summaryrefslogtreecommitdiffstats
path: root/rust/alloc/slice.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/alloc/slice.rs')
-rw-r--r--rust/alloc/slice.rs1204
1 files changed, 1204 insertions, 0 deletions
diff --git a/rust/alloc/slice.rs b/rust/alloc/slice.rs
new file mode 100644
index 000000000..e444e97fa
--- /dev/null
+++ b/rust/alloc/slice.rs
@@ -0,0 +1,1204 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! A dynamically-sized view into a contiguous sequence, `[T]`.
+//!
+//! *[See also the slice primitive type](slice).*
+//!
+//! Slices are a view into a block of memory represented as a pointer and a
+//! length.
+//!
+//! ```
+//! // slicing a Vec
+//! let vec = vec![1, 2, 3];
+//! let int_slice = &vec[..];
+//! // coercing an array to a slice
+//! let str_slice: &[&str] = &["one", "two", "three"];
+//! ```
+//!
+//! Slices are either mutable or shared. The shared slice type is `&[T]`,
+//! while the mutable slice type is `&mut [T]`, where `T` represents the element
+//! type. For example, you can mutate the block of memory that a mutable slice
+//! points to:
+//!
+//! ```
+//! let x = &mut [1, 2, 3];
+//! x[1] = 7;
+//! assert_eq!(x, &[1, 7, 3]);
+//! ```
+//!
+//! Here are some of the things this module contains:
+//!
+//! ## Structs
+//!
+//! There are several structs that are useful for slices, such as [`Iter`], which
+//! represents iteration over a slice.
+//!
+//! ## Trait Implementations
+//!
+//! There are several implementations of common traits for slices. Some examples
+//! include:
+//!
+//! * [`Clone`]
+//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
+//! * [`Hash`] - for slices whose element type is [`Hash`].
+//!
+//! ## Iteration
+//!
+//! The slices implement `IntoIterator`. The iterator yields references to the
+//! slice elements.
+//!
+//! ```
+//! let numbers = &[0, 1, 2];
+//! for n in numbers {
+//! println!("{n} is a number!");
+//! }
+//! ```
+//!
+//! The mutable slice yields mutable references to the elements:
+//!
+//! ```
+//! let mut scores = [7, 8, 9];
+//! for score in &mut scores[..] {
+//! *score += 1;
+//! }
+//! ```
+//!
+//! This iterator yields mutable references to the slice's elements, so while
+//! the element type of the slice is `i32`, the element type of the iterator is
+//! `&mut i32`.
+//!
+//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
+//! iterators.
+//! * Further methods that return iterators are [`.split`], [`.splitn`],
+//! [`.chunks`], [`.windows`] and more.
+//!
+//! [`Hash`]: core::hash::Hash
+//! [`.iter`]: slice::iter
+//! [`.iter_mut`]: slice::iter_mut
+//! [`.split`]: slice::split
+//! [`.splitn`]: slice::splitn
+//! [`.chunks`]: slice::chunks
+//! [`.windows`]: slice::windows
+#![stable(feature = "rust1", since = "1.0.0")]
+// Many of the usings in this module are only used in the test configuration.
+// It's cleaner to just turn off the unused_imports warning than to fix them.
+#![cfg_attr(test, allow(unused_imports, dead_code))]
+
+use core::borrow::{Borrow, BorrowMut};
+#[cfg(not(no_global_oom_handling))]
+use core::cmp::Ordering::{self, Less};
+#[cfg(not(no_global_oom_handling))]
+use core::mem;
+#[cfg(not(no_global_oom_handling))]
+use core::mem::size_of;
+#[cfg(not(no_global_oom_handling))]
+use core::ptr;
+
+use crate::alloc::Allocator;
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::Global;
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::ToOwned;
+use crate::boxed::Box;
+use crate::vec::Vec;
+
+#[unstable(feature = "slice_range", issue = "76393")]
+pub use core::slice::range;
+#[unstable(feature = "array_chunks", issue = "74985")]
+pub use core::slice::ArrayChunks;
+#[unstable(feature = "array_chunks", issue = "74985")]
+pub use core::slice::ArrayChunksMut;
+#[unstable(feature = "array_windows", issue = "75027")]
+pub use core::slice::ArrayWindows;
+#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
+pub use core::slice::EscapeAscii;
+#[stable(feature = "slice_get_slice", since = "1.28.0")]
+pub use core::slice::SliceIndex;
+#[stable(feature = "from_ref", since = "1.28.0")]
+pub use core::slice::{from_mut, from_ref};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{from_raw_parts, from_raw_parts_mut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Chunks, Windows};
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+pub use core::slice::{ChunksExact, ChunksExactMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{ChunksMut, Split, SplitMut};
+#[unstable(feature = "slice_group_by", issue = "80552")]
+pub use core::slice::{GroupBy, GroupByMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Iter, IterMut};
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+pub use core::slice::{RSplit, RSplitMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
+#[stable(feature = "split_inclusive", since = "1.51.0")]
+pub use core::slice::{SplitInclusive, SplitInclusiveMut};
+
+////////////////////////////////////////////////////////////////////////////////
+// Basic slice extension methods
+////////////////////////////////////////////////////////////////////////////////
+
+// HACK(japaric) needed for the implementation of `vec!` macro during testing
+// N.B., see the `hack` module in this file for more details.
+#[cfg(test)]
+pub use hack::into_vec;
+
+// HACK(japaric) needed for the implementation of `Vec::clone` during testing
+// N.B., see the `hack` module in this file for more details.
+#[cfg(test)]
+pub use hack::to_vec;
+
+// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
+// functions are actually methods that are in `impl [T]` but not in
+// `core::slice::SliceExt` - we need to supply these functions for the
+// `test_permutations` test
+pub(crate) mod hack {
+ use core::alloc::Allocator;
+
+ use crate::boxed::Box;
+ use crate::vec::Vec;
+
+ // We shouldn't add inline attribute to this since this is used in
+ // `vec!` macro mostly and causes perf regression. See #71204 for
+ // discussion and perf results.
+ pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
+ unsafe {
+ let len = b.len();
+ let (b, alloc) = Box::into_raw_with_allocator(b);
+ Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
+ T::to_vec(s, alloc)
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ pub trait ConvertVec {
+ fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
+ where
+ Self: Sized;
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ impl<T: Clone> ConvertVec for T {
+ #[inline]
+ default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
+ struct DropGuard<'a, T, A: Allocator> {
+ vec: &'a mut Vec<T, A>,
+ num_init: usize,
+ }
+ impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY:
+ // items were marked initialized in the loop below
+ unsafe {
+ self.vec.set_len(self.num_init);
+ }
+ }
+ }
+ let mut vec = Vec::with_capacity_in(s.len(), alloc);
+ let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
+ let slots = guard.vec.spare_capacity_mut();
+ // .take(slots.len()) is necessary for LLVM to remove bounds checks
+ // and has better codegen than zip.
+ for (i, b) in s.iter().enumerate().take(slots.len()) {
+ guard.num_init = i;
+ slots[i].write(b.clone());
+ }
+ core::mem::forget(guard);
+ // SAFETY:
+ // the vec was allocated and initialized above to at least this length.
+ unsafe {
+ vec.set_len(s.len());
+ }
+ vec
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ impl<T: Copy> ConvertVec for T {
+ #[inline]
+ fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
+ let mut v = Vec::with_capacity_in(s.len(), alloc);
+ // SAFETY:
+ // allocated above with the capacity of `s`, and initialize to `s.len()` in
+ // ptr::copy_to_non_overlapping below.
+ unsafe {
+ s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
+ v.set_len(s.len());
+ }
+ v
+ }
+ }
+}
+
+#[cfg(not(test))]
+impl<T> [T] {
+ /// Sorts the slice.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable`](slice::sort_unstable).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5, 4, 1, -3, 2];
+ ///
+ /// v.sort();
+ /// assert!(v == [-5, -3, 1, 2, 4]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn sort(&mut self)
+ where
+ T: Ord,
+ {
+ merge_sort(self, |a, b| a.lt(b));
+ }
+
+ /// Sorts the slice with a comparator function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// The comparator function must define a total ordering for the elements in the slice. If
+ /// the ordering is not total, the order of the elements is unspecified. An order is a
+ /// total order if it is (for all `a`, `b` and `c`):
+ ///
+ /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
+ /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
+ ///
+ /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+ /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+ ///
+ /// ```
+ /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+ /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
+ /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+ /// ```
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable_by`](slice::sort_unstable_by).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [5, 4, 1, 3, 2];
+ /// v.sort_by(|a, b| a.cmp(b));
+ /// assert!(v == [1, 2, 3, 4, 5]);
+ ///
+ /// // reverse sorting
+ /// v.sort_by(|a, b| b.cmp(a));
+ /// assert!(v == [5, 4, 3, 2, 1]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn sort_by<F>(&mut self, mut compare: F)
+ where
+ F: FnMut(&T, &T) -> Ordering,
+ {
+ merge_sort(self, |a, b| compare(a, b) == Less);
+ }
+
+ /// Sorts the slice with a key extraction function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For expensive key functions (e.g. functions that are not simple property accesses or
+ /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
+ /// significantly faster, as it does not recompute element keys.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// v.sort_by_key(|k| k.abs());
+ /// assert!(v == [1, 2, -3, 4, -5]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
+ #[inline]
+ pub fn sort_by_key<K, F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ merge_sort(self, |a, b| f(a).lt(&f(b)));
+ }
+
+ /// Sorts the slice with a key extraction function.
+ ///
+ /// During sorting, the key function is called at most once per element, by using
+ /// temporary storage to remember the results of key evaluation.
+ /// The order of calls to the key function is unspecified and may change in future versions
+ /// of the standard library.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For simple key functions (e.g., functions that are property accesses or
+ /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
+ /// faster.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
+ /// length of the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 32, -3, 2];
+ ///
+ /// v.sort_by_cached_key(|k| k.to_string());
+ /// assert!(v == [-3, -5, 2, 32, 4]);
+ /// ```
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
+ #[inline]
+ pub fn sort_by_cached_key<K, F>(&mut self, f: F)
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
+ macro_rules! sort_by_key {
+ ($t:ty, $slice:ident, $f:ident) => {{
+ let mut indices: Vec<_> =
+ $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
+ // The elements of `indices` are unique, as they are indexed, so any sort will be
+ // stable with respect to the original slice. We use `sort_unstable` here because
+ // it requires less memory allocation.
+ indices.sort_unstable();
+ for i in 0..$slice.len() {
+ let mut index = indices[i].1;
+ while (index as usize) < i {
+ index = indices[index as usize].1;
+ }
+ indices[i].1 = index;
+ $slice.swap(i, index as usize);
+ }
+ }};
+ }
+
+ let sz_u8 = mem::size_of::<(K, u8)>();
+ let sz_u16 = mem::size_of::<(K, u16)>();
+ let sz_u32 = mem::size_of::<(K, u32)>();
+ let sz_usize = mem::size_of::<(K, usize)>();
+
+ let len = self.len();
+ if len < 2 {
+ return;
+ }
+ if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
+ return sort_by_key!(u8, self, f);
+ }
+ if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
+ return sort_by_key!(u16, self, f);
+ }
+ if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
+ return sort_by_key!(u32, self, f);
+ }
+ sort_by_key!(usize, self, f)
+ }
+
+ /// Copies `self` into a new `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = [10, 40, 30];
+ /// let x = s.to_vec();
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[rustc_conversion_suggestion]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn to_vec(&self) -> Vec<T>
+ where
+ T: Clone,
+ {
+ self.to_vec_in(Global)
+ }
+
+ /// Copies `self` into a new `Vec` with an allocator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let s = [10, 40, 30];
+ /// let x = s.to_vec_in(System);
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
+ where
+ T: Clone,
+ {
+ // N.B., see the `hack` module in this file for more details.
+ hack::to_vec(self, alloc)
+ }
+
+ /// Converts `self` into a vector without clones or allocation.
+ ///
+ /// The resulting vector can be converted back into a box via
+ /// `Vec<T>`'s `into_boxed_slice` method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s: Box<[i32]> = Box::new([10, 40, 30]);
+ /// let x = s.into_vec();
+ /// // `s` cannot be used anymore because it has been converted into `x`.
+ ///
+ /// assert_eq!(x, vec![10, 40, 30]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
+ // N.B., see the `hack` module in this file for more details.
+ hack::into_vec(self)
+ }
+
+ /// Creates a vector by repeating a slice `n` times.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the capacity would overflow.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
+ /// ```
+ ///
+ /// A panic upon overflow:
+ ///
+ /// ```should_panic
+ /// // this will panic at runtime
+ /// b"0123456789abcdef".repeat(usize::MAX);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
+ pub fn repeat(&self, n: usize) -> Vec<T>
+ where
+ T: Copy,
+ {
+ if n == 0 {
+ return Vec::new();
+ }
+
+ // If `n` is larger than zero, it can be split as
+ // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
+ // `2^expn` is the number represented by the leftmost '1' bit of `n`,
+ // and `rem` is the remaining part of `n`.
+
+ // Using `Vec` to access `set_len()`.
+ let capacity = self.len().checked_mul(n).expect("capacity overflow");
+ let mut buf = Vec::with_capacity(capacity);
+
+ // `2^expn` repetition is done by doubling `buf` `expn`-times.
+ buf.extend(self);
+ {
+ let mut m = n >> 1;
+ // If `m > 0`, there are remaining bits up to the leftmost '1'.
+ while m > 0 {
+ // `buf.extend(buf)`:
+ unsafe {
+ ptr::copy_nonoverlapping(
+ buf.as_ptr(),
+ (buf.as_mut_ptr() as *mut T).add(buf.len()),
+ buf.len(),
+ );
+ // `buf` has capacity of `self.len() * n`.
+ let buf_len = buf.len();
+ buf.set_len(buf_len * 2);
+ }
+
+ m >>= 1;
+ }
+ }
+
+ // `rem` (`= n - 2^expn`) repetition is done by copying
+ // first `rem` repetitions from `buf` itself.
+ let rem_len = capacity - buf.len(); // `self.len() * rem`
+ if rem_len > 0 {
+ // `buf.extend(buf[0 .. rem_len])`:
+ unsafe {
+ // This is non-overlapping since `2^expn > rem`.
+ ptr::copy_nonoverlapping(
+ buf.as_ptr(),
+ (buf.as_mut_ptr() as *mut T).add(buf.len()),
+ rem_len,
+ );
+ // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
+ buf.set_len(capacity);
+ }
+ }
+ buf
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(["hello", "world"].concat(), "helloworld");
+ /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
+ where
+ Self: Concat<Item>,
+ {
+ Concat::concat(self)
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`, placing a
+ /// given separator between each.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(["hello", "world"].join(" "), "hello world");
+ /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
+ /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
+ pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
+ where
+ Self: Join<Separator>,
+ {
+ Join::join(self, sep)
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`, placing a
+ /// given separator between each.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #![allow(deprecated)]
+ /// assert_eq!(["hello", "world"].connect(" "), "hello world");
+ /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.3.0", note = "renamed to join")]
+ pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
+ where
+ Self: Join<Separator>,
+ {
+ Join::join(self, sep)
+ }
+}
+
+#[cfg(not(test))]
+impl [u8] {
+ /// Returns a vector containing a copy of this slice where each byte
+ /// is mapped to its ASCII upper case equivalent.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To uppercase the value in-place, use [`make_ascii_uppercase`].
+ ///
+ /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the uppercase bytes as a new Vec, \
+ without modifying the original"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_uppercase(&self) -> Vec<u8> {
+ let mut me = self.to_vec();
+ me.make_ascii_uppercase();
+ me
+ }
+
+ /// Returns a vector containing a copy of this slice where each byte
+ /// is mapped to its ASCII lower case equivalent.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To lowercase the value in-place, use [`make_ascii_lowercase`].
+ ///
+ /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the lowercase bytes as a new Vec, \
+ without modifying the original"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_lowercase(&self) -> Vec<u8> {
+ let mut me = self.to_vec();
+ me.make_ascii_lowercase();
+ me
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Extension traits for slices over specific kinds of data
+////////////////////////////////////////////////////////////////////////////////
+
+/// Helper trait for [`[T]::concat`](slice::concat).
+///
+/// Note: the `Item` type parameter is not used in this trait,
+/// but it allows impls to be more generic.
+/// Without it, we get this error:
+///
+/// ```error
+/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
+/// --> src/liballoc/slice.rs:608:6
+/// |
+/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
+/// | ^ unconstrained type parameter
+/// ```
+///
+/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
+/// such that multiple `T` types would apply:
+///
+/// ```
+/// # #[allow(dead_code)]
+/// pub struct Foo(Vec<u32>, Vec<String>);
+///
+/// impl std::borrow::Borrow<[u32]> for Foo {
+/// fn borrow(&self) -> &[u32] { &self.0 }
+/// }
+///
+/// impl std::borrow::Borrow<[String]> for Foo {
+/// fn borrow(&self) -> &[String] { &self.1 }
+/// }
+/// ```
+#[unstable(feature = "slice_concat_trait", issue = "27747")]
+pub trait Concat<Item: ?Sized> {
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ /// The resulting type after concatenation
+ type Output;
+
+ /// Implementation of [`[T]::concat`](slice::concat)
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ fn concat(slice: &Self) -> Self::Output;
+}
+
+/// Helper trait for [`[T]::join`](slice::join)
+#[unstable(feature = "slice_concat_trait", issue = "27747")]
+pub trait Join<Separator> {
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ /// The resulting type after concatenation
+ type Output;
+
+ /// Implementation of [`[T]::join`](slice::join)
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ fn join(slice: &Self, sep: Separator) -> Self::Output;
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
+ type Output = Vec<T>;
+
+ fn concat(slice: &Self) -> Vec<T> {
+ let size = slice.iter().map(|slice| slice.borrow().len()).sum();
+ let mut result = Vec::with_capacity(size);
+ for v in slice {
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
+ type Output = Vec<T>;
+
+ fn join(slice: &Self, sep: &T) -> Vec<T> {
+ let mut iter = slice.iter();
+ let first = match iter.next() {
+ Some(first) => first,
+ None => return vec![],
+ };
+ let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
+ let mut result = Vec::with_capacity(size);
+ result.extend_from_slice(first.borrow());
+
+ for v in iter {
+ result.push(sep.clone());
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
+ type Output = Vec<T>;
+
+ fn join(slice: &Self, sep: &[T]) -> Vec<T> {
+ let mut iter = slice.iter();
+ let first = match iter.next() {
+ Some(first) => first,
+ None => return vec![],
+ };
+ let size =
+ slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
+ let mut result = Vec::with_capacity(size);
+ result.extend_from_slice(first.borrow());
+
+ for v in iter {
+ result.extend_from_slice(sep);
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Standard trait implementations for slices
+////////////////////////////////////////////////////////////////////////////////
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Borrow<[T]> for Vec<T> {
+ fn borrow(&self) -> &[T] {
+ &self[..]
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> BorrowMut<[T]> for Vec<T> {
+ fn borrow_mut(&mut self) -> &mut [T] {
+ &mut self[..]
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone> ToOwned for [T] {
+ type Owned = Vec<T>;
+ #[cfg(not(test))]
+ fn to_owned(&self) -> Vec<T> {
+ self.to_vec()
+ }
+
+ #[cfg(test)]
+ fn to_owned(&self) -> Vec<T> {
+ hack::to_vec(self, Global)
+ }
+
+ fn clone_into(&self, target: &mut Vec<T>) {
+ // drop anything in target that will not be overwritten
+ target.truncate(self.len());
+
+ // target.len <= self.len due to the truncate above, so the
+ // slices here are always in-bounds.
+ let (init, tail) = self.split_at(target.len());
+
+ // reuse the contained values' allocations/resources.
+ target.clone_from_slice(init);
+ target.extend_from_slice(tail);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Sorting
+////////////////////////////////////////////////////////////////////////////////
+
+/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
+///
+/// This is the integral subroutine of insertion sort.
+#[cfg(not(no_global_oom_handling))]
+fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ if v.len() >= 2 && is_less(&v[1], &v[0]) {
+ unsafe {
+ // There are three ways to implement insertion here:
+ //
+ // 1. Swap adjacent elements until the first one gets to its final destination.
+ // However, this way we copy data around more than is necessary. If elements are big
+ // structures (costly to copy), this method will be slow.
+ //
+ // 2. Iterate until the right place for the first element is found. Then shift the
+ // elements succeeding it to make room for it and finally place it into the
+ // remaining hole. This is a good method.
+ //
+ // 3. Copy the first element into a temporary variable. Iterate until the right place
+ // for it is found. As we go along, copy every traversed element into the slot
+ // preceding it. Finally, copy data from the temporary variable into the remaining
+ // hole. This method is very good. Benchmarks demonstrated slightly better
+ // performance than with the 2nd method.
+ //
+ // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
+ let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
+
+ // Intermediate state of the insertion process is always tracked by `hole`, which
+ // serves two purposes:
+ // 1. Protects integrity of `v` from panics in `is_less`.
+ // 2. Fills the remaining hole in `v` in the end.
+ //
+ // Panic safety:
+ //
+ // If `is_less` panics at any point during the process, `hole` will get dropped and
+ // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
+ // initially held exactly once.
+ let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] };
+ ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
+
+ for i in 2..v.len() {
+ if !is_less(&v[i], &*tmp) {
+ break;
+ }
+ ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
+ hole.dest = &mut v[i];
+ }
+ // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
+ }
+ }
+
+ // When dropped, copies from `src` into `dest`.
+ struct InsertionHole<T> {
+ src: *const T,
+ dest: *mut T,
+ }
+
+ impl<T> Drop for InsertionHole<T> {
+ fn drop(&mut self) {
+ unsafe {
+ ptr::copy_nonoverlapping(self.src, self.dest, 1);
+ }
+ }
+ }
+}
+
+/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
+/// stores the result into `v[..]`.
+///
+/// # Safety
+///
+/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
+/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
+#[cfg(not(no_global_oom_handling))]
+unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ let len = v.len();
+ let v = v.as_mut_ptr();
+ let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
+
+ // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
+ // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
+ // copying the lesser (or greater) one into `v`.
+ //
+ // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
+ // consumed first, then we must copy whatever is left of the shorter run into the remaining
+ // hole in `v`.
+ //
+ // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
+ // 1. Protects integrity of `v` from panics in `is_less`.
+ // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
+ //
+ // Panic safety:
+ //
+ // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
+ // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
+ // object it initially held exactly once.
+ let mut hole;
+
+ if mid <= len - mid {
+ // The left run is shorter.
+ unsafe {
+ ptr::copy_nonoverlapping(v, buf, mid);
+ hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
+ }
+
+ // Initially, these pointers point to the beginnings of their arrays.
+ let left = &mut hole.start;
+ let mut right = v_mid;
+ let out = &mut hole.dest;
+
+ while *left < hole.end && right < v_end {
+ // Consume the lesser side.
+ // If equal, prefer the left run to maintain stability.
+ unsafe {
+ let to_copy = if is_less(&*right, &**left) {
+ get_and_increment(&mut right)
+ } else {
+ get_and_increment(left)
+ };
+ ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
+ }
+ }
+ } else {
+ // The right run is shorter.
+ unsafe {
+ ptr::copy_nonoverlapping(v_mid, buf, len - mid);
+ hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
+ }
+
+ // Initially, these pointers point past the ends of their arrays.
+ let left = &mut hole.dest;
+ let right = &mut hole.end;
+ let mut out = v_end;
+
+ while v < *left && buf < *right {
+ // Consume the greater side.
+ // If equal, prefer the right run to maintain stability.
+ unsafe {
+ let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
+ decrement_and_get(left)
+ } else {
+ decrement_and_get(right)
+ };
+ ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
+ }
+ }
+ }
+ // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
+ // it will now be copied into the hole in `v`.
+
+ unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
+ let old = *ptr;
+ *ptr = unsafe { ptr.offset(1) };
+ old
+ }
+
+ unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
+ *ptr = unsafe { ptr.offset(-1) };
+ *ptr
+ }
+
+ // When dropped, copies the range `start..end` into `dest..`.
+ struct MergeHole<T> {
+ start: *mut T,
+ end: *mut T,
+ dest: *mut T,
+ }
+
+ impl<T> Drop for MergeHole<T> {
+ fn drop(&mut self) {
+ // `T` is not a zero-sized type, and these are pointers into a slice's elements.
+ unsafe {
+ let len = self.end.sub_ptr(self.start);
+ ptr::copy_nonoverlapping(self.start, self.dest, len);
+ }
+ }
+ }
+}
+
+/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
+/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
+///
+/// The algorithm identifies strictly descending and non-descending subsequences, which are called
+/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
+/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
+/// satisfied:
+///
+/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
+/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
+///
+/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
+#[cfg(not(no_global_oom_handling))]
+fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ // Slices of up to this length get sorted using insertion sort.
+ const MAX_INSERTION: usize = 20;
+ // Very short runs are extended using insertion sort to span at least this many elements.
+ const MIN_RUN: usize = 10;
+
+ // Sorting has no meaningful behavior on zero-sized types.
+ if size_of::<T>() == 0 {
+ return;
+ }
+
+ let len = v.len();
+
+ // Short arrays get sorted in-place via insertion sort to avoid allocations.
+ if len <= MAX_INSERTION {
+ if len >= 2 {
+ for i in (0..len - 1).rev() {
+ insert_head(&mut v[i..], &mut is_less);
+ }
+ }
+ return;
+ }
+
+ // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
+ // shallow copies of the contents of `v` without risking the dtors running on copies if
+ // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
+ // which will always have length at most `len / 2`.
+ let mut buf = Vec::with_capacity(len / 2);
+
+ // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
+ // strange decision, but consider the fact that merges more often go in the opposite direction
+ // (forwards). According to benchmarks, merging forwards is slightly faster than merging
+ // backwards. To conclude, identifying runs by traversing backwards improves performance.
+ let mut runs = vec![];
+ let mut end = len;
+ while end > 0 {
+ // Find the next natural run, and reverse it if it's strictly descending.
+ let mut start = end - 1;
+ if start > 0 {
+ start -= 1;
+ unsafe {
+ if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
+ while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
+ start -= 1;
+ }
+ v[start..end].reverse();
+ } else {
+ while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
+ {
+ start -= 1;
+ }
+ }
+ }
+ }
+
+ // Insert some more elements into the run if it's too short. Insertion sort is faster than
+ // merge sort on short sequences, so this significantly improves performance.
+ while start > 0 && end - start < MIN_RUN {
+ start -= 1;
+ insert_head(&mut v[start..end], &mut is_less);
+ }
+
+ // Push this run onto the stack.
+ runs.push(Run { start, len: end - start });
+ end = start;
+
+ // Merge some pairs of adjacent runs to satisfy the invariants.
+ while let Some(r) = collapse(&runs) {
+ let left = runs[r + 1];
+ let right = runs[r];
+ unsafe {
+ merge(
+ &mut v[left.start..right.start + right.len],
+ left.len,
+ buf.as_mut_ptr(),
+ &mut is_less,
+ );
+ }
+ runs[r] = Run { start: left.start, len: left.len + right.len };
+ runs.remove(r + 1);
+ }
+ }
+
+ // Finally, exactly one run must remain in the stack.
+ debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
+
+ // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
+ // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
+ // algorithm should continue building a new run instead, `None` is returned.
+ //
+ // TimSort is infamous for its buggy implementations, as described here:
+ // http://envisage-project.eu/timsort-specification-and-verification/
+ //
+ // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
+ // Enforcing them on just top three is not sufficient to ensure that the invariants will still
+ // hold for *all* runs in the stack.
+ //
+ // This function correctly checks invariants for the top four runs. Additionally, if the top
+ // run starts at index 0, it will always demand a merge operation until the stack is fully
+ // collapsed, in order to complete the sort.
+ #[inline]
+ fn collapse(runs: &[Run]) -> Option<usize> {
+ let n = runs.len();
+ if n >= 2
+ && (runs[n - 1].start == 0
+ || runs[n - 2].len <= runs[n - 1].len
+ || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
+ || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
+ {
+ if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
+ } else {
+ None
+ }
+ }
+
+ #[derive(Clone, Copy)]
+ struct Run {
+ start: usize,
+ len: usize,
+ }
+}