diff options
Diffstat (limited to 'arch/x86/kvm/mmu/spte.h')
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 474 |
1 files changed, 474 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h new file mode 100644 index 000000000..7670c13ce --- /dev/null +++ b/arch/x86/kvm/mmu/spte.h @@ -0,0 +1,474 @@ +// SPDX-License-Identifier: GPL-2.0-only + +#ifndef KVM_X86_MMU_SPTE_H +#define KVM_X86_MMU_SPTE_H + +#include "mmu_internal.h" + +/* + * A MMU present SPTE is backed by actual memory and may or may not be present + * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it + * is ignored by all flavors of SPTEs and checking a low bit often generates + * better code than for a high bit, e.g. 56+. MMU present checks are pervasive + * enough that the improved code generation is noticeable in KVM's footprint. + */ +#define SPTE_MMU_PRESENT_MASK BIT_ULL(11) + +/* + * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also + * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. + * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that + * is must be employed for a given TDP SPTE. + * + * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE + * paging, including NPT PAE. This scheme works because legacy shadow paging + * is guaranteed to have A/D bits and write-protection is forced only for + * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it + * must be restricted to 64-bit KVM. + */ +#define SPTE_TDP_AD_SHIFT 52 +#define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) +#define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT) +#define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT) +#define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT) +static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); + +#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK +#define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) +#else +#define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) +#endif + +#define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ + | shadow_x_mask | shadow_nx_mask | shadow_me_mask) + +#define ACC_EXEC_MASK 1 +#define ACC_WRITE_MASK PT_WRITABLE_MASK +#define ACC_USER_MASK PT_USER_MASK +#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) + +/* The mask for the R/X bits in EPT PTEs */ +#define SPTE_EPT_READABLE_MASK 0x1ull +#define SPTE_EPT_EXECUTABLE_MASK 0x4ull + +#define SPTE_LEVEL_BITS 9 +#define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS) +#define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS) +#define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS) + +/* + * The mask/shift to use for saving the original R/X bits when marking the PTE + * as not-present for access tracking purposes. We do not save the W bit as the + * PTEs being access tracked also need to be dirty tracked, so the W bit will be + * restored only when a write is attempted to the page. This mask obviously + * must not overlap the A/D type mask. + */ +#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \ + SPTE_EPT_EXECUTABLE_MASK) +#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 +#define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ + SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) +static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); + +/* + * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given + * SPTE is write-protected. See is_writable_pte() for details. + */ + +/* Bits 9 and 10 are ignored by all non-EPT PTEs. */ +#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) +#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) + +/* + * Low ignored bits are at a premium for EPT, use high ignored bits, taking care + * to not overlap the A/D type mask or the saved access bits of access-tracked + * SPTEs when A/D bits are disabled. + */ +#define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) +#define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) + +static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); +static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); +static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); +static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); + +/* Defined only to keep the above static asserts readable. */ +#undef SHADOW_ACC_TRACK_SAVED_MASK + +/* + * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of + * the memslots generation and is derived as follows: + * + * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 + * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 + * + * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in + * the MMIO generation number, as doing so would require stealing a bit from + * the "real" generation number and thus effectively halve the maximum number + * of MMIO generations that can be handled before encountering a wrap (which + * requires a full MMU zap). The flag is instead explicitly queried when + * checking for MMIO spte cache hits. + */ + +#define MMIO_SPTE_GEN_LOW_START 3 +#define MMIO_SPTE_GEN_LOW_END 10 + +#define MMIO_SPTE_GEN_HIGH_START 52 +#define MMIO_SPTE_GEN_HIGH_END 62 + +#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ + MMIO_SPTE_GEN_LOW_START) +#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ + MMIO_SPTE_GEN_HIGH_START) +static_assert(!(SPTE_MMU_PRESENT_MASK & + (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); + +/* + * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the + * MMU-present bit. The generation obviously co-exists with the magic MMIO + * mask/value, and MMIO SPTEs are considered !MMU-present. + * + * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT + * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO + * and so they're off-limits for generation; additional checks ensure the mask + * doesn't overlap legal PA bits), and bit 63 (carved out for future usage). + */ +#define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0)) +static_assert(!(SPTE_MMIO_ALLOWED_MASK & + (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); + +#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) +#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) + +/* remember to adjust the comment above as well if you change these */ +static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); + +#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) +#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) + +#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) + +extern u64 __read_mostly shadow_host_writable_mask; +extern u64 __read_mostly shadow_mmu_writable_mask; +extern u64 __read_mostly shadow_nx_mask; +extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ +extern u64 __read_mostly shadow_user_mask; +extern u64 __read_mostly shadow_accessed_mask; +extern u64 __read_mostly shadow_dirty_mask; +extern u64 __read_mostly shadow_mmio_value; +extern u64 __read_mostly shadow_mmio_mask; +extern u64 __read_mostly shadow_mmio_access_mask; +extern u64 __read_mostly shadow_present_mask; +extern u64 __read_mostly shadow_memtype_mask; +extern u64 __read_mostly shadow_me_value; +extern u64 __read_mostly shadow_me_mask; + +/* + * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK; + * shadow_acc_track_mask is the set of bits to be cleared in non-accessed + * pages. + */ +extern u64 __read_mostly shadow_acc_track_mask; + +/* + * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order + * to guard against L1TF attacks. + */ +extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; + +/* + * The number of high-order 1 bits to use in the mask above. + */ +#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 + +/* + * If a thread running without exclusive control of the MMU lock must perform a + * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a + * non-present intermediate value. Other threads which encounter this value + * should not modify the SPTE. + * + * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on + * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF + * vulnerability. Use only low bits to avoid 64-bit immediates. + * + * Only used by the TDP MMU. + */ +#define REMOVED_SPTE 0x5a0ULL + +/* Removed SPTEs must not be misconstrued as shadow present PTEs. */ +static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK)); + +static inline bool is_removed_spte(u64 spte) +{ + return spte == REMOVED_SPTE; +} + +/* Get an SPTE's index into its parent's page table (and the spt array). */ +static inline int spte_index(u64 *sptep) +{ + return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1); +} + +/* + * In some cases, we need to preserve the GFN of a non-present or reserved + * SPTE when we usurp the upper five bits of the physical address space to + * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll + * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask + * left into the reserved bits, i.e. the GFN in the SPTE will be split into + * high and low parts. This mask covers the lower bits of the GFN. + */ +extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; + +static inline bool is_mmio_spte(u64 spte) +{ + return (spte & shadow_mmio_mask) == shadow_mmio_value && + likely(enable_mmio_caching); +} + +static inline bool is_shadow_present_pte(u64 pte) +{ + return !!(pte & SPTE_MMU_PRESENT_MASK); +} + +/* + * Returns true if A/D bits are supported in hardware and are enabled by KVM. + * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can + * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the + * scenario where KVM is using A/D bits for L1, but not L2. + */ +static inline bool kvm_ad_enabled(void) +{ + return !!shadow_accessed_mask; +} + +static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) +{ + return sp->role.ad_disabled; +} + +static inline bool spte_ad_enabled(u64 spte) +{ + MMU_WARN_ON(!is_shadow_present_pte(spte)); + return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK; +} + +static inline bool spte_ad_need_write_protect(u64 spte) +{ + MMU_WARN_ON(!is_shadow_present_pte(spte)); + /* + * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0', + * and non-TDP SPTEs will never set these bits. Optimize for 64-bit + * TDP and do the A/D type check unconditionally. + */ + return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK; +} + +static inline u64 spte_shadow_accessed_mask(u64 spte) +{ + MMU_WARN_ON(!is_shadow_present_pte(spte)); + return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; +} + +static inline u64 spte_shadow_dirty_mask(u64 spte) +{ + MMU_WARN_ON(!is_shadow_present_pte(spte)); + return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; +} + +static inline bool is_access_track_spte(u64 spte) +{ + return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; +} + +static inline bool is_large_pte(u64 pte) +{ + return pte & PT_PAGE_SIZE_MASK; +} + +static inline bool is_last_spte(u64 pte, int level) +{ + return (level == PG_LEVEL_4K) || is_large_pte(pte); +} + +static inline bool is_executable_pte(u64 spte) +{ + return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; +} + +static inline kvm_pfn_t spte_to_pfn(u64 pte) +{ + return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT; +} + +static inline bool is_accessed_spte(u64 spte) +{ + u64 accessed_mask = spte_shadow_accessed_mask(spte); + + return accessed_mask ? spte & accessed_mask + : !is_access_track_spte(spte); +} + +static inline bool is_dirty_spte(u64 spte) +{ + u64 dirty_mask = spte_shadow_dirty_mask(spte); + + return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; +} + +static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, + int level) +{ + int bit7 = (pte >> 7) & 1; + + return rsvd_check->rsvd_bits_mask[bit7][level-1]; +} + +static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, + u64 pte, int level) +{ + return pte & get_rsvd_bits(rsvd_check, pte, level); +} + +static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, + u64 pte) +{ + return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); +} + +static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, + u64 spte, int level) +{ + return __is_bad_mt_xwr(rsvd_check, spte) || + __is_rsvd_bits_set(rsvd_check, spte, level); +} + +/* + * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: + * + * 1. To intercept writes for dirty logging. KVM write-protects huge pages + * so that they can be split be split down into the dirty logging + * granularity (4KiB) whenever the guest writes to them. KVM also + * write-protects 4KiB pages so that writes can be recorded in the dirty log + * (e.g. if not using PML). SPTEs are write-protected for dirty logging + * during the VM-iotcls that enable dirty logging. + * + * 2. To intercept writes to guest page tables that KVM is shadowing. When a + * guest writes to its page table the corresponding shadow page table will + * be marked "unsync". That way KVM knows which shadow page tables need to + * be updated on the next TLB flush, INVLPG, etc. and which do not. + * + * 3. To prevent guest writes to read-only memory, such as for memory in a + * read-only memslot or guest memory backed by a read-only VMA. Writes to + * such pages are disallowed entirely. + * + * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this + * case, the SPTE is access-protected, not just write-protected! + * + * For cases #1 and #4, KVM can safely make such SPTEs writable without taking + * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. + * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits + * in the SPTE: + * + * shadow_mmu_writable_mask, aka MMU-writable - + * Cleared on SPTEs that KVM is currently write-protecting for shadow paging + * purposes (case 2 above). + * + * shadow_host_writable_mask, aka Host-writable - + * Cleared on SPTEs that are not host-writable (case 3 above) + * + * Note, not all possible combinations of PT_WRITABLE_MASK, + * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given + * SPTE can be in only one of the following states, which map to the + * aforementioned 3 cases: + * + * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK + * ------------------------- | ------------------------ | ---------------- + * 1 | 1 | 1 (writable) + * 1 | 1 | 0 (case 1) + * 1 | 0 | 0 (case 2) + * 0 | 0 | 0 (case 3) + * + * The valid combinations of these bits are checked by + * check_spte_writable_invariants() whenever an SPTE is modified. + * + * Clearing the MMU-writable bit is always done under the MMU lock and always + * accompanied by a TLB flush before dropping the lock to avoid corrupting the + * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging + * (which does not clear the MMU-writable bit), does not flush TLBs before + * dropping the lock, as it only needs to synchronize guest writes with the + * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for + * access-tracking via the clear_young() MMU notifier also does not flush TLBs. + * + * So, there is the problem: clearing the MMU-writable bit can encounter a + * write-protected SPTE while CPUs still have writable mappings for that SPTE + * cached in their TLB. To address this, KVM always flushes TLBs when + * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. + * + * The Host-writable bit is not modified on present SPTEs, it is only set or + * cleared when an SPTE is first faulted in from non-present and then remains + * immutable. + */ +static inline bool is_writable_pte(unsigned long pte) +{ + return pte & PT_WRITABLE_MASK; +} + +/* Note: spte must be a shadow-present leaf SPTE. */ +static inline void check_spte_writable_invariants(u64 spte) +{ + if (spte & shadow_mmu_writable_mask) + WARN_ONCE(!(spte & shadow_host_writable_mask), + "kvm: MMU-writable SPTE is not Host-writable: %llx", + spte); + else + WARN_ONCE(is_writable_pte(spte), + "kvm: Writable SPTE is not MMU-writable: %llx", spte); +} + +static inline bool is_mmu_writable_spte(u64 spte) +{ + return spte & shadow_mmu_writable_mask; +} + +static inline u64 get_mmio_spte_generation(u64 spte) +{ + u64 gen; + + gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; + gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; + return gen; +} + +bool spte_has_volatile_bits(u64 spte); + +bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + const struct kvm_memory_slot *slot, + unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, + u64 old_spte, bool prefetch, bool can_unsync, + bool host_writable, u64 *new_spte); +u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, + union kvm_mmu_page_role role, int index); +u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); +u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); +u64 mark_spte_for_access_track(u64 spte); + +/* Restore an acc-track PTE back to a regular PTE */ +static inline u64 restore_acc_track_spte(u64 spte) +{ + u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) + & SHADOW_ACC_TRACK_SAVED_BITS_MASK; + + spte &= ~shadow_acc_track_mask; + spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << + SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); + spte |= saved_bits; + + return spte; +} + +u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); + +void __init kvm_mmu_spte_module_init(void); +void kvm_mmu_reset_all_pte_masks(void); + +#endif |