dse dse; + union perf_mem_data_src src; + u64 val; + + dse.val = status; + + /* + * use the mapping table for bit 0-3 + */ + val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; + + pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); + + val |= P(BLK, NA); + + /* + * the pebs_data_source table is only for loads + * so override the mem_op to say STORE instead + */ + src.val = val; + src.mem_op = P(OP,STORE); + + return src.val; +} + +struct pebs_record_core { + u64 flags, ip; + u64 ax, bx, cx, dx; + u64 si, di, bp, sp; + u64 r8, r9, r10, r11; + u64 r12, r13, r14, r15; +}; + +struct pebs_record_nhm { + u64 flags, ip; + u64 ax, bx, cx, dx; + u64 si, di, bp, sp; + u64 r8, r9, r10, r11; + u64 r12, r13, r14, r15; + u64 status, dla, dse, lat; +}; + +/* + * Same as pebs_record_nhm, with two additional fields. + */ +struct pebs_record_hsw { + u64 flags, ip; + u64 ax, bx, cx, dx; + u64 si, di, bp, sp; + u64 r8, r9, r10, r11; + u64 r12, r13, r14, r15; + u64 status, dla, dse, lat; + u64 real_ip, tsx_tuning; +}; + +union hsw_tsx_tuning { + struct { + u32 cycles_last_block : 32, + hle_abort : 1, + rtm_abort : 1, + instruction_abort : 1, + non_instruction_abort : 1, + retry : 1, + data_conflict : 1, + capacity_writes : 1, + capacity_reads : 1; + }; + u64 value; +}; + +#define PEBS_HSW_TSX_FLAGS 0xff00000000ULL + +/* Same as HSW, plus TSC */ + +struct pebs_record_skl { + u64 flags, ip; + u64 ax, bx, cx, dx; + u64 si, di, bp, sp; + u64 r8, r9, r10, r11; + u64 r12, r13, r14, r15; + u64 status, dla, dse, lat; + u64 real_ip, tsx_tuning; + u64 tsc; +}; + +void init_debug_store_on_cpu(int cpu) +{ + struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; + + if (!ds) + return; + + wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, + (u32)((u64)(unsigned long)ds), + (u32)((u64)(unsigned long)ds >> 32)); +} + +void fini_debug_store_on_cpu(int cpu) +{ + if (!per_cpu(cpu_hw_events, cpu).ds) + return; + + wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); +} + +static DEFINE_PER_CPU(void *, insn_buffer); + +static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) +{ + unsigned long start = (unsigned long)cea; + phys_addr_t pa; + size_t msz = 0; + + pa = virt_to_phys(addr); + + preempt_disable(); + for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) + cea_set_pte(cea, pa, prot); + + /* + * This is a cross-CPU update of the cpu_entry_area, we must shoot down + * all TLB entries for it. + */ + flush_tlb_kernel_range(start, start + size); + preempt_enable(); +} + +static void ds_clear_cea(void *cea, size_t size) +{ + unsigned long start = (unsigned long)cea; + size_t msz = 0; + + preempt_disable(); + for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) + cea_set_pte(cea, 0, PAGE_NONE); + + flush_tlb_kernel_range(start, start + size); + preempt_enable(); +} + +static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) +{ + unsigned int order = get_order(size); + int node = cpu_to_node(cpu); + struct page *page; + + page = __alloc_pages_node(node, flags | __GFP_ZERO, order); + return page ? page_address(page) : NULL; +} + +static void dsfree_pages(const void *buffer, size_t size) +{ + if (buffer) + free_pages((unsigned long)buffer, get_order(size)); +} + +static int alloc_pebs_buffer(int cpu) +{ + struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); + struct debug_store *ds = hwev->ds; + size_t bsiz = x86_pmu.pebs_buffer_size; + int max, node = cpu_to_node(cpu); + void *buffer, *insn_buff, *cea; + + if (!x86_pmu.pebs) + return 0; + + buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); + if (unlikely(!buffer)) + return -ENOMEM; + + /* + * HSW+ already provides us the eventing ip; no need to allocate this + * buffer then. + */ + if (x86_pmu.intel_cap.pebs_format < 2) { + insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); + if (!insn_buff) { + dsfree_pages(buffer, bsiz); + return -ENOMEM; + } + per_cpu(insn_buffer, cpu) = insn_buff; + } + hwev->ds_pebs_vaddr = buffer; + /* Update the cpu entry area mapping */ + cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; + ds->pebs_buffer_base = (unsigned long) cea; + ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); + ds->pebs_index = ds->pebs_buffer_base; + max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); + ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; + return 0; +} + +static void release_pebs_buffer(int cpu) +{ + struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); + void *cea; + + if (!x86_pmu.pebs) + return; + + kfree(per_cpu(insn_buffer, cpu)); + per_cpu(insn_buffer, cpu) = NULL; + + /* Clear the fixmap */ + cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; + ds_clear_cea(cea, x86_pmu.pebs_buffer_size); + dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); + hwev->ds_pebs_vaddr = NULL; +} + +static int alloc_bts_buffer(int cpu) +{ + struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); + struct debug_store *ds = hwev->ds; + void *buffer, *cea; + int max; + + if (!x86_pmu.bts) + return 0; + + buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); + if (unlikely(!buffer)) { + WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); + return -ENOMEM; + } + hwev->ds_bts_vaddr = buffer; + /* Update the fixmap */ + cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; + ds->bts_buffer_base = (unsigned long) cea; + ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); + ds->bts_index = ds->bts_buffer_base; + max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; + ds->bts_absolute_maximum = ds->bts_buffer_base + + max * BTS_RECORD_SIZE; + ds->bts_interrupt_threshold = ds->bts_absolute_maximum - + (max / 16) * BTS_RECORD_SIZE; + return 0; +} + +static void release_bts_buffer(int cpu) +{ + struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); + void *cea; + + if (!x86_pmu.bts) + return; + + /* Clear the fixmap */ + cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; + ds_clear_cea(cea, BTS_BUFFER_SIZE); + dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); + hwev->ds_bts_vaddr = NULL; +} + +static int alloc_ds_buffer(int cpu) +{ + struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; + + memset(ds, 0, sizeof(*ds)); + per_cpu(cpu_hw_events, cpu).ds = ds; + return 0; +} + +static void release_ds_buffer(int cpu) +{ + per_cpu(cpu_hw_events, cpu).ds = NULL; +} + +void release_ds_buffers(void) +{ + int cpu; + + if (!x86_pmu.bts && !x86_pmu.pebs) + return; + + for_each_possible_cpu(cpu) + release_ds_buffer(cpu); + + for_each_possible_cpu(cpu) { + /* + * Again, ignore errors from offline CPUs, they will no longer + * observe cpu_hw_events.ds and not program the DS_AREA when + * they come up. + */ + fini_debug_store_on_cpu(cpu); + } + + for_each_possible_cpu(cpu) { + release_pebs_buffer(cpu); + release_bts_buffer(cpu); + } +} + +void reserve_ds_buffers(void) +{ + int bts_err = 0, pebs_err = 0; + int cpu; + + x86_pmu.bts_active = 0; + x86_pmu.pebs_active = 0; + + if (!x86_pmu.bts && !x86_pmu.pebs) + return; + + if (!x86_pmu.bts) + bts_err = 1; + + if (!x86_pmu.pebs) + pebs_err = 1; + + for_each_possible_cpu(cpu) { + if (alloc_ds_buffer(cpu)) { + bts_err = 1; + pebs_err = 1; + } + + if (!bts_err && alloc_bts_buffer(cpu)) + bts_err = 1; + + if (!pebs_err && alloc_pebs_buffer(cpu)) + pebs_err = 1; + + if (bts_err && pebs_err) + break; + } + + if (bts_err) { + for_each_possible_cpu(cpu) + release_bts_buffer(cpu); + } + + if (pebs_err) { + for_each_possible_cpu(cpu) + release_pebs_buffer(cpu); + } + + if (bts_err && pebs_err) { + for_each_possible_cpu(cpu) + release_ds_buffer(cpu); + } else { + if (x86_pmu.bts && !bts_err) + x86_pmu.bts_active = 1; + + if (x86_pmu.pebs && !pebs_err) + x86_pmu.pebs_active = 1; + + for_each_possible_cpu(cpu) { + /* + * Ignores wrmsr_on_cpu() errors for offline CPUs they + * will get this call through intel_pmu_cpu_starting(). + */ + init_debug_store_on_cpu(cpu); + } + } +} + +/* + * BTS + */ + +struct event_constraint bts_constraint = + EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); + +void intel_pmu_enable_bts(u64 config) +{ + unsigned long debugctlmsr; + + debugctlmsr = get_debugctlmsr(); + + debugctlmsr |= DEBUGCTLMSR_TR; + debugctlmsr |= DEBUGCTLMSR_BTS; + if (config & ARCH_PERFMON_EVENTSEL_INT) + debugctlmsr |= DEBUGCTLMSR_BTINT; + + if (!(config & ARCH_PERFMON_EVENTSEL_OS)) + debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; + + if (!(config & ARCH_PERFMON_EVENTSEL_USR)) + debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; + + update_debugctlmsr(debugctlmsr); +} + +void intel_pmu_disable_bts(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + unsigned long debugctlmsr; + + if (!cpuc->ds) + return; + + debugctlmsr = get_debugctlmsr(); + + debugctlmsr &= + ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | + DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); + + update_debugctlmsr(debugctlmsr); +} + +int intel_pmu_drain_bts_buffer(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct debug_store *ds = cpuc->ds; + struct bts_record { + u64 from; + u64 to; + u64 flags; + }; + struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; + struct bts_record *at, *base, *top; + struct perf_output_handle handle; + struct perf_event_header header; + struct perf_sample_data data; + unsigned long skip = 0; + struct pt_regs regs; + + if (!event) + return 0; + + if (!x86_pmu.bts_active) + return 0; + + base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; + top = (struct bts_record *)(unsigned long)ds->bts_index; + + if (top <= base) + return 0; + + memset(®s, 0, sizeof(regs)); + + ds->bts_index = ds->bts_buffer_base; + + perf_sample_data_init(&data, 0, event->hw.last_period); + + /* + * BTS leaks kernel addresses in branches across the cpl boundary, + * such as traps or system calls, so unless the user is asking for + * kernel tracing (and right now it's not possible), we'd need to + * filter them out. But first we need to count how many of those we + * have in the current batch. This is an extra O(n) pass, however, + * it's much faster than the other one especially considering that + * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the + * alloc_bts_buffer()). + */ + for (at = base; at < top; at++) { + /* + * Note that right now *this* BTS code only works if + * attr::exclude_kernel is set, but let's keep this extra + * check here in case that changes. + */ + if (event->attr.exclude_kernel && + (kernel_ip(at->from) || kernel_ip(at->to))) + skip++; + } + + /* + * Prepare a generic sample, i.e. fill in the invariant fields. + * We will overwrite the from and to address before we output + * the sample. + */ + rcu_read_lock(); + perf_prepare_sample(&header, &data, event, ®s); + + if (perf_output_begin(&handle, &data, event, + header.size * (top - base - skip))) + goto unlock; + + for (at = base; at < top; at++) { + /* Filter out any records that contain kernel addresses. */ + if (event->attr.exclude_kernel && + (kernel_ip(at->from) || kernel_ip(at->to))) + continue; + + data.ip = at->from; + data.addr = at->to; + + perf_output_sample(&handle, &header, &data, event); + } + + perf_output_end(&handle); + + /* There's new data available. */ + event->hw.interrupts++; + event->pending_kill = POLL_IN; +unlock: + rcu_read_unlock(); + return 1; +} + +static inline void intel_pmu_drain_pebs_buffer(void) +{ + struct perf_sample_data data; + + x86_pmu.drain_pebs(NULL, &data); +} + +/* + * PEBS + */ +struct event_constraint intel_core2_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ + /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_atom_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ + /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_slm_pebs_event_constraints[] = { + /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_glm_pebs_event_constraints[] = { + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_grt_pebs_event_constraints[] = { + /* Allow all events as PEBS with no flags */ + INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), + INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_nehalem_pebs_event_constraints[] = { + INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ + INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ + /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_westmere_pebs_event_constraints[] = { + INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ + INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ + /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_snb_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ + INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ + INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ + /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), + INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_ivb_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ + INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ + INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ + /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), + /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), + INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ + INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_hsw_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ + INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ + /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), + /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_bdw_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ + INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ + /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), + /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), + EVENT_CONSTRAINT_END +}; + + +struct event_constraint intel_skl_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ + /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), + /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), + INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ + /* Allow all events as PEBS with no flags */ + INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_icl_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ + + INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ + + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ + + INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ + + /* + * Everything else is handled by PMU_FL_PEBS_ALL, because we + * need the full constraints from the main table. + */ + + EVENT_CONSTRAINT_END +}; + +struct event_constraint intel_spr_pebs_event_constraints[] = { + INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ + INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), + + INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), + INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), + INTEL_PSD_CONSTRAINT(0x2cd, 0x1), + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ + INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ + + INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), + + INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), + + /* + * Everything else is handled by PMU_FL_PEBS_ALL, because we + * need the full constraints from the main table. + */ + + EVENT_CONSTRAINT_END +}; + +struct event_constraint *intel_pebs_constraints(struct perf_event *event) +{ + struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); + struct event_constraint *c; + + if (!event->attr.precise_ip) + return NULL; + + if (pebs_constraints) { + for_each_event_constraint(c, pebs_constraints) { + if (constraint_match(c, event->hw.config)) { + event->hw.flags |= c->flags; + return c; + } + } + } + + /* + * Extended PEBS support + * Makes the PEBS code search the normal constraints. + */ + if (x86_pmu.flags & PMU_FL_PEBS_ALL) + return NULL; + + return &emptyconstraint; +} + +/* + * We need the sched_task callback even for per-cpu events when we use + * the large interrupt threshold, such that we can provide PID and TID + * to PEBS samples. + */ +static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) +{ + if (cpuc->n_pebs == cpuc->n_pebs_via_pt) + return false; + + return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); +} + +void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (!sched_in && pebs_needs_sched_cb(cpuc)) + intel_pmu_drain_pebs_buffer(); +} + +static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) +{ + struct debug_store *ds = cpuc->ds; + int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); + int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); + u64 threshold; + int reserved; + + if (cpuc->n_pebs_via_pt) + return; + + if (x86_pmu.flags & PMU_FL_PEBS_ALL) + reserved = max_pebs_events + num_counters_fixed; + else + reserved = max_pebs_events; + + if (cpuc->n_pebs == cpuc->n_large_pebs) { + threshold = ds->pebs_absolute_maximum - + reserved * cpuc->pebs_record_size; + } else { + threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; + } + + ds->pebs_interrupt_threshold = threshold; +} + +static void adaptive_pebs_record_size_update(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + u64 pebs_data_cfg = cpuc->pebs_data_cfg; + int sz = sizeof(struct pebs_basic); + + if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) + sz += sizeof(struct pebs_meminfo); + if (pebs_data_cfg & PEBS_DATACFG_GP) + sz += sizeof(struct pebs_gprs); + if (pebs_data_cfg & PEBS_DATACFG_XMMS) + sz += sizeof(struct pebs_xmm); + if (pebs_data_cfg & PEBS_DATACFG_LBRS) + sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); + + cpuc->pebs_record_size = sz; +} + +#define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ + PERF_SAMPLE_PHYS_ADDR | \ + PERF_SAMPLE_WEIGHT_TYPE | \ + PERF_SAMPLE_TRANSACTION | \ + PERF_SAMPLE_DATA_PAGE_SIZE) + +static u64 pebs_update_adaptive_cfg(struct perf_event *event) +{ + struct perf_event_attr *attr = &event->attr; + u64 sample_type = attr->sample_type; + u64 pebs_data_cfg = 0; + bool gprs, tsx_weight; + + if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && + attr->precise_ip > 1) + return pebs_data_cfg; + + if (sample_type & PERF_PEBS_MEMINFO_TYPE) + pebs_data_cfg |= PEBS_DATACFG_MEMINFO; + + /* + * We need GPRs when: + * + user requested them + * + precise_ip < 2 for the non event IP + * + For RTM TSX weight we need GPRs for the abort code. + */ + gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && + (attr->sample_regs_intr & PEBS_GP_REGS); + + tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && + ((attr->config & INTEL_ARCH_EVENT_MASK) == + x86_pmu.rtm_abort_event); + + if (gprs || (attr->precise_ip < 2) || tsx_weight) + pebs_data_cfg |= PEBS_DATACFG_GP; + + if ((sample_type & PERF_SAMPLE_REGS_INTR) && + (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) + pebs_data_cfg |= PEBS_DATACFG_XMMS; + + if (sample_type & PERF_SAMPLE_BRANCH_STACK) { + /* + * For now always log all LBRs. Could configure this + * later. + */ + pebs_data_cfg |= PEBS_DATACFG_LBRS | + ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); + } + + return pebs_data_cfg; +} + +static void +pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, + struct perf_event *event, bool add) +{ + struct pmu *pmu = event->ctx->pmu; + /* + * Make sure we get updated with the first PEBS + * event. It will trigger also during removal, but + * that does not hurt: + */ + bool update = cpuc->n_pebs == 1; + + if (needed_cb != pebs_needs_sched_cb(cpuc)) { + if (!needed_cb) + perf_sched_cb_inc(pmu); + else + perf_sched_cb_dec(pmu); + + update = true; + } + + /* + * The PEBS record doesn't shrink on pmu::del(). Doing so would require + * iterating all remaining PEBS events to reconstruct the config. + */ + if (x86_pmu.intel_cap.pebs_baseline && add) { + u64 pebs_data_cfg; + + /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */ + if (cpuc->n_pebs == 1) { + cpuc->pebs_data_cfg = 0; + cpuc->pebs_record_size = sizeof(struct pebs_basic); + } + + pebs_data_cfg = pebs_update_adaptive_cfg(event); + + /* Update pebs_record_size if new event requires more data. */ + if (pebs_data_cfg & ~cpuc->pebs_data_cfg) { + cpuc->pebs_data_cfg |= pebs_data_cfg; + adaptive_pebs_record_size_update(); + update = true; + } + } + + if (update) + pebs_update_threshold(cpuc); +} + +void intel_pmu_pebs_add(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + bool needed_cb = pebs_needs_sched_cb(cpuc); + + cpuc->n_pebs++; + if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) + cpuc->n_large_pebs++; + if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) + cpuc->n_pebs_via_pt++; + + pebs_update_state(needed_cb, cpuc, event, true); +} + +static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (!is_pebs_pt(event)) + return; + + if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) + cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; +} + +static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + struct debug_store *ds = cpuc->ds; + u64 value = ds->pebs_event_reset[hwc->idx]; + u32 base = MSR_RELOAD_PMC0; + unsigned int idx = hwc->idx; + + if (!is_pebs_pt(event)) + return; + + if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) + cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; + + cpuc->pebs_enabled |= PEBS_OUTPUT_PT; + + if (hwc->idx >= INTEL_PMC_IDX_FIXED) { + base = MSR_RELOAD_FIXED_CTR0; + idx = hwc->idx - INTEL_PMC_IDX_FIXED; + if (x86_pmu.intel_cap.pebs_format < 5) + value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; + else + value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; + } + wrmsrl(base + idx, value); +} + +void intel_pmu_pebs_enable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + struct debug_store *ds = cpuc->ds; + unsigned int idx = hwc->idx; + + hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; + + cpuc->pebs_enabled |= 1ULL << hwc->idx; + + if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) + cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); + else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) + cpuc->pebs_enabled |= 1ULL << 63; + + if (x86_pmu.intel_cap.pebs_baseline) { + hwc->config |= ICL_EVENTSEL_ADAPTIVE; + if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) { + wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg); + cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg; + } + } + + if (idx >= INTEL_PMC_IDX_FIXED) { + if (x86_pmu.intel_cap.pebs_format < 5) + idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); + else + idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); + } + + /* + * Use auto-reload if possible to save a MSR write in the PMI. + * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. + */ + if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { + ds->pebs_event_reset[idx] = + (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; + } else { + ds->pebs_event_reset[idx] = 0; + } + + intel_pmu_pebs_via_pt_enable(event); +} + +void intel_pmu_pebs_del(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + bool needed_cb = pebs_needs_sched_cb(cpuc); + + cpuc->n_pebs--; + if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) + cpuc->n_large_pebs--; + if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) + cpuc->n_pebs_via_pt--; + + pebs_update_state(needed_cb, cpuc, event, false); +} + +void intel_pmu_pebs_disable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + + if (cpuc->n_pebs == cpuc->n_large_pebs && + cpuc->n_pebs != cpuc->n_pebs_via_pt) + intel_pmu_drain_pebs_buffer(); + + cpuc->pebs_enabled &= ~(1ULL << hwc->idx); + + if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && + (x86_pmu.version < 5)) + cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); + else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) + cpuc->pebs_enabled &= ~(1ULL << 63); + + intel_pmu_pebs_via_pt_disable(event); + + if (cpuc->enabled) + wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); + + hwc->config |= ARCH_PERFMON_EVENTSEL_INT; +} + +void intel_pmu_pebs_enable_all(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (cpuc->pebs_enabled) + wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); +} + +void intel_pmu_pebs_disable_all(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (cpuc->pebs_enabled) + __intel_pmu_pebs_disable_all(); +} + +static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + unsigned long from = cpuc->lbr_entries[0].from; + unsigned long old_to, to = cpuc->lbr_entries[0].to; + unsigned long ip = regs->ip; + int is_64bit = 0; + void *kaddr; + int size; + + /* + * We don't need to fixup if the PEBS assist is fault like + */ + if (!x86_pmu.intel_cap.pebs_trap) + return 1; + + /* + * No LBR entry, no basic block, no rewinding + */ + if (!cpuc->lbr_stack.nr || !from || !to) + return 0; + + /* + * Basic blocks should never cross user/kernel boundaries + */ + if (kernel_ip(ip) != kernel_ip(to)) + return 0; + + /* + * unsigned math, either ip is before the start (impossible) or + * the basic block is larger than 1 page (sanity) + */ + if ((ip - to) > PEBS_FIXUP_SIZE) + return 0; + + /* + * We sampled a branch insn, rewind using the LBR stack + */ + if (ip == to) { + set_linear_ip(regs, from); + return 1; + } + + size = ip - to; + if (!kernel_ip(ip)) { + int bytes; + u8 *buf = this_cpu_read(insn_buffer); + + /* 'size' must fit our buffer, see above */ + bytes = copy_from_user_nmi(buf, (void __user *)to, size); + if (bytes != 0) + return 0; + + kaddr = buf; + } else { + kaddr = (void *)to; + } + + do { + struct insn insn; + + old_to = to; + +#ifdef CONFIG_X86_64 + is_64bit = kernel_ip(to) || any_64bit_mode(regs); +#endif + insn_init(&insn, kaddr, size, is_64bit); + + /* + * Make sure there was not a problem decoding the instruction. + * This is doubly important because we have an infinite loop if + * insn.length=0. + */ + if (insn_get_length(&insn)) + break; + + to += insn.length; + kaddr += insn.length; + size -= insn.length; + } while (to < ip); + + if (to == ip) { + set_linear_ip(regs, old_to); + return 1; + } + + /* + * Even though we decoded the basic block, the instruction stream + * never matched the given IP, either the TO or the IP got corrupted. + */ + return 0; +} + +static inline u64 intel_get_tsx_weight(u64 tsx_tuning) +{ + if (tsx_tuning) { + union hsw_tsx_tuning tsx = { .value = tsx_tuning }; + return tsx.cycles_last_block; + } + return 0; +} + +static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) +{ + u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; + + /* For RTM XABORTs also log the abort code from AX */ + if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) + txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; + return txn; +} + +static inline u64 get_pebs_status(void *n) +{ + if (x86_pmu.intel_cap.pebs_format < 4) + return ((struct pebs_record_nhm *)n)->status; + return ((struct pebs_basic *)n)->applicable_counters; +} + +#define PERF_X86_EVENT_PEBS_HSW_PREC \ + (PERF_X86_EVENT_PEBS_ST_HSW | \ + PERF_X86_EVENT_PEBS_LD_HSW | \ + PERF_X86_EVENT_PEBS_NA_HSW) + +static u64 get_data_src(struct perf_event *event, u64 aux) +{ + u64 val = PERF_MEM_NA; + int fl = event->hw.flags; + bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); + + if (fl & PERF_X86_EVENT_PEBS_LDLAT) + val = load_latency_data(event, aux); + else if (fl & PERF_X86_EVENT_PEBS_STLAT) + val = store_latency_data(event, aux); + else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) + val = x86_pmu.pebs_latency_data(event, aux); + else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) + val = precise_datala_hsw(event, aux); + else if (fst) + val = precise_store_data(aux); + return val; +} + +static void setup_pebs_time(struct perf_event *event, + struct perf_sample_data *data, + u64 tsc) +{ + /* Converting to a user-defined clock is not supported yet. */ + if (event->attr.use_clockid != 0) + return; + + /* + * Doesn't support the conversion when the TSC is unstable. + * The TSC unstable case is a corner case and very unlikely to + * happen. If it happens, the TSC in a PEBS record will be + * dropped and fall back to perf_event_clock(). + */ + if (!using_native_sched_clock() || !sched_clock_stable()) + return; + + data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; + data->sample_flags |= PERF_SAMPLE_TIME; +} + +#define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ + PERF_SAMPLE_PHYS_ADDR | \ + PERF_SAMPLE_DATA_PAGE_SIZE) + +static void setup_pebs_fixed_sample_data(struct perf_event *event, + struct pt_regs *iregs, void *__pebs, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + /* + * We cast to the biggest pebs_record but are careful not to + * unconditionally access the 'extra' entries. + */ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct pebs_record_skl *pebs = __pebs; + u64 sample_type; + int fll; + + if (pebs == NULL) + return; + + sample_type = event->attr.sample_type; + fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; + + perf_sample_data_init(data, 0, event->hw.last_period); + + data->period = event->hw.last_period; + + /* + * Use latency for weight (only avail with PEBS-LL) + */ + if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { + data->weight.full = pebs->lat; + data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; + } + + /* + * data.data_src encodes the data source + */ + if (sample_type & PERF_SAMPLE_DATA_SRC) { + data->data_src.val = get_data_src(event, pebs->dse); + data->sample_flags |= PERF_SAMPLE_DATA_SRC; + } + + /* + * We must however always use iregs for the unwinder to stay sane; the + * record BP,SP,IP can point into thin air when the record is from a + * previous PMI context or an (I)RET happened between the record and + * PMI. + */ + if (sample_type & PERF_SAMPLE_CALLCHAIN) { + data->callchain = perf_callchain(event, iregs); + data->sample_flags |= PERF_SAMPLE_CALLCHAIN; + } + + /* + * We use the interrupt regs as a base because the PEBS record does not + * contain a full regs set, specifically it seems to lack segment + * descriptors, which get used by things like user_mode(). + * + * In the simple case fix up only the IP for PERF_SAMPLE_IP. + */ + *regs = *iregs; + + /* + * Initialize regs_>flags from PEBS, + * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), + * i.e., do not rely on it being zero: + */ + regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; + + if (sample_type & PERF_SAMPLE_REGS_INTR) { + regs->ax = pebs->ax; + regs->bx = pebs->bx; + regs->cx = pebs->cx; + regs->dx = pebs->dx; + regs->si = pebs->si; + regs->di = pebs->di; + + regs->bp = pebs->bp; + regs->sp = pebs->sp; + +#ifndef CONFIG_X86_32 + regs->r8 = pebs->r8; + regs->r9 = pebs->r9; + regs->r10 = pebs->r10; + regs->r11 = pebs->r11; + regs->r12 = pebs->r12; + regs->r13 = pebs->r13; + regs->r14 = pebs->r14; + regs->r15 = pebs->r15; +#endif + } + + if (event->attr.precise_ip > 1) { + /* + * Haswell and later processors have an 'eventing IP' + * (real IP) which fixes the off-by-1 skid in hardware. + * Use it when precise_ip >= 2 : + */ + if (x86_pmu.intel_cap.pebs_format >= 2) { + set_linear_ip(regs, pebs->real_ip); + regs->flags |= PERF_EFLAGS_EXACT; + } else { + /* Otherwise, use PEBS off-by-1 IP: */ + set_linear_ip(regs, pebs->ip); + + /* + * With precise_ip >= 2, try to fix up the off-by-1 IP + * using the LBR. If successful, the fixup function + * corrects regs->ip and calls set_linear_ip() on regs: + */ + if (intel_pmu_pebs_fixup_ip(regs)) + regs->flags |= PERF_EFLAGS_EXACT; + } + } else { + /* + * When precise_ip == 1, return the PEBS off-by-1 IP, + * no fixup attempted: + */ + set_linear_ip(regs, pebs->ip); + } + + + if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && + x86_pmu.intel_cap.pebs_format >= 1) { + data->addr = pebs->dla; + data->sample_flags |= PERF_SAMPLE_ADDR; + } + + if (x86_pmu.intel_cap.pebs_format >= 2) { + /* Only set the TSX weight when no memory weight. */ + if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { + data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); + data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; + } + if (sample_type & PERF_SAMPLE_TRANSACTION) { + data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, + pebs->ax); + data->sample_flags |= PERF_SAMPLE_TRANSACTION; + } + } + + /* + * v3 supplies an accurate time stamp, so we use that + * for the time stamp. + * + * We can only do this for the default trace clock. + */ + if (x86_pmu.intel_cap.pebs_format >= 3) + setup_pebs_time(event, data, pebs->tsc); + + if (has_branch_stack(event)) { + data->br_stack = &cpuc->lbr_stack; + data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; + } +} + +static void adaptive_pebs_save_regs(struct pt_regs *regs, + struct pebs_gprs *gprs) +{ + regs->ax = gprs->ax; + regs->bx = gprs->bx; + regs->cx = gprs->cx; + regs->dx = gprs->dx; + regs->si = gprs->si; + regs->di = gprs->di; + regs->bp = gprs->bp; + regs->sp = gprs->sp; +#ifndef CONFIG_X86_32 + regs->r8 = gprs->r8; + regs->r9 = gprs->r9; + regs->r10 = gprs->r10; + regs->r11 = gprs->r11; + regs->r12 = gprs->r12; + regs->r13 = gprs->r13; + regs->r14 = gprs->r14; + regs->r15 = gprs->r15; +#endif +} + +#define PEBS_LATENCY_MASK 0xffff +#define PEBS_CACHE_LATENCY_OFFSET 32 + +/* + * With adaptive PEBS the layout depends on what fields are configured. + */ + +static void setup_pebs_adaptive_sample_data(struct perf_event *event, + struct pt_regs *iregs, void *__pebs, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct pebs_basic *basic = __pebs; + void *next_record = basic + 1; + u64 sample_type; + u64 format_size; + struct pebs_meminfo *meminfo = NULL; + struct pebs_gprs *gprs = NULL; + struct x86_perf_regs *perf_regs; + + if (basic == NULL) + return; + + perf_regs = container_of(regs, struct x86_perf_regs, regs); + perf_regs->xmm_regs = NULL; + + sample_type = event->attr.sample_type; + format_size = basic->format_size; + perf_sample_data_init(data, 0, event->hw.last_period); + data->period = event->hw.last_period; + + setup_pebs_time(event, data, basic->tsc); + + /* + * We must however always use iregs for the unwinder to stay sane; the + * record BP,SP,IP can point into thin air when the record is from a + * previous PMI context or an (I)RET happened between the record and + * PMI. + */ + if (sample_type & PERF_SAMPLE_CALLCHAIN) { + data->callchain = perf_callchain(event, iregs); + data->sample_flags |= PERF_SAMPLE_CALLCHAIN; + } + + *regs = *iregs; + /* The ip in basic is EventingIP */ + set_linear_ip(regs, basic->ip); + regs->flags = PERF_EFLAGS_EXACT; + + /* + * The record for MEMINFO is in front of GP + * But PERF_SAMPLE_TRANSACTION needs gprs->ax. + * Save the pointer here but process later. + */ + if (format_size & PEBS_DATACFG_MEMINFO) { + meminfo = next_record; + next_record = meminfo + 1; + } + + if (format_size & PEBS_DATACFG_GP) { + gprs = next_record; + next_record = gprs + 1; + + if (event->attr.precise_ip < 2) { + set_linear_ip(regs, gprs->ip); + regs->flags &= ~PERF_EFLAGS_EXACT; + } + + if (sample_type & PERF_SAMPLE_REGS_INTR) + adaptive_pebs_save_regs(regs, gprs); + } + + if (format_size & PEBS_DATACFG_MEMINFO) { + if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { + u64 weight = meminfo->latency; + + if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { + data->weight.var2_w = weight & PEBS_LATENCY_MASK; + weight >>= PEBS_CACHE_LATENCY_OFFSET; + } + + /* + * Although meminfo::latency is defined as a u64, + * only the lower 32 bits include the valid data + * in practice on Ice Lake and earlier platforms. + */ + if (sample_type & PERF_SAMPLE_WEIGHT) { + data->weight.full = weight ?: + intel_get_tsx_weight(meminfo->tsx_tuning); + } else { + data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: + intel_get_tsx_weight(meminfo->tsx_tuning); + } + data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; + } + + if (sample_type & PERF_SAMPLE_DATA_SRC) { + data->data_src.val = get_data_src(event, meminfo->aux); + data->sample_flags |= PERF_SAMPLE_DATA_SRC; + } + + if (sample_type & PERF_SAMPLE_ADDR_TYPE) { + data->addr = meminfo->address; + data->sample_flags |= PERF_SAMPLE_ADDR; + } + + if (sample_type & PERF_SAMPLE_TRANSACTION) { + data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, + gprs ? gprs->ax : 0); + data->sample_flags |= PERF_SAMPLE_TRANSACTION; + } + } + + if (format_size & PEBS_DATACFG_XMMS) { + struct pebs_xmm *xmm = next_record; + + next_record = xmm + 1; + perf_regs->xmm_regs = xmm->xmm; + } + + if (format_size & PEBS_DATACFG_LBRS) { + struct lbr_entry *lbr = next_record; + int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) + & 0xff) + 1; + next_record = next_record + num_lbr * sizeof(struct lbr_entry); + + if (has_branch_stack(event)) { + intel_pmu_store_pebs_lbrs(lbr); + data->br_stack = &cpuc->lbr_stack; + data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; + } + } + + WARN_ONCE(next_record != __pebs + (format_size >> 48), + "PEBS record size %llu, expected %llu, config %llx\n", + format_size >> 48, + (u64)(next_record - __pebs), + basic->format_size); +} + +static inline void * +get_next_pebs_record_by_bit(void *base, void *top, int bit) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + void *at; + u64 pebs_status; + + /* + * fmt0 does not have a status bitfield (does not use + * perf_record_nhm format) + */ + if (x86_pmu.intel_cap.pebs_format < 1) + return base; + + if (base == NULL) + return NULL; + + for (at = base; at < top; at += cpuc->pebs_record_size) { + unsigned long status = get_pebs_status(at); + + if (test_bit(bit, (unsigned long *)&status)) { + /* PEBS v3 has accurate status bits */ + if (x86_pmu.intel_cap.pebs_format >= 3) + return at; + + if (status == (1 << bit)) + return at; + + /* clear non-PEBS bit and re-check */ + pebs_status = status & cpuc->pebs_enabled; + pebs_status &= PEBS_COUNTER_MASK; + if (pebs_status == (1 << bit)) + return at; + } + } + return NULL; +} + +void intel_pmu_auto_reload_read(struct perf_event *event) +{ + WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); + + perf_pmu_disable(event->pmu); + intel_pmu_drain_pebs_buffer(); + perf_pmu_enable(event->pmu); +} + +/* + * Special variant of intel_pmu_save_and_restart() for auto-reload. + */ +static int +intel_pmu_save_and_restart_reload(struct perf_event *event, int count) +{ + struct hw_perf_event *hwc = &event->hw; + int shift = 64 - x86_pmu.cntval_bits; + u64 period = hwc->sample_period; + u64 prev_raw_count, new_raw_count; + s64 new, old; + + WARN_ON(!period); + + /* + * drain_pebs() only happens when the PMU is disabled. + */ + WARN_ON(this_cpu_read(cpu_hw_events.enabled)); + + prev_raw_count = local64_read(&hwc->prev_count); + rdpmcl(hwc->event_base_rdpmc, new_raw_count); + local64_set(&hwc->prev_count, new_raw_count); + + /* + * Since the counter increments a negative counter value and + * overflows on the sign switch, giving the interval: + * + * [-period, 0] + * + * the difference between two consecutive reads is: + * + * A) value2 - value1; + * when no overflows have happened in between, + * + * B) (0 - value1) + (value2 - (-period)); + * when one overflow happened in between, + * + * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); + * when @n overflows happened in between. + * + * Here A) is the obvious difference, B) is the extension to the + * discrete interval, where the first term is to the top of the + * interval and the second term is from the bottom of the next + * interval and C) the extension to multiple intervals, where the + * middle term is the whole intervals covered. + * + * An equivalent of C, by reduction, is: + * + * value2 - value1 + n * period + */ + new = ((s64)(new_raw_count << shift) >> shift); + old = ((s64)(prev_raw_count << shift) >> shift); + local64_add(new - old + count * period, &event->count); + + local64_set(&hwc->period_left, -new); + + perf_event_update_userpage(event); + + return 0; +} + +static __always_inline void +__intel_pmu_pebs_event(struct perf_event *event, + struct pt_regs *iregs, + struct perf_sample_data *data, + void *base, void *top, + int bit, int count, + void (*setup_sample)(struct perf_event *, + struct pt_regs *, + void *, + struct perf_sample_data *, + struct pt_regs *)) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct hw_perf_event *hwc = &event->hw; + struct x86_perf_regs perf_regs; + struct pt_regs *regs = &perf_regs.regs; + void *at = get_next_pebs_record_by_bit(base, top, bit); + static struct pt_regs dummy_iregs; + + if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { + /* + * Now, auto-reload is only enabled in fixed period mode. + * The reload value is always hwc->sample_period. + * May need to change it, if auto-reload is enabled in + * freq mode later. + */ + intel_pmu_save_and_restart_reload(event, count); + } else if (!intel_pmu_save_and_restart(event)) + return; + + if (!iregs) + iregs = &dummy_iregs; + + while (count > 1) { + setup_sample(event, iregs, at, data, regs); + perf_event_output(event, data, regs); + at += cpuc->pebs_record_size; + at = get_next_pebs_record_by_bit(at, top, bit); + count--; + } + + setup_sample(event, iregs, at, data, regs); + if (iregs == &dummy_iregs) { + /* + * The PEBS records may be drained in the non-overflow context, + * e.g., large PEBS + context switch. Perf should treat the + * last record the same as other PEBS records, and doesn't + * invoke the generic overflow handler. + */ + perf_event_output(event, data, regs); + } else { + /* + * All but the last records are processed. + * The last one is left to be able to call the overflow handler. + */ + if (perf_event_overflow(event, data, regs)) + x86_pmu_stop(event, 0); + } +} + +static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct debug_store *ds = cpuc->ds; + struct perf_event *event = cpuc->events[0]; /* PMC0 only */ + struct pebs_record_core *at, *top; + int n; + + if (!x86_pmu.pebs_active) + return; + + at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; + top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; + + /* + * Whatever else happens, drain the thing + */ + ds->pebs_index = ds->pebs_buffer_base; + + if (!test_bit(0, cpuc->active_mask)) + return; + + WARN_ON_ONCE(!event); + + if (!event->attr.precise_ip) + return; + + n = top - at; + if (n <= 0) { + if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) + intel_pmu_save_and_restart_reload(event, 0); + return; + } + + __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, + setup_pebs_fixed_sample_data); +} + +static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) +{ + struct perf_event *event; + int bit; + + /* + * The drain_pebs() could be called twice in a short period + * for auto-reload event in pmu::read(). There are no + * overflows have happened in between. + * It needs to call intel_pmu_save_and_restart_reload() to + * update the event->count for this case. + */ + for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { + event = cpuc->events[bit]; + if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) + intel_pmu_save_and_restart_reload(event, 0); + } +} + +static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct debug_store *ds = cpuc->ds; + struct perf_event *event; + void *base, *at, *top; + short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; + short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; + int bit, i, size; + u64 mask; + + if (!x86_pmu.pebs_active) + return; + + base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; + top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; + + ds->pebs_index = ds->pebs_buffer_base; + + mask = (1ULL << x86_pmu.max_pebs_events) - 1; + size = x86_pmu.max_pebs_events; + if (x86_pmu.flags & PMU_FL_PEBS_ALL) { + mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; + size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; + } + + if (unlikely(base >= top)) { + intel_pmu_pebs_event_update_no_drain(cpuc, size); + return; + } + + for (at = base; at < top; at += x86_pmu.pebs_record_size) { + struct pebs_record_nhm *p = at; + u64 pebs_status; + + pebs_status = p->status & cpuc->pebs_enabled; + pebs_status &= mask; + + /* PEBS v3 has more accurate status bits */ + if (x86_pmu.intel_cap.pebs_format >= 3) { + for_each_set_bit(bit, (unsigned long *)&pebs_status, size) + counts[bit]++; + + continue; + } + + /* + * On some CPUs the PEBS status can be zero when PEBS is + * racing with clearing of GLOBAL_STATUS. + * + * Normally we would drop that record, but in the + * case when there is only a single active PEBS event + * we can assume it's for that event. + */ + if (!pebs_status && cpuc->pebs_enabled && + !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) + pebs_status = p->status = cpuc->pebs_enabled; + + bit = find_first_bit((unsigned long *)&pebs_status, + x86_pmu.max_pebs_events); + if (bit >= x86_pmu.max_pebs_events) + continue; + + /* + * The PEBS hardware does not deal well with the situation + * when events happen near to each other and multiple bits + * are set. But it should happen rarely. + * + * If these events include one PEBS and multiple non-PEBS + * events, it doesn't impact PEBS record. The record will + * be handled normally. (slow path) + * + * If these events include two or more PEBS events, the + * records for the events can be collapsed into a single + * one, and it's not possible to reconstruct all events + * that caused the PEBS record. It's called collision. + * If collision happened, the record will be dropped. + */ + if (pebs_status != (1ULL << bit)) { + for_each_set_bit(i, (unsigned long *)&pebs_status, size) + error[i]++; + continue; + } + + counts[bit]++; + } + + for_each_set_bit(bit, (unsigned long *)&mask, size) { + if ((counts[bit] == 0) && (error[bit] == 0)) + continue; + + event = cpuc->events[bit]; + if (WARN_ON_ONCE(!event)) + continue; + + if (WARN_ON_ONCE(!event->attr.precise_ip)) + continue; + + /* log dropped samples number */ + if (error[bit]) { + perf_log_lost_samples(event, error[bit]); + + if (iregs && perf_event_account_interrupt(event)) + x86_pmu_stop(event, 0); + } + + if (counts[bit]) { + __intel_pmu_pebs_event(event, iregs, data, base, + top, bit, counts[bit], + setup_pebs_fixed_sample_data); + } + } +} + +static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) +{ + short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); + int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); + struct debug_store *ds = cpuc->ds; + struct perf_event *event; + void *base, *at, *top; + int bit, size; + u64 mask; + + if (!x86_pmu.pebs_active) + return; + + base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; + top = (struct pebs_basic *)(unsigned long)ds->pebs_index; + + ds->pebs_index = ds->pebs_buffer_base; + + mask = ((1ULL << max_pebs_events) - 1) | + (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); + size = INTEL_PMC_IDX_FIXED + num_counters_fixed; + + if (unlikely(base >= top)) { + intel_pmu_pebs_event_update_no_drain(cpuc, size); + return; + } + + for (at = base; at < top; at += cpuc->pebs_record_size) { + u64 pebs_status; + + pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; + pebs_status &= mask; + + for_each_set_bit(bit, (unsigned long *)&pebs_status, size) + counts[bit]++; + } + + for_each_set_bit(bit, (unsigned long *)&mask, size) { + if (counts[bit] == 0) + continue; + + event = cpuc->events[bit]; + if (WARN_ON_ONCE(!event)) + continue; + + if (WARN_ON_ONCE(!event->attr.precise_ip)) + continue; + + __intel_pmu_pebs_event(event, iregs, data, base, + top, bit, counts[bit], + setup_pebs_adaptive_sample_data); + } +} + +/* + * BTS, PEBS probe and setup + */ + +void __init intel_ds_init(void) +{ + /* + * No support for 32bit formats + */ + if (!boot_cpu_has(X86_FEATURE_DTES64)) + return; + + x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); + x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); + x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; + if (x86_pmu.version <= 4) + x86_pmu.pebs_no_isolation = 1; + + if (x86_pmu.pebs) { + char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; + char *pebs_qual = ""; + int format = x86_pmu.intel_cap.pebs_format; + + if (format < 4) + x86_pmu.intel_cap.pebs_baseline = 0; + + switch (format) { + case 0: + pr_cont("PEBS fmt0%c, ", pebs_type); + x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); + /* + * Using >PAGE_SIZE buffers makes the WRMSR to + * PERF_GLOBAL_CTRL in intel_pmu_enable_all() + * mysteriously hang on Core2. + * + * As a workaround, we don't do this. + */ + x86_pmu.pebs_buffer_size = PAGE_SIZE; + x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; + break; + + case 1: + pr_cont("PEBS fmt1%c, ", pebs_type); + x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); + x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; + break; + + case 2: + pr_cont("PEBS fmt2%c, ", pebs_type); + x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); + x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; + break; + + case 3: + pr_cont("PEBS fmt3%c, ", pebs_type); + x86_pmu.pebs_record_size = + sizeof(struct pebs_record_skl); + x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; + x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; + break; + + case 4: + case 5: + x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; + x86_pmu.pebs_record_size = sizeof(struct pebs_basic); + if (x86_pmu.intel_cap.pebs_baseline) { + x86_pmu.large_pebs_flags |= + PERF_SAMPLE_BRANCH_STACK | + PERF_SAMPLE_TIME; + x86_pmu.flags |= PMU_FL_PEBS_ALL; + x86_pmu.pebs_capable = ~0ULL; + pebs_qual = "-baseline"; + x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; + } else { + /* Only basic record supported */ + x86_pmu.large_pebs_flags &= + ~(PERF_SAMPLE_ADDR | + PERF_SAMPLE_TIME | + PERF_SAMPLE_DATA_SRC | + PERF_SAMPLE_TRANSACTION | + PERF_SAMPLE_REGS_USER | + PERF_SAMPLE_REGS_INTR); + } + pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); + + if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { + pr_cont("PEBS-via-PT, "); + x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; + } + + break; + + default: + pr_cont("no PEBS fmt%d%c, ", format, pebs_type); + x86_pmu.pebs = 0; + } + } +} + +void perf_restore_debug_store(void) +{ + struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); + + if (!x86_pmu.bts && !x86_pmu.pebs) + return; + + wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); +} |