summaryrefslogtreecommitdiffstats
path: root/drivers/acpi/cppc_acpi.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/acpi/cppc_acpi.c')
-rw-r--r--drivers/acpi/cppc_acpi.c1589
1 files changed, 1589 insertions, 0 deletions
diff --git a/drivers/acpi/cppc_acpi.c b/drivers/acpi/cppc_acpi.c
new file mode 100644
index 000000000..093675b1a
--- /dev/null
+++ b/drivers/acpi/cppc_acpi.c
@@ -0,0 +1,1589 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
+ *
+ * (C) Copyright 2014, 2015 Linaro Ltd.
+ * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
+ *
+ * CPPC describes a few methods for controlling CPU performance using
+ * information from a per CPU table called CPC. This table is described in
+ * the ACPI v5.0+ specification. The table consists of a list of
+ * registers which may be memory mapped or hardware registers and also may
+ * include some static integer values.
+ *
+ * CPU performance is on an abstract continuous scale as against a discretized
+ * P-state scale which is tied to CPU frequency only. In brief, the basic
+ * operation involves:
+ *
+ * - OS makes a CPU performance request. (Can provide min and max bounds)
+ *
+ * - Platform (such as BMC) is free to optimize request within requested bounds
+ * depending on power/thermal budgets etc.
+ *
+ * - Platform conveys its decision back to OS
+ *
+ * The communication between OS and platform occurs through another medium
+ * called (PCC) Platform Communication Channel. This is a generic mailbox like
+ * mechanism which includes doorbell semantics to indicate register updates.
+ * See drivers/mailbox/pcc.c for details on PCC.
+ *
+ * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
+ * above specifications.
+ */
+
+#define pr_fmt(fmt) "ACPI CPPC: " fmt
+
+#include <linux/delay.h>
+#include <linux/iopoll.h>
+#include <linux/ktime.h>
+#include <linux/rwsem.h>
+#include <linux/wait.h>
+#include <linux/topology.h>
+
+#include <acpi/cppc_acpi.h>
+
+struct cppc_pcc_data {
+ struct pcc_mbox_chan *pcc_channel;
+ void __iomem *pcc_comm_addr;
+ bool pcc_channel_acquired;
+ unsigned int deadline_us;
+ unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
+
+ bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
+ bool platform_owns_pcc; /* Ownership of PCC subspace */
+ unsigned int pcc_write_cnt; /* Running count of PCC write commands */
+
+ /*
+ * Lock to provide controlled access to the PCC channel.
+ *
+ * For performance critical usecases(currently cppc_set_perf)
+ * We need to take read_lock and check if channel belongs to OSPM
+ * before reading or writing to PCC subspace
+ * We need to take write_lock before transferring the channel
+ * ownership to the platform via a Doorbell
+ * This allows us to batch a number of CPPC requests if they happen
+ * to originate in about the same time
+ *
+ * For non-performance critical usecases(init)
+ * Take write_lock for all purposes which gives exclusive access
+ */
+ struct rw_semaphore pcc_lock;
+
+ /* Wait queue for CPUs whose requests were batched */
+ wait_queue_head_t pcc_write_wait_q;
+ ktime_t last_cmd_cmpl_time;
+ ktime_t last_mpar_reset;
+ int mpar_count;
+ int refcount;
+};
+
+/* Array to represent the PCC channel per subspace ID */
+static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
+/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
+static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
+
+/*
+ * The cpc_desc structure contains the ACPI register details
+ * as described in the per CPU _CPC tables. The details
+ * include the type of register (e.g. PCC, System IO, FFH etc.)
+ * and destination addresses which lets us READ/WRITE CPU performance
+ * information using the appropriate I/O methods.
+ */
+static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
+
+/* pcc mapped address + header size + offset within PCC subspace */
+#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
+ 0x8 + (offs))
+
+/* Check if a CPC register is in PCC */
+#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
+ (cpc)->cpc_entry.reg.space_id == \
+ ACPI_ADR_SPACE_PLATFORM_COMM)
+
+/* Check if a CPC register is in SystemMemory */
+#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
+ (cpc)->cpc_entry.reg.space_id == \
+ ACPI_ADR_SPACE_SYSTEM_MEMORY)
+
+/* Check if a CPC register is in SystemIo */
+#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
+ (cpc)->cpc_entry.reg.space_id == \
+ ACPI_ADR_SPACE_SYSTEM_IO)
+
+/* Evaluates to True if reg is a NULL register descriptor */
+#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
+ (reg)->address == 0 && \
+ (reg)->bit_width == 0 && \
+ (reg)->bit_offset == 0 && \
+ (reg)->access_width == 0)
+
+/* Evaluates to True if an optional cpc field is supported */
+#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
+ !!(cpc)->cpc_entry.int_value : \
+ !IS_NULL_REG(&(cpc)->cpc_entry.reg))
+/*
+ * Arbitrary Retries in case the remote processor is slow to respond
+ * to PCC commands. Keeping it high enough to cover emulators where
+ * the processors run painfully slow.
+ */
+#define NUM_RETRIES 500ULL
+
+#define OVER_16BTS_MASK ~0xFFFFULL
+
+#define define_one_cppc_ro(_name) \
+static struct kobj_attribute _name = \
+__ATTR(_name, 0444, show_##_name, NULL)
+
+#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
+
+#define show_cppc_data(access_fn, struct_name, member_name) \
+ static ssize_t show_##member_name(struct kobject *kobj, \
+ struct kobj_attribute *attr, char *buf) \
+ { \
+ struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
+ struct struct_name st_name = {0}; \
+ int ret; \
+ \
+ ret = access_fn(cpc_ptr->cpu_id, &st_name); \
+ if (ret) \
+ return ret; \
+ \
+ return scnprintf(buf, PAGE_SIZE, "%llu\n", \
+ (u64)st_name.member_name); \
+ } \
+ define_one_cppc_ro(member_name)
+
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
+show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
+
+show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
+show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
+
+static ssize_t show_feedback_ctrs(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
+ struct cppc_perf_fb_ctrs fb_ctrs = {0};
+ int ret;
+
+ ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
+ if (ret)
+ return ret;
+
+ return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
+ fb_ctrs.reference, fb_ctrs.delivered);
+}
+define_one_cppc_ro(feedback_ctrs);
+
+static struct attribute *cppc_attrs[] = {
+ &feedback_ctrs.attr,
+ &reference_perf.attr,
+ &wraparound_time.attr,
+ &highest_perf.attr,
+ &lowest_perf.attr,
+ &lowest_nonlinear_perf.attr,
+ &nominal_perf.attr,
+ &nominal_freq.attr,
+ &lowest_freq.attr,
+ NULL
+};
+ATTRIBUTE_GROUPS(cppc);
+
+static struct kobj_type cppc_ktype = {
+ .sysfs_ops = &kobj_sysfs_ops,
+ .default_groups = cppc_groups,
+};
+
+static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
+{
+ int ret, status;
+ struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
+ struct acpi_pcct_shared_memory __iomem *generic_comm_base =
+ pcc_ss_data->pcc_comm_addr;
+
+ if (!pcc_ss_data->platform_owns_pcc)
+ return 0;
+
+ /*
+ * Poll PCC status register every 3us(delay_us) for maximum of
+ * deadline_us(timeout_us) until PCC command complete bit is set(cond)
+ */
+ ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
+ status & PCC_CMD_COMPLETE_MASK, 3,
+ pcc_ss_data->deadline_us);
+
+ if (likely(!ret)) {
+ pcc_ss_data->platform_owns_pcc = false;
+ if (chk_err_bit && (status & PCC_ERROR_MASK))
+ ret = -EIO;
+ }
+
+ if (unlikely(ret))
+ pr_err("PCC check channel failed for ss: %d. ret=%d\n",
+ pcc_ss_id, ret);
+
+ return ret;
+}
+
+/*
+ * This function transfers the ownership of the PCC to the platform
+ * So it must be called while holding write_lock(pcc_lock)
+ */
+static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
+{
+ int ret = -EIO, i;
+ struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
+ struct acpi_pcct_shared_memory __iomem *generic_comm_base =
+ pcc_ss_data->pcc_comm_addr;
+ unsigned int time_delta;
+
+ /*
+ * For CMD_WRITE we know for a fact the caller should have checked
+ * the channel before writing to PCC space
+ */
+ if (cmd == CMD_READ) {
+ /*
+ * If there are pending cpc_writes, then we stole the channel
+ * before write completion, so first send a WRITE command to
+ * platform
+ */
+ if (pcc_ss_data->pending_pcc_write_cmd)
+ send_pcc_cmd(pcc_ss_id, CMD_WRITE);
+
+ ret = check_pcc_chan(pcc_ss_id, false);
+ if (ret)
+ goto end;
+ } else /* CMD_WRITE */
+ pcc_ss_data->pending_pcc_write_cmd = FALSE;
+
+ /*
+ * Handle the Minimum Request Turnaround Time(MRTT)
+ * "The minimum amount of time that OSPM must wait after the completion
+ * of a command before issuing the next command, in microseconds"
+ */
+ if (pcc_ss_data->pcc_mrtt) {
+ time_delta = ktime_us_delta(ktime_get(),
+ pcc_ss_data->last_cmd_cmpl_time);
+ if (pcc_ss_data->pcc_mrtt > time_delta)
+ udelay(pcc_ss_data->pcc_mrtt - time_delta);
+ }
+
+ /*
+ * Handle the non-zero Maximum Periodic Access Rate(MPAR)
+ * "The maximum number of periodic requests that the subspace channel can
+ * support, reported in commands per minute. 0 indicates no limitation."
+ *
+ * This parameter should be ideally zero or large enough so that it can
+ * handle maximum number of requests that all the cores in the system can
+ * collectively generate. If it is not, we will follow the spec and just
+ * not send the request to the platform after hitting the MPAR limit in
+ * any 60s window
+ */
+ if (pcc_ss_data->pcc_mpar) {
+ if (pcc_ss_data->mpar_count == 0) {
+ time_delta = ktime_ms_delta(ktime_get(),
+ pcc_ss_data->last_mpar_reset);
+ if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
+ pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
+ pcc_ss_id);
+ ret = -EIO;
+ goto end;
+ }
+ pcc_ss_data->last_mpar_reset = ktime_get();
+ pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
+ }
+ pcc_ss_data->mpar_count--;
+ }
+
+ /* Write to the shared comm region. */
+ writew_relaxed(cmd, &generic_comm_base->command);
+
+ /* Flip CMD COMPLETE bit */
+ writew_relaxed(0, &generic_comm_base->status);
+
+ pcc_ss_data->platform_owns_pcc = true;
+
+ /* Ring doorbell */
+ ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
+ if (ret < 0) {
+ pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
+ pcc_ss_id, cmd, ret);
+ goto end;
+ }
+
+ /* wait for completion and check for PCC error bit */
+ ret = check_pcc_chan(pcc_ss_id, true);
+
+ if (pcc_ss_data->pcc_mrtt)
+ pcc_ss_data->last_cmd_cmpl_time = ktime_get();
+
+ if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
+ mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
+ else
+ mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
+
+end:
+ if (cmd == CMD_WRITE) {
+ if (unlikely(ret)) {
+ for_each_possible_cpu(i) {
+ struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
+
+ if (!desc)
+ continue;
+
+ if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
+ desc->write_cmd_status = ret;
+ }
+ }
+ pcc_ss_data->pcc_write_cnt++;
+ wake_up_all(&pcc_ss_data->pcc_write_wait_q);
+ }
+
+ return ret;
+}
+
+static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
+{
+ if (ret < 0)
+ pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
+ *(u16 *)msg, ret);
+ else
+ pr_debug("TX completed. CMD sent:%x, ret:%d\n",
+ *(u16 *)msg, ret);
+}
+
+static struct mbox_client cppc_mbox_cl = {
+ .tx_done = cppc_chan_tx_done,
+ .knows_txdone = true,
+};
+
+static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
+{
+ int result = -EFAULT;
+ acpi_status status = AE_OK;
+ struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
+ struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
+ struct acpi_buffer state = {0, NULL};
+ union acpi_object *psd = NULL;
+ struct acpi_psd_package *pdomain;
+
+ status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
+ &buffer, ACPI_TYPE_PACKAGE);
+ if (status == AE_NOT_FOUND) /* _PSD is optional */
+ return 0;
+ if (ACPI_FAILURE(status))
+ return -ENODEV;
+
+ psd = buffer.pointer;
+ if (!psd || psd->package.count != 1) {
+ pr_debug("Invalid _PSD data\n");
+ goto end;
+ }
+
+ pdomain = &(cpc_ptr->domain_info);
+
+ state.length = sizeof(struct acpi_psd_package);
+ state.pointer = pdomain;
+
+ status = acpi_extract_package(&(psd->package.elements[0]),
+ &format, &state);
+ if (ACPI_FAILURE(status)) {
+ pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
+ goto end;
+ }
+
+ if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
+ pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
+ goto end;
+ }
+
+ if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
+ pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
+ goto end;
+ }
+
+ if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
+ pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
+ pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
+ pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
+ goto end;
+ }
+
+ result = 0;
+end:
+ kfree(buffer.pointer);
+ return result;
+}
+
+bool acpi_cpc_valid(void)
+{
+ struct cpc_desc *cpc_ptr;
+ int cpu;
+
+ if (acpi_disabled)
+ return false;
+
+ for_each_present_cpu(cpu) {
+ cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
+ if (!cpc_ptr)
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_GPL(acpi_cpc_valid);
+
+bool cppc_allow_fast_switch(void)
+{
+ struct cpc_register_resource *desired_reg;
+ struct cpc_desc *cpc_ptr;
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
+ desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
+ if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
+ !CPC_IN_SYSTEM_IO(desired_reg))
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
+
+/**
+ * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
+ * @cpu: Find all CPUs that share a domain with cpu.
+ * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
+ *
+ * Return: 0 for success or negative value for err.
+ */
+int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
+{
+ struct cpc_desc *cpc_ptr, *match_cpc_ptr;
+ struct acpi_psd_package *match_pdomain;
+ struct acpi_psd_package *pdomain;
+ int count_target, i;
+
+ /*
+ * Now that we have _PSD data from all CPUs, let's setup P-state
+ * domain info.
+ */
+ cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
+ if (!cpc_ptr)
+ return -EFAULT;
+
+ pdomain = &(cpc_ptr->domain_info);
+ cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
+ if (pdomain->num_processors <= 1)
+ return 0;
+
+ /* Validate the Domain info */
+ count_target = pdomain->num_processors;
+ if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
+ cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
+ else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
+ cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
+ else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
+ cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
+
+ for_each_possible_cpu(i) {
+ if (i == cpu)
+ continue;
+
+ match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
+ if (!match_cpc_ptr)
+ goto err_fault;
+
+ match_pdomain = &(match_cpc_ptr->domain_info);
+ if (match_pdomain->domain != pdomain->domain)
+ continue;
+
+ /* Here i and cpu are in the same domain */
+ if (match_pdomain->num_processors != count_target)
+ goto err_fault;
+
+ if (pdomain->coord_type != match_pdomain->coord_type)
+ goto err_fault;
+
+ cpumask_set_cpu(i, cpu_data->shared_cpu_map);
+ }
+
+ return 0;
+
+err_fault:
+ /* Assume no coordination on any error parsing domain info */
+ cpumask_clear(cpu_data->shared_cpu_map);
+ cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
+ cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
+
+ return -EFAULT;
+}
+EXPORT_SYMBOL_GPL(acpi_get_psd_map);
+
+static int register_pcc_channel(int pcc_ss_idx)
+{
+ struct pcc_mbox_chan *pcc_chan;
+ u64 usecs_lat;
+
+ if (pcc_ss_idx >= 0) {
+ pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
+
+ if (IS_ERR(pcc_chan)) {
+ pr_err("Failed to find PCC channel for subspace %d\n",
+ pcc_ss_idx);
+ return -ENODEV;
+ }
+
+ pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
+ /*
+ * cppc_ss->latency is just a Nominal value. In reality
+ * the remote processor could be much slower to reply.
+ * So add an arbitrary amount of wait on top of Nominal.
+ */
+ usecs_lat = NUM_RETRIES * pcc_chan->latency;
+ pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
+ pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
+ pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
+ pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
+
+ pcc_data[pcc_ss_idx]->pcc_comm_addr =
+ acpi_os_ioremap(pcc_chan->shmem_base_addr,
+ pcc_chan->shmem_size);
+ if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
+ pr_err("Failed to ioremap PCC comm region mem for %d\n",
+ pcc_ss_idx);
+ return -ENOMEM;
+ }
+
+ /* Set flag so that we don't come here for each CPU. */
+ pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
+ }
+
+ return 0;
+}
+
+/**
+ * cpc_ffh_supported() - check if FFH reading supported
+ *
+ * Check if the architecture has support for functional fixed hardware
+ * read/write capability.
+ *
+ * Return: true for supported, false for not supported
+ */
+bool __weak cpc_ffh_supported(void)
+{
+ return false;
+}
+
+/**
+ * cpc_supported_by_cpu() - check if CPPC is supported by CPU
+ *
+ * Check if the architectural support for CPPC is present even
+ * if the _OSC hasn't prescribed it
+ *
+ * Return: true for supported, false for not supported
+ */
+bool __weak cpc_supported_by_cpu(void)
+{
+ return false;
+}
+
+/**
+ * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
+ *
+ * Check and allocate the cppc_pcc_data memory.
+ * In some processor configurations it is possible that same subspace
+ * is shared between multiple CPUs. This is seen especially in CPUs
+ * with hardware multi-threading support.
+ *
+ * Return: 0 for success, errno for failure
+ */
+static int pcc_data_alloc(int pcc_ss_id)
+{
+ if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
+ return -EINVAL;
+
+ if (pcc_data[pcc_ss_id]) {
+ pcc_data[pcc_ss_id]->refcount++;
+ } else {
+ pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
+ GFP_KERNEL);
+ if (!pcc_data[pcc_ss_id])
+ return -ENOMEM;
+ pcc_data[pcc_ss_id]->refcount++;
+ }
+
+ return 0;
+}
+
+/*
+ * An example CPC table looks like the following.
+ *
+ * Name (_CPC, Package() {
+ * 17, // NumEntries
+ * 1, // Revision
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
+ * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
+ * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
+ * ...
+ * ...
+ * ...
+ * }
+ * Each Register() encodes how to access that specific register.
+ * e.g. a sample PCC entry has the following encoding:
+ *
+ * Register (
+ * PCC, // AddressSpaceKeyword
+ * 8, // RegisterBitWidth
+ * 8, // RegisterBitOffset
+ * 0x30, // RegisterAddress
+ * 9, // AccessSize (subspace ID)
+ * )
+ */
+
+#ifndef arch_init_invariance_cppc
+static inline void arch_init_invariance_cppc(void) { }
+#endif
+
+/**
+ * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
+ * @pr: Ptr to acpi_processor containing this CPU's logical ID.
+ *
+ * Return: 0 for success or negative value for err.
+ */
+int acpi_cppc_processor_probe(struct acpi_processor *pr)
+{
+ struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
+ union acpi_object *out_obj, *cpc_obj;
+ struct cpc_desc *cpc_ptr;
+ struct cpc_reg *gas_t;
+ struct device *cpu_dev;
+ acpi_handle handle = pr->handle;
+ unsigned int num_ent, i, cpc_rev;
+ int pcc_subspace_id = -1;
+ acpi_status status;
+ int ret = -ENODATA;
+
+ if (!osc_sb_cppc2_support_acked) {
+ pr_debug("CPPC v2 _OSC not acked\n");
+ if (!cpc_supported_by_cpu())
+ return -ENODEV;
+ }
+
+ /* Parse the ACPI _CPC table for this CPU. */
+ status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
+ ACPI_TYPE_PACKAGE);
+ if (ACPI_FAILURE(status)) {
+ ret = -ENODEV;
+ goto out_buf_free;
+ }
+
+ out_obj = (union acpi_object *) output.pointer;
+
+ cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
+ if (!cpc_ptr) {
+ ret = -ENOMEM;
+ goto out_buf_free;
+ }
+
+ /* First entry is NumEntries. */
+ cpc_obj = &out_obj->package.elements[0];
+ if (cpc_obj->type == ACPI_TYPE_INTEGER) {
+ num_ent = cpc_obj->integer.value;
+ if (num_ent <= 1) {
+ pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
+ num_ent, pr->id);
+ goto out_free;
+ }
+ } else {
+ pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
+ cpc_obj->type, pr->id);
+ goto out_free;
+ }
+
+ /* Second entry should be revision. */
+ cpc_obj = &out_obj->package.elements[1];
+ if (cpc_obj->type == ACPI_TYPE_INTEGER) {
+ cpc_rev = cpc_obj->integer.value;
+ } else {
+ pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
+ cpc_obj->type, pr->id);
+ goto out_free;
+ }
+
+ if (cpc_rev < CPPC_V2_REV) {
+ pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
+ pr->id);
+ goto out_free;
+ }
+
+ /*
+ * Disregard _CPC if the number of entries in the return pachage is not
+ * as expected, but support future revisions being proper supersets of
+ * the v3 and only causing more entries to be returned by _CPC.
+ */
+ if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
+ (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
+ (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
+ pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
+ num_ent, pr->id);
+ goto out_free;
+ }
+ if (cpc_rev > CPPC_V3_REV) {
+ num_ent = CPPC_V3_NUM_ENT;
+ cpc_rev = CPPC_V3_REV;
+ }
+
+ cpc_ptr->num_entries = num_ent;
+ cpc_ptr->version = cpc_rev;
+
+ /* Iterate through remaining entries in _CPC */
+ for (i = 2; i < num_ent; i++) {
+ cpc_obj = &out_obj->package.elements[i];
+
+ if (cpc_obj->type == ACPI_TYPE_INTEGER) {
+ cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
+ cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
+ } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
+ gas_t = (struct cpc_reg *)
+ cpc_obj->buffer.pointer;
+
+ /*
+ * The PCC Subspace index is encoded inside
+ * the CPC table entries. The same PCC index
+ * will be used for all the PCC entries,
+ * so extract it only once.
+ */
+ if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
+ if (pcc_subspace_id < 0) {
+ pcc_subspace_id = gas_t->access_width;
+ if (pcc_data_alloc(pcc_subspace_id))
+ goto out_free;
+ } else if (pcc_subspace_id != gas_t->access_width) {
+ pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
+ pr->id);
+ goto out_free;
+ }
+ } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
+ if (gas_t->address) {
+ void __iomem *addr;
+
+ if (!osc_cpc_flexible_adr_space_confirmed) {
+ pr_debug("Flexible address space capability not supported\n");
+ if (!cpc_supported_by_cpu())
+ goto out_free;
+ }
+
+ addr = ioremap(gas_t->address, gas_t->bit_width/8);
+ if (!addr)
+ goto out_free;
+ cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
+ }
+ } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
+ if (gas_t->access_width < 1 || gas_t->access_width > 3) {
+ /*
+ * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
+ * SystemIO doesn't implement 64-bit
+ * registers.
+ */
+ pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
+ gas_t->access_width);
+ goto out_free;
+ }
+ if (gas_t->address & OVER_16BTS_MASK) {
+ /* SystemIO registers use 16-bit integer addresses */
+ pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
+ gas_t->address);
+ goto out_free;
+ }
+ if (!osc_cpc_flexible_adr_space_confirmed) {
+ pr_debug("Flexible address space capability not supported\n");
+ if (!cpc_supported_by_cpu())
+ goto out_free;
+ }
+ } else {
+ if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
+ /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
+ pr_debug("Unsupported register type (%d) in _CPC\n",
+ gas_t->space_id);
+ goto out_free;
+ }
+ }
+
+ cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
+ memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
+ } else {
+ pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
+ i, pr->id);
+ goto out_free;
+ }
+ }
+ per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
+
+ /*
+ * Initialize the remaining cpc_regs as unsupported.
+ * Example: In case FW exposes CPPC v2, the below loop will initialize
+ * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
+ */
+ for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
+ cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
+ cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
+ }
+
+
+ /* Store CPU Logical ID */
+ cpc_ptr->cpu_id = pr->id;
+
+ /* Parse PSD data for this CPU */
+ ret = acpi_get_psd(cpc_ptr, handle);
+ if (ret)
+ goto out_free;
+
+ /* Register PCC channel once for all PCC subspace ID. */
+ if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
+ ret = register_pcc_channel(pcc_subspace_id);
+ if (ret)
+ goto out_free;
+
+ init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
+ init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
+ }
+
+ /* Everything looks okay */
+ pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
+
+ /* Add per logical CPU nodes for reading its feedback counters. */
+ cpu_dev = get_cpu_device(pr->id);
+ if (!cpu_dev) {
+ ret = -EINVAL;
+ goto out_free;
+ }
+
+ /* Plug PSD data into this CPU's CPC descriptor. */
+ per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
+
+ ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
+ "acpi_cppc");
+ if (ret) {
+ per_cpu(cpc_desc_ptr, pr->id) = NULL;
+ kobject_put(&cpc_ptr->kobj);
+ goto out_free;
+ }
+
+ arch_init_invariance_cppc();
+
+ kfree(output.pointer);
+ return 0;
+
+out_free:
+ /* Free all the mapped sys mem areas for this CPU */
+ for (i = 2; i < cpc_ptr->num_entries; i++) {
+ void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
+
+ if (addr)
+ iounmap(addr);
+ }
+ kfree(cpc_ptr);
+
+out_buf_free:
+ kfree(output.pointer);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
+
+/**
+ * acpi_cppc_processor_exit - Cleanup CPC structs.
+ * @pr: Ptr to acpi_processor containing this CPU's logical ID.
+ *
+ * Return: Void
+ */
+void acpi_cppc_processor_exit(struct acpi_processor *pr)
+{
+ struct cpc_desc *cpc_ptr;
+ unsigned int i;
+ void __iomem *addr;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
+
+ if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
+ if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
+ pcc_data[pcc_ss_id]->refcount--;
+ if (!pcc_data[pcc_ss_id]->refcount) {
+ pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
+ kfree(pcc_data[pcc_ss_id]);
+ pcc_data[pcc_ss_id] = NULL;
+ }
+ }
+ }
+
+ cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
+ if (!cpc_ptr)
+ return;
+
+ /* Free all the mapped sys mem areas for this CPU */
+ for (i = 2; i < cpc_ptr->num_entries; i++) {
+ addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
+ if (addr)
+ iounmap(addr);
+ }
+
+ kobject_put(&cpc_ptr->kobj);
+ kfree(cpc_ptr);
+}
+EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
+
+/**
+ * cpc_read_ffh() - Read FFH register
+ * @cpunum: CPU number to read
+ * @reg: cppc register information
+ * @val: place holder for return value
+ *
+ * Read bit_width bits from a specified address and bit_offset
+ *
+ * Return: 0 for success and error code
+ */
+int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
+{
+ return -ENOTSUPP;
+}
+
+/**
+ * cpc_write_ffh() - Write FFH register
+ * @cpunum: CPU number to write
+ * @reg: cppc register information
+ * @val: value to write
+ *
+ * Write value of bit_width bits to a specified address and bit_offset
+ *
+ * Return: 0 for success and error code
+ */
+int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
+{
+ return -ENOTSUPP;
+}
+
+/*
+ * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
+ * as fast as possible. We have already mapped the PCC subspace during init, so
+ * we can directly write to it.
+ */
+
+static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
+{
+ void __iomem *vaddr = NULL;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
+ struct cpc_reg *reg = &reg_res->cpc_entry.reg;
+
+ if (reg_res->type == ACPI_TYPE_INTEGER) {
+ *val = reg_res->cpc_entry.int_value;
+ return 0;
+ }
+
+ *val = 0;
+
+ if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
+ u32 width = 8 << (reg->access_width - 1);
+ u32 val_u32;
+ acpi_status status;
+
+ status = acpi_os_read_port((acpi_io_address)reg->address,
+ &val_u32, width);
+ if (ACPI_FAILURE(status)) {
+ pr_debug("Error: Failed to read SystemIO port %llx\n",
+ reg->address);
+ return -EFAULT;
+ }
+
+ *val = val_u32;
+ return 0;
+ } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
+ vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
+ else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
+ vaddr = reg_res->sys_mem_vaddr;
+ else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
+ return cpc_read_ffh(cpu, reg, val);
+ else
+ return acpi_os_read_memory((acpi_physical_address)reg->address,
+ val, reg->bit_width);
+
+ switch (reg->bit_width) {
+ case 8:
+ *val = readb_relaxed(vaddr);
+ break;
+ case 16:
+ *val = readw_relaxed(vaddr);
+ break;
+ case 32:
+ *val = readl_relaxed(vaddr);
+ break;
+ case 64:
+ *val = readq_relaxed(vaddr);
+ break;
+ default:
+ pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
+ reg->bit_width, pcc_ss_id);
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
+{
+ int ret_val = 0;
+ void __iomem *vaddr = NULL;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
+ struct cpc_reg *reg = &reg_res->cpc_entry.reg;
+
+ if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
+ u32 width = 8 << (reg->access_width - 1);
+ acpi_status status;
+
+ status = acpi_os_write_port((acpi_io_address)reg->address,
+ (u32)val, width);
+ if (ACPI_FAILURE(status)) {
+ pr_debug("Error: Failed to write SystemIO port %llx\n",
+ reg->address);
+ return -EFAULT;
+ }
+
+ return 0;
+ } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
+ vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
+ else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
+ vaddr = reg_res->sys_mem_vaddr;
+ else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
+ return cpc_write_ffh(cpu, reg, val);
+ else
+ return acpi_os_write_memory((acpi_physical_address)reg->address,
+ val, reg->bit_width);
+
+ switch (reg->bit_width) {
+ case 8:
+ writeb_relaxed(val, vaddr);
+ break;
+ case 16:
+ writew_relaxed(val, vaddr);
+ break;
+ case 32:
+ writel_relaxed(val, vaddr);
+ break;
+ case 64:
+ writeq_relaxed(val, vaddr);
+ break;
+ default:
+ pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
+ reg->bit_width, pcc_ss_id);
+ ret_val = -EFAULT;
+ break;
+ }
+
+ return ret_val;
+}
+
+static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
+{
+ struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
+ struct cpc_register_resource *reg;
+
+ if (!cpc_desc) {
+ pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
+ return -ENODEV;
+ }
+
+ reg = &cpc_desc->cpc_regs[reg_idx];
+
+ if (CPC_IN_PCC(reg)) {
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
+ int ret = 0;
+
+ if (pcc_ss_id < 0)
+ return -EIO;
+
+ pcc_ss_data = pcc_data[pcc_ss_id];
+
+ down_write(&pcc_ss_data->pcc_lock);
+
+ if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
+ cpc_read(cpunum, reg, perf);
+ else
+ ret = -EIO;
+
+ up_write(&pcc_ss_data->pcc_lock);
+
+ return ret;
+ }
+
+ cpc_read(cpunum, reg, perf);
+
+ return 0;
+}
+
+/**
+ * cppc_get_desired_perf - Get the desired performance register value.
+ * @cpunum: CPU from which to get desired performance.
+ * @desired_perf: Return address.
+ *
+ * Return: 0 for success, -EIO otherwise.
+ */
+int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
+{
+ return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
+}
+EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
+
+/**
+ * cppc_get_nominal_perf - Get the nominal performance register value.
+ * @cpunum: CPU from which to get nominal performance.
+ * @nominal_perf: Return address.
+ *
+ * Return: 0 for success, -EIO otherwise.
+ */
+int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
+{
+ return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
+}
+
+/**
+ * cppc_get_perf_caps - Get a CPU's performance capabilities.
+ * @cpunum: CPU from which to get capabilities info.
+ * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
+ *
+ * Return: 0 for success with perf_caps populated else -ERRNO.
+ */
+int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
+{
+ struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
+ struct cpc_register_resource *highest_reg, *lowest_reg,
+ *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
+ *low_freq_reg = NULL, *nom_freq_reg = NULL;
+ u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
+ int ret = 0, regs_in_pcc = 0;
+
+ if (!cpc_desc) {
+ pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
+ return -ENODEV;
+ }
+
+ highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
+ lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
+ lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
+ nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
+ low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
+ nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
+ guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
+
+ /* Are any of the regs PCC ?*/
+ if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
+ CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
+ CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
+ if (pcc_ss_id < 0) {
+ pr_debug("Invalid pcc_ss_id\n");
+ return -ENODEV;
+ }
+ pcc_ss_data = pcc_data[pcc_ss_id];
+ regs_in_pcc = 1;
+ down_write(&pcc_ss_data->pcc_lock);
+ /* Ring doorbell once to update PCC subspace */
+ if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
+ ret = -EIO;
+ goto out_err;
+ }
+ }
+
+ cpc_read(cpunum, highest_reg, &high);
+ perf_caps->highest_perf = high;
+
+ cpc_read(cpunum, lowest_reg, &low);
+ perf_caps->lowest_perf = low;
+
+ cpc_read(cpunum, nominal_reg, &nom);
+ perf_caps->nominal_perf = nom;
+
+ if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
+ IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
+ perf_caps->guaranteed_perf = 0;
+ } else {
+ cpc_read(cpunum, guaranteed_reg, &guaranteed);
+ perf_caps->guaranteed_perf = guaranteed;
+ }
+
+ cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
+ perf_caps->lowest_nonlinear_perf = min_nonlinear;
+
+ if (!high || !low || !nom || !min_nonlinear)
+ ret = -EFAULT;
+
+ /* Read optional lowest and nominal frequencies if present */
+ if (CPC_SUPPORTED(low_freq_reg))
+ cpc_read(cpunum, low_freq_reg, &low_f);
+
+ if (CPC_SUPPORTED(nom_freq_reg))
+ cpc_read(cpunum, nom_freq_reg, &nom_f);
+
+ perf_caps->lowest_freq = low_f;
+ perf_caps->nominal_freq = nom_f;
+
+
+out_err:
+ if (regs_in_pcc)
+ up_write(&pcc_ss_data->pcc_lock);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
+
+/**
+ * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
+ *
+ * CPPC has flexibility about how CPU performance counters are accessed.
+ * One of the choices is PCC regions, which can have a high access latency. This
+ * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
+ *
+ * Return: true if any of the counters are in PCC regions, false otherwise
+ */
+bool cppc_perf_ctrs_in_pcc(void)
+{
+ int cpu;
+
+ for_each_present_cpu(cpu) {
+ struct cpc_register_resource *ref_perf_reg;
+ struct cpc_desc *cpc_desc;
+
+ cpc_desc = per_cpu(cpc_desc_ptr, cpu);
+
+ if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
+ CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
+ CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
+ return true;
+
+
+ ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
+
+ /*
+ * If reference perf register is not supported then we should
+ * use the nominal perf value
+ */
+ if (!CPC_SUPPORTED(ref_perf_reg))
+ ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
+
+ if (CPC_IN_PCC(ref_perf_reg))
+ return true;
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
+
+/**
+ * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
+ * @cpunum: CPU from which to read counters.
+ * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
+ *
+ * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
+ */
+int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
+{
+ struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
+ struct cpc_register_resource *delivered_reg, *reference_reg,
+ *ref_perf_reg, *ctr_wrap_reg;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
+ u64 delivered, reference, ref_perf, ctr_wrap_time;
+ int ret = 0, regs_in_pcc = 0;
+
+ if (!cpc_desc) {
+ pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
+ return -ENODEV;
+ }
+
+ delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
+ reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
+ ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
+ ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
+
+ /*
+ * If reference perf register is not supported then we should
+ * use the nominal perf value
+ */
+ if (!CPC_SUPPORTED(ref_perf_reg))
+ ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
+
+ /* Are any of the regs PCC ?*/
+ if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
+ CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
+ if (pcc_ss_id < 0) {
+ pr_debug("Invalid pcc_ss_id\n");
+ return -ENODEV;
+ }
+ pcc_ss_data = pcc_data[pcc_ss_id];
+ down_write(&pcc_ss_data->pcc_lock);
+ regs_in_pcc = 1;
+ /* Ring doorbell once to update PCC subspace */
+ if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
+ ret = -EIO;
+ goto out_err;
+ }
+ }
+
+ cpc_read(cpunum, delivered_reg, &delivered);
+ cpc_read(cpunum, reference_reg, &reference);
+ cpc_read(cpunum, ref_perf_reg, &ref_perf);
+
+ /*
+ * Per spec, if ctr_wrap_time optional register is unsupported, then the
+ * performance counters are assumed to never wrap during the lifetime of
+ * platform
+ */
+ ctr_wrap_time = (u64)(~((u64)0));
+ if (CPC_SUPPORTED(ctr_wrap_reg))
+ cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
+
+ if (!delivered || !reference || !ref_perf) {
+ ret = -EFAULT;
+ goto out_err;
+ }
+
+ perf_fb_ctrs->delivered = delivered;
+ perf_fb_ctrs->reference = reference;
+ perf_fb_ctrs->reference_perf = ref_perf;
+ perf_fb_ctrs->wraparound_time = ctr_wrap_time;
+out_err:
+ if (regs_in_pcc)
+ up_write(&pcc_ss_data->pcc_lock);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
+
+/**
+ * cppc_set_enable - Set to enable CPPC on the processor by writing the
+ * Continuous Performance Control package EnableRegister field.
+ * @cpu: CPU for which to enable CPPC register.
+ * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
+ *
+ * Return: 0 for success, -ERRNO or -EIO otherwise.
+ */
+int cppc_set_enable(int cpu, bool enable)
+{
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
+ struct cpc_register_resource *enable_reg;
+ struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
+ int ret = -EINVAL;
+
+ if (!cpc_desc) {
+ pr_debug("No CPC descriptor for CPU:%d\n", cpu);
+ return -EINVAL;
+ }
+
+ enable_reg = &cpc_desc->cpc_regs[ENABLE];
+
+ if (CPC_IN_PCC(enable_reg)) {
+
+ if (pcc_ss_id < 0)
+ return -EIO;
+
+ ret = cpc_write(cpu, enable_reg, enable);
+ if (ret)
+ return ret;
+
+ pcc_ss_data = pcc_data[pcc_ss_id];
+
+ down_write(&pcc_ss_data->pcc_lock);
+ /* after writing CPC, transfer the ownership of PCC to platfrom */
+ ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
+ up_write(&pcc_ss_data->pcc_lock);
+ return ret;
+ }
+
+ return cpc_write(cpu, enable_reg, enable);
+}
+EXPORT_SYMBOL_GPL(cppc_set_enable);
+
+/**
+ * cppc_set_perf - Set a CPU's performance controls.
+ * @cpu: CPU for which to set performance controls.
+ * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
+ *
+ * Return: 0 for success, -ERRNO otherwise.
+ */
+int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
+{
+ struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
+ struct cpc_register_resource *desired_reg;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
+ int ret = 0;
+
+ if (!cpc_desc) {
+ pr_debug("No CPC descriptor for CPU:%d\n", cpu);
+ return -ENODEV;
+ }
+
+ desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
+
+ /*
+ * This is Phase-I where we want to write to CPC registers
+ * -> We want all CPUs to be able to execute this phase in parallel
+ *
+ * Since read_lock can be acquired by multiple CPUs simultaneously we
+ * achieve that goal here
+ */
+ if (CPC_IN_PCC(desired_reg)) {
+ if (pcc_ss_id < 0) {
+ pr_debug("Invalid pcc_ss_id\n");
+ return -ENODEV;
+ }
+ pcc_ss_data = pcc_data[pcc_ss_id];
+ down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
+ if (pcc_ss_data->platform_owns_pcc) {
+ ret = check_pcc_chan(pcc_ss_id, false);
+ if (ret) {
+ up_read(&pcc_ss_data->pcc_lock);
+ return ret;
+ }
+ }
+ /*
+ * Update the pending_write to make sure a PCC CMD_READ will not
+ * arrive and steal the channel during the switch to write lock
+ */
+ pcc_ss_data->pending_pcc_write_cmd = true;
+ cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
+ cpc_desc->write_cmd_status = 0;
+ }
+
+ /*
+ * Skip writing MIN/MAX until Linux knows how to come up with
+ * useful values.
+ */
+ cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
+
+ if (CPC_IN_PCC(desired_reg))
+ up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
+ /*
+ * This is Phase-II where we transfer the ownership of PCC to Platform
+ *
+ * Short Summary: Basically if we think of a group of cppc_set_perf
+ * requests that happened in short overlapping interval. The last CPU to
+ * come out of Phase-I will enter Phase-II and ring the doorbell.
+ *
+ * We have the following requirements for Phase-II:
+ * 1. We want to execute Phase-II only when there are no CPUs
+ * currently executing in Phase-I
+ * 2. Once we start Phase-II we want to avoid all other CPUs from
+ * entering Phase-I.
+ * 3. We want only one CPU among all those who went through Phase-I
+ * to run phase-II
+ *
+ * If write_trylock fails to get the lock and doesn't transfer the
+ * PCC ownership to the platform, then one of the following will be TRUE
+ * 1. There is at-least one CPU in Phase-I which will later execute
+ * write_trylock, so the CPUs in Phase-I will be responsible for
+ * executing the Phase-II.
+ * 2. Some other CPU has beaten this CPU to successfully execute the
+ * write_trylock and has already acquired the write_lock. We know for a
+ * fact it (other CPU acquiring the write_lock) couldn't have happened
+ * before this CPU's Phase-I as we held the read_lock.
+ * 3. Some other CPU executing pcc CMD_READ has stolen the
+ * down_write, in which case, send_pcc_cmd will check for pending
+ * CMD_WRITE commands by checking the pending_pcc_write_cmd.
+ * So this CPU can be certain that its request will be delivered
+ * So in all cases, this CPU knows that its request will be delivered
+ * by another CPU and can return
+ *
+ * After getting the down_write we still need to check for
+ * pending_pcc_write_cmd to take care of the following scenario
+ * The thread running this code could be scheduled out between
+ * Phase-I and Phase-II. Before it is scheduled back on, another CPU
+ * could have delivered the request to Platform by triggering the
+ * doorbell and transferred the ownership of PCC to platform. So this
+ * avoids triggering an unnecessary doorbell and more importantly before
+ * triggering the doorbell it makes sure that the PCC channel ownership
+ * is still with OSPM.
+ * pending_pcc_write_cmd can also be cleared by a different CPU, if
+ * there was a pcc CMD_READ waiting on down_write and it steals the lock
+ * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
+ * case during a CMD_READ and if there are pending writes it delivers
+ * the write command before servicing the read command
+ */
+ if (CPC_IN_PCC(desired_reg)) {
+ if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
+ /* Update only if there are pending write commands */
+ if (pcc_ss_data->pending_pcc_write_cmd)
+ send_pcc_cmd(pcc_ss_id, CMD_WRITE);
+ up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
+ } else
+ /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
+ wait_event(pcc_ss_data->pcc_write_wait_q,
+ cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
+
+ /* send_pcc_cmd updates the status in case of failure */
+ ret = cpc_desc->write_cmd_status;
+ }
+ return ret;
+}
+EXPORT_SYMBOL_GPL(cppc_set_perf);
+
+/**
+ * cppc_get_transition_latency - returns frequency transition latency in ns
+ *
+ * ACPI CPPC does not explicitly specify how a platform can specify the
+ * transition latency for performance change requests. The closest we have
+ * is the timing information from the PCCT tables which provides the info
+ * on the number and frequency of PCC commands the platform can handle.
+ *
+ * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
+ * then assume there is no latency.
+ */
+unsigned int cppc_get_transition_latency(int cpu_num)
+{
+ /*
+ * Expected transition latency is based on the PCCT timing values
+ * Below are definition from ACPI spec:
+ * pcc_nominal- Expected latency to process a command, in microseconds
+ * pcc_mpar - The maximum number of periodic requests that the subspace
+ * channel can support, reported in commands per minute. 0
+ * indicates no limitation.
+ * pcc_mrtt - The minimum amount of time that OSPM must wait after the
+ * completion of a command before issuing the next command,
+ * in microseconds.
+ */
+ unsigned int latency_ns = 0;
+ struct cpc_desc *cpc_desc;
+ struct cpc_register_resource *desired_reg;
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
+ struct cppc_pcc_data *pcc_ss_data;
+
+ cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
+ if (!cpc_desc)
+ return CPUFREQ_ETERNAL;
+
+ desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
+ if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
+ return 0;
+ else if (!CPC_IN_PCC(desired_reg))
+ return CPUFREQ_ETERNAL;
+
+ if (pcc_ss_id < 0)
+ return CPUFREQ_ETERNAL;
+
+ pcc_ss_data = pcc_data[pcc_ss_id];
+ if (pcc_ss_data->pcc_mpar)
+ latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
+
+ latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
+ latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
+
+ return latency_ns;
+}
+EXPORT_SYMBOL_GPL(cppc_get_transition_latency);