From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- Documentation/networking/tls.rst | 288 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 288 insertions(+) create mode 100644 Documentation/networking/tls.rst (limited to 'Documentation/networking/tls.rst') diff --git a/Documentation/networking/tls.rst b/Documentation/networking/tls.rst new file mode 100644 index 000000000..658ed3a71 --- /dev/null +++ b/Documentation/networking/tls.rst @@ -0,0 +1,288 @@ +.. _kernel_tls: + +========== +Kernel TLS +========== + +Overview +======== + +Transport Layer Security (TLS) is a Upper Layer Protocol (ULP) that runs over +TCP. TLS provides end-to-end data integrity and confidentiality. + +User interface +============== + +Creating a TLS connection +------------------------- + +First create a new TCP socket and set the TLS ULP. + +.. code-block:: c + + sock = socket(AF_INET, SOCK_STREAM, 0); + setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls")); + +Setting the TLS ULP allows us to set/get TLS socket options. Currently +only the symmetric encryption is handled in the kernel. After the TLS +handshake is complete, we have all the parameters required to move the +data-path to the kernel. There is a separate socket option for moving +the transmit and the receive into the kernel. + +.. code-block:: c + + /* From linux/tls.h */ + struct tls_crypto_info { + unsigned short version; + unsigned short cipher_type; + }; + + struct tls12_crypto_info_aes_gcm_128 { + struct tls_crypto_info info; + unsigned char iv[TLS_CIPHER_AES_GCM_128_IV_SIZE]; + unsigned char key[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; + unsigned char salt[TLS_CIPHER_AES_GCM_128_SALT_SIZE]; + unsigned char rec_seq[TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE]; + }; + + + struct tls12_crypto_info_aes_gcm_128 crypto_info; + + crypto_info.info.version = TLS_1_2_VERSION; + crypto_info.info.cipher_type = TLS_CIPHER_AES_GCM_128; + memcpy(crypto_info.iv, iv_write, TLS_CIPHER_AES_GCM_128_IV_SIZE); + memcpy(crypto_info.rec_seq, seq_number_write, + TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); + memcpy(crypto_info.key, cipher_key_write, TLS_CIPHER_AES_GCM_128_KEY_SIZE); + memcpy(crypto_info.salt, implicit_iv_write, TLS_CIPHER_AES_GCM_128_SALT_SIZE); + + setsockopt(sock, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info)); + +Transmit and receive are set separately, but the setup is the same, using either +TLS_TX or TLS_RX. + +Sending TLS application data +---------------------------- + +After setting the TLS_TX socket option all application data sent over this +socket is encrypted using TLS and the parameters provided in the socket option. +For example, we can send an encrypted hello world record as follows: + +.. code-block:: c + + const char *msg = "hello world\n"; + send(sock, msg, strlen(msg)); + +send() data is directly encrypted from the userspace buffer provided +to the encrypted kernel send buffer if possible. + +The sendfile system call will send the file's data over TLS records of maximum +length (2^14). + +.. code-block:: c + + file = open(filename, O_RDONLY); + fstat(file, &stat); + sendfile(sock, file, &offset, stat.st_size); + +TLS records are created and sent after each send() call, unless +MSG_MORE is passed. MSG_MORE will delay creation of a record until +MSG_MORE is not passed, or the maximum record size is reached. + +The kernel will need to allocate a buffer for the encrypted data. +This buffer is allocated at the time send() is called, such that +either the entire send() call will return -ENOMEM (or block waiting +for memory), or the encryption will always succeed. If send() returns +-ENOMEM and some data was left on the socket buffer from a previous +call using MSG_MORE, the MSG_MORE data is left on the socket buffer. + +Receiving TLS application data +------------------------------ + +After setting the TLS_RX socket option, all recv family socket calls +are decrypted using TLS parameters provided. A full TLS record must +be received before decryption can happen. + +.. code-block:: c + + char buffer[16384]; + recv(sock, buffer, 16384); + +Received data is decrypted directly in to the user buffer if it is +large enough, and no additional allocations occur. If the userspace +buffer is too small, data is decrypted in the kernel and copied to +userspace. + +``EINVAL`` is returned if the TLS version in the received message does not +match the version passed in setsockopt. + +``EMSGSIZE`` is returned if the received message is too big. + +``EBADMSG`` is returned if decryption failed for any other reason. + +Send TLS control messages +------------------------- + +Other than application data, TLS has control messages such as alert +messages (record type 21) and handshake messages (record type 22), etc. +These messages can be sent over the socket by providing the TLS record type +via a CMSG. For example the following function sends @data of @length bytes +using a record of type @record_type. + +.. code-block:: c + + /* send TLS control message using record_type */ + static int klts_send_ctrl_message(int sock, unsigned char record_type, + void *data, size_t length) + { + struct msghdr msg = {0}; + int cmsg_len = sizeof(record_type); + struct cmsghdr *cmsg; + char buf[CMSG_SPACE(cmsg_len)]; + struct iovec msg_iov; /* Vector of data to send/receive into. */ + + msg.msg_control = buf; + msg.msg_controllen = sizeof(buf); + cmsg = CMSG_FIRSTHDR(&msg); + cmsg->cmsg_level = SOL_TLS; + cmsg->cmsg_type = TLS_SET_RECORD_TYPE; + cmsg->cmsg_len = CMSG_LEN(cmsg_len); + *CMSG_DATA(cmsg) = record_type; + msg.msg_controllen = cmsg->cmsg_len; + + msg_iov.iov_base = data; + msg_iov.iov_len = length; + msg.msg_iov = &msg_iov; + msg.msg_iovlen = 1; + + return sendmsg(sock, &msg, 0); + } + +Control message data should be provided unencrypted, and will be +encrypted by the kernel. + +Receiving TLS control messages +------------------------------ + +TLS control messages are passed in the userspace buffer, with message +type passed via cmsg. If no cmsg buffer is provided, an error is +returned if a control message is received. Data messages may be +received without a cmsg buffer set. + +.. code-block:: c + + char buffer[16384]; + char cmsg[CMSG_SPACE(sizeof(unsigned char))]; + struct msghdr msg = {0}; + msg.msg_control = cmsg; + msg.msg_controllen = sizeof(cmsg); + + struct iovec msg_iov; + msg_iov.iov_base = buffer; + msg_iov.iov_len = 16384; + + msg.msg_iov = &msg_iov; + msg.msg_iovlen = 1; + + int ret = recvmsg(sock, &msg, 0 /* flags */); + + struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg); + if (cmsg->cmsg_level == SOL_TLS && + cmsg->cmsg_type == TLS_GET_RECORD_TYPE) { + int record_type = *((unsigned char *)CMSG_DATA(cmsg)); + // Do something with record_type, and control message data in + // buffer. + // + // Note that record_type may be == to application data (23). + } else { + // Buffer contains application data. + } + +recv will never return data from mixed types of TLS records. + +Integrating in to userspace TLS library +--------------------------------------- + +At a high level, the kernel TLS ULP is a replacement for the record +layer of a userspace TLS library. + +A patchset to OpenSSL to use ktls as the record layer is +`here `_. + +`An example `_ +of calling send directly after a handshake using gnutls. +Since it doesn't implement a full record layer, control +messages are not supported. + +Optional optimizations +---------------------- + +There are certain condition-specific optimizations the TLS ULP can make, +if requested. Those optimizations are either not universally beneficial +or may impact correctness, hence they require an opt-in. +All options are set per-socket using setsockopt(), and their +state can be checked using getsockopt() and via socket diag (``ss``). + +TLS_TX_ZEROCOPY_RO +~~~~~~~~~~~~~~~~~~ + +For device offload only. Allow sendfile() data to be transmitted directly +to the NIC without making an in-kernel copy. This allows true zero-copy +behavior when device offload is enabled. + +The application must make sure that the data is not modified between being +submitted and transmission completing. In other words this is mostly +applicable if the data sent on a socket via sendfile() is read-only. + +Modifying the data may result in different versions of the data being used +for the original TCP transmission and TCP retransmissions. To the receiver +this will look like TLS records had been tampered with and will result +in record authentication failures. + +TLS_RX_EXPECT_NO_PAD +~~~~~~~~~~~~~~~~~~~~ + +TLS 1.3 only. Expect the sender to not pad records. This allows the data +to be decrypted directly into user space buffers with TLS 1.3. + +This optimization is safe to enable only if the remote end is trusted, +otherwise it is an attack vector to doubling the TLS processing cost. + +If the record decrypted turns out to had been padded or is not a data +record it will be decrypted again into a kernel buffer without zero copy. +Such events are counted in the ``TlsDecryptRetry`` statistic. + +Statistics +========== + +TLS implementation exposes the following per-namespace statistics +(``/proc/net/tls_stat``): + +- ``TlsCurrTxSw``, ``TlsCurrRxSw`` - + number of TX and RX sessions currently installed where host handles + cryptography + +- ``TlsCurrTxDevice``, ``TlsCurrRxDevice`` - + number of TX and RX sessions currently installed where NIC handles + cryptography + +- ``TlsTxSw``, ``TlsRxSw`` - + number of TX and RX sessions opened with host cryptography + +- ``TlsTxDevice``, ``TlsRxDevice`` - + number of TX and RX sessions opened with NIC cryptography + +- ``TlsDecryptError`` - + record decryption failed (e.g. due to incorrect authentication tag) + +- ``TlsDeviceRxResync`` - + number of RX resyncs sent to NICs handling cryptography + +- ``TlsDecryptRetry`` - + number of RX records which had to be re-decrypted due to + ``TLS_RX_EXPECT_NO_PAD`` mis-prediction. Note that this counter will + also increment for non-data records. + +- ``TlsRxNoPadViolation`` - + number of data RX records which had to be re-decrypted due to + ``TLS_RX_EXPECT_NO_PAD`` mis-prediction. -- cgit v1.2.3