// SPDX-License-Identifier: GPL-2.0-or-later /* * TLB flush routines for radix kernels. * * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* * tlbiel instruction for radix, set invalidation * i.e., r=1 and is=01 or is=10 or is=11 */ static __always_inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is, unsigned int pid, unsigned int ric, unsigned int prs) { unsigned long rb; unsigned long rs; rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1) : : "r"(rb), "r"(rs), "i"(ric), "i"(prs) : "memory"); } static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) { unsigned int set; asm volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and the entire Page Walk Cache * and partition table entries. Then flush the remaining sets of the * TLB. */ if (early_cpu_has_feature(CPU_FTR_HVMODE)) { /* MSR[HV] should flush partition scope translations first. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0); if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) { for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0); } } /* Flush process scoped entries. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1); if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) { for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1); } ppc_after_tlbiel_barrier(); } void radix__tlbiel_all(unsigned int action) { unsigned int is; switch (action) { case TLB_INVAL_SCOPE_GLOBAL: is = 3; break; case TLB_INVAL_SCOPE_LPID: is = 2; break; default: BUG(); } if (early_cpu_has_feature(CPU_FTR_ARCH_300)) tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is); else WARN(1, "%s called on pre-POWER9 CPU\n", __func__); asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory"); } static __always_inline void __tlbiel_pid(unsigned long pid, int set, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(53); /* IS = 1 */ rb |= set << PPC_BITLSHIFT(51); rs = ((unsigned long)pid) << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 1, rb, rs, ric, prs, r); } static __always_inline void __tlbie_pid(unsigned long pid, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(53); /* IS = 1 */ rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static __always_inline void __tlbie_lpid(unsigned long lpid, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(52); /* IS = 2 */ rs = lpid; prs = 0; /* partition scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 0, rb, rs, ric, prs, r); } static __always_inline void __tlbie_lpid_guest(unsigned long lpid, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(52); /* IS = 2 */ rs = lpid; prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 0, rb, rs, ric, prs, r); } static __always_inline void __tlbiel_va(unsigned long va, unsigned long pid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 1, rb, rs, ric, prs, r); } static __always_inline void __tlbie_va(unsigned long va, unsigned long pid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static __always_inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = lpid; prs = 0; /* partition scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 0, rb, rs, ric, prs, r); } static inline void fixup_tlbie_va(unsigned long va, unsigned long pid, unsigned long ap) { if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_va(va, 0, ap, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, ap, RIC_FLUSH_TLB); } } static inline void fixup_tlbie_va_range(unsigned long va, unsigned long pid, unsigned long ap) { if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_pid(0, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, ap, RIC_FLUSH_TLB); } } static inline void fixup_tlbie_pid(unsigned long pid) { /* * We can use any address for the invalidation, pick one which is * probably unused as an optimisation. */ unsigned long va = ((1UL << 52) - 1); if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_pid(0, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB); } } static inline void fixup_tlbie_lpid_va(unsigned long va, unsigned long lpid, unsigned long ap) { if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, 0, ap, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, lpid, ap, RIC_FLUSH_TLB); } } static inline void fixup_tlbie_lpid(unsigned long lpid) { /* * We can use any address for the invalidation, pick one which is * probably unused as an optimisation. */ unsigned long va = ((1UL << 52) - 1); if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_lpid(0, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB); } } /* * We use 128 set in radix mode and 256 set in hpt mode. */ static inline void _tlbiel_pid(unsigned long pid, unsigned long ric) { int set; asm volatile("ptesync": : :"memory"); switch (ric) { case RIC_FLUSH_PWC: /* For PWC, only one flush is needed */ __tlbiel_pid(pid, 0, RIC_FLUSH_PWC); ppc_after_tlbiel_barrier(); return; case RIC_FLUSH_TLB: __tlbiel_pid(pid, 0, RIC_FLUSH_TLB); break; case RIC_FLUSH_ALL: default: /* * Flush the first set of the TLB, and if * we're doing a RIC_FLUSH_ALL, also flush * the entire Page Walk Cache. */ __tlbiel_pid(pid, 0, RIC_FLUSH_ALL); } if (!cpu_has_feature(CPU_FTR_ARCH_31)) { /* For the remaining sets, just flush the TLB */ for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++) __tlbiel_pid(pid, set, RIC_FLUSH_TLB); } ppc_after_tlbiel_barrier(); asm volatile(PPC_RADIX_INVALIDATE_ERAT_USER "; isync" : : :"memory"); } static inline void _tlbie_pid(unsigned long pid, unsigned long ric) { asm volatile("ptesync": : :"memory"); /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time constraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_pid(pid, RIC_FLUSH_TLB); fixup_tlbie_pid(pid); break; case RIC_FLUSH_PWC: __tlbie_pid(pid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_pid(pid, RIC_FLUSH_ALL); fixup_tlbie_pid(pid); } asm volatile("eieio; tlbsync; ptesync": : :"memory"); } struct tlbiel_pid { unsigned long pid; unsigned long ric; }; static void do_tlbiel_pid(void *info) { struct tlbiel_pid *t = info; if (t->ric == RIC_FLUSH_TLB) _tlbiel_pid(t->pid, RIC_FLUSH_TLB); else if (t->ric == RIC_FLUSH_PWC) _tlbiel_pid(t->pid, RIC_FLUSH_PWC); else _tlbiel_pid(t->pid, RIC_FLUSH_ALL); } static inline void _tlbiel_pid_multicast(struct mm_struct *mm, unsigned long pid, unsigned long ric) { struct cpumask *cpus = mm_cpumask(mm); struct tlbiel_pid t = { .pid = pid, .ric = ric }; on_each_cpu_mask(cpus, do_tlbiel_pid, &t, 1); /* * Always want the CPU translations to be invalidated with tlbiel in * these paths, so while coprocessors must use tlbie, we can not * optimise away the tlbiel component. */ if (atomic_read(&mm->context.copros) > 0) _tlbie_pid(pid, RIC_FLUSH_ALL); } static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric) { asm volatile("ptesync": : :"memory"); /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time contraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_lpid(lpid, RIC_FLUSH_TLB); fixup_tlbie_lpid(lpid); break; case RIC_FLUSH_PWC: __tlbie_lpid(lpid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_lpid(lpid, RIC_FLUSH_ALL); fixup_tlbie_lpid(lpid); } asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static __always_inline void _tlbie_lpid_guest(unsigned long lpid, unsigned long ric) { /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time contraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_lpid_guest(lpid, RIC_FLUSH_TLB); break; case RIC_FLUSH_PWC: __tlbie_lpid_guest(lpid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_lpid_guest(lpid, RIC_FLUSH_ALL); } fixup_tlbie_lpid(lpid); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void __tlbiel_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize) { unsigned long addr; unsigned long ap = mmu_get_ap(psize); for (addr = start; addr < end; addr += page_size) __tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB); } static __always_inline void _tlbiel_va(unsigned long va, unsigned long pid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbiel_va(va, pid, ap, ric); ppc_after_tlbiel_barrier(); } static inline void _tlbiel_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize, bool also_pwc) { asm volatile("ptesync": : :"memory"); if (also_pwc) __tlbiel_pid(pid, 0, RIC_FLUSH_PWC); __tlbiel_va_range(start, end, pid, page_size, psize); ppc_after_tlbiel_barrier(); } static inline void __tlbie_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize) { unsigned long addr; unsigned long ap = mmu_get_ap(psize); for (addr = start; addr < end; addr += page_size) __tlbie_va(addr, pid, ap, RIC_FLUSH_TLB); fixup_tlbie_va_range(addr - page_size, pid, ap); } static __always_inline void _tlbie_va(unsigned long va, unsigned long pid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, ap, ric); fixup_tlbie_va(va, pid, ap); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } struct tlbiel_va { unsigned long pid; unsigned long va; unsigned long psize; unsigned long ric; }; static void do_tlbiel_va(void *info) { struct tlbiel_va *t = info; if (t->ric == RIC_FLUSH_TLB) _tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_TLB); else if (t->ric == RIC_FLUSH_PWC) _tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_PWC); else _tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_ALL); } static inline void _tlbiel_va_multicast(struct mm_struct *mm, unsigned long va, unsigned long pid, unsigned long psize, unsigned long ric) { struct cpumask *cpus = mm_cpumask(mm); struct tlbiel_va t = { .va = va, .pid = pid, .psize = psize, .ric = ric }; on_each_cpu_mask(cpus, do_tlbiel_va, &t, 1); if (atomic_read(&mm->context.copros) > 0) _tlbie_va(va, pid, psize, RIC_FLUSH_TLB); } struct tlbiel_va_range { unsigned long pid; unsigned long start; unsigned long end; unsigned long page_size; unsigned long psize; bool also_pwc; }; static void do_tlbiel_va_range(void *info) { struct tlbiel_va_range *t = info; _tlbiel_va_range(t->start, t->end, t->pid, t->page_size, t->psize, t->also_pwc); } static __always_inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, lpid, ap, ric); fixup_tlbie_lpid_va(va, lpid, ap); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbie_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize, bool also_pwc) { asm volatile("ptesync": : :"memory"); if (also_pwc) __tlbie_pid(pid, RIC_FLUSH_PWC); __tlbie_va_range(start, end, pid, page_size, psize); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbiel_va_range_multicast(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize, bool also_pwc) { struct cpumask *cpus = mm_cpumask(mm); struct tlbiel_va_range t = { .start = start, .end = end, .pid = pid, .page_size = page_size, .psize = psize, .also_pwc = also_pwc }; on_each_cpu_mask(cpus, do_tlbiel_va_range, &t, 1); if (atomic_read(&mm->context.copros) > 0) _tlbie_va_range(start, end, pid, page_size, psize, also_pwc); } /* * Base TLB flushing operations: * * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(vma, start, end) flushes a range of pages * - flush_tlb_kernel_range(start, end) flushes kernel pages * * - local_* variants of page and mm only apply to the current * processor */ void radix__local_flush_tlb_mm(struct mm_struct *mm) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_pid(pid, RIC_FLUSH_TLB); preempt_enable(); } EXPORT_SYMBOL(radix__local_flush_tlb_mm); #ifndef CONFIG_SMP void radix__local_flush_all_mm(struct mm_struct *mm) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_pid(pid, RIC_FLUSH_ALL); preempt_enable(); } EXPORT_SYMBOL(radix__local_flush_all_mm); static void __flush_all_mm(struct mm_struct *mm, bool fullmm) { radix__local_flush_all_mm(mm); } #endif /* CONFIG_SMP */ void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr, int psize) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB); preempt_enable(); } void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { #ifdef CONFIG_HUGETLB_PAGE /* need the return fix for nohash.c */ if (is_vm_hugetlb_page(vma)) return radix__local_flush_hugetlb_page(vma, vmaddr); #endif radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize); } EXPORT_SYMBOL(radix__local_flush_tlb_page); static bool mm_needs_flush_escalation(struct mm_struct *mm) { /* * The P9 nest MMU has issues with the page walk cache caching PTEs * and not flushing them when RIC = 0 for a PID/LPID invalidate. * * This may have been fixed in shipping firmware (by disabling PWC * or preventing it from caching PTEs), but until that is confirmed, * this workaround is required - escalate all RIC=0 IS=1/2/3 flushes * to RIC=2. * * POWER10 (and P9P) does not have this problem. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) return false; if (atomic_read(&mm->context.copros) > 0) return true; return false; } /* * If always_flush is true, then flush even if this CPU can't be removed * from mm_cpumask. */ void exit_lazy_flush_tlb(struct mm_struct *mm, bool always_flush) { unsigned long pid = mm->context.id; int cpu = smp_processor_id(); /* * A kthread could have done a mmget_not_zero() after the flushing CPU * checked mm_cpumask, and be in the process of kthread_use_mm when * interrupted here. In that case, current->mm will be set to mm, * because kthread_use_mm() setting ->mm and switching to the mm is * done with interrupts off. */ if (current->mm == mm) goto out; if (current->active_mm == mm) { WARN_ON_ONCE(current->mm != NULL); /* Is a kernel thread and is using mm as the lazy tlb */ mmgrab(&init_mm); current->active_mm = &init_mm; switch_mm_irqs_off(mm, &init_mm, current); mmdrop(mm); } /* * This IPI may be initiated from any source including those not * running the mm, so there may be a racing IPI that comes after * this one which finds the cpumask already clear. Check and avoid * underflowing the active_cpus count in that case. The race should * not otherwise be a problem, but the TLB must be flushed because * that's what the caller expects. */ if (cpumask_test_cpu(cpu, mm_cpumask(mm))) { atomic_dec(&mm->context.active_cpus); cpumask_clear_cpu(cpu, mm_cpumask(mm)); always_flush = true; } out: if (always_flush) _tlbiel_pid(pid, RIC_FLUSH_ALL); } #ifdef CONFIG_SMP static void do_exit_flush_lazy_tlb(void *arg) { struct mm_struct *mm = arg; exit_lazy_flush_tlb(mm, true); } static void exit_flush_lazy_tlbs(struct mm_struct *mm) { /* * Would be nice if this was async so it could be run in * parallel with our local flush, but generic code does not * give a good API for it. Could extend the generic code or * make a special powerpc IPI for flushing TLBs. * For now it's not too performance critical. */ smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb, (void *)mm, 1); } #else /* CONFIG_SMP */ static inline void exit_flush_lazy_tlbs(struct mm_struct *mm) { } #endif /* CONFIG_SMP */ static DEFINE_PER_CPU(unsigned int, mm_cpumask_trim_clock); /* * Interval between flushes at which we send out IPIs to check whether the * mm_cpumask can be trimmed for the case where it's not a single-threaded * process flushing its own mm. The intent is to reduce the cost of later * flushes. Don't want this to be so low that it adds noticable cost to TLB * flushing, or so high that it doesn't help reduce global TLBIEs. */ static unsigned long tlb_mm_cpumask_trim_timer = 1073; static bool tick_and_test_trim_clock(void) { if (__this_cpu_inc_return(mm_cpumask_trim_clock) == tlb_mm_cpumask_trim_timer) { __this_cpu_write(mm_cpumask_trim_clock, 0); return true; } return false; } enum tlb_flush_type { FLUSH_TYPE_NONE, FLUSH_TYPE_LOCAL, FLUSH_TYPE_GLOBAL, }; static enum tlb_flush_type flush_type_needed(struct mm_struct *mm, bool fullmm) { int active_cpus = atomic_read(&mm->context.active_cpus); int cpu = smp_processor_id(); if (active_cpus == 0) return FLUSH_TYPE_NONE; if (active_cpus == 1 && cpumask_test_cpu(cpu, mm_cpumask(mm))) { if (current->mm != mm) { /* * Asynchronous flush sources may trim down to nothing * if the process is not running, so occasionally try * to trim. */ if (tick_and_test_trim_clock()) { exit_lazy_flush_tlb(mm, true); return FLUSH_TYPE_NONE; } } return FLUSH_TYPE_LOCAL; } /* Coprocessors require TLBIE to invalidate nMMU. */ if (atomic_read(&mm->context.copros) > 0) return FLUSH_TYPE_GLOBAL; /* * In the fullmm case there's no point doing the exit_flush_lazy_tlbs * because the mm is being taken down anyway, and a TLBIE tends to * be faster than an IPI+TLBIEL. */ if (fullmm) return FLUSH_TYPE_GLOBAL; /* * If we are running the only thread of a single-threaded process, * then we should almost always be able to trim off the rest of the * CPU mask (except in the case of use_mm() races), so always try * trimming the mask. */ if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm) { exit_flush_lazy_tlbs(mm); /* * use_mm() race could prevent IPIs from being able to clear * the cpumask here, however those users are established * after our first check (and so after the PTEs are removed), * and the TLB still gets flushed by the IPI, so this CPU * will only require a local flush. */ return FLUSH_TYPE_LOCAL; } /* * Occasionally try to trim down the cpumask. It's possible this can * bring the mask to zero, which results in no flush. */ if (tick_and_test_trim_clock()) { exit_flush_lazy_tlbs(mm); if (current->mm == mm) return FLUSH_TYPE_LOCAL; if (cpumask_test_cpu(cpu, mm_cpumask(mm))) exit_lazy_flush_tlb(mm, true); return FLUSH_TYPE_NONE; } return FLUSH_TYPE_GLOBAL; } #ifdef CONFIG_SMP void radix__flush_tlb_mm(struct mm_struct *mm) { unsigned long pid; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); /* * Order loads of mm_cpumask (in flush_type_needed) vs previous * stores to clear ptes before the invalidate. See barrier in * switch_mm_irqs_off */ smp_mb(); type = flush_type_needed(mm, false); if (type == FLUSH_TYPE_LOCAL) { _tlbiel_pid(pid, RIC_FLUSH_TLB); } else if (type == FLUSH_TYPE_GLOBAL) { if (!mmu_has_feature(MMU_FTR_GTSE)) { unsigned long tgt = H_RPTI_TARGET_CMMU; if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB, H_RPTI_PAGE_ALL, 0, -1UL); } else if (cputlb_use_tlbie()) { if (mm_needs_flush_escalation(mm)) _tlbie_pid(pid, RIC_FLUSH_ALL); else _tlbie_pid(pid, RIC_FLUSH_TLB); } else { _tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB); } } preempt_enable(); } EXPORT_SYMBOL(radix__flush_tlb_mm); static void __flush_all_mm(struct mm_struct *mm, bool fullmm) { unsigned long pid; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); smp_mb(); /* see radix__flush_tlb_mm */ type = flush_type_needed(mm, fullmm); if (type == FLUSH_TYPE_LOCAL) { _tlbiel_pid(pid, RIC_FLUSH_ALL); } else if (type == FLUSH_TYPE_GLOBAL) { if (!mmu_has_feature(MMU_FTR_GTSE)) { unsigned long tgt = H_RPTI_TARGET_CMMU; unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | H_RPTI_TYPE_PRT; if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; pseries_rpt_invalidate(pid, tgt, type, H_RPTI_PAGE_ALL, 0, -1UL); } else if (cputlb_use_tlbie()) _tlbie_pid(pid, RIC_FLUSH_ALL); else _tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL); } preempt_enable(); } void radix__flush_all_mm(struct mm_struct *mm) { __flush_all_mm(mm, false); } EXPORT_SYMBOL(radix__flush_all_mm); void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr, int psize) { unsigned long pid; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); smp_mb(); /* see radix__flush_tlb_mm */ type = flush_type_needed(mm, false); if (type == FLUSH_TYPE_LOCAL) { _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB); } else if (type == FLUSH_TYPE_GLOBAL) { if (!mmu_has_feature(MMU_FTR_GTSE)) { unsigned long tgt, pg_sizes, size; tgt = H_RPTI_TARGET_CMMU; pg_sizes = psize_to_rpti_pgsize(psize); size = 1UL << mmu_psize_to_shift(psize); if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB, pg_sizes, vmaddr, vmaddr + size); } else if (cputlb_use_tlbie()) _tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB); else _tlbiel_va_multicast(mm, vmaddr, pid, psize, RIC_FLUSH_TLB); } preempt_enable(); } void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { #ifdef CONFIG_HUGETLB_PAGE if (is_vm_hugetlb_page(vma)) return radix__flush_hugetlb_page(vma, vmaddr); #endif radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize); } EXPORT_SYMBOL(radix__flush_tlb_page); #endif /* CONFIG_SMP */ static void do_tlbiel_kernel(void *info) { _tlbiel_pid(0, RIC_FLUSH_ALL); } static inline void _tlbiel_kernel_broadcast(void) { on_each_cpu(do_tlbiel_kernel, NULL, 1); if (tlbie_capable) { /* * Coherent accelerators don't refcount kernel memory mappings, * so have to always issue a tlbie for them. This is quite a * slow path anyway. */ _tlbie_pid(0, RIC_FLUSH_ALL); } } /* * If kernel TLBIs ever become local rather than global, then * drivers/misc/ocxl/link.c:ocxl_link_add_pe will need some work, as it * assumes kernel TLBIs are global. */ void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end) { if (!mmu_has_feature(MMU_FTR_GTSE)) { unsigned long tgt = H_RPTI_TARGET_CMMU | H_RPTI_TARGET_NMMU; unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | H_RPTI_TYPE_PRT; pseries_rpt_invalidate(0, tgt, type, H_RPTI_PAGE_ALL, start, end); } else if (cputlb_use_tlbie()) _tlbie_pid(0, RIC_FLUSH_ALL); else _tlbiel_kernel_broadcast(); } EXPORT_SYMBOL(radix__flush_tlb_kernel_range); #define TLB_FLUSH_ALL -1UL /* * Number of pages above which we invalidate the entire PID rather than * flush individual pages, for local and global flushes respectively. * * tlbie goes out to the interconnect and individual ops are more costly. * It also does not iterate over sets like the local tlbiel variant when * invalidating a full PID, so it has a far lower threshold to change from * individual page flushes to full-pid flushes. */ static u32 tlb_single_page_flush_ceiling __read_mostly = 33; static u32 tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2; static inline void __radix__flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { unsigned long pid; unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift; unsigned long page_size = 1UL << page_shift; unsigned long nr_pages = (end - start) >> page_shift; bool fullmm = (end == TLB_FLUSH_ALL); bool flush_pid, flush_pwc = false; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); smp_mb(); /* see radix__flush_tlb_mm */ type = flush_type_needed(mm, fullmm); if (type == FLUSH_TYPE_NONE) goto out; if (fullmm) flush_pid = true; else if (type == FLUSH_TYPE_GLOBAL) flush_pid = nr_pages > tlb_single_page_flush_ceiling; else flush_pid = nr_pages > tlb_local_single_page_flush_ceiling; /* * full pid flush already does the PWC flush. if it is not full pid * flush check the range is more than PMD and force a pwc flush * mremap() depends on this behaviour. */ if (!flush_pid && (end - start) >= PMD_SIZE) flush_pwc = true; if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) { unsigned long type = H_RPTI_TYPE_TLB; unsigned long tgt = H_RPTI_TARGET_CMMU; unsigned long pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize); if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) pg_sizes |= psize_to_rpti_pgsize(MMU_PAGE_2M); if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; if (flush_pwc) type |= H_RPTI_TYPE_PWC; pseries_rpt_invalidate(pid, tgt, type, pg_sizes, start, end); } else if (flush_pid) { /* * We are now flushing a range larger than PMD size force a RIC_FLUSH_ALL */ if (type == FLUSH_TYPE_LOCAL) { _tlbiel_pid(pid, RIC_FLUSH_ALL); } else { if (cputlb_use_tlbie()) { _tlbie_pid(pid, RIC_FLUSH_ALL); } else { _tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL); } } } else { bool hflush; unsigned long hstart, hend; hstart = (start + PMD_SIZE - 1) & PMD_MASK; hend = end & PMD_MASK; hflush = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hstart < hend; if (type == FLUSH_TYPE_LOCAL) { asm volatile("ptesync": : :"memory"); if (flush_pwc) /* For PWC, only one flush is needed */ __tlbiel_pid(pid, 0, RIC_FLUSH_PWC); __tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize); if (hflush) __tlbiel_va_range(hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M); ppc_after_tlbiel_barrier(); } else if (cputlb_use_tlbie()) { asm volatile("ptesync": : :"memory"); if (flush_pwc) __tlbie_pid(pid, RIC_FLUSH_PWC); __tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize); if (hflush) __tlbie_va_range(hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } else { _tlbiel_va_range_multicast(mm, start, end, pid, page_size, mmu_virtual_psize, flush_pwc); if (hflush) _tlbiel_va_range_multicast(mm, hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M, flush_pwc); } } out: preempt_enable(); } void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { #ifdef CONFIG_HUGETLB_PAGE if (is_vm_hugetlb_page(vma)) return radix__flush_hugetlb_tlb_range(vma, start, end); #endif __radix__flush_tlb_range(vma->vm_mm, start, end); } EXPORT_SYMBOL(radix__flush_tlb_range); static int radix_get_mmu_psize(int page_size) { int psize; if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift)) psize = mmu_virtual_psize; else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift)) psize = MMU_PAGE_2M; else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift)) psize = MMU_PAGE_1G; else return -1; return psize; } /* * Flush partition scoped LPID address translation for all CPUs. */ void radix__flush_tlb_lpid_page(unsigned int lpid, unsigned long addr, unsigned long page_size) { int psize = radix_get_mmu_psize(page_size); _tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB); } EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page); /* * Flush partition scoped PWC from LPID for all CPUs. */ void radix__flush_pwc_lpid(unsigned int lpid) { _tlbie_lpid(lpid, RIC_FLUSH_PWC); } EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid); /* * Flush partition scoped translations from LPID (=LPIDR) */ void radix__flush_all_lpid(unsigned int lpid) { _tlbie_lpid(lpid, RIC_FLUSH_ALL); } EXPORT_SYMBOL_GPL(radix__flush_all_lpid); /* * Flush process scoped translations from LPID (=LPIDR) */ void radix__flush_all_lpid_guest(unsigned int lpid) { _tlbie_lpid_guest(lpid, RIC_FLUSH_ALL); } void radix__tlb_flush(struct mmu_gather *tlb) { int psize = 0; struct mm_struct *mm = tlb->mm; int page_size = tlb->page_size; unsigned long start = tlb->start; unsigned long end = tlb->end; /* * if page size is not something we understand, do a full mm flush * * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush * that flushes the process table entry cache upon process teardown. * See the comment for radix in arch_exit_mmap(). */ if (tlb->fullmm || tlb->need_flush_all) { __flush_all_mm(mm, true); } else if ( (psize = radix_get_mmu_psize(page_size)) == -1) { if (!tlb->freed_tables) radix__flush_tlb_mm(mm); else radix__flush_all_mm(mm); } else { if (!tlb->freed_tables) radix__flush_tlb_range_psize(mm, start, end, psize); else radix__flush_tlb_pwc_range_psize(mm, start, end, psize); } } static void __radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize, bool also_pwc) { unsigned long pid; unsigned int page_shift = mmu_psize_defs[psize].shift; unsigned long page_size = 1UL << page_shift; unsigned long nr_pages = (end - start) >> page_shift; bool fullmm = (end == TLB_FLUSH_ALL); bool flush_pid; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; fullmm = (end == TLB_FLUSH_ALL); preempt_disable(); smp_mb(); /* see radix__flush_tlb_mm */ type = flush_type_needed(mm, fullmm); if (type == FLUSH_TYPE_NONE) goto out; if (fullmm) flush_pid = true; else if (type == FLUSH_TYPE_GLOBAL) flush_pid = nr_pages > tlb_single_page_flush_ceiling; else flush_pid = nr_pages > tlb_local_single_page_flush_ceiling; if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) { unsigned long tgt = H_RPTI_TARGET_CMMU; unsigned long type = H_RPTI_TYPE_TLB; unsigned long pg_sizes = psize_to_rpti_pgsize(psize); if (also_pwc) type |= H_RPTI_TYPE_PWC; if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; pseries_rpt_invalidate(pid, tgt, type, pg_sizes, start, end); } else if (flush_pid) { if (type == FLUSH_TYPE_LOCAL) { _tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB); } else { if (cputlb_use_tlbie()) { if (mm_needs_flush_escalation(mm)) also_pwc = true; _tlbie_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB); } else { _tlbiel_pid_multicast(mm, pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB); } } } else { if (type == FLUSH_TYPE_LOCAL) _tlbiel_va_range(start, end, pid, page_size, psize, also_pwc); else if (cputlb_use_tlbie()) _tlbie_va_range(start, end, pid, page_size, psize, also_pwc); else _tlbiel_va_range_multicast(mm, start, end, pid, page_size, psize, also_pwc); } out: preempt_enable(); } void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize) { return __radix__flush_tlb_range_psize(mm, start, end, psize, false); } void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize) { __radix__flush_tlb_range_psize(mm, start, end, psize, true); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr) { unsigned long pid, end; enum tlb_flush_type type; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; /* 4k page size, just blow the world */ if (PAGE_SIZE == 0x1000) { radix__flush_all_mm(mm); return; } end = addr + HPAGE_PMD_SIZE; /* Otherwise first do the PWC, then iterate the pages. */ preempt_disable(); smp_mb(); /* see radix__flush_tlb_mm */ type = flush_type_needed(mm, false); if (type == FLUSH_TYPE_LOCAL) { _tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true); } else if (type == FLUSH_TYPE_GLOBAL) { if (!mmu_has_feature(MMU_FTR_GTSE)) { unsigned long tgt, type, pg_sizes; tgt = H_RPTI_TARGET_CMMU; type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | H_RPTI_TYPE_PRT; pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize); if (atomic_read(&mm->context.copros) > 0) tgt |= H_RPTI_TARGET_NMMU; pseries_rpt_invalidate(pid, tgt, type, pg_sizes, addr, end); } else if (cputlb_use_tlbie()) _tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true); else _tlbiel_va_range_multicast(mm, addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true); } preempt_enable(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ void radix__flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M); } EXPORT_SYMBOL(radix__flush_pmd_tlb_range); void radix__flush_tlb_all(void) { unsigned long rb,prs,r,rs; unsigned long ric = RIC_FLUSH_ALL; rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */ prs = 0; /* partition scoped */ r = 1; /* radix format */ rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */ asm volatile("ptesync": : :"memory"); /* * now flush guest entries by passing PRS = 1 and LPID != 0 */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory"); /* * now flush host entires by passing PRS = 0 and LPID == 0 */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory"); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE static __always_inline void __tlbie_pid_lpid(unsigned long pid, unsigned long lpid, unsigned long ric) { unsigned long rb, rs, prs, r; rb = PPC_BIT(53); /* IS = 1 */ rs = (pid << PPC_BITLSHIFT(31)) | (lpid & ~(PPC_BITMASK(0, 31))); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static __always_inline void __tlbie_va_lpid(unsigned long va, unsigned long pid, unsigned long lpid, unsigned long ap, unsigned long ric) { unsigned long rb, rs, prs, r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = (pid << PPC_BITLSHIFT(31)) | (lpid & ~(PPC_BITMASK(0, 31))); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static inline void fixup_tlbie_pid_lpid(unsigned long pid, unsigned long lpid) { /* * We can use any address for the invalidation, pick one which is * probably unused as an optimisation. */ unsigned long va = ((1UL << 52) - 1); if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync" : : : "memory"); __tlbie_pid_lpid(0, lpid, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync" : : : "memory"); __tlbie_va_lpid(va, pid, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB); } } static inline void _tlbie_pid_lpid(unsigned long pid, unsigned long lpid, unsigned long ric) { asm volatile("ptesync" : : : "memory"); /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time contraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB); fixup_tlbie_pid_lpid(pid, lpid); break; case RIC_FLUSH_PWC: __tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_pid_lpid(pid, lpid, RIC_FLUSH_ALL); fixup_tlbie_pid_lpid(pid, lpid); } asm volatile("eieio; tlbsync; ptesync" : : : "memory"); } static inline void fixup_tlbie_va_range_lpid(unsigned long va, unsigned long pid, unsigned long lpid, unsigned long ap) { if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) { asm volatile("ptesync" : : : "memory"); __tlbie_pid_lpid(0, lpid, RIC_FLUSH_TLB); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) { asm volatile("ptesync" : : : "memory"); __tlbie_va_lpid(va, pid, lpid, ap, RIC_FLUSH_TLB); } } static inline void __tlbie_va_range_lpid(unsigned long start, unsigned long end, unsigned long pid, unsigned long lpid, unsigned long page_size, unsigned long psize) { unsigned long addr; unsigned long ap = mmu_get_ap(psize); for (addr = start; addr < end; addr += page_size) __tlbie_va_lpid(addr, pid, lpid, ap, RIC_FLUSH_TLB); fixup_tlbie_va_range_lpid(addr - page_size, pid, lpid, ap); } static inline void _tlbie_va_range_lpid(unsigned long start, unsigned long end, unsigned long pid, unsigned long lpid, unsigned long page_size, unsigned long psize, bool also_pwc) { asm volatile("ptesync" : : : "memory"); if (also_pwc) __tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC); __tlbie_va_range_lpid(start, end, pid, lpid, page_size, psize); asm volatile("eieio; tlbsync; ptesync" : : : "memory"); } /* * Performs process-scoped invalidations for a given LPID * as part of H_RPT_INVALIDATE hcall. */ void do_h_rpt_invalidate_prt(unsigned long pid, unsigned long lpid, unsigned long type, unsigned long pg_sizes, unsigned long start, unsigned long end) { unsigned long psize, nr_pages; struct mmu_psize_def *def; bool flush_pid; /* * A H_RPTI_TYPE_ALL request implies RIC=3, hence * do a single IS=1 based flush. */ if ((type & H_RPTI_TYPE_ALL) == H_RPTI_TYPE_ALL) { _tlbie_pid_lpid(pid, lpid, RIC_FLUSH_ALL); return; } if (type & H_RPTI_TYPE_PWC) _tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC); /* Full PID flush */ if (start == 0 && end == -1) return _tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB); /* Do range invalidation for all the valid page sizes */ for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { def = &mmu_psize_defs[psize]; if (!(pg_sizes & def->h_rpt_pgsize)) continue; nr_pages = (end - start) >> def->shift; flush_pid = nr_pages > tlb_single_page_flush_ceiling; /* * If the number of pages spanning the range is above * the ceiling, convert the request into a full PID flush. * And since PID flush takes out all the page sizes, there * is no need to consider remaining page sizes. */ if (flush_pid) { _tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB); return; } _tlbie_va_range_lpid(start, end, pid, lpid, (1UL << def->shift), psize, false); } } EXPORT_SYMBOL_GPL(do_h_rpt_invalidate_prt); #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ static int __init create_tlb_single_page_flush_ceiling(void) { debugfs_create_u32("tlb_single_page_flush_ceiling", 0600, arch_debugfs_dir, &tlb_single_page_flush_ceiling); debugfs_create_u32("tlb_local_single_page_flush_ceiling", 0600, arch_debugfs_dir, &tlb_local_single_page_flush_ceiling); return 0; } late_initcall(create_tlb_single_page_flush_ceiling);