diff options
Diffstat (limited to 'drivers/base/arch_topology.c')
-rw-r--r-- | drivers/base/arch_topology.c | 863 |
1 files changed, 863 insertions, 0 deletions
diff --git a/drivers/base/arch_topology.c b/drivers/base/arch_topology.c new file mode 100644 index 000000000..e7d6e6657 --- /dev/null +++ b/drivers/base/arch_topology.c @@ -0,0 +1,863 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Arch specific cpu topology information + * + * Copyright (C) 2016, ARM Ltd. + * Written by: Juri Lelli, ARM Ltd. + */ + +#include <linux/acpi.h> +#include <linux/cacheinfo.h> +#include <linux/cpu.h> +#include <linux/cpufreq.h> +#include <linux/device.h> +#include <linux/of.h> +#include <linux/slab.h> +#include <linux/sched/topology.h> +#include <linux/cpuset.h> +#include <linux/cpumask.h> +#include <linux/init.h> +#include <linux/rcupdate.h> +#include <linux/sched.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/thermal_pressure.h> + +static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); +static struct cpumask scale_freq_counters_mask; +static bool scale_freq_invariant; +static DEFINE_PER_CPU(u32, freq_factor) = 1; + +static bool supports_scale_freq_counters(const struct cpumask *cpus) +{ + return cpumask_subset(cpus, &scale_freq_counters_mask); +} + +bool topology_scale_freq_invariant(void) +{ + return cpufreq_supports_freq_invariance() || + supports_scale_freq_counters(cpu_online_mask); +} + +static void update_scale_freq_invariant(bool status) +{ + if (scale_freq_invariant == status) + return; + + /* + * Task scheduler behavior depends on frequency invariance support, + * either cpufreq or counter driven. If the support status changes as + * a result of counter initialisation and use, retrigger the build of + * scheduling domains to ensure the information is propagated properly. + */ + if (topology_scale_freq_invariant() == status) { + scale_freq_invariant = status; + rebuild_sched_domains_energy(); + } +} + +void topology_set_scale_freq_source(struct scale_freq_data *data, + const struct cpumask *cpus) +{ + struct scale_freq_data *sfd; + int cpu; + + /* + * Avoid calling rebuild_sched_domains() unnecessarily if FIE is + * supported by cpufreq. + */ + if (cpumask_empty(&scale_freq_counters_mask)) + scale_freq_invariant = topology_scale_freq_invariant(); + + rcu_read_lock(); + + for_each_cpu(cpu, cpus) { + sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); + + /* Use ARCH provided counters whenever possible */ + if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { + rcu_assign_pointer(per_cpu(sft_data, cpu), data); + cpumask_set_cpu(cpu, &scale_freq_counters_mask); + } + } + + rcu_read_unlock(); + + update_scale_freq_invariant(true); +} +EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); + +void topology_clear_scale_freq_source(enum scale_freq_source source, + const struct cpumask *cpus) +{ + struct scale_freq_data *sfd; + int cpu; + + rcu_read_lock(); + + for_each_cpu(cpu, cpus) { + sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); + + if (sfd && sfd->source == source) { + rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); + cpumask_clear_cpu(cpu, &scale_freq_counters_mask); + } + } + + rcu_read_unlock(); + + /* + * Make sure all references to previous sft_data are dropped to avoid + * use-after-free races. + */ + synchronize_rcu(); + + update_scale_freq_invariant(false); +} +EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); + +void topology_scale_freq_tick(void) +{ + struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); + + if (sfd) + sfd->set_freq_scale(); +} + +DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; +EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); + +void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, + unsigned long max_freq) +{ + unsigned long scale; + int i; + + if (WARN_ON_ONCE(!cur_freq || !max_freq)) + return; + + /* + * If the use of counters for FIE is enabled, just return as we don't + * want to update the scale factor with information from CPUFREQ. + * Instead the scale factor will be updated from arch_scale_freq_tick. + */ + if (supports_scale_freq_counters(cpus)) + return; + + scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; + + for_each_cpu(i, cpus) + per_cpu(arch_freq_scale, i) = scale; +} + +DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; +EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); + +void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) +{ + per_cpu(cpu_scale, cpu) = capacity; +} + +DEFINE_PER_CPU(unsigned long, thermal_pressure); + +/** + * topology_update_thermal_pressure() - Update thermal pressure for CPUs + * @cpus : The related CPUs for which capacity has been reduced + * @capped_freq : The maximum allowed frequency that CPUs can run at + * + * Update the value of thermal pressure for all @cpus in the mask. The + * cpumask should include all (online+offline) affected CPUs, to avoid + * operating on stale data when hot-plug is used for some CPUs. The + * @capped_freq reflects the currently allowed max CPUs frequency due to + * thermal capping. It might be also a boost frequency value, which is bigger + * than the internal 'freq_factor' max frequency. In such case the pressure + * value should simply be removed, since this is an indication that there is + * no thermal throttling. The @capped_freq must be provided in kHz. + */ +void topology_update_thermal_pressure(const struct cpumask *cpus, + unsigned long capped_freq) +{ + unsigned long max_capacity, capacity, th_pressure; + u32 max_freq; + int cpu; + + cpu = cpumask_first(cpus); + max_capacity = arch_scale_cpu_capacity(cpu); + max_freq = per_cpu(freq_factor, cpu); + + /* Convert to MHz scale which is used in 'freq_factor' */ + capped_freq /= 1000; + + /* + * Handle properly the boost frequencies, which should simply clean + * the thermal pressure value. + */ + if (max_freq <= capped_freq) + capacity = max_capacity; + else + capacity = mult_frac(max_capacity, capped_freq, max_freq); + + th_pressure = max_capacity - capacity; + + trace_thermal_pressure_update(cpu, th_pressure); + + for_each_cpu(cpu, cpus) + WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); +} +EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); + +static ssize_t cpu_capacity_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct cpu *cpu = container_of(dev, struct cpu, dev); + + return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); +} + +static void update_topology_flags_workfn(struct work_struct *work); +static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); + +static DEVICE_ATTR_RO(cpu_capacity); + +static int register_cpu_capacity_sysctl(void) +{ + int i; + struct device *cpu; + + for_each_possible_cpu(i) { + cpu = get_cpu_device(i); + if (!cpu) { + pr_err("%s: too early to get CPU%d device!\n", + __func__, i); + continue; + } + device_create_file(cpu, &dev_attr_cpu_capacity); + } + + return 0; +} +subsys_initcall(register_cpu_capacity_sysctl); + +static int update_topology; + +int topology_update_cpu_topology(void) +{ + return update_topology; +} + +/* + * Updating the sched_domains can't be done directly from cpufreq callbacks + * due to locking, so queue the work for later. + */ +static void update_topology_flags_workfn(struct work_struct *work) +{ + update_topology = 1; + rebuild_sched_domains(); + pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); + update_topology = 0; +} + +static u32 *raw_capacity; + +static int free_raw_capacity(void) +{ + kfree(raw_capacity); + raw_capacity = NULL; + + return 0; +} + +void topology_normalize_cpu_scale(void) +{ + u64 capacity; + u64 capacity_scale; + int cpu; + + if (!raw_capacity) + return; + + capacity_scale = 1; + for_each_possible_cpu(cpu) { + capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); + capacity_scale = max(capacity, capacity_scale); + } + + pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); + for_each_possible_cpu(cpu) { + capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); + capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, + capacity_scale); + topology_set_cpu_scale(cpu, capacity); + pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", + cpu, topology_get_cpu_scale(cpu)); + } +} + +bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) +{ + struct clk *cpu_clk; + static bool cap_parsing_failed; + int ret; + u32 cpu_capacity; + + if (cap_parsing_failed) + return false; + + ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", + &cpu_capacity); + if (!ret) { + if (!raw_capacity) { + raw_capacity = kcalloc(num_possible_cpus(), + sizeof(*raw_capacity), + GFP_KERNEL); + if (!raw_capacity) { + cap_parsing_failed = true; + return false; + } + } + raw_capacity[cpu] = cpu_capacity; + pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", + cpu_node, raw_capacity[cpu]); + + /* + * Update freq_factor for calculating early boot cpu capacities. + * For non-clk CPU DVFS mechanism, there's no way to get the + * frequency value now, assuming they are running at the same + * frequency (by keeping the initial freq_factor value). + */ + cpu_clk = of_clk_get(cpu_node, 0); + if (!PTR_ERR_OR_ZERO(cpu_clk)) { + per_cpu(freq_factor, cpu) = + clk_get_rate(cpu_clk) / 1000; + clk_put(cpu_clk); + } + } else { + if (raw_capacity) { + pr_err("cpu_capacity: missing %pOF raw capacity\n", + cpu_node); + pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); + } + cap_parsing_failed = true; + free_raw_capacity(); + } + + return !ret; +} + +#ifdef CONFIG_ACPI_CPPC_LIB +#include <acpi/cppc_acpi.h> + +void topology_init_cpu_capacity_cppc(void) +{ + struct cppc_perf_caps perf_caps; + int cpu; + + if (likely(!acpi_cpc_valid())) + return; + + raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), + GFP_KERNEL); + if (!raw_capacity) + return; + + for_each_possible_cpu(cpu) { + if (!cppc_get_perf_caps(cpu, &perf_caps) && + (perf_caps.highest_perf >= perf_caps.nominal_perf) && + (perf_caps.highest_perf >= perf_caps.lowest_perf)) { + raw_capacity[cpu] = perf_caps.highest_perf; + pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", + cpu, raw_capacity[cpu]); + continue; + } + + pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); + pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); + goto exit; + } + + topology_normalize_cpu_scale(); + schedule_work(&update_topology_flags_work); + pr_debug("cpu_capacity: cpu_capacity initialization done\n"); + +exit: + free_raw_capacity(); +} +#endif + +#ifdef CONFIG_CPU_FREQ +static cpumask_var_t cpus_to_visit; +static void parsing_done_workfn(struct work_struct *work); +static DECLARE_WORK(parsing_done_work, parsing_done_workfn); + +static int +init_cpu_capacity_callback(struct notifier_block *nb, + unsigned long val, + void *data) +{ + struct cpufreq_policy *policy = data; + int cpu; + + if (!raw_capacity) + return 0; + + if (val != CPUFREQ_CREATE_POLICY) + return 0; + + pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", + cpumask_pr_args(policy->related_cpus), + cpumask_pr_args(cpus_to_visit)); + + cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); + + for_each_cpu(cpu, policy->related_cpus) + per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; + + if (cpumask_empty(cpus_to_visit)) { + topology_normalize_cpu_scale(); + schedule_work(&update_topology_flags_work); + free_raw_capacity(); + pr_debug("cpu_capacity: parsing done\n"); + schedule_work(&parsing_done_work); + } + + return 0; +} + +static struct notifier_block init_cpu_capacity_notifier = { + .notifier_call = init_cpu_capacity_callback, +}; + +static int __init register_cpufreq_notifier(void) +{ + int ret; + + /* + * On ACPI-based systems skip registering cpufreq notifier as cpufreq + * information is not needed for cpu capacity initialization. + */ + if (!acpi_disabled || !raw_capacity) + return -EINVAL; + + if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) + return -ENOMEM; + + cpumask_copy(cpus_to_visit, cpu_possible_mask); + + ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, + CPUFREQ_POLICY_NOTIFIER); + + if (ret) + free_cpumask_var(cpus_to_visit); + + return ret; +} +core_initcall(register_cpufreq_notifier); + +static void parsing_done_workfn(struct work_struct *work) +{ + cpufreq_unregister_notifier(&init_cpu_capacity_notifier, + CPUFREQ_POLICY_NOTIFIER); + free_cpumask_var(cpus_to_visit); +} + +#else +core_initcall(free_raw_capacity); +#endif + +#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) +/* + * This function returns the logic cpu number of the node. + * There are basically three kinds of return values: + * (1) logic cpu number which is > 0. + * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but + * there is no possible logical CPU in the kernel to match. This happens + * when CONFIG_NR_CPUS is configure to be smaller than the number of + * CPU nodes in DT. We need to just ignore this case. + * (3) -1 if the node does not exist in the device tree + */ +static int __init get_cpu_for_node(struct device_node *node) +{ + struct device_node *cpu_node; + int cpu; + + cpu_node = of_parse_phandle(node, "cpu", 0); + if (!cpu_node) + return -1; + + cpu = of_cpu_node_to_id(cpu_node); + if (cpu >= 0) + topology_parse_cpu_capacity(cpu_node, cpu); + else + pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", + cpu_node, cpumask_pr_args(cpu_possible_mask)); + + of_node_put(cpu_node); + return cpu; +} + +static int __init parse_core(struct device_node *core, int package_id, + int cluster_id, int core_id) +{ + char name[20]; + bool leaf = true; + int i = 0; + int cpu; + struct device_node *t; + + do { + snprintf(name, sizeof(name), "thread%d", i); + t = of_get_child_by_name(core, name); + if (t) { + leaf = false; + cpu = get_cpu_for_node(t); + if (cpu >= 0) { + cpu_topology[cpu].package_id = package_id; + cpu_topology[cpu].cluster_id = cluster_id; + cpu_topology[cpu].core_id = core_id; + cpu_topology[cpu].thread_id = i; + } else if (cpu != -ENODEV) { + pr_err("%pOF: Can't get CPU for thread\n", t); + of_node_put(t); + return -EINVAL; + } + of_node_put(t); + } + i++; + } while (t); + + cpu = get_cpu_for_node(core); + if (cpu >= 0) { + if (!leaf) { + pr_err("%pOF: Core has both threads and CPU\n", + core); + return -EINVAL; + } + + cpu_topology[cpu].package_id = package_id; + cpu_topology[cpu].cluster_id = cluster_id; + cpu_topology[cpu].core_id = core_id; + } else if (leaf && cpu != -ENODEV) { + pr_err("%pOF: Can't get CPU for leaf core\n", core); + return -EINVAL; + } + + return 0; +} + +static int __init parse_cluster(struct device_node *cluster, int package_id, + int cluster_id, int depth) +{ + char name[20]; + bool leaf = true; + bool has_cores = false; + struct device_node *c; + int core_id = 0; + int i, ret; + + /* + * First check for child clusters; we currently ignore any + * information about the nesting of clusters and present the + * scheduler with a flat list of them. + */ + i = 0; + do { + snprintf(name, sizeof(name), "cluster%d", i); + c = of_get_child_by_name(cluster, name); + if (c) { + leaf = false; + ret = parse_cluster(c, package_id, i, depth + 1); + if (depth > 0) + pr_warn("Topology for clusters of clusters not yet supported\n"); + of_node_put(c); + if (ret != 0) + return ret; + } + i++; + } while (c); + + /* Now check for cores */ + i = 0; + do { + snprintf(name, sizeof(name), "core%d", i); + c = of_get_child_by_name(cluster, name); + if (c) { + has_cores = true; + + if (depth == 0) { + pr_err("%pOF: cpu-map children should be clusters\n", + c); + of_node_put(c); + return -EINVAL; + } + + if (leaf) { + ret = parse_core(c, package_id, cluster_id, + core_id++); + } else { + pr_err("%pOF: Non-leaf cluster with core %s\n", + cluster, name); + ret = -EINVAL; + } + + of_node_put(c); + if (ret != 0) + return ret; + } + i++; + } while (c); + + if (leaf && !has_cores) + pr_warn("%pOF: empty cluster\n", cluster); + + return 0; +} + +static int __init parse_socket(struct device_node *socket) +{ + char name[20]; + struct device_node *c; + bool has_socket = false; + int package_id = 0, ret; + + do { + snprintf(name, sizeof(name), "socket%d", package_id); + c = of_get_child_by_name(socket, name); + if (c) { + has_socket = true; + ret = parse_cluster(c, package_id, -1, 0); + of_node_put(c); + if (ret != 0) + return ret; + } + package_id++; + } while (c); + + if (!has_socket) + ret = parse_cluster(socket, 0, -1, 0); + + return ret; +} + +static int __init parse_dt_topology(void) +{ + struct device_node *cn, *map; + int ret = 0; + int cpu; + + cn = of_find_node_by_path("/cpus"); + if (!cn) { + pr_err("No CPU information found in DT\n"); + return 0; + } + + /* + * When topology is provided cpu-map is essentially a root + * cluster with restricted subnodes. + */ + map = of_get_child_by_name(cn, "cpu-map"); + if (!map) + goto out; + + ret = parse_socket(map); + if (ret != 0) + goto out_map; + + topology_normalize_cpu_scale(); + + /* + * Check that all cores are in the topology; the SMP code will + * only mark cores described in the DT as possible. + */ + for_each_possible_cpu(cpu) + if (cpu_topology[cpu].package_id < 0) { + ret = -EINVAL; + break; + } + +out_map: + of_node_put(map); +out: + of_node_put(cn); + return ret; +} +#endif + +/* + * cpu topology table + */ +struct cpu_topology cpu_topology[NR_CPUS]; +EXPORT_SYMBOL_GPL(cpu_topology); + +const struct cpumask *cpu_coregroup_mask(int cpu) +{ + const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); + + /* Find the smaller of NUMA, core or LLC siblings */ + if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { + /* not numa in package, lets use the package siblings */ + core_mask = &cpu_topology[cpu].core_sibling; + } + + if (last_level_cache_is_valid(cpu)) { + if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) + core_mask = &cpu_topology[cpu].llc_sibling; + } + + /* + * For systems with no shared cpu-side LLC but with clusters defined, + * extend core_mask to cluster_siblings. The sched domain builder will + * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. + */ + if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && + cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) + core_mask = &cpu_topology[cpu].cluster_sibling; + + return core_mask; +} + +const struct cpumask *cpu_clustergroup_mask(int cpu) +{ + /* + * Forbid cpu_clustergroup_mask() to span more or the same CPUs as + * cpu_coregroup_mask(). + */ + if (cpumask_subset(cpu_coregroup_mask(cpu), + &cpu_topology[cpu].cluster_sibling)) + return topology_sibling_cpumask(cpu); + + return &cpu_topology[cpu].cluster_sibling; +} + +void update_siblings_masks(unsigned int cpuid) +{ + struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; + int cpu, ret; + + ret = detect_cache_attributes(cpuid); + if (ret && ret != -ENOENT) + pr_info("Early cacheinfo failed, ret = %d\n", ret); + + /* update core and thread sibling masks */ + for_each_online_cpu(cpu) { + cpu_topo = &cpu_topology[cpu]; + + if (last_level_cache_is_shared(cpu, cpuid)) { + cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); + cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); + } + + if (cpuid_topo->package_id != cpu_topo->package_id) + continue; + + cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); + cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); + + if (cpuid_topo->cluster_id != cpu_topo->cluster_id) + continue; + + if (cpuid_topo->cluster_id >= 0) { + cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); + cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); + } + + if (cpuid_topo->core_id != cpu_topo->core_id) + continue; + + cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); + cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); + } +} + +static void clear_cpu_topology(int cpu) +{ + struct cpu_topology *cpu_topo = &cpu_topology[cpu]; + + cpumask_clear(&cpu_topo->llc_sibling); + cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); + + cpumask_clear(&cpu_topo->cluster_sibling); + cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); + + cpumask_clear(&cpu_topo->core_sibling); + cpumask_set_cpu(cpu, &cpu_topo->core_sibling); + cpumask_clear(&cpu_topo->thread_sibling); + cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); +} + +void __init reset_cpu_topology(void) +{ + unsigned int cpu; + + for_each_possible_cpu(cpu) { + struct cpu_topology *cpu_topo = &cpu_topology[cpu]; + + cpu_topo->thread_id = -1; + cpu_topo->core_id = -1; + cpu_topo->cluster_id = -1; + cpu_topo->package_id = -1; + + clear_cpu_topology(cpu); + } +} + +void remove_cpu_topology(unsigned int cpu) +{ + int sibling; + + for_each_cpu(sibling, topology_core_cpumask(cpu)) + cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); + for_each_cpu(sibling, topology_sibling_cpumask(cpu)) + cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); + for_each_cpu(sibling, topology_cluster_cpumask(cpu)) + cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); + for_each_cpu(sibling, topology_llc_cpumask(cpu)) + cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); + + clear_cpu_topology(cpu); +} + +__weak int __init parse_acpi_topology(void) +{ + return 0; +} + +#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) +void __init init_cpu_topology(void) +{ + int ret; + + reset_cpu_topology(); + ret = parse_acpi_topology(); + if (!ret) + ret = of_have_populated_dt() && parse_dt_topology(); + + if (ret) { + /* + * Discard anything that was parsed if we hit an error so we + * don't use partial information. + */ + reset_cpu_topology(); + return; + } +} + +void store_cpu_topology(unsigned int cpuid) +{ + struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; + + if (cpuid_topo->package_id != -1) + goto topology_populated; + + cpuid_topo->thread_id = -1; + cpuid_topo->core_id = cpuid; + cpuid_topo->package_id = cpu_to_node(cpuid); + + pr_debug("CPU%u: package %d core %d thread %d\n", + cpuid, cpuid_topo->package_id, cpuid_topo->core_id, + cpuid_topo->thread_id); + +topology_populated: + update_siblings_masks(cpuid); +} +#endif |