diff options
Diffstat (limited to 'crypto/asymmetric_keys/public_key.c')
-rw-r--r-- | crypto/asymmetric_keys/public_key.c | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/crypto/asymmetric_keys/public_key.c b/crypto/asymmetric_keys/public_key.c new file mode 100644 index 000000000..50c933f86 --- /dev/null +++ b/crypto/asymmetric_keys/public_key.c @@ -0,0 +1,495 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* In-software asymmetric public-key crypto subtype + * + * See Documentation/crypto/asymmetric-keys.rst + * + * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. + * Written by David Howells (dhowells@redhat.com) + */ + +#define pr_fmt(fmt) "PKEY: "fmt +#include <linux/module.h> +#include <linux/export.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/seq_file.h> +#include <linux/scatterlist.h> +#include <linux/asn1.h> +#include <keys/asymmetric-subtype.h> +#include <crypto/public_key.h> +#include <crypto/akcipher.h> +#include <crypto/sm2.h> +#include <crypto/sm3_base.h> + +MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); +MODULE_AUTHOR("Red Hat, Inc."); +MODULE_LICENSE("GPL"); + +/* + * Provide a part of a description of the key for /proc/keys. + */ +static void public_key_describe(const struct key *asymmetric_key, + struct seq_file *m) +{ + struct public_key *key = asymmetric_key->payload.data[asym_crypto]; + + if (key) + seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); +} + +/* + * Destroy a public key algorithm key. + */ +void public_key_free(struct public_key *key) +{ + if (key) { + kfree(key->key); + kfree(key->params); + kfree(key); + } +} +EXPORT_SYMBOL_GPL(public_key_free); + +/* + * Destroy a public key algorithm key. + */ +static void public_key_destroy(void *payload0, void *payload3) +{ + public_key_free(payload0); + public_key_signature_free(payload3); +} + +/* + * Given a public_key, and an encoding and hash_algo to be used for signing + * and/or verification with that key, determine the name of the corresponding + * akcipher algorithm. Also check that encoding and hash_algo are allowed. + */ +static int +software_key_determine_akcipher(const struct public_key *pkey, + const char *encoding, const char *hash_algo, + char alg_name[CRYPTO_MAX_ALG_NAME]) +{ + int n; + + if (!encoding) + return -EINVAL; + + if (strcmp(pkey->pkey_algo, "rsa") == 0) { + /* + * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2]. + */ + if (strcmp(encoding, "pkcs1") == 0) { + if (!hash_algo) + n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, + "pkcs1pad(%s)", + pkey->pkey_algo); + else + n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, + "pkcs1pad(%s,%s)", + pkey->pkey_algo, hash_algo); + return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; + } + if (strcmp(encoding, "raw") != 0) + return -EINVAL; + /* + * Raw RSA cannot differentiate between different hash + * algorithms. + */ + if (hash_algo) + return -EINVAL; + } else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { + if (strcmp(encoding, "x962") != 0) + return -EINVAL; + /* + * ECDSA signatures are taken over a raw hash, so they don't + * differentiate between different hash algorithms. That means + * that the verifier should hard-code a specific hash algorithm. + * Unfortunately, in practice ECDSA is used with multiple SHAs, + * so we have to allow all of them and not just one. + */ + if (!hash_algo) + return -EINVAL; + if (strcmp(hash_algo, "sha1") != 0 && + strcmp(hash_algo, "sha224") != 0 && + strcmp(hash_algo, "sha256") != 0 && + strcmp(hash_algo, "sha384") != 0 && + strcmp(hash_algo, "sha512") != 0) + return -EINVAL; + } else if (strcmp(pkey->pkey_algo, "sm2") == 0) { + if (strcmp(encoding, "raw") != 0) + return -EINVAL; + if (!hash_algo) + return -EINVAL; + if (strcmp(hash_algo, "sm3") != 0) + return -EINVAL; + } else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) { + if (strcmp(encoding, "raw") != 0) + return -EINVAL; + if (!hash_algo) + return -EINVAL; + if (strcmp(hash_algo, "streebog256") != 0 && + strcmp(hash_algo, "streebog512") != 0) + return -EINVAL; + } else { + /* Unknown public key algorithm */ + return -ENOPKG; + } + if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0) + return -EINVAL; + return 0; +} + +static u8 *pkey_pack_u32(u8 *dst, u32 val) +{ + memcpy(dst, &val, sizeof(val)); + return dst + sizeof(val); +} + +/* + * Query information about a key. + */ +static int software_key_query(const struct kernel_pkey_params *params, + struct kernel_pkey_query *info) +{ + struct crypto_akcipher *tfm; + struct public_key *pkey = params->key->payload.data[asym_crypto]; + char alg_name[CRYPTO_MAX_ALG_NAME]; + u8 *key, *ptr; + int ret, len; + + ret = software_key_determine_akcipher(pkey, params->encoding, + params->hash_algo, alg_name); + if (ret < 0) + return ret; + + tfm = crypto_alloc_akcipher(alg_name, 0, 0); + if (IS_ERR(tfm)) + return PTR_ERR(tfm); + + ret = -ENOMEM; + key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, + GFP_KERNEL); + if (!key) + goto error_free_tfm; + memcpy(key, pkey->key, pkey->keylen); + ptr = key + pkey->keylen; + ptr = pkey_pack_u32(ptr, pkey->algo); + ptr = pkey_pack_u32(ptr, pkey->paramlen); + memcpy(ptr, pkey->params, pkey->paramlen); + + if (pkey->key_is_private) + ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); + else + ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); + if (ret < 0) + goto error_free_key; + + len = crypto_akcipher_maxsize(tfm); + info->key_size = len * 8; + + if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { + /* + * ECDSA key sizes are much smaller than RSA, and thus could + * operate on (hashed) inputs that are larger than key size. + * For example SHA384-hashed input used with secp256r1 + * based keys. Set max_data_size to be at least as large as + * the largest supported hash size (SHA512) + */ + info->max_data_size = 64; + + /* + * Verify takes ECDSA-Sig (described in RFC 5480) as input, + * which is actually 2 'key_size'-bit integers encoded in + * ASN.1. Account for the ASN.1 encoding overhead here. + */ + info->max_sig_size = 2 * (len + 3) + 2; + } else { + info->max_data_size = len; + info->max_sig_size = len; + } + + info->max_enc_size = len; + info->max_dec_size = len; + info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT | + KEYCTL_SUPPORTS_VERIFY); + if (pkey->key_is_private) + info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT | + KEYCTL_SUPPORTS_SIGN); + ret = 0; + +error_free_key: + kfree(key); +error_free_tfm: + crypto_free_akcipher(tfm); + pr_devel("<==%s() = %d\n", __func__, ret); + return ret; +} + +/* + * Do encryption, decryption and signing ops. + */ +static int software_key_eds_op(struct kernel_pkey_params *params, + const void *in, void *out) +{ + const struct public_key *pkey = params->key->payload.data[asym_crypto]; + struct akcipher_request *req; + struct crypto_akcipher *tfm; + struct crypto_wait cwait; + struct scatterlist in_sg, out_sg; + char alg_name[CRYPTO_MAX_ALG_NAME]; + char *key, *ptr; + int ret; + + pr_devel("==>%s()\n", __func__); + + ret = software_key_determine_akcipher(pkey, params->encoding, + params->hash_algo, alg_name); + if (ret < 0) + return ret; + + tfm = crypto_alloc_akcipher(alg_name, 0, 0); + if (IS_ERR(tfm)) + return PTR_ERR(tfm); + + ret = -ENOMEM; + req = akcipher_request_alloc(tfm, GFP_KERNEL); + if (!req) + goto error_free_tfm; + + key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, + GFP_KERNEL); + if (!key) + goto error_free_req; + + memcpy(key, pkey->key, pkey->keylen); + ptr = key + pkey->keylen; + ptr = pkey_pack_u32(ptr, pkey->algo); + ptr = pkey_pack_u32(ptr, pkey->paramlen); + memcpy(ptr, pkey->params, pkey->paramlen); + + if (pkey->key_is_private) + ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); + else + ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); + if (ret) + goto error_free_key; + + sg_init_one(&in_sg, in, params->in_len); + sg_init_one(&out_sg, out, params->out_len); + akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len, + params->out_len); + crypto_init_wait(&cwait); + akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | + CRYPTO_TFM_REQ_MAY_SLEEP, + crypto_req_done, &cwait); + + /* Perform the encryption calculation. */ + switch (params->op) { + case kernel_pkey_encrypt: + ret = crypto_akcipher_encrypt(req); + break; + case kernel_pkey_decrypt: + ret = crypto_akcipher_decrypt(req); + break; + case kernel_pkey_sign: + ret = crypto_akcipher_sign(req); + break; + default: + BUG(); + } + + ret = crypto_wait_req(ret, &cwait); + if (ret == 0) + ret = req->dst_len; + +error_free_key: + kfree(key); +error_free_req: + akcipher_request_free(req); +error_free_tfm: + crypto_free_akcipher(tfm); + pr_devel("<==%s() = %d\n", __func__, ret); + return ret; +} + +#if IS_REACHABLE(CONFIG_CRYPTO_SM2) +static int cert_sig_digest_update(const struct public_key_signature *sig, + struct crypto_akcipher *tfm_pkey) +{ + struct crypto_shash *tfm; + struct shash_desc *desc; + size_t desc_size; + unsigned char dgst[SM3_DIGEST_SIZE]; + int ret; + + BUG_ON(!sig->data); + + /* SM2 signatures always use the SM3 hash algorithm */ + if (!sig->hash_algo || strcmp(sig->hash_algo, "sm3") != 0) + return -EINVAL; + + ret = sm2_compute_z_digest(tfm_pkey, SM2_DEFAULT_USERID, + SM2_DEFAULT_USERID_LEN, dgst); + if (ret) + return ret; + + tfm = crypto_alloc_shash(sig->hash_algo, 0, 0); + if (IS_ERR(tfm)) + return PTR_ERR(tfm); + + desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); + desc = kzalloc(desc_size, GFP_KERNEL); + if (!desc) { + ret = -ENOMEM; + goto error_free_tfm; + } + + desc->tfm = tfm; + + ret = crypto_shash_init(desc); + if (ret < 0) + goto error_free_desc; + + ret = crypto_shash_update(desc, dgst, SM3_DIGEST_SIZE); + if (ret < 0) + goto error_free_desc; + + ret = crypto_shash_finup(desc, sig->data, sig->data_size, sig->digest); + +error_free_desc: + kfree(desc); +error_free_tfm: + crypto_free_shash(tfm); + return ret; +} +#else +static inline int cert_sig_digest_update( + const struct public_key_signature *sig, + struct crypto_akcipher *tfm_pkey) +{ + return -ENOTSUPP; +} +#endif /* ! IS_REACHABLE(CONFIG_CRYPTO_SM2) */ + +/* + * Verify a signature using a public key. + */ +int public_key_verify_signature(const struct public_key *pkey, + const struct public_key_signature *sig) +{ + struct crypto_wait cwait; + struct crypto_akcipher *tfm; + struct akcipher_request *req; + struct scatterlist src_sg; + char alg_name[CRYPTO_MAX_ALG_NAME]; + char *buf, *ptr; + size_t buf_len; + int ret; + + pr_devel("==>%s()\n", __func__); + + BUG_ON(!pkey); + BUG_ON(!sig); + BUG_ON(!sig->s); + + /* + * If the signature specifies a public key algorithm, it *must* match + * the key's actual public key algorithm. + * + * Small exception: ECDSA signatures don't specify the curve, but ECDSA + * keys do. So the strings can mismatch slightly in that case: + * "ecdsa-nist-*" for the key, but "ecdsa" for the signature. + */ + if (sig->pkey_algo) { + if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 && + (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 || + strcmp(sig->pkey_algo, "ecdsa") != 0)) + return -EKEYREJECTED; + } + + ret = software_key_determine_akcipher(pkey, sig->encoding, + sig->hash_algo, alg_name); + if (ret < 0) + return ret; + + tfm = crypto_alloc_akcipher(alg_name, 0, 0); + if (IS_ERR(tfm)) + return PTR_ERR(tfm); + + ret = -ENOMEM; + req = akcipher_request_alloc(tfm, GFP_KERNEL); + if (!req) + goto error_free_tfm; + + buf_len = max_t(size_t, pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, + sig->s_size + sig->digest_size); + + buf = kmalloc(buf_len, GFP_KERNEL); + if (!buf) + goto error_free_req; + + memcpy(buf, pkey->key, pkey->keylen); + ptr = buf + pkey->keylen; + ptr = pkey_pack_u32(ptr, pkey->algo); + ptr = pkey_pack_u32(ptr, pkey->paramlen); + memcpy(ptr, pkey->params, pkey->paramlen); + + if (pkey->key_is_private) + ret = crypto_akcipher_set_priv_key(tfm, buf, pkey->keylen); + else + ret = crypto_akcipher_set_pub_key(tfm, buf, pkey->keylen); + if (ret) + goto error_free_buf; + + if (strcmp(pkey->pkey_algo, "sm2") == 0 && sig->data_size) { + ret = cert_sig_digest_update(sig, tfm); + if (ret) + goto error_free_buf; + } + + memcpy(buf, sig->s, sig->s_size); + memcpy(buf + sig->s_size, sig->digest, sig->digest_size); + + sg_init_one(&src_sg, buf, sig->s_size + sig->digest_size); + akcipher_request_set_crypt(req, &src_sg, NULL, sig->s_size, + sig->digest_size); + crypto_init_wait(&cwait); + akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | + CRYPTO_TFM_REQ_MAY_SLEEP, + crypto_req_done, &cwait); + ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait); + +error_free_buf: + kfree(buf); +error_free_req: + akcipher_request_free(req); +error_free_tfm: + crypto_free_akcipher(tfm); + pr_devel("<==%s() = %d\n", __func__, ret); + if (WARN_ON_ONCE(ret > 0)) + ret = -EINVAL; + return ret; +} +EXPORT_SYMBOL_GPL(public_key_verify_signature); + +static int public_key_verify_signature_2(const struct key *key, + const struct public_key_signature *sig) +{ + const struct public_key *pk = key->payload.data[asym_crypto]; + return public_key_verify_signature(pk, sig); +} + +/* + * Public key algorithm asymmetric key subtype + */ +struct asymmetric_key_subtype public_key_subtype = { + .owner = THIS_MODULE, + .name = "public_key", + .name_len = sizeof("public_key") - 1, + .describe = public_key_describe, + .destroy = public_key_destroy, + .query = software_key_query, + .eds_op = software_key_eds_op, + .verify_signature = public_key_verify_signature_2, +}; +EXPORT_SYMBOL_GPL(public_key_subtype); |