summaryrefslogtreecommitdiffstats
path: root/kernel/time
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/time_test.c2
-rw-r--r--kernel/time/timekeeping.c24
-rw-r--r--kernel/time/timer.c164
3 files changed, 110 insertions, 80 deletions
diff --git a/kernel/time/time_test.c b/kernel/time/time_test.c
index 831e8e779..f7c3de011 100644
--- a/kernel/time/time_test.c
+++ b/kernel/time/time_test.c
@@ -73,7 +73,7 @@ static void time64_to_tm_test_date_range(struct kunit *test)
days = div_s64(secs, 86400);
- #define FAIL_MSG "%05ld/%02d/%02d (%2d) : %ld", \
+ #define FAIL_MSG "%05ld/%02d/%02d (%2d) : %lld", \
year, month, mdday, yday, days
KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 221c8c404..b158cbef4 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -1180,13 +1180,15 @@ static int adjust_historical_crosststamp(struct system_time_snapshot *history,
}
/*
- * cycle_between - true if test occurs chronologically between before and after
+ * timestamp_in_interval - true if ts is chronologically in [start, end]
+ *
+ * True if ts occurs chronologically at or after start, and before or at end.
*/
-static bool cycle_between(u64 before, u64 test, u64 after)
+static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
{
- if (test > before && test < after)
+ if (ts >= start && ts <= end)
return true;
- if (test < before && before > after)
+ if (start > end && (ts >= start || ts <= end))
return true;
return false;
}
@@ -1246,7 +1248,7 @@ int get_device_system_crosststamp(int (*get_time_fn)
*/
now = tk_clock_read(&tk->tkr_mono);
interval_start = tk->tkr_mono.cycle_last;
- if (!cycle_between(interval_start, cycles, now)) {
+ if (!timestamp_in_interval(interval_start, now, cycles)) {
clock_was_set_seq = tk->clock_was_set_seq;
cs_was_changed_seq = tk->cs_was_changed_seq;
cycles = interval_start;
@@ -1259,10 +1261,8 @@ int get_device_system_crosststamp(int (*get_time_fn)
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
- nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
- system_counterval.cycles);
- nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
- system_counterval.cycles);
+ nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
+ nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
} while (read_seqcount_retry(&tk_core.seq, seq));
xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
@@ -1277,13 +1277,13 @@ int get_device_system_crosststamp(int (*get_time_fn)
bool discontinuity;
/*
- * Check that the counter value occurs after the provided
+ * Check that the counter value is not before the provided
* history reference and that the history doesn't cross a
* clocksource change
*/
if (!history_begin ||
- !cycle_between(history_begin->cycles,
- system_counterval.cycles, cycles) ||
+ !timestamp_in_interval(history_begin->cycles,
+ cycles, system_counterval.cycles) ||
history_begin->cs_was_changed_seq != cs_was_changed_seq)
return -EINVAL;
partial_history_cycles = cycles - system_counterval.cycles;
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 717fcb9fb..594698974 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -1083,7 +1083,7 @@ __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int option
/*
* We are trying to schedule the timer on the new base.
* However we can't change timer's base while it is running,
- * otherwise del_timer_sync() can't detect that the timer's
+ * otherwise timer_delete_sync() can't detect that the timer's
* handler yet has not finished. This also guarantees that the
* timer is serialized wrt itself.
*/
@@ -1121,14 +1121,16 @@ out_unlock:
}
/**
- * mod_timer_pending - modify a pending timer's timeout
- * @timer: the pending timer to be modified
- * @expires: new timeout in jiffies
+ * mod_timer_pending - Modify a pending timer's timeout
+ * @timer: The pending timer to be modified
+ * @expires: New absolute timeout in jiffies
*
- * mod_timer_pending() is the same for pending timers as mod_timer(),
- * but will not re-activate and modify already deleted timers.
+ * mod_timer_pending() is the same for pending timers as mod_timer(), but
+ * will not activate inactive timers.
*
- * It is useful for unserialized use of timers.
+ * Return:
+ * * %0 - The timer was inactive and not modified
+ * * %1 - The timer was active and requeued to expire at @expires
*/
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
{
@@ -1137,24 +1139,27 @@ int mod_timer_pending(struct timer_list *timer, unsigned long expires)
EXPORT_SYMBOL(mod_timer_pending);
/**
- * mod_timer - modify a timer's timeout
- * @timer: the timer to be modified
- * @expires: new timeout in jiffies
- *
- * mod_timer() is a more efficient way to update the expire field of an
- * active timer (if the timer is inactive it will be activated)
+ * mod_timer - Modify a timer's timeout
+ * @timer: The timer to be modified
+ * @expires: New absolute timeout in jiffies
*
* mod_timer(timer, expires) is equivalent to:
*
* del_timer(timer); timer->expires = expires; add_timer(timer);
*
+ * mod_timer() is more efficient than the above open coded sequence. In
+ * case that the timer is inactive, the del_timer() part is a NOP. The
+ * timer is in any case activated with the new expiry time @expires.
+ *
* Note that if there are multiple unserialized concurrent users of the
* same timer, then mod_timer() is the only safe way to modify the timeout,
* since add_timer() cannot modify an already running timer.
*
- * The function returns whether it has modified a pending timer or not.
- * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
- * active timer returns 1.)
+ * Return:
+ * * %0 - The timer was inactive and started
+ * * %1 - The timer was active and requeued to expire at @expires or
+ * the timer was active and not modified because @expires did
+ * not change the effective expiry time
*/
int mod_timer(struct timer_list *timer, unsigned long expires)
{
@@ -1165,11 +1170,18 @@ EXPORT_SYMBOL(mod_timer);
/**
* timer_reduce - Modify a timer's timeout if it would reduce the timeout
* @timer: The timer to be modified
- * @expires: New timeout in jiffies
+ * @expires: New absolute timeout in jiffies
*
* timer_reduce() is very similar to mod_timer(), except that it will only
- * modify a running timer if that would reduce the expiration time (it will
- * start a timer that isn't running).
+ * modify an enqueued timer if that would reduce the expiration time. If
+ * @timer is not enqueued it starts the timer.
+ *
+ * Return:
+ * * %0 - The timer was inactive and started
+ * * %1 - The timer was active and requeued to expire at @expires or
+ * the timer was active and not modified because @expires
+ * did not change the effective expiry time such that the
+ * timer would expire earlier than already scheduled
*/
int timer_reduce(struct timer_list *timer, unsigned long expires)
{
@@ -1178,18 +1190,21 @@ int timer_reduce(struct timer_list *timer, unsigned long expires)
EXPORT_SYMBOL(timer_reduce);
/**
- * add_timer - start a timer
- * @timer: the timer to be added
+ * add_timer - Start a timer
+ * @timer: The timer to be started
*
- * The kernel will do a ->function(@timer) callback from the
- * timer interrupt at the ->expires point in the future. The
- * current time is 'jiffies'.
+ * Start @timer to expire at @timer->expires in the future. @timer->expires
+ * is the absolute expiry time measured in 'jiffies'. When the timer expires
+ * timer->function(timer) will be invoked from soft interrupt context.
*
- * The timer's ->expires, ->function fields must be set prior calling this
- * function.
+ * The @timer->expires and @timer->function fields must be set prior
+ * to calling this function.
*
- * Timers with an ->expires field in the past will be executed in the next
- * timer tick.
+ * If @timer->expires is already in the past @timer will be queued to
+ * expire at the next timer tick.
+ *
+ * This can only operate on an inactive timer. Attempts to invoke this on
+ * an active timer are rejected with a warning.
*/
void add_timer(struct timer_list *timer)
{
@@ -1199,11 +1214,13 @@ void add_timer(struct timer_list *timer)
EXPORT_SYMBOL(add_timer);
/**
- * add_timer_on - start a timer on a particular CPU
- * @timer: the timer to be added
- * @cpu: the CPU to start it on
+ * add_timer_on - Start a timer on a particular CPU
+ * @timer: The timer to be started
+ * @cpu: The CPU to start it on
+ *
+ * Same as add_timer() except that it starts the timer on the given CPU.
*
- * This is not very scalable on SMP. Double adds are not possible.
+ * See add_timer() for further details.
*/
void add_timer_on(struct timer_list *timer, int cpu)
{
@@ -1238,15 +1255,18 @@ void add_timer_on(struct timer_list *timer, int cpu)
EXPORT_SYMBOL_GPL(add_timer_on);
/**
- * del_timer - deactivate a timer.
- * @timer: the timer to be deactivated
- *
- * del_timer() deactivates a timer - this works on both active and inactive
- * timers.
- *
- * The function returns whether it has deactivated a pending timer or not.
- * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
- * active timer returns 1.)
+ * del_timer - Deactivate a timer.
+ * @timer: The timer to be deactivated
+ *
+ * The function only deactivates a pending timer, but contrary to
+ * timer_delete_sync() it does not take into account whether the timer's
+ * callback function is concurrently executed on a different CPU or not.
+ * It neither prevents rearming of the timer. If @timer can be rearmed
+ * concurrently then the return value of this function is meaningless.
+ *
+ * Return:
+ * * %0 - The timer was not pending
+ * * %1 - The timer was pending and deactivated
*/
int del_timer(struct timer_list *timer)
{
@@ -1268,10 +1288,19 @@ EXPORT_SYMBOL(del_timer);
/**
* try_to_del_timer_sync - Try to deactivate a timer
- * @timer: timer to delete
+ * @timer: Timer to deactivate
+ *
+ * This function tries to deactivate a timer. On success the timer is not
+ * queued and the timer callback function is not running on any CPU.
+ *
+ * This function does not guarantee that the timer cannot be rearmed right
+ * after dropping the base lock. That needs to be prevented by the calling
+ * code if necessary.
*
- * This function tries to deactivate a timer. Upon successful (ret >= 0)
- * exit the timer is not queued and the handler is not running on any CPU.
+ * Return:
+ * * %0 - The timer was not pending
+ * * %1 - The timer was pending and deactivated
+ * * %-1 - The timer callback function is running on a different CPU
*/
int try_to_del_timer_sync(struct timer_list *timer)
{
@@ -1365,25 +1394,20 @@ static inline void timer_sync_wait_running(struct timer_base *base) { }
static inline void del_timer_wait_running(struct timer_list *timer) { }
#endif
-#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
/**
- * del_timer_sync - deactivate a timer and wait for the handler to finish.
- * @timer: the timer to be deactivated
- *
- * This function only differs from del_timer() on SMP: besides deactivating
- * the timer it also makes sure the handler has finished executing on other
- * CPUs.
+ * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
+ * @timer: The timer to be deactivated
*
* Synchronization rules: Callers must prevent restarting of the timer,
* otherwise this function is meaningless. It must not be called from
* interrupt contexts unless the timer is an irqsafe one. The caller must
- * not hold locks which would prevent completion of the timer's
- * handler. The timer's handler must not call add_timer_on(). Upon exit the
- * timer is not queued and the handler is not running on any CPU.
+ * not hold locks which would prevent completion of the timer's callback
+ * function. The timer's handler must not call add_timer_on(). Upon exit
+ * the timer is not queued and the handler is not running on any CPU.
*
- * Note: For !irqsafe timers, you must not hold locks that are held in
- * interrupt context while calling this function. Even if the lock has
- * nothing to do with the timer in question. Here's why::
+ * For !irqsafe timers, the caller must not hold locks that are held in
+ * interrupt context. Even if the lock has nothing to do with the timer in
+ * question. Here's why::
*
* CPU0 CPU1
* ---- ----
@@ -1393,16 +1417,23 @@ static inline void del_timer_wait_running(struct timer_list *timer) { }
* spin_lock_irq(somelock);
* <IRQ>
* spin_lock(somelock);
- * del_timer_sync(mytimer);
+ * timer_delete_sync(mytimer);
* while (base->running_timer == mytimer);
*
- * Now del_timer_sync() will never return and never release somelock.
- * The interrupt on the other CPU is waiting to grab somelock but
- * it has interrupted the softirq that CPU0 is waiting to finish.
+ * Now timer_delete_sync() will never return and never release somelock.
+ * The interrupt on the other CPU is waiting to grab somelock but it has
+ * interrupted the softirq that CPU0 is waiting to finish.
+ *
+ * This function cannot guarantee that the timer is not rearmed again by
+ * some concurrent or preempting code, right after it dropped the base
+ * lock. If there is the possibility of a concurrent rearm then the return
+ * value of the function is meaningless.
*
- * The function returns whether it has deactivated a pending timer or not.
+ * Return:
+ * * %0 - The timer was not pending
+ * * %1 - The timer was pending and deactivated
*/
-int del_timer_sync(struct timer_list *timer)
+int timer_delete_sync(struct timer_list *timer)
{
int ret;
@@ -1442,8 +1473,7 @@ int del_timer_sync(struct timer_list *timer)
return ret;
}
-EXPORT_SYMBOL(del_timer_sync);
-#endif
+EXPORT_SYMBOL(timer_delete_sync);
static void call_timer_fn(struct timer_list *timer,
void (*fn)(struct timer_list *),
@@ -1465,8 +1495,8 @@ static void call_timer_fn(struct timer_list *timer,
#endif
/*
* Couple the lock chain with the lock chain at
- * del_timer_sync() by acquiring the lock_map around the fn()
- * call here and in del_timer_sync().
+ * timer_delete_sync() by acquiring the lock_map around the fn()
+ * call here and in timer_delete_sync().
*/
lock_map_acquire(&lockdep_map);