summaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-crypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/dm-crypt.c')
-rw-r--r--drivers/md/dm-crypt.c3678
1 files changed, 3678 insertions, 0 deletions
diff --git a/drivers/md/dm-crypt.c b/drivers/md/dm-crypt.c
new file mode 100644
index 000000000..ff515437d
--- /dev/null
+++ b/drivers/md/dm-crypt.c
@@ -0,0 +1,3678 @@
+/*
+ * Copyright (C) 2003 Jana Saout <jana@saout.de>
+ * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
+ * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
+ * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/completion.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/key.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/blk-integrity.h>
+#include <linux/mempool.h>
+#include <linux/slab.h>
+#include <linux/crypto.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/backing-dev.h>
+#include <linux/atomic.h>
+#include <linux/scatterlist.h>
+#include <linux/rbtree.h>
+#include <linux/ctype.h>
+#include <asm/page.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include <crypto/md5.h>
+#include <crypto/algapi.h>
+#include <crypto/skcipher.h>
+#include <crypto/aead.h>
+#include <crypto/authenc.h>
+#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
+#include <linux/key-type.h>
+#include <keys/user-type.h>
+#include <keys/encrypted-type.h>
+#include <keys/trusted-type.h>
+
+#include <linux/device-mapper.h>
+
+#include "dm-audit.h"
+
+#define DM_MSG_PREFIX "crypt"
+
+/*
+ * context holding the current state of a multi-part conversion
+ */
+struct convert_context {
+ struct completion restart;
+ struct bio *bio_in;
+ struct bio *bio_out;
+ struct bvec_iter iter_in;
+ struct bvec_iter iter_out;
+ u64 cc_sector;
+ atomic_t cc_pending;
+ union {
+ struct skcipher_request *req;
+ struct aead_request *req_aead;
+ } r;
+
+};
+
+/*
+ * per bio private data
+ */
+struct dm_crypt_io {
+ struct crypt_config *cc;
+ struct bio *base_bio;
+ u8 *integrity_metadata;
+ bool integrity_metadata_from_pool:1;
+ bool in_tasklet:1;
+
+ struct work_struct work;
+ struct tasklet_struct tasklet;
+
+ struct convert_context ctx;
+
+ atomic_t io_pending;
+ blk_status_t error;
+ sector_t sector;
+
+ struct rb_node rb_node;
+} CRYPTO_MINALIGN_ATTR;
+
+struct dm_crypt_request {
+ struct convert_context *ctx;
+ struct scatterlist sg_in[4];
+ struct scatterlist sg_out[4];
+ u64 iv_sector;
+};
+
+struct crypt_config;
+
+struct crypt_iv_operations {
+ int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts);
+ void (*dtr)(struct crypt_config *cc);
+ int (*init)(struct crypt_config *cc);
+ int (*wipe)(struct crypt_config *cc);
+ int (*generator)(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq);
+ int (*post)(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq);
+};
+
+struct iv_benbi_private {
+ int shift;
+};
+
+#define LMK_SEED_SIZE 64 /* hash + 0 */
+struct iv_lmk_private {
+ struct crypto_shash *hash_tfm;
+ u8 *seed;
+};
+
+#define TCW_WHITENING_SIZE 16
+struct iv_tcw_private {
+ struct crypto_shash *crc32_tfm;
+ u8 *iv_seed;
+ u8 *whitening;
+};
+
+#define ELEPHANT_MAX_KEY_SIZE 32
+struct iv_elephant_private {
+ struct crypto_skcipher *tfm;
+};
+
+/*
+ * Crypt: maps a linear range of a block device
+ * and encrypts / decrypts at the same time.
+ */
+enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
+ DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
+ DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
+ DM_CRYPT_WRITE_INLINE };
+
+enum cipher_flags {
+ CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
+ CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
+ CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
+};
+
+/*
+ * The fields in here must be read only after initialization.
+ */
+struct crypt_config {
+ struct dm_dev *dev;
+ sector_t start;
+
+ struct percpu_counter n_allocated_pages;
+
+ struct workqueue_struct *io_queue;
+ struct workqueue_struct *crypt_queue;
+
+ spinlock_t write_thread_lock;
+ struct task_struct *write_thread;
+ struct rb_root write_tree;
+
+ char *cipher_string;
+ char *cipher_auth;
+ char *key_string;
+
+ const struct crypt_iv_operations *iv_gen_ops;
+ union {
+ struct iv_benbi_private benbi;
+ struct iv_lmk_private lmk;
+ struct iv_tcw_private tcw;
+ struct iv_elephant_private elephant;
+ } iv_gen_private;
+ u64 iv_offset;
+ unsigned int iv_size;
+ unsigned short sector_size;
+ unsigned char sector_shift;
+
+ union {
+ struct crypto_skcipher **tfms;
+ struct crypto_aead **tfms_aead;
+ } cipher_tfm;
+ unsigned int tfms_count;
+ unsigned long cipher_flags;
+
+ /*
+ * Layout of each crypto request:
+ *
+ * struct skcipher_request
+ * context
+ * padding
+ * struct dm_crypt_request
+ * padding
+ * IV
+ *
+ * The padding is added so that dm_crypt_request and the IV are
+ * correctly aligned.
+ */
+ unsigned int dmreq_start;
+
+ unsigned int per_bio_data_size;
+
+ unsigned long flags;
+ unsigned int key_size;
+ unsigned int key_parts; /* independent parts in key buffer */
+ unsigned int key_extra_size; /* additional keys length */
+ unsigned int key_mac_size; /* MAC key size for authenc(...) */
+
+ unsigned int integrity_tag_size;
+ unsigned int integrity_iv_size;
+ unsigned int on_disk_tag_size;
+
+ /*
+ * pool for per bio private data, crypto requests,
+ * encryption requeusts/buffer pages and integrity tags
+ */
+ unsigned int tag_pool_max_sectors;
+ mempool_t tag_pool;
+ mempool_t req_pool;
+ mempool_t page_pool;
+
+ struct bio_set bs;
+ struct mutex bio_alloc_lock;
+
+ u8 *authenc_key; /* space for keys in authenc() format (if used) */
+ u8 key[];
+};
+
+#define MIN_IOS 64
+#define MAX_TAG_SIZE 480
+#define POOL_ENTRY_SIZE 512
+
+static DEFINE_SPINLOCK(dm_crypt_clients_lock);
+static unsigned int dm_crypt_clients_n = 0;
+static volatile unsigned long dm_crypt_pages_per_client;
+#define DM_CRYPT_MEMORY_PERCENT 2
+#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
+
+static void crypt_endio(struct bio *clone);
+static void kcryptd_queue_crypt(struct dm_crypt_io *io);
+static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
+ struct scatterlist *sg);
+
+static bool crypt_integrity_aead(struct crypt_config *cc);
+
+/*
+ * Use this to access cipher attributes that are independent of the key.
+ */
+static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
+{
+ return cc->cipher_tfm.tfms[0];
+}
+
+static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
+{
+ return cc->cipher_tfm.tfms_aead[0];
+}
+
+/*
+ * Different IV generation algorithms:
+ *
+ * plain: the initial vector is the 32-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64: the initial vector is the 64-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64be: the initial vector is the 64-bit big-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * essiv: "encrypted sector|salt initial vector", the sector number is
+ * encrypted with the bulk cipher using a salt as key. The salt
+ * should be derived from the bulk cipher's key via hashing.
+ *
+ * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
+ * (needed for LRW-32-AES and possible other narrow block modes)
+ *
+ * null: the initial vector is always zero. Provides compatibility with
+ * obsolete loop_fish2 devices. Do not use for new devices.
+ *
+ * lmk: Compatible implementation of the block chaining mode used
+ * by the Loop-AES block device encryption system
+ * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from the sector number, the data and
+ * optionally extra IV seed.
+ * This means that after decryption the first block
+ * of sector must be tweaked according to decrypted data.
+ * Loop-AES can use three encryption schemes:
+ * version 1: is plain aes-cbc mode
+ * version 2: uses 64 multikey scheme with lmk IV generator
+ * version 3: the same as version 2 with additional IV seed
+ * (it uses 65 keys, last key is used as IV seed)
+ *
+ * tcw: Compatible implementation of the block chaining mode used
+ * by the TrueCrypt device encryption system (prior to version 4.1).
+ * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from initial key and the sector number.
+ * In addition, whitening value is applied on every sector, whitening
+ * is calculated from initial key, sector number and mixed using CRC32.
+ * Note that this encryption scheme is vulnerable to watermarking attacks
+ * and should be used for old compatible containers access only.
+ *
+ * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
+ * The IV is encrypted little-endian byte-offset (with the same key
+ * and cipher as the volume).
+ *
+ * elephant: The extended version of eboiv with additional Elephant diffuser
+ * used with Bitlocker CBC mode.
+ * This mode was used in older Windows systems
+ * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
+ */
+
+static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
+
+ return 0;
+}
+
+static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ /* iv_size is at least of size u64; usually it is 16 bytes */
+ *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ /*
+ * ESSIV encryption of the IV is now handled by the crypto API,
+ * so just pass the plain sector number here.
+ */
+ memset(iv, 0, cc->iv_size);
+ *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ unsigned int bs;
+ int log;
+
+ if (crypt_integrity_aead(cc))
+ bs = crypto_aead_blocksize(any_tfm_aead(cc));
+ else
+ bs = crypto_skcipher_blocksize(any_tfm(cc));
+ log = ilog2(bs);
+
+ /* we need to calculate how far we must shift the sector count
+ * to get the cipher block count, we use this shift in _gen */
+
+ if (1 << log != bs) {
+ ti->error = "cypher blocksize is not a power of 2";
+ return -EINVAL;
+ }
+
+ if (log > 9) {
+ ti->error = "cypher blocksize is > 512";
+ return -EINVAL;
+ }
+
+ cc->iv_gen_private.benbi.shift = 9 - log;
+
+ return 0;
+}
+
+static void crypt_iv_benbi_dtr(struct crypt_config *cc)
+{
+}
+
+static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ __be64 val;
+
+ memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
+
+ val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
+ put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
+
+ return 0;
+}
+
+static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+
+ return 0;
+}
+
+static void crypt_iv_lmk_dtr(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
+ crypto_free_shash(lmk->hash_tfm);
+ lmk->hash_tfm = NULL;
+
+ kfree_sensitive(lmk->seed);
+ lmk->seed = NULL;
+}
+
+static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (cc->sector_size != (1 << SECTOR_SHIFT)) {
+ ti->error = "Unsupported sector size for LMK";
+ return -EINVAL;
+ }
+
+ lmk->hash_tfm = crypto_alloc_shash("md5", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(lmk->hash_tfm)) {
+ ti->error = "Error initializing LMK hash";
+ return PTR_ERR(lmk->hash_tfm);
+ }
+
+ /* No seed in LMK version 2 */
+ if (cc->key_parts == cc->tfms_count) {
+ lmk->seed = NULL;
+ return 0;
+ }
+
+ lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
+ if (!lmk->seed) {
+ crypt_iv_lmk_dtr(cc);
+ ti->error = "Error kmallocing seed storage in LMK";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_lmk_init(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+ int subkey_size = cc->key_size / cc->key_parts;
+
+ /* LMK seed is on the position of LMK_KEYS + 1 key */
+ if (lmk->seed)
+ memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
+ crypto_shash_digestsize(lmk->hash_tfm));
+
+ return 0;
+}
+
+static int crypt_iv_lmk_wipe(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (lmk->seed)
+ memset(lmk->seed, 0, LMK_SEED_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq,
+ u8 *data)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+ SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
+ struct md5_state md5state;
+ __le32 buf[4];
+ int i, r;
+
+ desc->tfm = lmk->hash_tfm;
+
+ r = crypto_shash_init(desc);
+ if (r)
+ return r;
+
+ if (lmk->seed) {
+ r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
+ if (r)
+ return r;
+ }
+
+ /* Sector is always 512B, block size 16, add data of blocks 1-31 */
+ r = crypto_shash_update(desc, data + 16, 16 * 31);
+ if (r)
+ return r;
+
+ /* Sector is cropped to 56 bits here */
+ buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
+ buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
+ buf[2] = cpu_to_le32(4024);
+ buf[3] = 0;
+ r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
+ if (r)
+ return r;
+
+ /* No MD5 padding here */
+ r = crypto_shash_export(desc, &md5state);
+ if (r)
+ return r;
+
+ for (i = 0; i < MD5_HASH_WORDS; i++)
+ __cpu_to_le32s(&md5state.hash[i]);
+ memcpy(iv, &md5state.hash, cc->iv_size);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *src;
+ int r = 0;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ sg = crypt_get_sg_data(cc, dmreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
+ kunmap_atomic(src);
+ } else
+ memset(iv, 0, cc->iv_size);
+
+ return r;
+}
+
+static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
+ return 0;
+
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
+
+ /* Tweak the first block of plaintext sector */
+ if (!r)
+ crypto_xor(dst + sg->offset, iv, cc->iv_size);
+
+ kunmap_atomic(dst);
+ return r;
+}
+
+static void crypt_iv_tcw_dtr(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ kfree_sensitive(tcw->iv_seed);
+ tcw->iv_seed = NULL;
+ kfree_sensitive(tcw->whitening);
+ tcw->whitening = NULL;
+
+ if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
+ crypto_free_shash(tcw->crc32_tfm);
+ tcw->crc32_tfm = NULL;
+}
+
+static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ if (cc->sector_size != (1 << SECTOR_SHIFT)) {
+ ti->error = "Unsupported sector size for TCW";
+ return -EINVAL;
+ }
+
+ if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
+ ti->error = "Wrong key size for TCW";
+ return -EINVAL;
+ }
+
+ tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(tcw->crc32_tfm)) {
+ ti->error = "Error initializing CRC32 in TCW";
+ return PTR_ERR(tcw->crc32_tfm);
+ }
+
+ tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
+ tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
+ if (!tcw->iv_seed || !tcw->whitening) {
+ crypt_iv_tcw_dtr(cc);
+ ti->error = "Error allocating seed storage in TCW";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_tcw_init(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
+
+ memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
+ memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
+ TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_wipe(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ memset(tcw->iv_seed, 0, cc->iv_size);
+ memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_whitening(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq,
+ u8 *data)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(dmreq->iv_sector);
+ u8 buf[TCW_WHITENING_SIZE];
+ SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
+ int i, r;
+
+ /* xor whitening with sector number */
+ crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
+ crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
+
+ /* calculate crc32 for every 32bit part and xor it */
+ desc->tfm = tcw->crc32_tfm;
+ for (i = 0; i < 4; i++) {
+ r = crypto_shash_init(desc);
+ if (r)
+ goto out;
+ r = crypto_shash_update(desc, &buf[i * 4], 4);
+ if (r)
+ goto out;
+ r = crypto_shash_final(desc, &buf[i * 4]);
+ if (r)
+ goto out;
+ }
+ crypto_xor(&buf[0], &buf[12], 4);
+ crypto_xor(&buf[4], &buf[8], 4);
+
+ /* apply whitening (8 bytes) to whole sector */
+ for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
+ crypto_xor(data + i * 8, buf, 8);
+out:
+ memzero_explicit(buf, sizeof(buf));
+ return r;
+}
+
+static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(dmreq->iv_sector);
+ u8 *src;
+ int r = 0;
+
+ /* Remove whitening from ciphertext */
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
+ sg = crypt_get_sg_data(cc, dmreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
+ kunmap_atomic(src);
+ }
+
+ /* Calculate IV */
+ crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
+ if (cc->iv_size > 8)
+ crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
+ cc->iv_size - 8);
+
+ return r;
+}
+
+static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
+ return 0;
+
+ /* Apply whitening on ciphertext */
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
+ kunmap_atomic(dst);
+
+ return r;
+}
+
+static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ /* Used only for writes, there must be an additional space to store IV */
+ get_random_bytes(iv, cc->iv_size);
+ return 0;
+}
+
+static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ if (crypt_integrity_aead(cc)) {
+ ti->error = "AEAD transforms not supported for EBOIV";
+ return -EINVAL;
+ }
+
+ if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
+ ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
+ struct skcipher_request *req;
+ struct scatterlist src, dst;
+ DECLARE_CRYPTO_WAIT(wait);
+ int err;
+
+ req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
+ if (!req)
+ return -ENOMEM;
+
+ memset(buf, 0, cc->iv_size);
+ *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
+
+ sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
+ sg_init_one(&dst, iv, cc->iv_size);
+ skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
+ skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
+ err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ skcipher_request_free(req);
+
+ return err;
+}
+
+static void crypt_iv_elephant_dtr(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+
+ crypto_free_skcipher(elephant->tfm);
+ elephant->tfm = NULL;
+}
+
+static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ int r;
+
+ elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(elephant->tfm)) {
+ r = PTR_ERR(elephant->tfm);
+ elephant->tfm = NULL;
+ return r;
+ }
+
+ r = crypt_iv_eboiv_ctr(cc, ti, NULL);
+ if (r)
+ crypt_iv_elephant_dtr(cc);
+ return r;
+}
+
+static void diffuser_disk_to_cpu(u32 *d, size_t n)
+{
+#ifndef __LITTLE_ENDIAN
+ int i;
+
+ for (i = 0; i < n; i++)
+ d[i] = le32_to_cpu((__le32)d[i]);
+#endif
+}
+
+static void diffuser_cpu_to_disk(__le32 *d, size_t n)
+{
+#ifndef __LITTLE_ENDIAN
+ int i;
+
+ for (i = 0; i < n; i++)
+ d[i] = cpu_to_le32((u32)d[i]);
+#endif
+}
+
+static void diffuser_a_decrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 5; i++) {
+ i1 = 0;
+ i2 = n - 2;
+ i3 = n - 5;
+
+ while (i1 < (n - 1)) {
+ d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
+ i1++; i2++; i3++;
+
+ if (i3 >= n)
+ i3 -= n;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ if (i2 >= n)
+ i2 -= n;
+
+ d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
+ i1++; i2++; i3++;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+ }
+ }
+}
+
+static void diffuser_a_encrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 5; i++) {
+ i1 = n - 1;
+ i2 = n - 2 - 1;
+ i3 = n - 5 - 1;
+
+ while (i1 > 0) {
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
+ i1--; i2--; i3--;
+
+ if (i2 < 0)
+ i2 += n;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ if (i3 < 0)
+ i3 += n;
+
+ d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
+ i1--; i2--; i3--;
+ }
+ }
+}
+
+static void diffuser_b_decrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 3; i++) {
+ i1 = 0;
+ i2 = 2;
+ i3 = 5;
+
+ while (i1 < (n - 1)) {
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
+ i1++; i2++; i3++;
+
+ if (i2 >= n)
+ i2 -= n;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ if (i3 >= n)
+ i3 -= n;
+
+ d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
+ i1++; i2++; i3++;
+ }
+ }
+}
+
+static void diffuser_b_encrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 3; i++) {
+ i1 = n - 1;
+ i2 = 2 - 1;
+ i3 = 5 - 1;
+
+ while (i1 > 0) {
+ d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
+ i1--; i2--; i3--;
+
+ if (i3 < 0)
+ i3 += n;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ if (i2 < 0)
+ i2 += n;
+
+ d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
+ i1--; i2--; i3--;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+ }
+ }
+}
+
+static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ u8 *es, *ks, *data, *data2, *data_offset;
+ struct skcipher_request *req;
+ struct scatterlist *sg, *sg2, src, dst;
+ DECLARE_CRYPTO_WAIT(wait);
+ int i, r;
+
+ req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
+ es = kzalloc(16, GFP_NOIO); /* Key for AES */
+ ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
+
+ if (!req || !es || !ks) {
+ r = -ENOMEM;
+ goto out;
+ }
+
+ *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
+
+ /* E(Ks, e(s)) */
+ sg_init_one(&src, es, 16);
+ sg_init_one(&dst, ks, 16);
+ skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
+ skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
+ r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (r)
+ goto out;
+
+ /* E(Ks, e'(s)) */
+ es[15] = 0x80;
+ sg_init_one(&dst, &ks[16], 16);
+ r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (r)
+ goto out;
+
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ data = kmap_atomic(sg_page(sg));
+ data_offset = data + sg->offset;
+
+ /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
+ data2 = kmap_atomic(sg_page(sg2));
+ memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
+ kunmap_atomic(data2);
+ }
+
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
+ diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
+ }
+
+ for (i = 0; i < (cc->sector_size / 32); i++)
+ crypto_xor(data_offset + i * 32, ks, 32);
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
+ }
+
+ kunmap_atomic(data);
+out:
+ kfree_sensitive(ks);
+ kfree_sensitive(es);
+ skcipher_request_free(req);
+ return r;
+}
+
+static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ r = crypt_iv_elephant(cc, dmreq);
+ if (r)
+ return r;
+ }
+
+ return crypt_iv_eboiv_gen(cc, iv, dmreq);
+}
+
+static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
+ return crypt_iv_elephant(cc, dmreq);
+
+ return 0;
+}
+
+static int crypt_iv_elephant_init(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ int key_offset = cc->key_size - cc->key_extra_size;
+
+ return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
+}
+
+static int crypt_iv_elephant_wipe(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ u8 key[ELEPHANT_MAX_KEY_SIZE];
+
+ memset(key, 0, cc->key_extra_size);
+ return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
+}
+
+static const struct crypt_iv_operations crypt_iv_plain_ops = {
+ .generator = crypt_iv_plain_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64_ops = {
+ .generator = crypt_iv_plain64_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
+ .generator = crypt_iv_plain64be_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_essiv_ops = {
+ .generator = crypt_iv_essiv_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_benbi_ops = {
+ .ctr = crypt_iv_benbi_ctr,
+ .dtr = crypt_iv_benbi_dtr,
+ .generator = crypt_iv_benbi_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_null_ops = {
+ .generator = crypt_iv_null_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_lmk_ops = {
+ .ctr = crypt_iv_lmk_ctr,
+ .dtr = crypt_iv_lmk_dtr,
+ .init = crypt_iv_lmk_init,
+ .wipe = crypt_iv_lmk_wipe,
+ .generator = crypt_iv_lmk_gen,
+ .post = crypt_iv_lmk_post
+};
+
+static const struct crypt_iv_operations crypt_iv_tcw_ops = {
+ .ctr = crypt_iv_tcw_ctr,
+ .dtr = crypt_iv_tcw_dtr,
+ .init = crypt_iv_tcw_init,
+ .wipe = crypt_iv_tcw_wipe,
+ .generator = crypt_iv_tcw_gen,
+ .post = crypt_iv_tcw_post
+};
+
+static const struct crypt_iv_operations crypt_iv_random_ops = {
+ .generator = crypt_iv_random_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
+ .ctr = crypt_iv_eboiv_ctr,
+ .generator = crypt_iv_eboiv_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_elephant_ops = {
+ .ctr = crypt_iv_elephant_ctr,
+ .dtr = crypt_iv_elephant_dtr,
+ .init = crypt_iv_elephant_init,
+ .wipe = crypt_iv_elephant_wipe,
+ .generator = crypt_iv_elephant_gen,
+ .post = crypt_iv_elephant_post
+};
+
+/*
+ * Integrity extensions
+ */
+static bool crypt_integrity_aead(struct crypt_config *cc)
+{
+ return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
+}
+
+static bool crypt_integrity_hmac(struct crypt_config *cc)
+{
+ return crypt_integrity_aead(cc) && cc->key_mac_size;
+}
+
+/* Get sg containing data */
+static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
+ struct scatterlist *sg)
+{
+ if (unlikely(crypt_integrity_aead(cc)))
+ return &sg[2];
+
+ return sg;
+}
+
+static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
+{
+ struct bio_integrity_payload *bip;
+ unsigned int tag_len;
+ int ret;
+
+ if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
+ return 0;
+
+ bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
+ if (IS_ERR(bip))
+ return PTR_ERR(bip);
+
+ tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
+
+ bip->bip_iter.bi_size = tag_len;
+ bip->bip_iter.bi_sector = io->cc->start + io->sector;
+
+ ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
+ tag_len, offset_in_page(io->integrity_metadata));
+ if (unlikely(ret != tag_len))
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
+{
+#ifdef CONFIG_BLK_DEV_INTEGRITY
+ struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
+ struct mapped_device *md = dm_table_get_md(ti->table);
+
+ /* From now we require underlying device with our integrity profile */
+ if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
+ ti->error = "Integrity profile not supported.";
+ return -EINVAL;
+ }
+
+ if (bi->tag_size != cc->on_disk_tag_size ||
+ bi->tuple_size != cc->on_disk_tag_size) {
+ ti->error = "Integrity profile tag size mismatch.";
+ return -EINVAL;
+ }
+ if (1 << bi->interval_exp != cc->sector_size) {
+ ti->error = "Integrity profile sector size mismatch.";
+ return -EINVAL;
+ }
+
+ if (crypt_integrity_aead(cc)) {
+ cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
+ DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
+ cc->integrity_tag_size, cc->integrity_iv_size);
+
+ if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
+ ti->error = "Integrity AEAD auth tag size is not supported.";
+ return -EINVAL;
+ }
+ } else if (cc->integrity_iv_size)
+ DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
+ cc->integrity_iv_size);
+
+ if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
+ ti->error = "Not enough space for integrity tag in the profile.";
+ return -EINVAL;
+ }
+
+ return 0;
+#else
+ ti->error = "Integrity profile not supported.";
+ return -EINVAL;
+#endif
+}
+
+static void crypt_convert_init(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct bio *bio_out, struct bio *bio_in,
+ sector_t sector)
+{
+ ctx->bio_in = bio_in;
+ ctx->bio_out = bio_out;
+ if (bio_in)
+ ctx->iter_in = bio_in->bi_iter;
+ if (bio_out)
+ ctx->iter_out = bio_out->bi_iter;
+ ctx->cc_sector = sector + cc->iv_offset;
+ init_completion(&ctx->restart);
+}
+
+static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
+ void *req)
+{
+ return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
+}
+
+static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
+{
+ return (void *)((char *)dmreq - cc->dmreq_start);
+}
+
+static u8 *iv_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ if (crypt_integrity_aead(cc))
+ return (u8 *)ALIGN((unsigned long)(dmreq + 1),
+ crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
+ else
+ return (u8 *)ALIGN((unsigned long)(dmreq + 1),
+ crypto_skcipher_alignmask(any_tfm(cc)) + 1);
+}
+
+static u8 *org_iv_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ return iv_of_dmreq(cc, dmreq) + cc->iv_size;
+}
+
+static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
+ return (__le64 *) ptr;
+}
+
+static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
+ cc->iv_size + sizeof(uint64_t);
+ return (unsigned int*)ptr;
+}
+
+static void *tag_from_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ struct convert_context *ctx = dmreq->ctx;
+ struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
+
+ return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
+ cc->on_disk_tag_size];
+}
+
+static void *iv_tag_from_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
+}
+
+static int crypt_convert_block_aead(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct aead_request *req,
+ unsigned int tag_offset)
+{
+ struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
+ struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
+ struct dm_crypt_request *dmreq;
+ u8 *iv, *org_iv, *tag_iv, *tag;
+ __le64 *sector;
+ int r = 0;
+
+ BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
+ return -EIO;
+
+ dmreq = dmreq_of_req(cc, req);
+ dmreq->iv_sector = ctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ dmreq->iv_sector >>= cc->sector_shift;
+ dmreq->ctx = ctx;
+
+ *org_tag_of_dmreq(cc, dmreq) = tag_offset;
+
+ sector = org_sector_of_dmreq(cc, dmreq);
+ *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
+
+ iv = iv_of_dmreq(cc, dmreq);
+ org_iv = org_iv_of_dmreq(cc, dmreq);
+ tag = tag_from_dmreq(cc, dmreq);
+ tag_iv = iv_tag_from_dmreq(cc, dmreq);
+
+ /* AEAD request:
+ * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
+ * | (authenticated) | (auth+encryption) | |
+ * | sector_LE | IV | sector in/out | tag in/out |
+ */
+ sg_init_table(dmreq->sg_in, 4);
+ sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
+ sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
+ sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
+ sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
+
+ sg_init_table(dmreq->sg_out, 4);
+ sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
+ sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
+ sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
+ sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
+
+ if (cc->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
+ memcpy(org_iv, tag_iv, cc->iv_size);
+ } else {
+ r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
+ if (r < 0)
+ return r;
+ /* Store generated IV in integrity metadata */
+ if (cc->integrity_iv_size)
+ memcpy(tag_iv, org_iv, cc->iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, cc->iv_size);
+ }
+
+ aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
+ if (bio_data_dir(ctx->bio_in) == WRITE) {
+ aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
+ cc->sector_size, iv);
+ r = crypto_aead_encrypt(req);
+ if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
+ memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
+ cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
+ } else {
+ aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
+ cc->sector_size + cc->integrity_tag_size, iv);
+ r = crypto_aead_decrypt(req);
+ }
+
+ if (r == -EBADMSG) {
+ sector_t s = le64_to_cpu(*sector);
+
+ DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
+ ctx->bio_in->bi_bdev, s);
+ dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
+ ctx->bio_in, s, 0);
+ }
+
+ if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
+
+ bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
+ bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
+
+ return r;
+}
+
+static int crypt_convert_block_skcipher(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct skcipher_request *req,
+ unsigned int tag_offset)
+{
+ struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
+ struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
+ struct scatterlist *sg_in, *sg_out;
+ struct dm_crypt_request *dmreq;
+ u8 *iv, *org_iv, *tag_iv;
+ __le64 *sector;
+ int r = 0;
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
+ return -EIO;
+
+ dmreq = dmreq_of_req(cc, req);
+ dmreq->iv_sector = ctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ dmreq->iv_sector >>= cc->sector_shift;
+ dmreq->ctx = ctx;
+
+ *org_tag_of_dmreq(cc, dmreq) = tag_offset;
+
+ iv = iv_of_dmreq(cc, dmreq);
+ org_iv = org_iv_of_dmreq(cc, dmreq);
+ tag_iv = iv_tag_from_dmreq(cc, dmreq);
+
+ sector = org_sector_of_dmreq(cc, dmreq);
+ *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
+
+ /* For skcipher we use only the first sg item */
+ sg_in = &dmreq->sg_in[0];
+ sg_out = &dmreq->sg_out[0];
+
+ sg_init_table(sg_in, 1);
+ sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
+
+ sg_init_table(sg_out, 1);
+ sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
+
+ if (cc->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
+ memcpy(org_iv, tag_iv, cc->integrity_iv_size);
+ } else {
+ r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
+ if (r < 0)
+ return r;
+ /* Data can be already preprocessed in generator */
+ if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
+ sg_in = sg_out;
+ /* Store generated IV in integrity metadata */
+ if (cc->integrity_iv_size)
+ memcpy(tag_iv, org_iv, cc->integrity_iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, cc->iv_size);
+ }
+
+ skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
+
+ if (bio_data_dir(ctx->bio_in) == WRITE)
+ r = crypto_skcipher_encrypt(req);
+ else
+ r = crypto_skcipher_decrypt(req);
+
+ if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
+
+ bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
+ bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
+
+ return r;
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+ int error);
+
+static int crypt_alloc_req_skcipher(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
+
+ if (!ctx->r.req) {
+ ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
+ if (!ctx->r.req)
+ return -ENOMEM;
+ }
+
+ skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
+
+ /*
+ * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
+ * requests if driver request queue is full.
+ */
+ skcipher_request_set_callback(ctx->r.req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
+
+ return 0;
+}
+
+static int crypt_alloc_req_aead(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ if (!ctx->r.req_aead) {
+ ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
+ if (!ctx->r.req_aead)
+ return -ENOMEM;
+ }
+
+ aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
+
+ /*
+ * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
+ * requests if driver request queue is full.
+ */
+ aead_request_set_callback(ctx->r.req_aead,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
+
+ return 0;
+}
+
+static int crypt_alloc_req(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ if (crypt_integrity_aead(cc))
+ return crypt_alloc_req_aead(cc, ctx);
+ else
+ return crypt_alloc_req_skcipher(cc, ctx);
+}
+
+static void crypt_free_req_skcipher(struct crypt_config *cc,
+ struct skcipher_request *req, struct bio *base_bio)
+{
+ struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
+
+ if ((struct skcipher_request *)(io + 1) != req)
+ mempool_free(req, &cc->req_pool);
+}
+
+static void crypt_free_req_aead(struct crypt_config *cc,
+ struct aead_request *req, struct bio *base_bio)
+{
+ struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
+
+ if ((struct aead_request *)(io + 1) != req)
+ mempool_free(req, &cc->req_pool);
+}
+
+static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
+{
+ if (crypt_integrity_aead(cc))
+ crypt_free_req_aead(cc, req, base_bio);
+ else
+ crypt_free_req_skcipher(cc, req, base_bio);
+}
+
+/*
+ * Encrypt / decrypt data from one bio to another one (can be the same one)
+ */
+static blk_status_t crypt_convert(struct crypt_config *cc,
+ struct convert_context *ctx, bool atomic, bool reset_pending)
+{
+ unsigned int tag_offset = 0;
+ unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
+ int r;
+
+ /*
+ * if reset_pending is set we are dealing with the bio for the first time,
+ * else we're continuing to work on the previous bio, so don't mess with
+ * the cc_pending counter
+ */
+ if (reset_pending)
+ atomic_set(&ctx->cc_pending, 1);
+
+ while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
+
+ r = crypt_alloc_req(cc, ctx);
+ if (r) {
+ complete(&ctx->restart);
+ return BLK_STS_DEV_RESOURCE;
+ }
+
+ atomic_inc(&ctx->cc_pending);
+
+ if (crypt_integrity_aead(cc))
+ r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
+ else
+ r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
+
+ switch (r) {
+ /*
+ * The request was queued by a crypto driver
+ * but the driver request queue is full, let's wait.
+ */
+ case -EBUSY:
+ if (in_interrupt()) {
+ if (try_wait_for_completion(&ctx->restart)) {
+ /*
+ * we don't have to block to wait for completion,
+ * so proceed
+ */
+ } else {
+ /*
+ * we can't wait for completion without blocking
+ * exit and continue processing in a workqueue
+ */
+ ctx->r.req = NULL;
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ return BLK_STS_DEV_RESOURCE;
+ }
+ } else {
+ wait_for_completion(&ctx->restart);
+ }
+ reinit_completion(&ctx->restart);
+ fallthrough;
+ /*
+ * The request is queued and processed asynchronously,
+ * completion function kcryptd_async_done() will be called.
+ */
+ case -EINPROGRESS:
+ ctx->r.req = NULL;
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ continue;
+ /*
+ * The request was already processed (synchronously).
+ */
+ case 0:
+ atomic_dec(&ctx->cc_pending);
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ if (!atomic)
+ cond_resched();
+ continue;
+ /*
+ * There was a data integrity error.
+ */
+ case -EBADMSG:
+ atomic_dec(&ctx->cc_pending);
+ return BLK_STS_PROTECTION;
+ /*
+ * There was an error while processing the request.
+ */
+ default:
+ atomic_dec(&ctx->cc_pending);
+ return BLK_STS_IOERR;
+ }
+ }
+
+ return 0;
+}
+
+static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
+
+/*
+ * Generate a new unfragmented bio with the given size
+ * This should never violate the device limitations (but only because
+ * max_segment_size is being constrained to PAGE_SIZE).
+ *
+ * This function may be called concurrently. If we allocate from the mempool
+ * concurrently, there is a possibility of deadlock. For example, if we have
+ * mempool of 256 pages, two processes, each wanting 256, pages allocate from
+ * the mempool concurrently, it may deadlock in a situation where both processes
+ * have allocated 128 pages and the mempool is exhausted.
+ *
+ * In order to avoid this scenario we allocate the pages under a mutex.
+ *
+ * In order to not degrade performance with excessive locking, we try
+ * non-blocking allocations without a mutex first but on failure we fallback
+ * to blocking allocations with a mutex.
+ */
+static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *clone;
+ unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
+ unsigned int i, len, remaining_size;
+ struct page *page;
+
+retry:
+ if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
+ mutex_lock(&cc->bio_alloc_lock);
+
+ clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
+ GFP_NOIO, &cc->bs);
+ clone->bi_private = io;
+ clone->bi_end_io = crypt_endio;
+
+ remaining_size = size;
+
+ for (i = 0; i < nr_iovecs; i++) {
+ page = mempool_alloc(&cc->page_pool, gfp_mask);
+ if (!page) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ gfp_mask |= __GFP_DIRECT_RECLAIM;
+ goto retry;
+ }
+
+ len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
+
+ bio_add_page(clone, page, len, 0);
+
+ remaining_size -= len;
+ }
+
+ /* Allocate space for integrity tags */
+ if (dm_crypt_integrity_io_alloc(io, clone)) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ clone = NULL;
+ }
+
+ if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
+ mutex_unlock(&cc->bio_alloc_lock);
+
+ return clone;
+}
+
+static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
+{
+ struct bio_vec *bv;
+ struct bvec_iter_all iter_all;
+
+ bio_for_each_segment_all(bv, clone, iter_all) {
+ BUG_ON(!bv->bv_page);
+ mempool_free(bv->bv_page, &cc->page_pool);
+ }
+}
+
+static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
+ struct bio *bio, sector_t sector)
+{
+ io->cc = cc;
+ io->base_bio = bio;
+ io->sector = sector;
+ io->error = 0;
+ io->ctx.r.req = NULL;
+ io->integrity_metadata = NULL;
+ io->integrity_metadata_from_pool = false;
+ io->in_tasklet = false;
+ atomic_set(&io->io_pending, 0);
+}
+
+static void crypt_inc_pending(struct dm_crypt_io *io)
+{
+ atomic_inc(&io->io_pending);
+}
+
+static void kcryptd_io_bio_endio(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ bio_endio(io->base_bio);
+}
+
+/*
+ * One of the bios was finished. Check for completion of
+ * the whole request and correctly clean up the buffer.
+ */
+static void crypt_dec_pending(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *base_bio = io->base_bio;
+ blk_status_t error = io->error;
+
+ if (!atomic_dec_and_test(&io->io_pending))
+ return;
+
+ if (io->ctx.r.req)
+ crypt_free_req(cc, io->ctx.r.req, base_bio);
+
+ if (unlikely(io->integrity_metadata_from_pool))
+ mempool_free(io->integrity_metadata, &io->cc->tag_pool);
+ else
+ kfree(io->integrity_metadata);
+
+ base_bio->bi_status = error;
+
+ /*
+ * If we are running this function from our tasklet,
+ * we can't call bio_endio() here, because it will call
+ * clone_endio() from dm.c, which in turn will
+ * free the current struct dm_crypt_io structure with
+ * our tasklet. In this case we need to delay bio_endio()
+ * execution to after the tasklet is done and dequeued.
+ */
+ if (io->in_tasklet) {
+ INIT_WORK(&io->work, kcryptd_io_bio_endio);
+ queue_work(cc->io_queue, &io->work);
+ return;
+ }
+
+ bio_endio(base_bio);
+}
+
+/*
+ * kcryptd/kcryptd_io:
+ *
+ * Needed because it would be very unwise to do decryption in an
+ * interrupt context.
+ *
+ * kcryptd performs the actual encryption or decryption.
+ *
+ * kcryptd_io performs the IO submission.
+ *
+ * They must be separated as otherwise the final stages could be
+ * starved by new requests which can block in the first stages due
+ * to memory allocation.
+ *
+ * The work is done per CPU global for all dm-crypt instances.
+ * They should not depend on each other and do not block.
+ */
+static void crypt_endio(struct bio *clone)
+{
+ struct dm_crypt_io *io = clone->bi_private;
+ struct crypt_config *cc = io->cc;
+ unsigned int rw = bio_data_dir(clone);
+ blk_status_t error;
+
+ /*
+ * free the processed pages
+ */
+ if (rw == WRITE)
+ crypt_free_buffer_pages(cc, clone);
+
+ error = clone->bi_status;
+ bio_put(clone);
+
+ if (rw == READ && !error) {
+ kcryptd_queue_crypt(io);
+ return;
+ }
+
+ if (unlikely(error))
+ io->error = error;
+
+ crypt_dec_pending(io);
+}
+
+#define CRYPT_MAP_READ_GFP GFP_NOWAIT
+
+static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *clone;
+
+ /*
+ * We need the original biovec array in order to decrypt the whole bio
+ * data *afterwards* -- thanks to immutable biovecs we don't need to
+ * worry about the block layer modifying the biovec array; so leverage
+ * bio_alloc_clone().
+ */
+ clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
+ if (!clone)
+ return 1;
+ clone->bi_private = io;
+ clone->bi_end_io = crypt_endio;
+
+ crypt_inc_pending(io);
+
+ clone->bi_iter.bi_sector = cc->start + io->sector;
+
+ if (dm_crypt_integrity_io_alloc(io, clone)) {
+ crypt_dec_pending(io);
+ bio_put(clone);
+ return 1;
+ }
+
+ dm_submit_bio_remap(io->base_bio, clone);
+ return 0;
+}
+
+static void kcryptd_io_read_work(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+ crypt_inc_pending(io);
+ if (kcryptd_io_read(io, GFP_NOIO))
+ io->error = BLK_STS_RESOURCE;
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_queue_read(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+
+ INIT_WORK(&io->work, kcryptd_io_read_work);
+ queue_work(cc->io_queue, &io->work);
+}
+
+static void kcryptd_io_write(struct dm_crypt_io *io)
+{
+ struct bio *clone = io->ctx.bio_out;
+
+ dm_submit_bio_remap(io->base_bio, clone);
+}
+
+#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
+
+static int dmcrypt_write(void *data)
+{
+ struct crypt_config *cc = data;
+ struct dm_crypt_io *io;
+
+ while (1) {
+ struct rb_root write_tree;
+ struct blk_plug plug;
+
+ spin_lock_irq(&cc->write_thread_lock);
+continue_locked:
+
+ if (!RB_EMPTY_ROOT(&cc->write_tree))
+ goto pop_from_list;
+
+ set_current_state(TASK_INTERRUPTIBLE);
+
+ spin_unlock_irq(&cc->write_thread_lock);
+
+ if (unlikely(kthread_should_stop())) {
+ set_current_state(TASK_RUNNING);
+ break;
+ }
+
+ schedule();
+
+ set_current_state(TASK_RUNNING);
+ spin_lock_irq(&cc->write_thread_lock);
+ goto continue_locked;
+
+pop_from_list:
+ write_tree = cc->write_tree;
+ cc->write_tree = RB_ROOT;
+ spin_unlock_irq(&cc->write_thread_lock);
+
+ BUG_ON(rb_parent(write_tree.rb_node));
+
+ /*
+ * Note: we cannot walk the tree here with rb_next because
+ * the structures may be freed when kcryptd_io_write is called.
+ */
+ blk_start_plug(&plug);
+ do {
+ io = crypt_io_from_node(rb_first(&write_tree));
+ rb_erase(&io->rb_node, &write_tree);
+ kcryptd_io_write(io);
+ cond_resched();
+ } while (!RB_EMPTY_ROOT(&write_tree));
+ blk_finish_plug(&plug);
+ }
+ return 0;
+}
+
+static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
+{
+ struct bio *clone = io->ctx.bio_out;
+ struct crypt_config *cc = io->cc;
+ unsigned long flags;
+ sector_t sector;
+ struct rb_node **rbp, *parent;
+
+ if (unlikely(io->error)) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ crypt_dec_pending(io);
+ return;
+ }
+
+ /* crypt_convert should have filled the clone bio */
+ BUG_ON(io->ctx.iter_out.bi_size);
+
+ clone->bi_iter.bi_sector = cc->start + io->sector;
+
+ if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
+ test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
+ dm_submit_bio_remap(io->base_bio, clone);
+ return;
+ }
+
+ spin_lock_irqsave(&cc->write_thread_lock, flags);
+ if (RB_EMPTY_ROOT(&cc->write_tree))
+ wake_up_process(cc->write_thread);
+ rbp = &cc->write_tree.rb_node;
+ parent = NULL;
+ sector = io->sector;
+ while (*rbp) {
+ parent = *rbp;
+ if (sector < crypt_io_from_node(parent)->sector)
+ rbp = &(*rbp)->rb_left;
+ else
+ rbp = &(*rbp)->rb_right;
+ }
+ rb_link_node(&io->rb_node, parent, rbp);
+ rb_insert_color(&io->rb_node, &cc->write_tree);
+ spin_unlock_irqrestore(&cc->write_thread_lock, flags);
+}
+
+static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
+ struct convert_context *ctx)
+
+{
+ if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
+ return false;
+
+ /*
+ * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
+ * constraints so they do not need to be issued inline by
+ * kcryptd_crypt_write_convert().
+ */
+ switch (bio_op(ctx->bio_in)) {
+ case REQ_OP_WRITE:
+ case REQ_OP_WRITE_ZEROES:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void kcryptd_crypt_write_continue(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ struct crypt_config *cc = io->cc;
+ struct convert_context *ctx = &io->ctx;
+ int crypt_finished;
+ sector_t sector = io->sector;
+ blk_status_t r;
+
+ wait_for_completion(&ctx->restart);
+ reinit_completion(&ctx->restart);
+
+ r = crypt_convert(cc, &io->ctx, true, false);
+ if (r)
+ io->error = r;
+ crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
+ if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
+ /* Wait for completion signaled by kcryptd_async_done() */
+ wait_for_completion(&ctx->restart);
+ crypt_finished = 1;
+ }
+
+ /* Encryption was already finished, submit io now */
+ if (crypt_finished) {
+ kcryptd_crypt_write_io_submit(io, 0);
+ io->sector = sector;
+ }
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ struct convert_context *ctx = &io->ctx;
+ struct bio *clone;
+ int crypt_finished;
+ sector_t sector = io->sector;
+ blk_status_t r;
+
+ /*
+ * Prevent io from disappearing until this function completes.
+ */
+ crypt_inc_pending(io);
+ crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
+
+ clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
+ if (unlikely(!clone)) {
+ io->error = BLK_STS_IOERR;
+ goto dec;
+ }
+
+ io->ctx.bio_out = clone;
+ io->ctx.iter_out = clone->bi_iter;
+
+ sector += bio_sectors(clone);
+
+ crypt_inc_pending(io);
+ r = crypt_convert(cc, ctx,
+ test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
+ /*
+ * Crypto API backlogged the request, because its queue was full
+ * and we're in softirq context, so continue from a workqueue
+ * (TODO: is it actually possible to be in softirq in the write path?)
+ */
+ if (r == BLK_STS_DEV_RESOURCE) {
+ INIT_WORK(&io->work, kcryptd_crypt_write_continue);
+ queue_work(cc->crypt_queue, &io->work);
+ return;
+ }
+ if (r)
+ io->error = r;
+ crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
+ if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
+ /* Wait for completion signaled by kcryptd_async_done() */
+ wait_for_completion(&ctx->restart);
+ crypt_finished = 1;
+ }
+
+ /* Encryption was already finished, submit io now */
+ if (crypt_finished) {
+ kcryptd_crypt_write_io_submit(io, 0);
+ io->sector = sector;
+ }
+
+dec:
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
+{
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_continue(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ struct crypt_config *cc = io->cc;
+ blk_status_t r;
+
+ wait_for_completion(&io->ctx.restart);
+ reinit_completion(&io->ctx.restart);
+
+ r = crypt_convert(cc, &io->ctx, true, false);
+ if (r)
+ io->error = r;
+
+ if (atomic_dec_and_test(&io->ctx.cc_pending))
+ kcryptd_crypt_read_done(io);
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ blk_status_t r;
+
+ crypt_inc_pending(io);
+
+ crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
+ io->sector);
+
+ r = crypt_convert(cc, &io->ctx,
+ test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
+ /*
+ * Crypto API backlogged the request, because its queue was full
+ * and we're in softirq context, so continue from a workqueue
+ */
+ if (r == BLK_STS_DEV_RESOURCE) {
+ INIT_WORK(&io->work, kcryptd_crypt_read_continue);
+ queue_work(cc->crypt_queue, &io->work);
+ return;
+ }
+ if (r)
+ io->error = r;
+
+ if (atomic_dec_and_test(&io->ctx.cc_pending))
+ kcryptd_crypt_read_done(io);
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+ int error)
+{
+ struct dm_crypt_request *dmreq = async_req->data;
+ struct convert_context *ctx = dmreq->ctx;
+ struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
+ struct crypt_config *cc = io->cc;
+
+ /*
+ * A request from crypto driver backlog is going to be processed now,
+ * finish the completion and continue in crypt_convert().
+ * (Callback will be called for the second time for this request.)
+ */
+ if (error == -EINPROGRESS) {
+ complete(&ctx->restart);
+ return;
+ }
+
+ if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
+
+ if (error == -EBADMSG) {
+ sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
+
+ DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
+ ctx->bio_in->bi_bdev, s);
+ dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
+ ctx->bio_in, s, 0);
+ io->error = BLK_STS_PROTECTION;
+ } else if (error < 0)
+ io->error = BLK_STS_IOERR;
+
+ crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
+
+ if (!atomic_dec_and_test(&ctx->cc_pending))
+ return;
+
+ /*
+ * The request is fully completed: for inline writes, let
+ * kcryptd_crypt_write_convert() do the IO submission.
+ */
+ if (bio_data_dir(io->base_bio) == READ) {
+ kcryptd_crypt_read_done(io);
+ return;
+ }
+
+ if (kcryptd_crypt_write_inline(cc, ctx)) {
+ complete(&ctx->restart);
+ return;
+ }
+
+ kcryptd_crypt_write_io_submit(io, 1);
+}
+
+static void kcryptd_crypt(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+ if (bio_data_dir(io->base_bio) == READ)
+ kcryptd_crypt_read_convert(io);
+ else
+ kcryptd_crypt_write_convert(io);
+}
+
+static void kcryptd_crypt_tasklet(unsigned long work)
+{
+ kcryptd_crypt((struct work_struct *)work);
+}
+
+static void kcryptd_queue_crypt(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+
+ if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
+ (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
+ /*
+ * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
+ * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
+ * it is being executed with irqs disabled.
+ */
+ if (in_hardirq() || irqs_disabled()) {
+ io->in_tasklet = true;
+ tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
+ tasklet_schedule(&io->tasklet);
+ return;
+ }
+
+ kcryptd_crypt(&io->work);
+ return;
+ }
+
+ INIT_WORK(&io->work, kcryptd_crypt);
+ queue_work(cc->crypt_queue, &io->work);
+}
+
+static void crypt_free_tfms_aead(struct crypt_config *cc)
+{
+ if (!cc->cipher_tfm.tfms_aead)
+ return;
+
+ if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
+ crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
+ cc->cipher_tfm.tfms_aead[0] = NULL;
+ }
+
+ kfree(cc->cipher_tfm.tfms_aead);
+ cc->cipher_tfm.tfms_aead = NULL;
+}
+
+static void crypt_free_tfms_skcipher(struct crypt_config *cc)
+{
+ unsigned int i;
+
+ if (!cc->cipher_tfm.tfms)
+ return;
+
+ for (i = 0; i < cc->tfms_count; i++)
+ if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
+ crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
+ cc->cipher_tfm.tfms[i] = NULL;
+ }
+
+ kfree(cc->cipher_tfm.tfms);
+ cc->cipher_tfm.tfms = NULL;
+}
+
+static void crypt_free_tfms(struct crypt_config *cc)
+{
+ if (crypt_integrity_aead(cc))
+ crypt_free_tfms_aead(cc);
+ else
+ crypt_free_tfms_skcipher(cc);
+}
+
+static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
+{
+ unsigned int i;
+ int err;
+
+ cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
+ sizeof(struct crypto_skcipher *),
+ GFP_KERNEL);
+ if (!cc->cipher_tfm.tfms)
+ return -ENOMEM;
+
+ for (i = 0; i < cc->tfms_count; i++) {
+ cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(cc->cipher_tfm.tfms[i])) {
+ err = PTR_ERR(cc->cipher_tfm.tfms[i]);
+ crypt_free_tfms(cc);
+ return err;
+ }
+ }
+
+ /*
+ * dm-crypt performance can vary greatly depending on which crypto
+ * algorithm implementation is used. Help people debug performance
+ * problems by logging the ->cra_driver_name.
+ */
+ DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
+ crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
+ return 0;
+}
+
+static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
+{
+ int err;
+
+ cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
+ if (!cc->cipher_tfm.tfms)
+ return -ENOMEM;
+
+ cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
+ err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
+ crypt_free_tfms(cc);
+ return err;
+ }
+
+ DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
+ crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
+ return 0;
+}
+
+static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
+{
+ if (crypt_integrity_aead(cc))
+ return crypt_alloc_tfms_aead(cc, ciphermode);
+ else
+ return crypt_alloc_tfms_skcipher(cc, ciphermode);
+}
+
+static unsigned int crypt_subkey_size(struct crypt_config *cc)
+{
+ return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
+}
+
+static unsigned int crypt_authenckey_size(struct crypt_config *cc)
+{
+ return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
+}
+
+/*
+ * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
+ * the key must be for some reason in special format.
+ * This funcion converts cc->key to this special format.
+ */
+static void crypt_copy_authenckey(char *p, const void *key,
+ unsigned int enckeylen, unsigned int authkeylen)
+{
+ struct crypto_authenc_key_param *param;
+ struct rtattr *rta;
+
+ rta = (struct rtattr *)p;
+ param = RTA_DATA(rta);
+ param->enckeylen = cpu_to_be32(enckeylen);
+ rta->rta_len = RTA_LENGTH(sizeof(*param));
+ rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
+ p += RTA_SPACE(sizeof(*param));
+ memcpy(p, key + enckeylen, authkeylen);
+ p += authkeylen;
+ memcpy(p, key, enckeylen);
+}
+
+static int crypt_setkey(struct crypt_config *cc)
+{
+ unsigned int subkey_size;
+ int err = 0, i, r;
+
+ /* Ignore extra keys (which are used for IV etc) */
+ subkey_size = crypt_subkey_size(cc);
+
+ if (crypt_integrity_hmac(cc)) {
+ if (subkey_size < cc->key_mac_size)
+ return -EINVAL;
+
+ crypt_copy_authenckey(cc->authenc_key, cc->key,
+ subkey_size - cc->key_mac_size,
+ cc->key_mac_size);
+ }
+
+ for (i = 0; i < cc->tfms_count; i++) {
+ if (crypt_integrity_hmac(cc))
+ r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
+ cc->authenc_key, crypt_authenckey_size(cc));
+ else if (crypt_integrity_aead(cc))
+ r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
+ cc->key + (i * subkey_size),
+ subkey_size);
+ else
+ r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
+ cc->key + (i * subkey_size),
+ subkey_size);
+ if (r)
+ err = r;
+ }
+
+ if (crypt_integrity_hmac(cc))
+ memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
+
+ return err;
+}
+
+#ifdef CONFIG_KEYS
+
+static bool contains_whitespace(const char *str)
+{
+ while (*str)
+ if (isspace(*str++))
+ return true;
+ return false;
+}
+
+static int set_key_user(struct crypt_config *cc, struct key *key)
+{
+ const struct user_key_payload *ukp;
+
+ ukp = user_key_payload_locked(key);
+ if (!ukp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != ukp->datalen)
+ return -EINVAL;
+
+ memcpy(cc->key, ukp->data, cc->key_size);
+
+ return 0;
+}
+
+static int set_key_encrypted(struct crypt_config *cc, struct key *key)
+{
+ const struct encrypted_key_payload *ekp;
+
+ ekp = key->payload.data[0];
+ if (!ekp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != ekp->decrypted_datalen)
+ return -EINVAL;
+
+ memcpy(cc->key, ekp->decrypted_data, cc->key_size);
+
+ return 0;
+}
+
+static int set_key_trusted(struct crypt_config *cc, struct key *key)
+{
+ const struct trusted_key_payload *tkp;
+
+ tkp = key->payload.data[0];
+ if (!tkp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != tkp->key_len)
+ return -EINVAL;
+
+ memcpy(cc->key, tkp->key, cc->key_size);
+
+ return 0;
+}
+
+static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
+{
+ char *new_key_string, *key_desc;
+ int ret;
+ struct key_type *type;
+ struct key *key;
+ int (*set_key)(struct crypt_config *cc, struct key *key);
+
+ /*
+ * Reject key_string with whitespace. dm core currently lacks code for
+ * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
+ */
+ if (contains_whitespace(key_string)) {
+ DMERR("whitespace chars not allowed in key string");
+ return -EINVAL;
+ }
+
+ /* look for next ':' separating key_type from key_description */
+ key_desc = strpbrk(key_string, ":");
+ if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
+ return -EINVAL;
+
+ if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
+ type = &key_type_logon;
+ set_key = set_key_user;
+ } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
+ type = &key_type_user;
+ set_key = set_key_user;
+ } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
+ !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
+ type = &key_type_encrypted;
+ set_key = set_key_encrypted;
+ } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
+ !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
+ type = &key_type_trusted;
+ set_key = set_key_trusted;
+ } else {
+ return -EINVAL;
+ }
+
+ new_key_string = kstrdup(key_string, GFP_KERNEL);
+ if (!new_key_string)
+ return -ENOMEM;
+
+ key = request_key(type, key_desc + 1, NULL);
+ if (IS_ERR(key)) {
+ kfree_sensitive(new_key_string);
+ return PTR_ERR(key);
+ }
+
+ down_read(&key->sem);
+
+ ret = set_key(cc, key);
+ if (ret < 0) {
+ up_read(&key->sem);
+ key_put(key);
+ kfree_sensitive(new_key_string);
+ return ret;
+ }
+
+ up_read(&key->sem);
+ key_put(key);
+
+ /* clear the flag since following operations may invalidate previously valid key */
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+ ret = crypt_setkey(cc);
+
+ if (!ret) {
+ set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+ kfree_sensitive(cc->key_string);
+ cc->key_string = new_key_string;
+ } else
+ kfree_sensitive(new_key_string);
+
+ return ret;
+}
+
+static int get_key_size(char **key_string)
+{
+ char *colon, dummy;
+ int ret;
+
+ if (*key_string[0] != ':')
+ return strlen(*key_string) >> 1;
+
+ /* look for next ':' in key string */
+ colon = strpbrk(*key_string + 1, ":");
+ if (!colon)
+ return -EINVAL;
+
+ if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
+ return -EINVAL;
+
+ *key_string = colon;
+
+ /* remaining key string should be :<logon|user>:<key_desc> */
+
+ return ret;
+}
+
+#else
+
+static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
+{
+ return -EINVAL;
+}
+
+static int get_key_size(char **key_string)
+{
+ return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
+}
+
+#endif /* CONFIG_KEYS */
+
+static int crypt_set_key(struct crypt_config *cc, char *key)
+{
+ int r = -EINVAL;
+ int key_string_len = strlen(key);
+
+ /* Hyphen (which gives a key_size of zero) means there is no key. */
+ if (!cc->key_size && strcmp(key, "-"))
+ goto out;
+
+ /* ':' means the key is in kernel keyring, short-circuit normal key processing */
+ if (key[0] == ':') {
+ r = crypt_set_keyring_key(cc, key + 1);
+ goto out;
+ }
+
+ /* clear the flag since following operations may invalidate previously valid key */
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+ /* wipe references to any kernel keyring key */
+ kfree_sensitive(cc->key_string);
+ cc->key_string = NULL;
+
+ /* Decode key from its hex representation. */
+ if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
+ goto out;
+
+ r = crypt_setkey(cc);
+ if (!r)
+ set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+out:
+ /* Hex key string not needed after here, so wipe it. */
+ memset(key, '0', key_string_len);
+
+ return r;
+}
+
+static int crypt_wipe_key(struct crypt_config *cc)
+{
+ int r;
+
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+ get_random_bytes(&cc->key, cc->key_size);
+
+ /* Wipe IV private keys */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
+ r = cc->iv_gen_ops->wipe(cc);
+ if (r)
+ return r;
+ }
+
+ kfree_sensitive(cc->key_string);
+ cc->key_string = NULL;
+ r = crypt_setkey(cc);
+ memset(&cc->key, 0, cc->key_size * sizeof(u8));
+
+ return r;
+}
+
+static void crypt_calculate_pages_per_client(void)
+{
+ unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
+
+ if (!dm_crypt_clients_n)
+ return;
+
+ pages /= dm_crypt_clients_n;
+ if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
+ pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
+ dm_crypt_pages_per_client = pages;
+}
+
+static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
+{
+ struct crypt_config *cc = pool_data;
+ struct page *page;
+
+ /*
+ * Note, percpu_counter_read_positive() may over (and under) estimate
+ * the current usage by at most (batch - 1) * num_online_cpus() pages,
+ * but avoids potential spinlock contention of an exact result.
+ */
+ if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
+ likely(gfp_mask & __GFP_NORETRY))
+ return NULL;
+
+ page = alloc_page(gfp_mask);
+ if (likely(page != NULL))
+ percpu_counter_add(&cc->n_allocated_pages, 1);
+
+ return page;
+}
+
+static void crypt_page_free(void *page, void *pool_data)
+{
+ struct crypt_config *cc = pool_data;
+
+ __free_page(page);
+ percpu_counter_sub(&cc->n_allocated_pages, 1);
+}
+
+static void crypt_dtr(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ ti->private = NULL;
+
+ if (!cc)
+ return;
+
+ if (cc->write_thread)
+ kthread_stop(cc->write_thread);
+
+ if (cc->io_queue)
+ destroy_workqueue(cc->io_queue);
+ if (cc->crypt_queue)
+ destroy_workqueue(cc->crypt_queue);
+
+ crypt_free_tfms(cc);
+
+ bioset_exit(&cc->bs);
+
+ mempool_exit(&cc->page_pool);
+ mempool_exit(&cc->req_pool);
+ mempool_exit(&cc->tag_pool);
+
+ WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
+ percpu_counter_destroy(&cc->n_allocated_pages);
+
+ if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
+ cc->iv_gen_ops->dtr(cc);
+
+ if (cc->dev)
+ dm_put_device(ti, cc->dev);
+
+ kfree_sensitive(cc->cipher_string);
+ kfree_sensitive(cc->key_string);
+ kfree_sensitive(cc->cipher_auth);
+ kfree_sensitive(cc->authenc_key);
+
+ mutex_destroy(&cc->bio_alloc_lock);
+
+ /* Must zero key material before freeing */
+ kfree_sensitive(cc);
+
+ spin_lock(&dm_crypt_clients_lock);
+ WARN_ON(!dm_crypt_clients_n);
+ dm_crypt_clients_n--;
+ crypt_calculate_pages_per_client();
+ spin_unlock(&dm_crypt_clients_lock);
+
+ dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
+}
+
+static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
+{
+ struct crypt_config *cc = ti->private;
+
+ if (crypt_integrity_aead(cc))
+ cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
+ else
+ cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
+
+ if (cc->iv_size)
+ /* at least a 64 bit sector number should fit in our buffer */
+ cc->iv_size = max(cc->iv_size,
+ (unsigned int)(sizeof(u64) / sizeof(u8)));
+ else if (ivmode) {
+ DMWARN("Selected cipher does not support IVs");
+ ivmode = NULL;
+ }
+
+ /* Choose ivmode, see comments at iv code. */
+ if (ivmode == NULL)
+ cc->iv_gen_ops = NULL;
+ else if (strcmp(ivmode, "plain") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain_ops;
+ else if (strcmp(ivmode, "plain64") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain64_ops;
+ else if (strcmp(ivmode, "plain64be") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain64be_ops;
+ else if (strcmp(ivmode, "essiv") == 0)
+ cc->iv_gen_ops = &crypt_iv_essiv_ops;
+ else if (strcmp(ivmode, "benbi") == 0)
+ cc->iv_gen_ops = &crypt_iv_benbi_ops;
+ else if (strcmp(ivmode, "null") == 0)
+ cc->iv_gen_ops = &crypt_iv_null_ops;
+ else if (strcmp(ivmode, "eboiv") == 0)
+ cc->iv_gen_ops = &crypt_iv_eboiv_ops;
+ else if (strcmp(ivmode, "elephant") == 0) {
+ cc->iv_gen_ops = &crypt_iv_elephant_ops;
+ cc->key_parts = 2;
+ cc->key_extra_size = cc->key_size / 2;
+ if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
+ return -EINVAL;
+ set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
+ } else if (strcmp(ivmode, "lmk") == 0) {
+ cc->iv_gen_ops = &crypt_iv_lmk_ops;
+ /*
+ * Version 2 and 3 is recognised according
+ * to length of provided multi-key string.
+ * If present (version 3), last key is used as IV seed.
+ * All keys (including IV seed) are always the same size.
+ */
+ if (cc->key_size % cc->key_parts) {
+ cc->key_parts++;
+ cc->key_extra_size = cc->key_size / cc->key_parts;
+ }
+ } else if (strcmp(ivmode, "tcw") == 0) {
+ cc->iv_gen_ops = &crypt_iv_tcw_ops;
+ cc->key_parts += 2; /* IV + whitening */
+ cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
+ } else if (strcmp(ivmode, "random") == 0) {
+ cc->iv_gen_ops = &crypt_iv_random_ops;
+ /* Need storage space in integrity fields. */
+ cc->integrity_iv_size = cc->iv_size;
+ } else {
+ ti->error = "Invalid IV mode";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Workaround to parse HMAC algorithm from AEAD crypto API spec.
+ * The HMAC is needed to calculate tag size (HMAC digest size).
+ * This should be probably done by crypto-api calls (once available...)
+ */
+static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
+{
+ char *start, *end, *mac_alg = NULL;
+ struct crypto_ahash *mac;
+
+ if (!strstarts(cipher_api, "authenc("))
+ return 0;
+
+ start = strchr(cipher_api, '(');
+ end = strchr(cipher_api, ',');
+ if (!start || !end || ++start > end)
+ return -EINVAL;
+
+ mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
+ if (!mac_alg)
+ return -ENOMEM;
+ strncpy(mac_alg, start, end - start);
+
+ mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
+ kfree(mac_alg);
+
+ if (IS_ERR(mac))
+ return PTR_ERR(mac);
+
+ cc->key_mac_size = crypto_ahash_digestsize(mac);
+ crypto_free_ahash(mac);
+
+ cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
+ if (!cc->authenc_key)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
+ char **ivmode, char **ivopts)
+{
+ struct crypt_config *cc = ti->private;
+ char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
+ int ret = -EINVAL;
+
+ cc->tfms_count = 1;
+
+ /*
+ * New format (capi: prefix)
+ * capi:cipher_api_spec-iv:ivopts
+ */
+ tmp = &cipher_in[strlen("capi:")];
+
+ /* Separate IV options if present, it can contain another '-' in hash name */
+ *ivopts = strrchr(tmp, ':');
+ if (*ivopts) {
+ **ivopts = '\0';
+ (*ivopts)++;
+ }
+ /* Parse IV mode */
+ *ivmode = strrchr(tmp, '-');
+ if (*ivmode) {
+ **ivmode = '\0';
+ (*ivmode)++;
+ }
+ /* The rest is crypto API spec */
+ cipher_api = tmp;
+
+ /* Alloc AEAD, can be used only in new format. */
+ if (crypt_integrity_aead(cc)) {
+ ret = crypt_ctr_auth_cipher(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Invalid AEAD cipher spec";
+ return -ENOMEM;
+ }
+ }
+
+ if (*ivmode && !strcmp(*ivmode, "lmk"))
+ cc->tfms_count = 64;
+
+ if (*ivmode && !strcmp(*ivmode, "essiv")) {
+ if (!*ivopts) {
+ ti->error = "Digest algorithm missing for ESSIV mode";
+ return -EINVAL;
+ }
+ ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
+ cipher_api, *ivopts);
+ if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
+ ti->error = "Cannot allocate cipher string";
+ return -ENOMEM;
+ }
+ cipher_api = buf;
+ }
+
+ cc->key_parts = cc->tfms_count;
+
+ /* Allocate cipher */
+ ret = crypt_alloc_tfms(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Error allocating crypto tfm";
+ return ret;
+ }
+
+ if (crypt_integrity_aead(cc))
+ cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
+ else
+ cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
+
+ return 0;
+}
+
+static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
+ char **ivmode, char **ivopts)
+{
+ struct crypt_config *cc = ti->private;
+ char *tmp, *cipher, *chainmode, *keycount;
+ char *cipher_api = NULL;
+ int ret = -EINVAL;
+ char dummy;
+
+ if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
+ ti->error = "Bad cipher specification";
+ return -EINVAL;
+ }
+
+ /*
+ * Legacy dm-crypt cipher specification
+ * cipher[:keycount]-mode-iv:ivopts
+ */
+ tmp = cipher_in;
+ keycount = strsep(&tmp, "-");
+ cipher = strsep(&keycount, ":");
+
+ if (!keycount)
+ cc->tfms_count = 1;
+ else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
+ !is_power_of_2(cc->tfms_count)) {
+ ti->error = "Bad cipher key count specification";
+ return -EINVAL;
+ }
+ cc->key_parts = cc->tfms_count;
+
+ chainmode = strsep(&tmp, "-");
+ *ivmode = strsep(&tmp, ":");
+ *ivopts = tmp;
+
+ /*
+ * For compatibility with the original dm-crypt mapping format, if
+ * only the cipher name is supplied, use cbc-plain.
+ */
+ if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
+ chainmode = "cbc";
+ *ivmode = "plain";
+ }
+
+ if (strcmp(chainmode, "ecb") && !*ivmode) {
+ ti->error = "IV mechanism required";
+ return -EINVAL;
+ }
+
+ cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
+ if (!cipher_api)
+ goto bad_mem;
+
+ if (*ivmode && !strcmp(*ivmode, "essiv")) {
+ if (!*ivopts) {
+ ti->error = "Digest algorithm missing for ESSIV mode";
+ kfree(cipher_api);
+ return -EINVAL;
+ }
+ ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
+ "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
+ } else {
+ ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
+ "%s(%s)", chainmode, cipher);
+ }
+ if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
+ kfree(cipher_api);
+ goto bad_mem;
+ }
+
+ /* Allocate cipher */
+ ret = crypt_alloc_tfms(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Error allocating crypto tfm";
+ kfree(cipher_api);
+ return ret;
+ }
+ kfree(cipher_api);
+
+ return 0;
+bad_mem:
+ ti->error = "Cannot allocate cipher strings";
+ return -ENOMEM;
+}
+
+static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
+{
+ struct crypt_config *cc = ti->private;
+ char *ivmode = NULL, *ivopts = NULL;
+ int ret;
+
+ cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
+ if (!cc->cipher_string) {
+ ti->error = "Cannot allocate cipher strings";
+ return -ENOMEM;
+ }
+
+ if (strstarts(cipher_in, "capi:"))
+ ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
+ else
+ ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
+ if (ret)
+ return ret;
+
+ /* Initialize IV */
+ ret = crypt_ctr_ivmode(ti, ivmode);
+ if (ret < 0)
+ return ret;
+
+ /* Initialize and set key */
+ ret = crypt_set_key(cc, key);
+ if (ret < 0) {
+ ti->error = "Error decoding and setting key";
+ return ret;
+ }
+
+ /* Allocate IV */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
+ ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
+ if (ret < 0) {
+ ti->error = "Error creating IV";
+ return ret;
+ }
+ }
+
+ /* Initialize IV (set keys for ESSIV etc) */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
+ ret = cc->iv_gen_ops->init(cc);
+ if (ret < 0) {
+ ti->error = "Error initialising IV";
+ return ret;
+ }
+ }
+
+ /* wipe the kernel key payload copy */
+ if (cc->key_string)
+ memset(cc->key, 0, cc->key_size * sizeof(u8));
+
+ return ret;
+}
+
+static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct crypt_config *cc = ti->private;
+ struct dm_arg_set as;
+ static const struct dm_arg _args[] = {
+ {0, 8, "Invalid number of feature args"},
+ };
+ unsigned int opt_params, val;
+ const char *opt_string, *sval;
+ char dummy;
+ int ret;
+
+ /* Optional parameters */
+ as.argc = argc;
+ as.argv = argv;
+
+ ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
+ if (ret)
+ return ret;
+
+ while (opt_params--) {
+ opt_string = dm_shift_arg(&as);
+ if (!opt_string) {
+ ti->error = "Not enough feature arguments";
+ return -EINVAL;
+ }
+
+ if (!strcasecmp(opt_string, "allow_discards"))
+ ti->num_discard_bios = 1;
+
+ else if (!strcasecmp(opt_string, "same_cpu_crypt"))
+ set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
+
+ else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
+ set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
+ else if (!strcasecmp(opt_string, "no_read_workqueue"))
+ set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
+ else if (!strcasecmp(opt_string, "no_write_workqueue"))
+ set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
+ if (val == 0 || val > MAX_TAG_SIZE) {
+ ti->error = "Invalid integrity arguments";
+ return -EINVAL;
+ }
+ cc->on_disk_tag_size = val;
+ sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
+ if (!strcasecmp(sval, "aead")) {
+ set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
+ } else if (strcasecmp(sval, "none")) {
+ ti->error = "Unknown integrity profile";
+ return -EINVAL;
+ }
+
+ cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
+ if (!cc->cipher_auth)
+ return -ENOMEM;
+ } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
+ if (cc->sector_size < (1 << SECTOR_SHIFT) ||
+ cc->sector_size > 4096 ||
+ (cc->sector_size & (cc->sector_size - 1))) {
+ ti->error = "Invalid feature value for sector_size";
+ return -EINVAL;
+ }
+ if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
+ ti->error = "Device size is not multiple of sector_size feature";
+ return -EINVAL;
+ }
+ cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
+ } else if (!strcasecmp(opt_string, "iv_large_sectors"))
+ set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
+ else {
+ ti->error = "Invalid feature arguments";
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int crypt_report_zones(struct dm_target *ti,
+ struct dm_report_zones_args *args, unsigned int nr_zones)
+{
+ struct crypt_config *cc = ti->private;
+
+ return dm_report_zones(cc->dev->bdev, cc->start,
+ cc->start + dm_target_offset(ti, args->next_sector),
+ args, nr_zones);
+}
+#else
+#define crypt_report_zones NULL
+#endif
+
+/*
+ * Construct an encryption mapping:
+ * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
+ */
+static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct crypt_config *cc;
+ const char *devname = dm_table_device_name(ti->table);
+ int key_size;
+ unsigned int align_mask;
+ unsigned long long tmpll;
+ int ret;
+ size_t iv_size_padding, additional_req_size;
+ char dummy;
+
+ if (argc < 5) {
+ ti->error = "Not enough arguments";
+ return -EINVAL;
+ }
+
+ key_size = get_key_size(&argv[1]);
+ if (key_size < 0) {
+ ti->error = "Cannot parse key size";
+ return -EINVAL;
+ }
+
+ cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
+ if (!cc) {
+ ti->error = "Cannot allocate encryption context";
+ return -ENOMEM;
+ }
+ cc->key_size = key_size;
+ cc->sector_size = (1 << SECTOR_SHIFT);
+ cc->sector_shift = 0;
+
+ ti->private = cc;
+
+ spin_lock(&dm_crypt_clients_lock);
+ dm_crypt_clients_n++;
+ crypt_calculate_pages_per_client();
+ spin_unlock(&dm_crypt_clients_lock);
+
+ ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
+ if (ret < 0)
+ goto bad;
+
+ /* Optional parameters need to be read before cipher constructor */
+ if (argc > 5) {
+ ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
+ if (ret)
+ goto bad;
+ }
+
+ ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
+ if (ret < 0)
+ goto bad;
+
+ if (crypt_integrity_aead(cc)) {
+ cc->dmreq_start = sizeof(struct aead_request);
+ cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
+ align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
+ } else {
+ cc->dmreq_start = sizeof(struct skcipher_request);
+ cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
+ align_mask = crypto_skcipher_alignmask(any_tfm(cc));
+ }
+ cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
+
+ if (align_mask < CRYPTO_MINALIGN) {
+ /* Allocate the padding exactly */
+ iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
+ & align_mask;
+ } else {
+ /*
+ * If the cipher requires greater alignment than kmalloc
+ * alignment, we don't know the exact position of the
+ * initialization vector. We must assume worst case.
+ */
+ iv_size_padding = align_mask;
+ }
+
+ /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
+ additional_req_size = sizeof(struct dm_crypt_request) +
+ iv_size_padding + cc->iv_size +
+ cc->iv_size +
+ sizeof(uint64_t) +
+ sizeof(unsigned int);
+
+ ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
+ if (ret) {
+ ti->error = "Cannot allocate crypt request mempool";
+ goto bad;
+ }
+
+ cc->per_bio_data_size = ti->per_io_data_size =
+ ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
+ ARCH_KMALLOC_MINALIGN);
+
+ ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
+ if (ret) {
+ ti->error = "Cannot allocate page mempool";
+ goto bad;
+ }
+
+ ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
+ if (ret) {
+ ti->error = "Cannot allocate crypt bioset";
+ goto bad;
+ }
+
+ mutex_init(&cc->bio_alloc_lock);
+
+ ret = -EINVAL;
+ if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
+ (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
+ ti->error = "Invalid iv_offset sector";
+ goto bad;
+ }
+ cc->iv_offset = tmpll;
+
+ ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
+ if (ret) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ ret = -EINVAL;
+ if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
+ ti->error = "Invalid device sector";
+ goto bad;
+ }
+ cc->start = tmpll;
+
+ if (bdev_is_zoned(cc->dev->bdev)) {
+ /*
+ * For zoned block devices, we need to preserve the issuer write
+ * ordering. To do so, disable write workqueues and force inline
+ * encryption completion.
+ */
+ set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
+
+ /*
+ * All zone append writes to a zone of a zoned block device will
+ * have the same BIO sector, the start of the zone. When the
+ * cypher IV mode uses sector values, all data targeting a
+ * zone will be encrypted using the first sector numbers of the
+ * zone. This will not result in write errors but will
+ * cause most reads to fail as reads will use the sector values
+ * for the actual data locations, resulting in IV mismatch.
+ * To avoid this problem, ask DM core to emulate zone append
+ * operations with regular writes.
+ */
+ DMDEBUG("Zone append operations will be emulated");
+ ti->emulate_zone_append = true;
+ }
+
+ if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
+ ret = crypt_integrity_ctr(cc, ti);
+ if (ret)
+ goto bad;
+
+ cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
+ if (!cc->tag_pool_max_sectors)
+ cc->tag_pool_max_sectors = 1;
+
+ ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
+ cc->tag_pool_max_sectors * cc->on_disk_tag_size);
+ if (ret) {
+ ti->error = "Cannot allocate integrity tags mempool";
+ goto bad;
+ }
+
+ cc->tag_pool_max_sectors <<= cc->sector_shift;
+ }
+
+ ret = -ENOMEM;
+ cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
+ if (!cc->io_queue) {
+ ti->error = "Couldn't create kcryptd io queue";
+ goto bad;
+ }
+
+ if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
+ cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
+ 1, devname);
+ else
+ cc->crypt_queue = alloc_workqueue("kcryptd/%s",
+ WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
+ num_online_cpus(), devname);
+ if (!cc->crypt_queue) {
+ ti->error = "Couldn't create kcryptd queue";
+ goto bad;
+ }
+
+ spin_lock_init(&cc->write_thread_lock);
+ cc->write_tree = RB_ROOT;
+
+ cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
+ if (IS_ERR(cc->write_thread)) {
+ ret = PTR_ERR(cc->write_thread);
+ cc->write_thread = NULL;
+ ti->error = "Couldn't spawn write thread";
+ goto bad;
+ }
+
+ ti->num_flush_bios = 1;
+ ti->limit_swap_bios = true;
+ ti->accounts_remapped_io = true;
+
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
+ return 0;
+
+bad:
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
+ crypt_dtr(ti);
+ return ret;
+}
+
+static int crypt_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_crypt_io *io;
+ struct crypt_config *cc = ti->private;
+
+ /*
+ * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
+ * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
+ * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
+ */
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
+ bio_op(bio) == REQ_OP_DISCARD)) {
+ bio_set_dev(bio, cc->dev->bdev);
+ if (bio_sectors(bio))
+ bio->bi_iter.bi_sector = cc->start +
+ dm_target_offset(ti, bio->bi_iter.bi_sector);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ /*
+ * Check if bio is too large, split as needed.
+ */
+ if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
+ (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
+ dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
+
+ /*
+ * Ensure that bio is a multiple of internal sector encryption size
+ * and is aligned to this size as defined in IO hints.
+ */
+ if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
+ return DM_MAPIO_KILL;
+
+ if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
+ return DM_MAPIO_KILL;
+
+ io = dm_per_bio_data(bio, cc->per_bio_data_size);
+ crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
+
+ if (cc->on_disk_tag_size) {
+ unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
+
+ if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
+ unlikely(!(io->integrity_metadata = kmalloc(tag_len,
+ GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
+ if (bio_sectors(bio) > cc->tag_pool_max_sectors)
+ dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
+ io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
+ io->integrity_metadata_from_pool = true;
+ }
+ }
+
+ if (crypt_integrity_aead(cc))
+ io->ctx.r.req_aead = (struct aead_request *)(io + 1);
+ else
+ io->ctx.r.req = (struct skcipher_request *)(io + 1);
+
+ if (bio_data_dir(io->base_bio) == READ) {
+ if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
+ kcryptd_queue_read(io);
+ } else
+ kcryptd_queue_crypt(io);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+static char hex2asc(unsigned char c)
+{
+ return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
+}
+
+static void crypt_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct crypt_config *cc = ti->private;
+ unsigned int i, sz = 0;
+ int num_feature_args = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s ", cc->cipher_string);
+
+ if (cc->key_size > 0) {
+ if (cc->key_string)
+ DMEMIT(":%u:%s", cc->key_size, cc->key_string);
+ else {
+ for (i = 0; i < cc->key_size; i++) {
+ DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
+ hex2asc(cc->key[i] & 0xf));
+ }
+ }
+ } else
+ DMEMIT("-");
+
+ DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
+ cc->dev->name, (unsigned long long)cc->start);
+
+ num_feature_args += !!ti->num_discard_bios;
+ num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
+ num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
+ if (cc->on_disk_tag_size)
+ num_feature_args++;
+ if (num_feature_args) {
+ DMEMIT(" %d", num_feature_args);
+ if (ti->num_discard_bios)
+ DMEMIT(" allow_discards");
+ if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
+ DMEMIT(" same_cpu_crypt");
+ if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
+ DMEMIT(" submit_from_crypt_cpus");
+ if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
+ DMEMIT(" no_read_workqueue");
+ if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
+ DMEMIT(" no_write_workqueue");
+ if (cc->on_disk_tag_size)
+ DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
+ if (cc->sector_size != (1 << SECTOR_SHIFT))
+ DMEMIT(" sector_size:%d", cc->sector_size);
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ DMEMIT(" iv_large_sectors");
+ }
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
+ DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
+ DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
+ 'y' : 'n');
+
+ if (cc->on_disk_tag_size)
+ DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
+ cc->on_disk_tag_size, cc->cipher_auth);
+ if (cc->sector_size != (1 << SECTOR_SHIFT))
+ DMEMIT(",sector_size=%d", cc->sector_size);
+ if (cc->cipher_string)
+ DMEMIT(",cipher_string=%s", cc->cipher_string);
+
+ DMEMIT(",key_size=%u", cc->key_size);
+ DMEMIT(",key_parts=%u", cc->key_parts);
+ DMEMIT(",key_extra_size=%u", cc->key_extra_size);
+ DMEMIT(",key_mac_size=%u", cc->key_mac_size);
+ DMEMIT(";");
+ break;
+ }
+}
+
+static void crypt_postsuspend(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+static int crypt_preresume(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
+ DMERR("aborting resume - crypt key is not set.");
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static void crypt_resume(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+/* Message interface
+ * key set <key>
+ * key wipe
+ */
+static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct crypt_config *cc = ti->private;
+ int key_size, ret = -EINVAL;
+
+ if (argc < 2)
+ goto error;
+
+ if (!strcasecmp(argv[0], "key")) {
+ if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
+ DMWARN("not suspended during key manipulation.");
+ return -EINVAL;
+ }
+ if (argc == 3 && !strcasecmp(argv[1], "set")) {
+ /* The key size may not be changed. */
+ key_size = get_key_size(&argv[2]);
+ if (key_size < 0 || cc->key_size != key_size) {
+ memset(argv[2], '0', strlen(argv[2]));
+ return -EINVAL;
+ }
+
+ ret = crypt_set_key(cc, argv[2]);
+ if (ret)
+ return ret;
+ if (cc->iv_gen_ops && cc->iv_gen_ops->init)
+ ret = cc->iv_gen_ops->init(cc);
+ /* wipe the kernel key payload copy */
+ if (cc->key_string)
+ memset(cc->key, 0, cc->key_size * sizeof(u8));
+ return ret;
+ }
+ if (argc == 2 && !strcasecmp(argv[1], "wipe"))
+ return crypt_wipe_key(cc);
+ }
+
+error:
+ DMWARN("unrecognised message received.");
+ return -EINVAL;
+}
+
+static int crypt_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct crypt_config *cc = ti->private;
+
+ return fn(ti, cc->dev, cc->start, ti->len, data);
+}
+
+static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct crypt_config *cc = ti->private;
+
+ /*
+ * Unfortunate constraint that is required to avoid the potential
+ * for exceeding underlying device's max_segments limits -- due to
+ * crypt_alloc_buffer() possibly allocating pages for the encryption
+ * bio that are not as physically contiguous as the original bio.
+ */
+ limits->max_segment_size = PAGE_SIZE;
+
+ limits->logical_block_size =
+ max_t(unsigned int, limits->logical_block_size, cc->sector_size);
+ limits->physical_block_size =
+ max_t(unsigned int, limits->physical_block_size, cc->sector_size);
+ limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
+ limits->dma_alignment = limits->logical_block_size - 1;
+}
+
+static struct target_type crypt_target = {
+ .name = "crypt",
+ .version = {1, 24, 0},
+ .module = THIS_MODULE,
+ .ctr = crypt_ctr,
+ .dtr = crypt_dtr,
+ .features = DM_TARGET_ZONED_HM,
+ .report_zones = crypt_report_zones,
+ .map = crypt_map,
+ .status = crypt_status,
+ .postsuspend = crypt_postsuspend,
+ .preresume = crypt_preresume,
+ .resume = crypt_resume,
+ .message = crypt_message,
+ .iterate_devices = crypt_iterate_devices,
+ .io_hints = crypt_io_hints,
+};
+
+static int __init dm_crypt_init(void)
+{
+ int r;
+
+ r = dm_register_target(&crypt_target);
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_crypt_exit(void)
+{
+ dm_unregister_target(&crypt_target);
+}
+
+module_init(dm_crypt_init);
+module_exit(dm_crypt_exit);
+
+MODULE_AUTHOR("Jana Saout <jana@saout.de>");
+MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
+MODULE_LICENSE("GPL");