summaryrefslogtreecommitdiffstats
path: root/drivers/dma/stm32-dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/dma/stm32-dma.c')
-rw-r--r--drivers/dma/stm32-dma.c1794
1 files changed, 1794 insertions, 0 deletions
diff --git a/drivers/dma/stm32-dma.c b/drivers/dma/stm32-dma.c
new file mode 100644
index 000000000..7abcd7f28
--- /dev/null
+++ b/drivers/dma/stm32-dma.c
@@ -0,0 +1,1794 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for STM32 DMA controller
+ *
+ * Inspired by dma-jz4740.c and tegra20-apb-dma.c
+ *
+ * Copyright (C) M'boumba Cedric Madianga 2015
+ * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
+ * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/iopoll.h>
+#include <linux/jiffies.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_dma.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/reset.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+#include "virt-dma.h"
+
+#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
+#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
+#define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
+#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
+#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
+#define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
+#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
+#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
+#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
+#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
+#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
+#define STM32_DMA_MASKI (STM32_DMA_TCI \
+ | STM32_DMA_TEI \
+ | STM32_DMA_DMEI \
+ | STM32_DMA_FEI)
+/*
+ * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
+ * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
+ */
+#define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \
+ (((_n) & 2) << 3) | (((_n) & 1) * 6); })
+
+/* DMA Stream x Configuration Register */
+#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
+#define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25)
+#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
+#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
+#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
+#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
+#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
+#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
+#define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
+#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
+#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
+#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
+#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
+#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
+#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
+#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
+#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
+ */
+#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
+#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
+#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
+#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
+ | STM32_DMA_SCR_MINC \
+ | STM32_DMA_SCR_PINCOS \
+ | STM32_DMA_SCR_PL_MASK)
+#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
+ | STM32_DMA_SCR_TEIE \
+ | STM32_DMA_SCR_DMEIE)
+
+/* DMA Stream x number of data register */
+#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
+
+/* DMA stream peripheral address register */
+#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
+
+/* DMA stream x memory 0 address register */
+#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
+
+/* DMA stream x memory 1 address register */
+#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
+
+/* DMA stream x FIFO control register */
+#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
+#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
+#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
+#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
+#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
+ | STM32_DMA_SFCR_DMDIS)
+
+/* DMA direction */
+#define STM32_DMA_DEV_TO_MEM 0x00
+#define STM32_DMA_MEM_TO_DEV 0x01
+#define STM32_DMA_MEM_TO_MEM 0x02
+
+/* DMA priority level */
+#define STM32_DMA_PRIORITY_LOW 0x00
+#define STM32_DMA_PRIORITY_MEDIUM 0x01
+#define STM32_DMA_PRIORITY_HIGH 0x02
+#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
+
+/* DMA FIFO threshold selection */
+#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
+#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
+#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
+#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
+#define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
+
+#define STM32_DMA_MAX_DATA_ITEMS 0xffff
+/*
+ * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
+ * gather at boundary. Thus it's safer to round down this value on FIFO
+ * size (16 Bytes)
+ */
+#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
+ ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
+#define STM32_DMA_MAX_CHANNELS 0x08
+#define STM32_DMA_MAX_REQUEST_ID 0x08
+#define STM32_DMA_MAX_DATA_PARAM 0x03
+#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
+#define STM32_DMA_MIN_BURST 4
+#define STM32_DMA_MAX_BURST 16
+
+/* DMA Features */
+#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
+#define STM32_DMA_DIRECT_MODE_MASK BIT(2)
+#define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
+#define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16)
+
+enum stm32_dma_width {
+ STM32_DMA_BYTE,
+ STM32_DMA_HALF_WORD,
+ STM32_DMA_WORD,
+};
+
+enum stm32_dma_burst_size {
+ STM32_DMA_BURST_SINGLE,
+ STM32_DMA_BURST_INCR4,
+ STM32_DMA_BURST_INCR8,
+ STM32_DMA_BURST_INCR16,
+};
+
+/**
+ * struct stm32_dma_cfg - STM32 DMA custom configuration
+ * @channel_id: channel ID
+ * @request_line: DMA request
+ * @stream_config: 32bit mask specifying the DMA channel configuration
+ * @features: 32bit mask specifying the DMA Feature list
+ */
+struct stm32_dma_cfg {
+ u32 channel_id;
+ u32 request_line;
+ u32 stream_config;
+ u32 features;
+};
+
+struct stm32_dma_chan_reg {
+ u32 dma_lisr;
+ u32 dma_hisr;
+ u32 dma_lifcr;
+ u32 dma_hifcr;
+ u32 dma_scr;
+ u32 dma_sndtr;
+ u32 dma_spar;
+ u32 dma_sm0ar;
+ u32 dma_sm1ar;
+ u32 dma_sfcr;
+};
+
+struct stm32_dma_sg_req {
+ u32 len;
+ struct stm32_dma_chan_reg chan_reg;
+};
+
+struct stm32_dma_desc {
+ struct virt_dma_desc vdesc;
+ bool cyclic;
+ u32 num_sgs;
+ struct stm32_dma_sg_req sg_req[];
+};
+
+/**
+ * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
+ * @stream_id: DMA request to trigger STM32 MDMA transfer
+ * @ifcr: DMA interrupt flag clear register address,
+ * used by STM32 MDMA to clear DMA Transfer Complete flag
+ * @tcf: DMA Transfer Complete flag
+ */
+struct stm32_dma_mdma_config {
+ u32 stream_id;
+ u32 ifcr;
+ u32 tcf;
+};
+
+struct stm32_dma_chan {
+ struct virt_dma_chan vchan;
+ bool config_init;
+ bool busy;
+ u32 id;
+ u32 irq;
+ struct stm32_dma_desc *desc;
+ u32 next_sg;
+ struct dma_slave_config dma_sconfig;
+ struct stm32_dma_chan_reg chan_reg;
+ u32 threshold;
+ u32 mem_burst;
+ u32 mem_width;
+ enum dma_status status;
+ bool trig_mdma;
+ struct stm32_dma_mdma_config mdma_config;
+};
+
+struct stm32_dma_device {
+ struct dma_device ddev;
+ void __iomem *base;
+ struct clk *clk;
+ bool mem2mem;
+ struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
+};
+
+static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
+{
+ return container_of(chan->vchan.chan.device, struct stm32_dma_device,
+ ddev);
+}
+
+static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
+{
+ return container_of(c, struct stm32_dma_chan, vchan.chan);
+}
+
+static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
+{
+ return container_of(vdesc, struct stm32_dma_desc, vdesc);
+}
+
+static struct device *chan2dev(struct stm32_dma_chan *chan)
+{
+ return &chan->vchan.chan.dev->device;
+}
+
+static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
+{
+ return readl_relaxed(dmadev->base + reg);
+}
+
+static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
+{
+ writel_relaxed(val, dmadev->base + reg);
+}
+
+static int stm32_dma_get_width(struct stm32_dma_chan *chan,
+ enum dma_slave_buswidth width)
+{
+ switch (width) {
+ case DMA_SLAVE_BUSWIDTH_1_BYTE:
+ return STM32_DMA_BYTE;
+ case DMA_SLAVE_BUSWIDTH_2_BYTES:
+ return STM32_DMA_HALF_WORD;
+ case DMA_SLAVE_BUSWIDTH_4_BYTES:
+ return STM32_DMA_WORD;
+ default:
+ dev_err(chan2dev(chan), "Dma bus width not supported\n");
+ return -EINVAL;
+ }
+}
+
+static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
+ dma_addr_t buf_addr,
+ u32 threshold)
+{
+ enum dma_slave_buswidth max_width;
+
+ if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
+ max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ else
+ max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+
+ while ((buf_len < max_width || buf_len % max_width) &&
+ max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
+ max_width = max_width >> 1;
+
+ if (buf_addr & (max_width - 1))
+ max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+
+ return max_width;
+}
+
+static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
+ enum dma_slave_buswidth width)
+{
+ u32 remaining;
+
+ if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
+ return false;
+
+ if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+ if (burst != 0) {
+ /*
+ * If number of beats fit in several whole bursts
+ * this configuration is allowed.
+ */
+ remaining = ((STM32_DMA_FIFO_SIZE / width) *
+ (threshold + 1) / 4) % burst;
+
+ if (remaining == 0)
+ return true;
+ } else {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
+{
+ /* If FIFO direct mode, burst is not possible */
+ if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
+ return false;
+
+ /*
+ * Buffer or period length has to be aligned on FIFO depth.
+ * Otherwise bytes may be stuck within FIFO at buffer or period
+ * length.
+ */
+ return ((buf_len % ((threshold + 1) * 4)) == 0);
+}
+
+static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
+ enum dma_slave_buswidth width)
+{
+ u32 best_burst = max_burst;
+
+ if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
+ return 0;
+
+ while ((buf_len < best_burst * width && best_burst > 1) ||
+ !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
+ width)) {
+ if (best_burst > STM32_DMA_MIN_BURST)
+ best_burst = best_burst >> 1;
+ else
+ best_burst = 0;
+ }
+
+ return best_burst;
+}
+
+static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
+{
+ switch (maxburst) {
+ case 0:
+ case 1:
+ return STM32_DMA_BURST_SINGLE;
+ case 4:
+ return STM32_DMA_BURST_INCR4;
+ case 8:
+ return STM32_DMA_BURST_INCR8;
+ case 16:
+ return STM32_DMA_BURST_INCR16;
+ default:
+ dev_err(chan2dev(chan), "Dma burst size not supported\n");
+ return -EINVAL;
+ }
+}
+
+static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
+ u32 src_burst, u32 dst_burst)
+{
+ chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
+
+ if (!src_burst && !dst_burst) {
+ /* Using direct mode */
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
+ } else {
+ /* Using FIFO mode */
+ chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
+ }
+}
+
+static int stm32_dma_slave_config(struct dma_chan *c,
+ struct dma_slave_config *config)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+
+ memcpy(&chan->dma_sconfig, config, sizeof(*config));
+
+ /* Check if user is requesting DMA to trigger STM32 MDMA */
+ if (config->peripheral_size) {
+ config->peripheral_config = &chan->mdma_config;
+ config->peripheral_size = sizeof(chan->mdma_config);
+ chan->trig_mdma = true;
+ }
+
+ chan->config_init = true;
+
+ return 0;
+}
+
+static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 flags, dma_isr;
+
+ /*
+ * Read "flags" from DMA_xISR register corresponding to the selected
+ * DMA channel at the correct bit offset inside that register.
+ */
+
+ dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
+ flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
+
+ return flags & STM32_DMA_MASKI;
+}
+
+static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 dma_ifcr;
+
+ /*
+ * Write "flags" to the DMA_xIFCR register corresponding to the selected
+ * DMA channel at the correct bit offset inside that register.
+ */
+ flags &= STM32_DMA_MASKI;
+ dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
+
+ stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
+}
+
+static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 dma_scr, id, reg;
+
+ id = chan->id;
+ reg = STM32_DMA_SCR(id);
+ dma_scr = stm32_dma_read(dmadev, reg);
+
+ if (dma_scr & STM32_DMA_SCR_EN) {
+ dma_scr &= ~STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, reg, dma_scr);
+
+ return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
+ dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
+ 10, 1000000);
+ }
+
+ return 0;
+}
+
+static void stm32_dma_stop(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 dma_scr, dma_sfcr, status;
+ int ret;
+
+ /* Disable interrupts */
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+ dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
+ dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
+ stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
+
+ /* Disable DMA */
+ ret = stm32_dma_disable_chan(chan);
+ if (ret < 0)
+ return;
+
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status) {
+ dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
+ __func__, status);
+ stm32_dma_irq_clear(chan, status);
+ }
+
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+}
+
+static int stm32_dma_terminate_all(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ unsigned long flags;
+ LIST_HEAD(head);
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
+ if (chan->desc) {
+ dma_cookie_complete(&chan->desc->vdesc.tx);
+ vchan_terminate_vdesc(&chan->desc->vdesc);
+ if (chan->busy)
+ stm32_dma_stop(chan);
+ chan->desc = NULL;
+ }
+
+ vchan_get_all_descriptors(&chan->vchan, &head);
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+ vchan_dma_desc_free_list(&chan->vchan, &head);
+
+ return 0;
+}
+
+static void stm32_dma_synchronize(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+
+ vchan_synchronize(&chan->vchan);
+}
+
+static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
+ u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
+ u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
+ u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
+ u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
+
+ dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
+ dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
+ dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
+ dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
+ dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
+ dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
+}
+
+static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
+{
+ chan->next_sg++;
+ if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
+ chan->next_sg = 0;
+}
+
+static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
+
+static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct virt_dma_desc *vdesc;
+ struct stm32_dma_sg_req *sg_req;
+ struct stm32_dma_chan_reg *reg;
+ u32 status;
+ int ret;
+
+ ret = stm32_dma_disable_chan(chan);
+ if (ret < 0)
+ return;
+
+ if (!chan->desc) {
+ vdesc = vchan_next_desc(&chan->vchan);
+ if (!vdesc)
+ return;
+
+ list_del(&vdesc->node);
+
+ chan->desc = to_stm32_dma_desc(vdesc);
+ chan->next_sg = 0;
+ }
+
+ if (chan->next_sg == chan->desc->num_sgs)
+ chan->next_sg = 0;
+
+ sg_req = &chan->desc->sg_req[chan->next_sg];
+ reg = &sg_req->chan_reg;
+
+ /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
+ if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
+ reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
+
+ reg->dma_scr &= ~STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
+ stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
+
+ stm32_dma_sg_inc(chan);
+
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ if (chan->desc->cyclic)
+ stm32_dma_configure_next_sg(chan);
+
+ stm32_dma_dump_reg(chan);
+
+ /* Start DMA */
+ chan->busy = true;
+ chan->status = DMA_IN_PROGRESS;
+ reg->dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
+
+ dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
+}
+
+static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_sg_req *sg_req;
+ u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
+
+ id = chan->id;
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+
+ sg_req = &chan->desc->sg_req[chan->next_sg];
+
+ if (dma_scr & STM32_DMA_SCR_CT) {
+ dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
+ dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
+ stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
+ } else {
+ dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
+ dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
+ stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
+ }
+}
+
+static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 dma_scr;
+
+ /*
+ * Read and store current remaining data items and peripheral/memory addresses to be
+ * updated on resume
+ */
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ /*
+ * Transfer can be paused while between a previous resume and reconfiguration on transfer
+ * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
+ * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
+ */
+ if (chan->desc && chan->desc->cyclic) {
+ if (chan->desc->num_sgs == 1)
+ dma_scr |= STM32_DMA_SCR_CIRC;
+ else
+ dma_scr |= STM32_DMA_SCR_DBM;
+ }
+ chan->chan_reg.dma_scr = dma_scr;
+
+ /*
+ * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
+ * on resume NDTR autoreload value will be wrong (lower than the initial period length)
+ */
+ if (chan->desc && chan->desc->cyclic) {
+ dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+ }
+
+ chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
+
+ chan->status = DMA_PAUSED;
+
+ dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
+}
+
+static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_sg_req *sg_req;
+ u32 dma_scr, status, id;
+
+ id = chan->id;
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ if (!chan->next_sg)
+ sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
+ else
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+
+ /* Reconfigure NDTR with the initial value */
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
+
+ /* Restore SPAR */
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
+
+ /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
+
+ /* Reactivate CIRC/DBM if needed */
+ if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
+ dma_scr |= STM32_DMA_SCR_DBM;
+ /* Restore CT */
+ if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
+ dma_scr &= ~STM32_DMA_SCR_CT;
+ else
+ dma_scr |= STM32_DMA_SCR_CT;
+ } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
+ dma_scr |= STM32_DMA_SCR_CIRC;
+ }
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+
+ stm32_dma_configure_next_sg(chan);
+
+ stm32_dma_dump_reg(chan);
+
+ dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+
+ dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
+}
+
+static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
+{
+ if (!chan->desc)
+ return;
+
+ if (chan->desc->cyclic) {
+ vchan_cyclic_callback(&chan->desc->vdesc);
+ if (chan->trig_mdma)
+ return;
+ stm32_dma_sg_inc(chan);
+ /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
+ if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
+ stm32_dma_post_resume_reconfigure(chan);
+ else if (scr & STM32_DMA_SCR_DBM)
+ stm32_dma_configure_next_sg(chan);
+ } else {
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+ if (chan->next_sg == chan->desc->num_sgs) {
+ vchan_cookie_complete(&chan->desc->vdesc);
+ chan->desc = NULL;
+ }
+ stm32_dma_start_transfer(chan);
+ }
+}
+
+static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
+{
+ struct stm32_dma_chan *chan = devid;
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 status, scr, sfcr;
+
+ spin_lock(&chan->vchan.lock);
+
+ status = stm32_dma_irq_status(chan);
+ scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
+
+ if (status & STM32_DMA_FEI) {
+ stm32_dma_irq_clear(chan, STM32_DMA_FEI);
+ status &= ~STM32_DMA_FEI;
+ if (sfcr & STM32_DMA_SFCR_FEIE) {
+ if (!(scr & STM32_DMA_SCR_EN) &&
+ !(status & STM32_DMA_TCI))
+ dev_err(chan2dev(chan), "FIFO Error\n");
+ else
+ dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
+ }
+ }
+ if (status & STM32_DMA_DMEI) {
+ stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
+ status &= ~STM32_DMA_DMEI;
+ if (sfcr & STM32_DMA_SCR_DMEIE)
+ dev_dbg(chan2dev(chan), "Direct mode overrun\n");
+ }
+
+ if (status & STM32_DMA_TCI) {
+ stm32_dma_irq_clear(chan, STM32_DMA_TCI);
+ if (scr & STM32_DMA_SCR_TCIE) {
+ if (chan->status != DMA_PAUSED)
+ stm32_dma_handle_chan_done(chan, scr);
+ }
+ status &= ~STM32_DMA_TCI;
+ }
+
+ if (status & STM32_DMA_HTI) {
+ stm32_dma_irq_clear(chan, STM32_DMA_HTI);
+ status &= ~STM32_DMA_HTI;
+ }
+
+ if (status) {
+ stm32_dma_irq_clear(chan, status);
+ dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
+ if (!(scr & STM32_DMA_SCR_EN))
+ dev_err(chan2dev(chan), "chan disabled by HW\n");
+ }
+
+ spin_unlock(&chan->vchan.lock);
+
+ return IRQ_HANDLED;
+}
+
+static void stm32_dma_issue_pending(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ unsigned long flags;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+ if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
+ dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
+ stm32_dma_start_transfer(chan);
+
+ }
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+}
+
+static int stm32_dma_pause(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ unsigned long flags;
+ int ret;
+
+ if (chan->status != DMA_IN_PROGRESS)
+ return -EPERM;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
+ ret = stm32_dma_disable_chan(chan);
+ if (!ret)
+ stm32_dma_handle_chan_paused(chan);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ return ret;
+}
+
+static int stm32_dma_resume(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
+ u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
+ struct stm32_dma_sg_req *sg_req;
+ unsigned long flags;
+
+ if (chan->status != DMA_PAUSED)
+ return -EPERM;
+
+ scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+ if (WARN_ON(scr & STM32_DMA_SCR_EN))
+ return -EPERM;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
+ /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
+ if (!chan->next_sg)
+ sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
+ else
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+
+ ndtr = sg_req->chan_reg.dma_sndtr;
+ offset = (ndtr - chan_reg.dma_sndtr);
+ offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
+ spar = sg_req->chan_reg.dma_spar;
+ sm0ar = sg_req->chan_reg.dma_sm0ar;
+ sm1ar = sg_req->chan_reg.dma_sm1ar;
+
+ /*
+ * The peripheral and/or memory addresses have to be updated in order to adjust the
+ * address pointers. Need to check increment.
+ */
+ if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
+ else
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
+
+ if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
+ offset = 0;
+
+ /*
+ * In case of DBM, the current target could be SM1AR.
+ * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
+ * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
+ */
+ if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
+ else
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
+
+ /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
+
+ /*
+ * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
+ * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
+ */
+ if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
+ chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
+
+ if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
+ stm32_dma_configure_next_sg(chan);
+
+ stm32_dma_dump_reg(chan);
+
+ /* The stream may then be re-enabled to restart transfer from the point it was stopped */
+ chan->status = DMA_IN_PROGRESS;
+ chan_reg.dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
+
+ return 0;
+}
+
+static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
+ enum dma_transfer_direction direction,
+ enum dma_slave_buswidth *buswidth,
+ u32 buf_len, dma_addr_t buf_addr)
+{
+ enum dma_slave_buswidth src_addr_width, dst_addr_width;
+ int src_bus_width, dst_bus_width;
+ int src_burst_size, dst_burst_size;
+ u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
+ u32 dma_scr, fifoth;
+
+ src_addr_width = chan->dma_sconfig.src_addr_width;
+ dst_addr_width = chan->dma_sconfig.dst_addr_width;
+ src_maxburst = chan->dma_sconfig.src_maxburst;
+ dst_maxburst = chan->dma_sconfig.dst_maxburst;
+ fifoth = chan->threshold;
+
+ switch (direction) {
+ case DMA_MEM_TO_DEV:
+ /* Set device data size */
+ dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
+ if (dst_bus_width < 0)
+ return dst_bus_width;
+
+ /* Set device burst size */
+ dst_best_burst = stm32_dma_get_best_burst(buf_len,
+ dst_maxburst,
+ fifoth,
+ dst_addr_width);
+
+ dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
+ if (dst_burst_size < 0)
+ return dst_burst_size;
+
+ /* Set memory data size */
+ src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
+ fifoth);
+ chan->mem_width = src_addr_width;
+ src_bus_width = stm32_dma_get_width(chan, src_addr_width);
+ if (src_bus_width < 0)
+ return src_bus_width;
+
+ /*
+ * Set memory burst size - burst not possible if address is not aligned on
+ * the address boundary equal to the size of the transfer
+ */
+ if (buf_addr & (buf_len - 1))
+ src_maxburst = 1;
+ else
+ src_maxburst = STM32_DMA_MAX_BURST;
+ src_best_burst = stm32_dma_get_best_burst(buf_len,
+ src_maxburst,
+ fifoth,
+ src_addr_width);
+ src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
+ if (src_burst_size < 0)
+ return src_burst_size;
+
+ dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
+ FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
+ FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
+ FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
+ FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
+
+ /* Set FIFO threshold */
+ chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
+ if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
+ chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
+
+ /* Set peripheral address */
+ chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
+ *buswidth = dst_addr_width;
+ break;
+
+ case DMA_DEV_TO_MEM:
+ /* Set device data size */
+ src_bus_width = stm32_dma_get_width(chan, src_addr_width);
+ if (src_bus_width < 0)
+ return src_bus_width;
+
+ /* Set device burst size */
+ src_best_burst = stm32_dma_get_best_burst(buf_len,
+ src_maxburst,
+ fifoth,
+ src_addr_width);
+ chan->mem_burst = src_best_burst;
+ src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
+ if (src_burst_size < 0)
+ return src_burst_size;
+
+ /* Set memory data size */
+ dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
+ fifoth);
+ chan->mem_width = dst_addr_width;
+ dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
+ if (dst_bus_width < 0)
+ return dst_bus_width;
+
+ /*
+ * Set memory burst size - burst not possible if address is not aligned on
+ * the address boundary equal to the size of the transfer
+ */
+ if (buf_addr & (buf_len - 1))
+ dst_maxburst = 1;
+ else
+ dst_maxburst = STM32_DMA_MAX_BURST;
+ dst_best_burst = stm32_dma_get_best_burst(buf_len,
+ dst_maxburst,
+ fifoth,
+ dst_addr_width);
+ chan->mem_burst = dst_best_burst;
+ dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
+ if (dst_burst_size < 0)
+ return dst_burst_size;
+
+ dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
+ FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
+ FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
+ FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
+ FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
+
+ /* Set FIFO threshold */
+ chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
+ if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
+ chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
+
+ /* Set peripheral address */
+ chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
+ *buswidth = chan->dma_sconfig.src_addr_width;
+ break;
+
+ default:
+ dev_err(chan2dev(chan), "Dma direction is not supported\n");
+ return -EINVAL;
+ }
+
+ stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
+
+ /* Set DMA control register */
+ chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
+ STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
+ STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
+ chan->chan_reg.dma_scr |= dma_scr;
+
+ return 0;
+}
+
+static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
+{
+ memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
+}
+
+static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
+ struct dma_chan *c, struct scatterlist *sgl,
+ u32 sg_len, enum dma_transfer_direction direction,
+ unsigned long flags, void *context)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_desc *desc;
+ struct scatterlist *sg;
+ enum dma_slave_buswidth buswidth;
+ u32 nb_data_items;
+ int i, ret;
+
+ if (!chan->config_init) {
+ dev_err(chan2dev(chan), "dma channel is not configured\n");
+ return NULL;
+ }
+
+ if (sg_len < 1) {
+ dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
+ return NULL;
+ }
+
+ desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
+ if (!desc)
+ return NULL;
+
+ /* Set peripheral flow controller */
+ if (chan->dma_sconfig.device_fc)
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
+ else
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
+
+ /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
+ if (chan->trig_mdma && sg_len > 1) {
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
+ }
+
+ for_each_sg(sgl, sg, sg_len, i) {
+ ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
+ sg_dma_len(sg),
+ sg_dma_address(sg));
+ if (ret < 0)
+ goto err;
+
+ desc->sg_req[i].len = sg_dma_len(sg);
+
+ nb_data_items = desc->sg_req[i].len / buswidth;
+ if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
+ dev_err(chan2dev(chan), "nb items not supported\n");
+ goto err;
+ }
+
+ stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
+ desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
+ desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
+ desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
+ desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
+ desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
+ if (chan->trig_mdma)
+ desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
+ desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
+ }
+
+ desc->num_sgs = sg_len;
+ desc->cyclic = false;
+
+ return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
+
+err:
+ kfree(desc);
+ return NULL;
+}
+
+static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
+ struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
+ size_t period_len, enum dma_transfer_direction direction,
+ unsigned long flags)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_desc *desc;
+ enum dma_slave_buswidth buswidth;
+ u32 num_periods, nb_data_items;
+ int i, ret;
+
+ if (!buf_len || !period_len) {
+ dev_err(chan2dev(chan), "Invalid buffer/period len\n");
+ return NULL;
+ }
+
+ if (!chan->config_init) {
+ dev_err(chan2dev(chan), "dma channel is not configured\n");
+ return NULL;
+ }
+
+ if (buf_len % period_len) {
+ dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
+ return NULL;
+ }
+
+ /*
+ * We allow to take more number of requests till DMA is
+ * not started. The driver will loop over all requests.
+ * Once DMA is started then new requests can be queued only after
+ * terminating the DMA.
+ */
+ if (chan->busy) {
+ dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
+ return NULL;
+ }
+
+ ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
+ buf_addr);
+ if (ret < 0)
+ return NULL;
+
+ nb_data_items = period_len / buswidth;
+ if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
+ dev_err(chan2dev(chan), "number of items not supported\n");
+ return NULL;
+ }
+
+ /* Enable Circular mode or double buffer mode */
+ if (buf_len == period_len) {
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
+ } else {
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
+ }
+
+ /* Clear periph ctrl if client set it */
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
+
+ num_periods = buf_len / period_len;
+
+ desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
+ if (!desc)
+ return NULL;
+
+ for (i = 0; i < num_periods; i++) {
+ desc->sg_req[i].len = period_len;
+
+ stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
+ desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
+ desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
+ desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
+ desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
+ desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
+ if (chan->trig_mdma)
+ desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
+ desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
+ if (!chan->trig_mdma)
+ buf_addr += period_len;
+ }
+
+ desc->num_sgs = num_periods;
+ desc->cyclic = true;
+
+ return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
+}
+
+static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
+ struct dma_chan *c, dma_addr_t dest,
+ dma_addr_t src, size_t len, unsigned long flags)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ enum dma_slave_buswidth max_width;
+ struct stm32_dma_desc *desc;
+ size_t xfer_count, offset;
+ u32 num_sgs, best_burst, threshold;
+ int dma_burst, i;
+
+ num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
+ desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
+ if (!desc)
+ return NULL;
+
+ threshold = chan->threshold;
+
+ for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
+ xfer_count = min_t(size_t, len - offset,
+ STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
+
+ /* Compute best burst size */
+ max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
+ threshold, max_width);
+ dma_burst = stm32_dma_get_burst(chan, best_burst);
+ if (dma_burst < 0) {
+ kfree(desc);
+ return NULL;
+ }
+
+ stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
+ desc->sg_req[i].chan_reg.dma_scr =
+ FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
+ FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
+ FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
+ STM32_DMA_SCR_MINC |
+ STM32_DMA_SCR_PINC |
+ STM32_DMA_SCR_TCIE |
+ STM32_DMA_SCR_TEIE;
+ desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
+ desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
+ desc->sg_req[i].chan_reg.dma_spar = src + offset;
+ desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
+ desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
+ desc->sg_req[i].len = xfer_count;
+ }
+
+ desc->num_sgs = num_sgs;
+ desc->cyclic = false;
+
+ return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
+}
+
+static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
+{
+ u32 dma_scr, width, ndtr;
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
+ ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
+
+ return ndtr << width;
+}
+
+/**
+ * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
+ * @chan: dma channel
+ *
+ * This function called when IRQ are disable, checks that the hardware has not
+ * switched on the next transfer in double buffer mode. The test is done by
+ * comparing the next_sg memory address with the hardware related register
+ * (based on CT bit value).
+ *
+ * Returns true if expected current transfer is still running or double
+ * buffer mode is not activated.
+ */
+static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_sg_req *sg_req;
+ u32 dma_scr, dma_smar, id, period_len;
+
+ id = chan->id;
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+
+ /* In cyclic CIRC but not DBM, CT is not used */
+ if (!(dma_scr & STM32_DMA_SCR_DBM))
+ return true;
+
+ sg_req = &chan->desc->sg_req[chan->next_sg];
+ period_len = sg_req->len;
+
+ /* DBM - take care of a previous pause/resume not yet post reconfigured */
+ if (dma_scr & STM32_DMA_SCR_CT) {
+ dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
+ /*
+ * If transfer has been pause/resumed,
+ * SM0AR is in the range of [SM0AR:SM0AR+period_len]
+ */
+ return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
+ dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
+ }
+
+ dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
+ /*
+ * If transfer has been pause/resumed,
+ * SM1AR is in the range of [SM1AR:SM1AR+period_len]
+ */
+ return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
+ dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
+}
+
+static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
+ struct stm32_dma_desc *desc,
+ u32 next_sg)
+{
+ u32 modulo, burst_size;
+ u32 residue;
+ u32 n_sg = next_sg;
+ struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
+ int i;
+
+ /*
+ * Calculate the residue means compute the descriptors
+ * information:
+ * - the sg_req currently transferred
+ * - the Hardware remaining position in this sg (NDTR bits field).
+ *
+ * A race condition may occur if DMA is running in cyclic or double
+ * buffer mode, since the DMA register are automatically reloaded at end
+ * of period transfer. The hardware may have switched to the next
+ * transfer (CT bit updated) just before the position (SxNDTR reg) is
+ * read.
+ * In this case the SxNDTR reg could (or not) correspond to the new
+ * transfer position, and not the expected one.
+ * The strategy implemented in the stm32 driver is to:
+ * - read the SxNDTR register
+ * - crosscheck that hardware is still in current transfer.
+ * In case of switch, we can assume that the DMA is at the beginning of
+ * the next transfer. So we approximate the residue in consequence, by
+ * pointing on the beginning of next transfer.
+ *
+ * This race condition doesn't apply for none cyclic mode, as double
+ * buffer is not used. In such situation registers are updated by the
+ * software.
+ */
+
+ residue = stm32_dma_get_remaining_bytes(chan);
+
+ if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
+ n_sg++;
+ if (n_sg == chan->desc->num_sgs)
+ n_sg = 0;
+ if (!chan->trig_mdma)
+ residue = sg_req->len;
+ }
+
+ /*
+ * In cyclic mode, for the last period, residue = remaining bytes
+ * from NDTR,
+ * else for all other periods in cyclic mode, and in sg mode,
+ * residue = remaining bytes from NDTR + remaining
+ * periods/sg to be transferred
+ */
+ if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
+ for (i = n_sg; i < desc->num_sgs; i++)
+ residue += desc->sg_req[i].len;
+
+ if (!chan->mem_burst)
+ return residue;
+
+ burst_size = chan->mem_burst * chan->mem_width;
+ modulo = residue % burst_size;
+ if (modulo)
+ residue = residue - modulo + burst_size;
+
+ return residue;
+}
+
+static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
+ dma_cookie_t cookie,
+ struct dma_tx_state *state)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct virt_dma_desc *vdesc;
+ enum dma_status status;
+ unsigned long flags;
+ u32 residue = 0;
+
+ status = dma_cookie_status(c, cookie, state);
+ if (status == DMA_COMPLETE)
+ return status;
+
+ status = chan->status;
+
+ if (!state)
+ return status;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+ vdesc = vchan_find_desc(&chan->vchan, cookie);
+ if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
+ residue = stm32_dma_desc_residue(chan, chan->desc,
+ chan->next_sg);
+ else if (vdesc)
+ residue = stm32_dma_desc_residue(chan,
+ to_stm32_dma_desc(vdesc), 0);
+ dma_set_residue(state, residue);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ return status;
+}
+
+static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ int ret;
+
+ chan->config_init = false;
+
+ ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
+ if (ret < 0)
+ return ret;
+
+ ret = stm32_dma_disable_chan(chan);
+ if (ret < 0)
+ pm_runtime_put(dmadev->ddev.dev);
+
+ return ret;
+}
+
+static void stm32_dma_free_chan_resources(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ unsigned long flags;
+
+ dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
+
+ if (chan->busy) {
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+ stm32_dma_stop(chan);
+ chan->desc = NULL;
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+ }
+
+ pm_runtime_put(dmadev->ddev.dev);
+
+ vchan_free_chan_resources(to_virt_chan(c));
+ stm32_dma_clear_reg(&chan->chan_reg);
+ chan->threshold = 0;
+}
+
+static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
+{
+ kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
+}
+
+static void stm32_dma_set_config(struct stm32_dma_chan *chan,
+ struct stm32_dma_cfg *cfg)
+{
+ stm32_dma_clear_reg(&chan->chan_reg);
+
+ chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
+ chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
+
+ /* Enable Interrupts */
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
+
+ chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
+ if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
+ chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
+ if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
+ chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
+ chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
+}
+
+static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
+ struct of_dma *ofdma)
+{
+ struct stm32_dma_device *dmadev = ofdma->of_dma_data;
+ struct device *dev = dmadev->ddev.dev;
+ struct stm32_dma_cfg cfg;
+ struct stm32_dma_chan *chan;
+ struct dma_chan *c;
+
+ if (dma_spec->args_count < 4) {
+ dev_err(dev, "Bad number of cells\n");
+ return NULL;
+ }
+
+ cfg.channel_id = dma_spec->args[0];
+ cfg.request_line = dma_spec->args[1];
+ cfg.stream_config = dma_spec->args[2];
+ cfg.features = dma_spec->args[3];
+
+ if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
+ cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
+ dev_err(dev, "Bad channel and/or request id\n");
+ return NULL;
+ }
+
+ chan = &dmadev->chan[cfg.channel_id];
+
+ c = dma_get_slave_channel(&chan->vchan.chan);
+ if (!c) {
+ dev_err(dev, "No more channels available\n");
+ return NULL;
+ }
+
+ stm32_dma_set_config(chan, &cfg);
+
+ return c;
+}
+
+static const struct of_device_id stm32_dma_of_match[] = {
+ { .compatible = "st,stm32-dma", },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
+
+static int stm32_dma_probe(struct platform_device *pdev)
+{
+ struct stm32_dma_chan *chan;
+ struct stm32_dma_device *dmadev;
+ struct dma_device *dd;
+ const struct of_device_id *match;
+ struct resource *res;
+ struct reset_control *rst;
+ int i, ret;
+
+ match = of_match_device(stm32_dma_of_match, &pdev->dev);
+ if (!match) {
+ dev_err(&pdev->dev, "Error: No device match found\n");
+ return -ENODEV;
+ }
+
+ dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
+ if (!dmadev)
+ return -ENOMEM;
+
+ dd = &dmadev->ddev;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ dmadev->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(dmadev->base))
+ return PTR_ERR(dmadev->base);
+
+ dmadev->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(dmadev->clk))
+ return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
+
+ ret = clk_prepare_enable(dmadev->clk);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
+ return ret;
+ }
+
+ dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
+ "st,mem2mem");
+
+ rst = devm_reset_control_get(&pdev->dev, NULL);
+ if (IS_ERR(rst)) {
+ ret = PTR_ERR(rst);
+ if (ret == -EPROBE_DEFER)
+ goto clk_free;
+ } else {
+ reset_control_assert(rst);
+ udelay(2);
+ reset_control_deassert(rst);
+ }
+
+ dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
+
+ dma_cap_set(DMA_SLAVE, dd->cap_mask);
+ dma_cap_set(DMA_PRIVATE, dd->cap_mask);
+ dma_cap_set(DMA_CYCLIC, dd->cap_mask);
+ dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
+ dd->device_free_chan_resources = stm32_dma_free_chan_resources;
+ dd->device_tx_status = stm32_dma_tx_status;
+ dd->device_issue_pending = stm32_dma_issue_pending;
+ dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
+ dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
+ dd->device_config = stm32_dma_slave_config;
+ dd->device_pause = stm32_dma_pause;
+ dd->device_resume = stm32_dma_resume;
+ dd->device_terminate_all = stm32_dma_terminate_all;
+ dd->device_synchronize = stm32_dma_synchronize;
+ dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
+ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
+ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
+ dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
+ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
+ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
+ dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+ dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+ dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
+ dd->max_burst = STM32_DMA_MAX_BURST;
+ dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
+ dd->descriptor_reuse = true;
+ dd->dev = &pdev->dev;
+ INIT_LIST_HEAD(&dd->channels);
+
+ if (dmadev->mem2mem) {
+ dma_cap_set(DMA_MEMCPY, dd->cap_mask);
+ dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
+ dd->directions |= BIT(DMA_MEM_TO_MEM);
+ }
+
+ for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
+ chan = &dmadev->chan[i];
+ chan->id = i;
+ chan->vchan.desc_free = stm32_dma_desc_free;
+ vchan_init(&chan->vchan, dd);
+
+ chan->mdma_config.ifcr = res->start;
+ chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
+
+ chan->mdma_config.tcf = STM32_DMA_TCI;
+ chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
+ }
+
+ ret = dma_async_device_register(dd);
+ if (ret)
+ goto clk_free;
+
+ for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
+ chan = &dmadev->chan[i];
+ ret = platform_get_irq(pdev, i);
+ if (ret < 0)
+ goto err_unregister;
+ chan->irq = ret;
+
+ ret = devm_request_irq(&pdev->dev, chan->irq,
+ stm32_dma_chan_irq, 0,
+ dev_name(chan2dev(chan)), chan);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "request_irq failed with err %d channel %d\n",
+ ret, i);
+ goto err_unregister;
+ }
+ }
+
+ ret = of_dma_controller_register(pdev->dev.of_node,
+ stm32_dma_of_xlate, dmadev);
+ if (ret < 0) {
+ dev_err(&pdev->dev,
+ "STM32 DMA DMA OF registration failed %d\n", ret);
+ goto err_unregister;
+ }
+
+ platform_set_drvdata(pdev, dmadev);
+
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+ pm_runtime_get_noresume(&pdev->dev);
+ pm_runtime_put(&pdev->dev);
+
+ dev_info(&pdev->dev, "STM32 DMA driver registered\n");
+
+ return 0;
+
+err_unregister:
+ dma_async_device_unregister(dd);
+clk_free:
+ clk_disable_unprepare(dmadev->clk);
+
+ return ret;
+}
+
+#ifdef CONFIG_PM
+static int stm32_dma_runtime_suspend(struct device *dev)
+{
+ struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
+
+ clk_disable_unprepare(dmadev->clk);
+
+ return 0;
+}
+
+static int stm32_dma_runtime_resume(struct device *dev)
+{
+ struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
+ int ret;
+
+ ret = clk_prepare_enable(dmadev->clk);
+ if (ret) {
+ dev_err(dev, "failed to prepare_enable clock\n");
+ return ret;
+ }
+
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_PM_SLEEP
+static int stm32_dma_pm_suspend(struct device *dev)
+{
+ struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
+ int id, ret, scr;
+
+ ret = pm_runtime_resume_and_get(dev);
+ if (ret < 0)
+ return ret;
+
+ for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
+ scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+ if (scr & STM32_DMA_SCR_EN) {
+ dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
+ return -EBUSY;
+ }
+ }
+
+ pm_runtime_put_sync(dev);
+
+ pm_runtime_force_suspend(dev);
+
+ return 0;
+}
+
+static int stm32_dma_pm_resume(struct device *dev)
+{
+ return pm_runtime_force_resume(dev);
+}
+#endif
+
+static const struct dev_pm_ops stm32_dma_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
+ SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
+ stm32_dma_runtime_resume, NULL)
+};
+
+static struct platform_driver stm32_dma_driver = {
+ .driver = {
+ .name = "stm32-dma",
+ .of_match_table = stm32_dma_of_match,
+ .pm = &stm32_dma_pm_ops,
+ },
+ .probe = stm32_dma_probe,
+};
+
+static int __init stm32_dma_init(void)
+{
+ return platform_driver_register(&stm32_dma_driver);
+}
+subsys_initcall(stm32_dma_init);