// SPDX-License-Identifier: ISC /* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. */ #include #include #include #include #include "wil6210.h" #include "wmi.h" #include "fw.h" #define WIL_MAX_ROC_DURATION_MS 5000 #define WIL_EDMG_CHANNEL_9_SUBCHANNELS (BIT(0) | BIT(1)) #define WIL_EDMG_CHANNEL_10_SUBCHANNELS (BIT(1) | BIT(2)) #define WIL_EDMG_CHANNEL_11_SUBCHANNELS (BIT(2) | BIT(3)) /* WIL_EDMG_BW_CONFIGURATION define the allowed channel bandwidth * configurations as defined by IEEE 802.11 section 9.4.2.251, Table 13. * The value 5 allowing CB1 and CB2 of adjacent channels. */ #define WIL_EDMG_BW_CONFIGURATION 5 /* WIL_EDMG_CHANNELS is a bitmap that indicates the 2.16 GHz channel(s) that * are allowed to be used for EDMG transmissions in the BSS as defined by * IEEE 802.11 section 9.4.2.251. */ #define WIL_EDMG_CHANNELS (BIT(0) | BIT(1) | BIT(2) | BIT(3)) bool disable_ap_sme; module_param(disable_ap_sme, bool, 0444); MODULE_PARM_DESC(disable_ap_sme, " let user space handle AP mode SME"); #ifdef CONFIG_PM static struct wiphy_wowlan_support wil_wowlan_support = { .flags = WIPHY_WOWLAN_ANY | WIPHY_WOWLAN_DISCONNECT, }; #endif #define CHAN60G(_channel, _flags) { \ .band = NL80211_BAND_60GHZ, \ .center_freq = 56160 + (2160 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 40, \ } static struct ieee80211_channel wil_60ghz_channels[] = { CHAN60G(1, 0), CHAN60G(2, 0), CHAN60G(3, 0), CHAN60G(4, 0), }; /* Rx channel bonding mode */ enum wil_rx_cb_mode { WIL_RX_CB_MODE_DMG, WIL_RX_CB_MODE_EDMG, WIL_RX_CB_MODE_WIDE, }; static int wil_rx_cb_mode_to_n_bonded(u8 cb_mode) { switch (cb_mode) { case WIL_RX_CB_MODE_DMG: case WIL_RX_CB_MODE_EDMG: return 1; case WIL_RX_CB_MODE_WIDE: return 2; default: return 1; } } static int wil_tx_cb_mode_to_n_bonded(u8 cb_mode) { switch (cb_mode) { case WMI_TX_MODE_DMG: case WMI_TX_MODE_EDMG_CB1: return 1; case WMI_TX_MODE_EDMG_CB2: return 2; default: return 1; } } static void wil_memdup_ie(u8 **pdst, size_t *pdst_len, const u8 *src, size_t src_len) { kfree(*pdst); *pdst = NULL; *pdst_len = 0; if (src_len > 0) { *pdst = kmemdup(src, src_len, GFP_KERNEL); if (*pdst) *pdst_len = src_len; } } static int wil_num_supported_channels(struct wil6210_priv *wil) { int num_channels = ARRAY_SIZE(wil_60ghz_channels); if (!test_bit(WMI_FW_CAPABILITY_CHANNEL_4, wil->fw_capabilities)) num_channels--; return num_channels; } void update_supported_bands(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); wil_dbg_misc(wil, "update supported bands"); wiphy->bands[NL80211_BAND_60GHZ]->n_channels = wil_num_supported_channels(wil); if (test_bit(WMI_FW_CAPABILITY_CHANNEL_BONDING, wil->fw_capabilities)) { wiphy->bands[NL80211_BAND_60GHZ]->edmg_cap.channels = WIL_EDMG_CHANNELS; wiphy->bands[NL80211_BAND_60GHZ]->edmg_cap.bw_config = WIL_EDMG_BW_CONFIGURATION; } } /* Vendor id to be used in vendor specific command and events * to user space. * NOTE: The authoritative place for definition of QCA_NL80211_VENDOR_ID, * vendor subcmd definitions prefixed with QCA_NL80211_VENDOR_SUBCMD, and * qca_wlan_vendor_attr is open source file src/common/qca-vendor.h in * git://w1.fi/srv/git/hostap.git; the values here are just a copy of that */ #define QCA_NL80211_VENDOR_ID 0x001374 #define WIL_MAX_RF_SECTORS (128) #define WIL_CID_ALL (0xff) enum qca_wlan_vendor_attr_rf_sector { QCA_ATTR_MAC_ADDR = 6, QCA_ATTR_PAD = 13, QCA_ATTR_TSF = 29, QCA_ATTR_DMG_RF_SECTOR_INDEX = 30, QCA_ATTR_DMG_RF_SECTOR_TYPE = 31, QCA_ATTR_DMG_RF_MODULE_MASK = 32, QCA_ATTR_DMG_RF_SECTOR_CFG = 33, QCA_ATTR_DMG_RF_SECTOR_MAX, }; enum qca_wlan_vendor_attr_dmg_rf_sector_type { QCA_ATTR_DMG_RF_SECTOR_TYPE_RX, QCA_ATTR_DMG_RF_SECTOR_TYPE_TX, QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX }; enum qca_wlan_vendor_attr_dmg_rf_sector_cfg { QCA_ATTR_DMG_RF_SECTOR_CFG_INVALID = 0, QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO, QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16, /* keep last */ QCA_ATTR_DMG_RF_SECTOR_CFG_AFTER_LAST, QCA_ATTR_DMG_RF_SECTOR_CFG_MAX = QCA_ATTR_DMG_RF_SECTOR_CFG_AFTER_LAST - 1 }; static const struct nla_policy wil_rf_sector_policy[QCA_ATTR_DMG_RF_SECTOR_MAX + 1] = { [QCA_ATTR_MAC_ADDR] = { .len = ETH_ALEN }, [QCA_ATTR_DMG_RF_SECTOR_INDEX] = { .type = NLA_U16 }, [QCA_ATTR_DMG_RF_SECTOR_TYPE] = { .type = NLA_U8 }, [QCA_ATTR_DMG_RF_MODULE_MASK] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG] = { .type = NLA_NESTED }, }; static const struct nla_policy wil_rf_sector_cfg_policy[QCA_ATTR_DMG_RF_SECTOR_CFG_MAX + 1] = { [QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX] = { .type = NLA_U8 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16] = { .type = NLA_U32 }, }; enum qca_nl80211_vendor_subcmds { QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SECTOR_CFG = 139, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SECTOR_CFG = 140, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SELECTED_SECTOR = 141, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SELECTED_SECTOR = 142, }; static int wil_rf_sector_get_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_set_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_get_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_set_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); /* vendor specific commands */ static const struct wiphy_vendor_command wil_nl80211_vendor_commands[] = { { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SECTOR_CFG, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .policy = wil_rf_sector_policy, .doit = wil_rf_sector_get_cfg }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SECTOR_CFG, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .policy = wil_rf_sector_policy, .doit = wil_rf_sector_set_cfg }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SELECTED_SECTOR, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .policy = wil_rf_sector_policy, .doit = wil_rf_sector_get_selected }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SELECTED_SECTOR, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .policy = wil_rf_sector_policy, .doit = wil_rf_sector_set_selected }, }; static struct ieee80211_supported_band wil_band_60ghz = { .channels = wil_60ghz_channels, .n_channels = ARRAY_SIZE(wil_60ghz_channels), .ht_cap = { .ht_supported = true, .cap = 0, /* TODO */ .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, /* TODO */ .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, /* TODO */ .mcs = { /* MCS 1..12 - SC PHY */ .rx_mask = {0xfe, 0x1f}, /* 1..12 */ .tx_params = IEEE80211_HT_MCS_TX_DEFINED, /* TODO */ }, }, }; static const struct ieee80211_txrx_stypes wil_mgmt_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_STATION] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_AP] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4) | BIT(IEEE80211_STYPE_ASSOC_RESP >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_REASSOC_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_GO] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_DEVICE] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, }; static const u32 wil_cipher_suites[] = { WLAN_CIPHER_SUITE_GCMP, }; static const char * const key_usage_str[] = { [WMI_KEY_USE_PAIRWISE] = "PTK", [WMI_KEY_USE_RX_GROUP] = "RX_GTK", [WMI_KEY_USE_TX_GROUP] = "TX_GTK", [WMI_KEY_USE_STORE_PTK] = "STORE_PTK", [WMI_KEY_USE_APPLY_PTK] = "APPLY_PTK", }; int wil_iftype_nl2wmi(enum nl80211_iftype type) { static const struct { enum nl80211_iftype nl; enum wmi_network_type wmi; } __nl2wmi[] = { {NL80211_IFTYPE_ADHOC, WMI_NETTYPE_ADHOC}, {NL80211_IFTYPE_STATION, WMI_NETTYPE_INFRA}, {NL80211_IFTYPE_AP, WMI_NETTYPE_AP}, {NL80211_IFTYPE_P2P_CLIENT, WMI_NETTYPE_P2P}, {NL80211_IFTYPE_P2P_GO, WMI_NETTYPE_P2P}, {NL80211_IFTYPE_MONITOR, WMI_NETTYPE_ADHOC}, /* FIXME */ }; uint i; for (i = 0; i < ARRAY_SIZE(__nl2wmi); i++) { if (__nl2wmi[i].nl == type) return __nl2wmi[i].wmi; } return -EOPNOTSUPP; } int wil_spec2wmi_ch(u8 spec_ch, u8 *wmi_ch) { switch (spec_ch) { case 1: *wmi_ch = WMI_CHANNEL_1; break; case 2: *wmi_ch = WMI_CHANNEL_2; break; case 3: *wmi_ch = WMI_CHANNEL_3; break; case 4: *wmi_ch = WMI_CHANNEL_4; break; case 5: *wmi_ch = WMI_CHANNEL_5; break; case 6: *wmi_ch = WMI_CHANNEL_6; break; case 9: *wmi_ch = WMI_CHANNEL_9; break; case 10: *wmi_ch = WMI_CHANNEL_10; break; case 11: *wmi_ch = WMI_CHANNEL_11; break; case 12: *wmi_ch = WMI_CHANNEL_12; break; default: return -EINVAL; } return 0; } int wil_wmi2spec_ch(u8 wmi_ch, u8 *spec_ch) { switch (wmi_ch) { case WMI_CHANNEL_1: *spec_ch = 1; break; case WMI_CHANNEL_2: *spec_ch = 2; break; case WMI_CHANNEL_3: *spec_ch = 3; break; case WMI_CHANNEL_4: *spec_ch = 4; break; case WMI_CHANNEL_5: *spec_ch = 5; break; case WMI_CHANNEL_6: *spec_ch = 6; break; case WMI_CHANNEL_9: *spec_ch = 9; break; case WMI_CHANNEL_10: *spec_ch = 10; break; case WMI_CHANNEL_11: *spec_ch = 11; break; case WMI_CHANNEL_12: *spec_ch = 12; break; default: return -EINVAL; } return 0; } int wil_cid_fill_sinfo(struct wil6210_vif *vif, int cid, struct station_info *sinfo) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_notify_req_cmd cmd = { .cid = cid, .interval_usec = 0, }; struct { struct wmi_cmd_hdr wmi; struct wmi_notify_req_done_event evt; } __packed reply; struct wil_net_stats *stats = &wil->sta[cid].stats; int rc; u8 tx_mcs, rx_mcs; u8 tx_rate_flag = RATE_INFO_FLAGS_DMG; u8 rx_rate_flag = RATE_INFO_FLAGS_DMG; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_NOTIFY_REQ_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_NOTIFY_REQ_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) return rc; tx_mcs = le16_to_cpu(reply.evt.bf_mcs); wil_dbg_wmi(wil, "Link status for CID %d MID %d: {\n" " MCS %s TSF 0x%016llx\n" " BF status 0x%08x RSSI %d SQI %d%%\n" " Tx Tpt %d goodput %d Rx goodput %d\n" " Sectors(rx:tx) my %d:%d peer %d:%d\n" " Tx mode %d}\n", cid, vif->mid, WIL_EXTENDED_MCS_CHECK(tx_mcs), le64_to_cpu(reply.evt.tsf), reply.evt.status, reply.evt.rssi, reply.evt.sqi, le32_to_cpu(reply.evt.tx_tpt), le32_to_cpu(reply.evt.tx_goodput), le32_to_cpu(reply.evt.rx_goodput), le16_to_cpu(reply.evt.my_rx_sector), le16_to_cpu(reply.evt.my_tx_sector), le16_to_cpu(reply.evt.other_rx_sector), le16_to_cpu(reply.evt.other_tx_sector), reply.evt.tx_mode); sinfo->generation = wil->sinfo_gen; sinfo->filled = BIT_ULL(NL80211_STA_INFO_RX_BYTES) | BIT_ULL(NL80211_STA_INFO_TX_BYTES) | BIT_ULL(NL80211_STA_INFO_RX_PACKETS) | BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | BIT_ULL(NL80211_STA_INFO_RX_BITRATE) | BIT_ULL(NL80211_STA_INFO_TX_BITRATE) | BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC) | BIT_ULL(NL80211_STA_INFO_TX_FAILED); if (wil->use_enhanced_dma_hw && reply.evt.tx_mode != WMI_TX_MODE_DMG) { tx_rate_flag = RATE_INFO_FLAGS_EDMG; rx_rate_flag = RATE_INFO_FLAGS_EDMG; } rx_mcs = stats->last_mcs_rx; /* check extended MCS (12.1) and convert it into * base MCS (7) + EXTENDED_SC_DMG flag */ if (tx_mcs == WIL_EXTENDED_MCS_26) { tx_rate_flag = RATE_INFO_FLAGS_EXTENDED_SC_DMG; tx_mcs = WIL_BASE_MCS_FOR_EXTENDED_26; } if (rx_mcs == WIL_EXTENDED_MCS_26) { rx_rate_flag = RATE_INFO_FLAGS_EXTENDED_SC_DMG; rx_mcs = WIL_BASE_MCS_FOR_EXTENDED_26; } sinfo->txrate.flags = tx_rate_flag; sinfo->rxrate.flags = rx_rate_flag; sinfo->txrate.mcs = tx_mcs; sinfo->rxrate.mcs = rx_mcs; sinfo->txrate.n_bonded_ch = wil_tx_cb_mode_to_n_bonded(reply.evt.tx_mode); sinfo->rxrate.n_bonded_ch = wil_rx_cb_mode_to_n_bonded(stats->last_cb_mode_rx); sinfo->rx_bytes = stats->rx_bytes; sinfo->rx_packets = stats->rx_packets; sinfo->rx_dropped_misc = stats->rx_dropped; sinfo->tx_bytes = stats->tx_bytes; sinfo->tx_packets = stats->tx_packets; sinfo->tx_failed = stats->tx_errors; if (test_bit(wil_vif_fwconnected, vif->status)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) sinfo->signal = reply.evt.rssi; else sinfo->signal = reply.evt.sqi; } return rc; } static int wil_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_info *sinfo) { struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; int cid = wil_find_cid(wil, vif->mid, mac); wil_dbg_misc(wil, "get_station: %pM CID %d MID %d\n", mac, cid, vif->mid); if (!wil_cid_valid(wil, cid)) return -ENOENT; rc = wil_cid_fill_sinfo(vif, cid, sinfo); return rc; } /* * Find @idx-th active STA for specific MID for station dump. */ int wil_find_cid_by_idx(struct wil6210_priv *wil, u8 mid, int idx) { int i; for (i = 0; i < wil->max_assoc_sta; i++) { if (wil->sta[i].status == wil_sta_unused) continue; if (wil->sta[i].mid != mid) continue; if (idx == 0) return i; idx--; } return -ENOENT; } static int wil_cfg80211_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; int cid = wil_find_cid_by_idx(wil, vif->mid, idx); if (!wil_cid_valid(wil, cid)) return -ENOENT; ether_addr_copy(mac, wil->sta[cid].addr); wil_dbg_misc(wil, "dump_station: %pM CID %d MID %d\n", mac, cid, vif->mid); rc = wil_cid_fill_sinfo(vif, cid, sinfo); return rc; } static int wil_cfg80211_start_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "start_p2p_device: entered\n"); wil->p2p_dev_started = 1; return 0; } static void wil_cfg80211_stop_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); if (!wil->p2p_dev_started) return; wil_dbg_misc(wil, "stop_p2p_device: entered\n"); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); wil_p2p_stop_radio_operations(wil); wil->p2p_dev_started = 0; mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); } static int wil_cfg80211_validate_add_iface(struct wil6210_priv *wil, enum nl80211_iftype new_type) { int i; struct wireless_dev *wdev; struct iface_combination_params params = { .num_different_channels = 1, }; for (i = 0; i < GET_MAX_VIFS(wil); i++) { if (wil->vifs[i]) { wdev = vif_to_wdev(wil->vifs[i]); params.iftype_num[wdev->iftype]++; } } params.iftype_num[new_type]++; return cfg80211_check_combinations(wil->wiphy, ¶ms); } static int wil_cfg80211_validate_change_iface(struct wil6210_priv *wil, struct wil6210_vif *vif, enum nl80211_iftype new_type) { int i, ret = 0; struct wireless_dev *wdev; struct iface_combination_params params = { .num_different_channels = 1, }; bool check_combos = false; for (i = 0; i < GET_MAX_VIFS(wil); i++) { struct wil6210_vif *vif_pos = wil->vifs[i]; if (vif_pos && vif != vif_pos) { wdev = vif_to_wdev(vif_pos); params.iftype_num[wdev->iftype]++; check_combos = true; } } if (check_combos) { params.iftype_num[new_type]++; ret = cfg80211_check_combinations(wil->wiphy, ¶ms); } return ret; } static struct wireless_dev * wil_cfg80211_add_iface(struct wiphy *wiphy, const char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct net_device *ndev_main = wil->main_ndev, *ndev; struct wil6210_vif *vif; struct wireless_dev *p2p_wdev, *wdev; int rc; wil_dbg_misc(wil, "add_iface, type %d\n", type); /* P2P device is not a real virtual interface, it is a management-only * interface that shares the main interface. * Skip concurrency checks here. */ if (type == NL80211_IFTYPE_P2P_DEVICE) { if (wil->p2p_wdev) { wil_err(wil, "P2P_DEVICE interface already created\n"); return ERR_PTR(-EINVAL); } p2p_wdev = kzalloc(sizeof(*p2p_wdev), GFP_KERNEL); if (!p2p_wdev) return ERR_PTR(-ENOMEM); p2p_wdev->iftype = type; p2p_wdev->wiphy = wiphy; /* use our primary ethernet address */ ether_addr_copy(p2p_wdev->address, ndev_main->perm_addr); wil->p2p_wdev = p2p_wdev; return p2p_wdev; } if (!wil->wiphy->n_iface_combinations) { wil_err(wil, "virtual interfaces not supported\n"); return ERR_PTR(-EINVAL); } rc = wil_cfg80211_validate_add_iface(wil, type); if (rc) { wil_err(wil, "iface validation failed, err=%d\n", rc); return ERR_PTR(rc); } vif = wil_vif_alloc(wil, name, name_assign_type, type); if (IS_ERR(vif)) return ERR_CAST(vif); ndev = vif_to_ndev(vif); ether_addr_copy(ndev->perm_addr, ndev_main->perm_addr); if (is_valid_ether_addr(params->macaddr)) { eth_hw_addr_set(ndev, params->macaddr); } else { u8 addr[ETH_ALEN]; ether_addr_copy(addr, ndev_main->perm_addr); addr[0] = (addr[0] ^ (1 << vif->mid)) | 0x2; /* locally administered */ eth_hw_addr_set(ndev, addr); } wdev = vif_to_wdev(vif); ether_addr_copy(wdev->address, ndev->dev_addr); rc = wil_vif_add(wil, vif); if (rc) goto out; wil_info(wil, "added VIF, mid %d iftype %d MAC %pM\n", vif->mid, type, wdev->address); return wdev; out: wil_vif_free(vif); return ERR_PTR(rc); } int wil_vif_prepare_stop(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); struct wireless_dev *wdev = vif_to_wdev(vif); struct net_device *ndev; int rc; if (wdev->iftype != NL80211_IFTYPE_AP) return 0; ndev = vif_to_ndev(vif); if (netif_carrier_ok(ndev)) { rc = wmi_pcp_stop(vif); if (rc) { wil_info(wil, "failed to stop AP, status %d\n", rc); /* continue */ } wil_bcast_fini(vif); netif_carrier_off(ndev); } return 0; } static int wil_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; wil_dbg_misc(wil, "del_iface\n"); if (wdev->iftype == NL80211_IFTYPE_P2P_DEVICE) { if (wdev != wil->p2p_wdev) { wil_err(wil, "delete of incorrect interface 0x%p\n", wdev); return -EINVAL; } wil_cfg80211_stop_p2p_device(wiphy, wdev); wil_p2p_wdev_free(wil); return 0; } if (vif->mid == 0) { wil_err(wil, "cannot remove the main interface\n"); return -EINVAL; } rc = wil_vif_prepare_stop(vif); if (rc) goto out; wil_info(wil, "deleted VIF, mid %d iftype %d MAC %pM\n", vif->mid, wdev->iftype, wdev->address); wil_vif_remove(wil, vif->mid); out: return rc; } static bool wil_is_safe_switch(enum nl80211_iftype from, enum nl80211_iftype to) { if (from == NL80211_IFTYPE_STATION && to == NL80211_IFTYPE_P2P_CLIENT) return true; return false; } static int wil_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, struct vif_params *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct wireless_dev *wdev = vif_to_wdev(vif); int rc; bool fw_reset = false; wil_dbg_misc(wil, "change_iface: type=%d\n", type); if (wiphy->n_iface_combinations) { rc = wil_cfg80211_validate_change_iface(wil, vif, type); if (rc) { wil_err(wil, "iface validation failed, err=%d\n", rc); return rc; } } /* do not reset FW when there are active VIFs, * because it can cause significant disruption */ if (!wil_has_other_active_ifaces(wil, ndev, true, false) && netif_running(ndev) && !wil_is_recovery_blocked(wil) && !wil_is_safe_switch(wdev->iftype, type)) { wil_dbg_misc(wil, "interface is up. resetting...\n"); mutex_lock(&wil->mutex); __wil_down(wil); rc = __wil_up(wil); mutex_unlock(&wil->mutex); if (rc) return rc; fw_reset = true; } switch (type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: break; case NL80211_IFTYPE_MONITOR: if (params->flags) wil->monitor_flags = params->flags; break; default: return -EOPNOTSUPP; } if (vif->mid != 0 && wil_has_active_ifaces(wil, true, false)) { if (!fw_reset) wil_vif_prepare_stop(vif); rc = wmi_port_delete(wil, vif->mid); if (rc) return rc; rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr, type); if (rc) return rc; } wdev->iftype = type; return 0; } static int wil_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = request->wdev; struct wil6210_vif *vif = wdev_to_vif(wil, wdev); struct { struct wmi_start_scan_cmd cmd; u16 chnl[4]; } __packed cmd; uint i, n; int rc; wil_dbg_misc(wil, "scan: wdev=0x%p iftype=%d\n", wdev, wdev->iftype); /* scan is supported on client interfaces and on AP interface */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_AP: break; default: return -EOPNOTSUPP; } /* FW don't support scan after connection attempt */ if (test_bit(wil_status_dontscan, wil->status)) { wil_err(wil, "Can't scan now\n"); return -EBUSY; } mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); if (vif->scan_request || vif->p2p.discovery_started) { wil_err(wil, "Already scanning\n"); mutex_unlock(&wil->vif_mutex); rc = -EAGAIN; goto out; } mutex_unlock(&wil->vif_mutex); if (wdev->iftype == NL80211_IFTYPE_P2P_DEVICE) { if (!wil->p2p_dev_started) { wil_err(wil, "P2P search requested on stopped P2P device\n"); rc = -EIO; goto out; } /* social scan on P2P_DEVICE is handled as p2p search */ if (wil_p2p_is_social_scan(request)) { vif->scan_request = request; if (vif->mid == 0) wil->radio_wdev = wdev; rc = wil_p2p_search(vif, request); if (rc) { if (vif->mid == 0) wil->radio_wdev = wil->main_ndev->ieee80211_ptr; vif->scan_request = NULL; } goto out; } } (void)wil_p2p_stop_discovery(vif); wil_dbg_misc(wil, "Start scan_request 0x%p\n", request); wil_dbg_misc(wil, "SSID count: %d", request->n_ssids); for (i = 0; i < request->n_ssids; i++) { wil_dbg_misc(wil, "SSID[%d]", i); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, request->ssids[i].ssid, request->ssids[i].ssid_len, true); } if (request->n_ssids) rc = wmi_set_ssid(vif, request->ssids[0].ssid_len, request->ssids[0].ssid); else rc = wmi_set_ssid(vif, 0, NULL); if (rc) { wil_err(wil, "set SSID for scan request failed: %d\n", rc); goto out; } vif->scan_request = request; mod_timer(&vif->scan_timer, jiffies + WIL6210_SCAN_TO); memset(&cmd, 0, sizeof(cmd)); cmd.cmd.scan_type = WMI_ACTIVE_SCAN; cmd.cmd.num_channels = 0; n = min(request->n_channels, 4U); for (i = 0; i < n; i++) { int ch = request->channels[i]->hw_value; if (ch == 0) { wil_err(wil, "Scan requested for unknown frequency %dMhz\n", request->channels[i]->center_freq); continue; } /* 0-based channel indexes */ cmd.cmd.channel_list[cmd.cmd.num_channels++].channel = ch - 1; wil_dbg_misc(wil, "Scan for ch %d : %d MHz\n", ch, request->channels[i]->center_freq); } if (request->ie_len) wil_hex_dump_misc("Scan IE ", DUMP_PREFIX_OFFSET, 16, 1, request->ie, request->ie_len, true); else wil_dbg_misc(wil, "Scan has no IE's\n"); rc = wmi_set_ie(vif, WMI_FRAME_PROBE_REQ, request->ie_len, request->ie); if (rc) goto out_restore; if (wil->discovery_mode && cmd.cmd.scan_type == WMI_ACTIVE_SCAN) { cmd.cmd.discovery_mode = 1; wil_dbg_misc(wil, "active scan with discovery_mode=1\n"); } if (vif->mid == 0) wil->radio_wdev = wdev; rc = wmi_send(wil, WMI_START_SCAN_CMDID, vif->mid, &cmd, sizeof(cmd.cmd) + cmd.cmd.num_channels * sizeof(cmd.cmd.channel_list[0])); out_restore: if (rc) { del_timer_sync(&vif->scan_timer); if (vif->mid == 0) wil->radio_wdev = wil->main_ndev->ieee80211_ptr; vif->scan_request = NULL; } out: mutex_unlock(&wil->mutex); return rc; } static void wil_cfg80211_abort_scan(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); wil_dbg_misc(wil, "wdev=0x%p iftype=%d\n", wdev, wdev->iftype); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); if (!vif->scan_request) goto out; if (wdev != vif->scan_request->wdev) { wil_dbg_misc(wil, "abort scan was called on the wrong iface\n"); goto out; } if (wdev == wil->p2p_wdev && wil->radio_wdev == wil->p2p_wdev) wil_p2p_stop_radio_operations(wil); else wil_abort_scan(vif, true); out: mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); } static void wil_print_crypto(struct wil6210_priv *wil, struct cfg80211_crypto_settings *c) { int i, n; wil_dbg_misc(wil, "WPA versions: 0x%08x cipher group 0x%08x\n", c->wpa_versions, c->cipher_group); wil_dbg_misc(wil, "Pairwise ciphers [%d] {\n", c->n_ciphers_pairwise); n = min_t(int, c->n_ciphers_pairwise, ARRAY_SIZE(c->ciphers_pairwise)); for (i = 0; i < n; i++) wil_dbg_misc(wil, " [%d] = 0x%08x\n", i, c->ciphers_pairwise[i]); wil_dbg_misc(wil, "}\n"); wil_dbg_misc(wil, "AKM suites [%d] {\n", c->n_akm_suites); n = min_t(int, c->n_akm_suites, ARRAY_SIZE(c->akm_suites)); for (i = 0; i < n; i++) wil_dbg_misc(wil, " [%d] = 0x%08x\n", i, c->akm_suites[i]); wil_dbg_misc(wil, "}\n"); wil_dbg_misc(wil, "Control port : %d, eth_type 0x%04x no_encrypt %d\n", c->control_port, be16_to_cpu(c->control_port_ethertype), c->control_port_no_encrypt); } static const char * wil_get_auth_type_name(enum nl80211_auth_type auth_type) { switch (auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: return "OPEN_SYSTEM"; case NL80211_AUTHTYPE_SHARED_KEY: return "SHARED_KEY"; case NL80211_AUTHTYPE_FT: return "FT"; case NL80211_AUTHTYPE_NETWORK_EAP: return "NETWORK_EAP"; case NL80211_AUTHTYPE_SAE: return "SAE"; case NL80211_AUTHTYPE_AUTOMATIC: return "AUTOMATIC"; default: return "unknown"; } } static void wil_print_connect_params(struct wil6210_priv *wil, struct cfg80211_connect_params *sme) { wil_info(wil, "Connecting to:\n"); if (sme->channel) { wil_info(wil, " Channel: %d freq %d\n", sme->channel->hw_value, sme->channel->center_freq); } if (sme->bssid) wil_info(wil, " BSSID: %pM\n", sme->bssid); if (sme->ssid) print_hex_dump(KERN_INFO, " SSID: ", DUMP_PREFIX_OFFSET, 16, 1, sme->ssid, sme->ssid_len, true); if (sme->prev_bssid) wil_info(wil, " Previous BSSID=%pM\n", sme->prev_bssid); wil_info(wil, " Auth Type: %s\n", wil_get_auth_type_name(sme->auth_type)); wil_info(wil, " Privacy: %s\n", sme->privacy ? "secure" : "open"); wil_info(wil, " PBSS: %d\n", sme->pbss); wil_print_crypto(wil, &sme->crypto); } static int wil_ft_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct wmi_ft_auth_cmd auth_cmd; int rc; if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FT: FW does not support FT roaming\n"); return -EOPNOTSUPP; } if (!sme->prev_bssid) { wil_err(wil, "FT: prev_bssid was not set\n"); return -EINVAL; } if (ether_addr_equal(sme->prev_bssid, sme->bssid)) { wil_err(wil, "FT: can not roam to same AP\n"); return -EINVAL; } if (!test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "FT: roam while not connected\n"); return -EINVAL; } if (vif->privacy != sme->privacy) { wil_err(wil, "FT: privacy mismatch, current (%d) roam (%d)\n", vif->privacy, sme->privacy); return -EINVAL; } if (sme->pbss) { wil_err(wil, "FT: roam is not valid for PBSS\n"); return -EINVAL; } memset(&auth_cmd, 0, sizeof(auth_cmd)); auth_cmd.channel = sme->channel->hw_value - 1; ether_addr_copy(auth_cmd.bssid, sme->bssid); wil_info(wil, "FT: roaming\n"); set_bit(wil_vif_ft_roam, vif->status); rc = wmi_send(wil, WMI_FT_AUTH_CMDID, vif->mid, &auth_cmd, sizeof(auth_cmd)); if (rc == 0) mod_timer(&vif->connect_timer, jiffies + msecs_to_jiffies(5000)); else clear_bit(wil_vif_ft_roam, vif->status); return rc; } static int wil_get_wmi_edmg_channel(struct wil6210_priv *wil, u8 edmg_bw_config, u8 edmg_channels, u8 *wmi_ch) { if (!edmg_bw_config) { *wmi_ch = 0; return 0; } else if (edmg_bw_config == WIL_EDMG_BW_CONFIGURATION) { /* convert from edmg channel bitmap into edmg channel number */ switch (edmg_channels) { case WIL_EDMG_CHANNEL_9_SUBCHANNELS: return wil_spec2wmi_ch(9, wmi_ch); case WIL_EDMG_CHANNEL_10_SUBCHANNELS: return wil_spec2wmi_ch(10, wmi_ch); case WIL_EDMG_CHANNEL_11_SUBCHANNELS: return wil_spec2wmi_ch(11, wmi_ch); default: wil_err(wil, "Unsupported edmg channel bitmap 0x%x\n", edmg_channels); return -EINVAL; } } else { wil_err(wil, "Unsupported EDMG BW configuration %d\n", edmg_bw_config); return -EINVAL; } } static int wil_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct cfg80211_bss *bss; struct wmi_connect_cmd conn; const u8 *ssid_eid; const u8 *rsn_eid; int ch; int rc = 0; bool is_ft_roam = false; u8 network_type; enum ieee80211_bss_type bss_type = IEEE80211_BSS_TYPE_ESS; wil_dbg_misc(wil, "connect, mid=%d\n", vif->mid); wil_print_connect_params(wil, sme); if (sme->auth_type == NL80211_AUTHTYPE_FT) is_ft_roam = true; if (sme->auth_type == NL80211_AUTHTYPE_AUTOMATIC && test_bit(wil_vif_fwconnected, vif->status)) is_ft_roam = true; if (!is_ft_roam) if (test_bit(wil_vif_fwconnecting, vif->status) || test_bit(wil_vif_fwconnected, vif->status)) return -EALREADY; if (sme->ie_len > WMI_MAX_IE_LEN) { wil_err(wil, "IE too large (%td bytes)\n", sme->ie_len); return -ERANGE; } rsn_eid = sme->ie ? cfg80211_find_ie(WLAN_EID_RSN, sme->ie, sme->ie_len) : NULL; if (sme->privacy && !rsn_eid) { wil_info(wil, "WSC connection\n"); if (is_ft_roam) { wil_err(wil, "No WSC with FT roam\n"); return -EINVAL; } } if (sme->pbss) bss_type = IEEE80211_BSS_TYPE_PBSS; bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, sme->ssid, sme->ssid_len, bss_type, IEEE80211_PRIVACY_ANY); if (!bss) { wil_err(wil, "Unable to find BSS\n"); return -ENOENT; } ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); if (!ssid_eid) { wil_err(wil, "No SSID\n"); rc = -ENOENT; goto out; } vif->privacy = sme->privacy; vif->pbss = sme->pbss; rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_REQ, sme->ie_len, sme->ie); if (rc) goto out; switch (bss->capability & WLAN_CAPABILITY_DMG_TYPE_MASK) { case WLAN_CAPABILITY_DMG_TYPE_AP: network_type = WMI_NETTYPE_INFRA; break; case WLAN_CAPABILITY_DMG_TYPE_PBSS: network_type = WMI_NETTYPE_P2P; break; default: wil_err(wil, "Unsupported BSS type, capability= 0x%04x\n", bss->capability); rc = -EINVAL; goto out; } ch = bss->channel->hw_value; if (ch == 0) { wil_err(wil, "BSS at unknown frequency %dMhz\n", bss->channel->center_freq); rc = -EOPNOTSUPP; goto out; } if (is_ft_roam) { if (network_type != WMI_NETTYPE_INFRA) { wil_err(wil, "FT: Unsupported BSS type, capability= 0x%04x\n", bss->capability); rc = -EINVAL; goto out; } rc = wil_ft_connect(wiphy, ndev, sme); if (rc == 0) vif->bss = bss; goto out; } if (vif->privacy) { /* For secure assoc, remove old keys */ rc = wmi_del_cipher_key(vif, 0, bss->bssid, WMI_KEY_USE_PAIRWISE); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(PTK) failed\n"); goto out; } rc = wmi_del_cipher_key(vif, 0, bss->bssid, WMI_KEY_USE_RX_GROUP); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(GTK) failed\n"); goto out; } } /* WMI_CONNECT_CMD */ memset(&conn, 0, sizeof(conn)); conn.network_type = network_type; if (vif->privacy) { if (rsn_eid) { /* regular secure connection */ conn.dot11_auth_mode = WMI_AUTH11_SHARED; conn.auth_mode = WMI_AUTH_WPA2_PSK; conn.pairwise_crypto_type = WMI_CRYPT_AES_GCMP; conn.pairwise_crypto_len = 16; conn.group_crypto_type = WMI_CRYPT_AES_GCMP; conn.group_crypto_len = 16; } else { /* WSC */ conn.dot11_auth_mode = WMI_AUTH11_WSC; conn.auth_mode = WMI_AUTH_NONE; } } else { /* insecure connection */ conn.dot11_auth_mode = WMI_AUTH11_OPEN; conn.auth_mode = WMI_AUTH_NONE; } conn.ssid_len = min_t(u8, ssid_eid[1], 32); memcpy(conn.ssid, ssid_eid+2, conn.ssid_len); conn.channel = ch - 1; rc = wil_get_wmi_edmg_channel(wil, sme->edmg.bw_config, sme->edmg.channels, &conn.edmg_channel); if (rc < 0) return rc; ether_addr_copy(conn.bssid, bss->bssid); ether_addr_copy(conn.dst_mac, bss->bssid); set_bit(wil_vif_fwconnecting, vif->status); rc = wmi_send(wil, WMI_CONNECT_CMDID, vif->mid, &conn, sizeof(conn)); if (rc == 0) { netif_carrier_on(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) wil6210_bus_request(wil, WIL_MAX_BUS_REQUEST_KBPS); vif->bss = bss; /* Connect can take lots of time */ mod_timer(&vif->connect_timer, jiffies + msecs_to_jiffies(5000)); } else { clear_bit(wil_vif_fwconnecting, vif->status); } out: cfg80211_put_bss(wiphy, bss); return rc; } static int wil_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { int rc; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); wil_dbg_misc(wil, "disconnect: reason=%d, mid=%d\n", reason_code, vif->mid); if (!(test_bit(wil_vif_fwconnecting, vif->status) || test_bit(wil_vif_fwconnected, vif->status))) { wil_err(wil, "Disconnect was called while disconnected\n"); return 0; } vif->locally_generated_disc = true; rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0, WMI_DISCONNECT_EVENTID, NULL, 0, WIL6210_DISCONNECT_TO_MS); if (rc) wil_err(wil, "disconnect error %d\n", rc); return rc; } static int wil_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; /* these parameters are explicitly not supported */ if (changed & (WIPHY_PARAM_RETRY_LONG | WIPHY_PARAM_FRAG_THRESHOLD | WIPHY_PARAM_RTS_THRESHOLD)) return -ENOTSUPP; if (changed & WIPHY_PARAM_RETRY_SHORT) { rc = wmi_set_mgmt_retry(wil, wiphy->retry_short); if (rc) return rc; } return 0; } int wil_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { const u8 *buf = params->buf; size_t len = params->len; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; bool tx_status; wil_dbg_misc(wil, "mgmt_tx: channel %d offchan %d, wait %d\n", params->chan ? params->chan->hw_value : -1, params->offchan, params->wait); /* Note, currently we support the "wait" parameter only on AP mode. * In other modes, user-space must call remain_on_channel before * mgmt_tx or listen on a channel other than active one. */ if (params->chan && params->chan->hw_value == 0) { wil_err(wil, "invalid channel\n"); return -EINVAL; } if (wdev->iftype != NL80211_IFTYPE_AP) { wil_dbg_misc(wil, "send WMI_SW_TX_REQ_CMDID on non-AP interfaces\n"); rc = wmi_mgmt_tx(vif, buf, len); goto out; } if (!params->chan || params->chan->hw_value == vif->channel) { wil_dbg_misc(wil, "send WMI_SW_TX_REQ_CMDID for on-channel\n"); rc = wmi_mgmt_tx(vif, buf, len); goto out; } if (params->offchan == 0) { wil_err(wil, "invalid channel params: current %d requested %d, off-channel not allowed\n", vif->channel, params->chan->hw_value); return -EBUSY; } /* use the wmi_mgmt_tx_ext only on AP mode and off-channel */ rc = wmi_mgmt_tx_ext(vif, buf, len, params->chan->hw_value, params->wait); out: /* when the sent packet was not acked by receiver(ACK=0), rc will * be -EAGAIN. In this case this function needs to return success, * the ACK=0 will be reflected in tx_status. */ tx_status = (rc == 0); rc = (rc == -EAGAIN) ? 0 : rc; cfg80211_mgmt_tx_status(wdev, cookie ? *cookie : 0, buf, len, tx_status, GFP_KERNEL); return rc; } static int wil_cfg80211_set_channel(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil->monitor_chandef = *chandef; return 0; } static enum wmi_key_usage wil_detect_key_usage(struct wireless_dev *wdev, bool pairwise) { struct wil6210_priv *wil = wdev_to_wil(wdev); enum wmi_key_usage rc; if (pairwise) { rc = WMI_KEY_USE_PAIRWISE; } else { switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: rc = WMI_KEY_USE_RX_GROUP; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: rc = WMI_KEY_USE_TX_GROUP; break; default: /* TODO: Rx GTK or Tx GTK? */ wil_err(wil, "Can't determine GTK type\n"); rc = WMI_KEY_USE_RX_GROUP; break; } } wil_dbg_misc(wil, "detect_key_usage: -> %s\n", key_usage_str[rc]); return rc; } static struct wil_sta_info * wil_find_sta_by_key_usage(struct wil6210_priv *wil, u8 mid, enum wmi_key_usage key_usage, const u8 *mac_addr) { int cid = -EINVAL; if (key_usage == WMI_KEY_USE_TX_GROUP) return NULL; /* not needed */ /* supplicant provides Rx group key in STA mode with NULL MAC address */ if (mac_addr) cid = wil_find_cid(wil, mid, mac_addr); else if (key_usage == WMI_KEY_USE_RX_GROUP) cid = wil_find_cid_by_idx(wil, mid, 0); if (cid < 0) { wil_err(wil, "No CID for %pM %s\n", mac_addr, key_usage_str[key_usage]); return ERR_PTR(cid); } return &wil->sta[cid]; } void wil_set_crypto_rx(u8 key_index, enum wmi_key_usage key_usage, struct wil_sta_info *cs, struct key_params *params) { struct wil_tid_crypto_rx_single *cc; int tid; if (!cs) return; switch (key_usage) { case WMI_KEY_USE_STORE_PTK: case WMI_KEY_USE_PAIRWISE: for (tid = 0; tid < WIL_STA_TID_NUM; tid++) { cc = &cs->tid_crypto_rx[tid].key_id[key_index]; if (params->seq) memcpy(cc->pn, params->seq, IEEE80211_GCMP_PN_LEN); else memset(cc->pn, 0, IEEE80211_GCMP_PN_LEN); cc->key_set = true; } break; case WMI_KEY_USE_RX_GROUP: cc = &cs->group_crypto_rx.key_id[key_index]; if (params->seq) memcpy(cc->pn, params->seq, IEEE80211_GCMP_PN_LEN); else memset(cc->pn, 0, IEEE80211_GCMP_PN_LEN); cc->key_set = true; break; default: break; } } static void wil_del_rx_key(u8 key_index, enum wmi_key_usage key_usage, struct wil_sta_info *cs) { struct wil_tid_crypto_rx_single *cc; int tid; if (!cs) return; switch (key_usage) { case WMI_KEY_USE_PAIRWISE: for (tid = 0; tid < WIL_STA_TID_NUM; tid++) { cc = &cs->tid_crypto_rx[tid].key_id[key_index]; cc->key_set = false; } break; case WMI_KEY_USE_RX_GROUP: cc = &cs->group_crypto_rx.key_id[key_index]; cc->key_set = false; break; default: break; } } static int wil_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int rc; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = vif_to_wdev(vif); enum wmi_key_usage key_usage = wil_detect_key_usage(wdev, pairwise); struct wil_sta_info *cs = wil_find_sta_by_key_usage(wil, vif->mid, key_usage, mac_addr); if (!params) { wil_err(wil, "NULL params\n"); return -EINVAL; } wil_dbg_misc(wil, "add_key: %pM %s[%d] PN %*phN\n", mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); if (IS_ERR(cs)) { /* in FT, sta info may not be available as add_key may be * sent by host before FW sends WMI_CONNECT_EVENT */ if (!test_bit(wil_vif_ft_roam, vif->status)) { wil_err(wil, "Not connected, %pM %s[%d] PN %*phN\n", mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); return -EINVAL; } } else { wil_del_rx_key(key_index, key_usage, cs); } if (params->seq && params->seq_len != IEEE80211_GCMP_PN_LEN) { wil_err(wil, "Wrong PN len %d, %pM %s[%d] PN %*phN\n", params->seq_len, mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); return -EINVAL; } spin_lock_bh(&wil->eap_lock); if (pairwise && wdev->iftype == NL80211_IFTYPE_STATION && (vif->ptk_rekey_state == WIL_REKEY_M3_RECEIVED || vif->ptk_rekey_state == WIL_REKEY_WAIT_M4_SENT)) { key_usage = WMI_KEY_USE_STORE_PTK; vif->ptk_rekey_state = WIL_REKEY_WAIT_M4_SENT; wil_dbg_misc(wil, "Store EAPOL key\n"); } spin_unlock_bh(&wil->eap_lock); rc = wmi_add_cipher_key(vif, key_index, mac_addr, params->key_len, params->key, key_usage); if (!rc && !IS_ERR(cs)) { /* update local storage used for AP recovery */ if (key_usage == WMI_KEY_USE_TX_GROUP && params->key && params->key_len <= WMI_MAX_KEY_LEN) { vif->gtk_index = key_index; memcpy(vif->gtk, params->key, params->key_len); vif->gtk_len = params->key_len; } /* in FT set crypto will take place upon receiving * WMI_RING_EN_EVENTID event */ wil_set_crypto_rx(key_index, key_usage, cs, params); } return rc; } static int wil_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_index, bool pairwise, const u8 *mac_addr) { struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = vif_to_wdev(vif); enum wmi_key_usage key_usage = wil_detect_key_usage(wdev, pairwise); struct wil_sta_info *cs = wil_find_sta_by_key_usage(wil, vif->mid, key_usage, mac_addr); wil_dbg_misc(wil, "del_key: %pM %s[%d]\n", mac_addr, key_usage_str[key_usage], key_index); if (IS_ERR(cs)) wil_info(wil, "Not connected, %pM %s[%d]\n", mac_addr, key_usage_str[key_usage], key_index); if (!IS_ERR_OR_NULL(cs)) wil_del_rx_key(key_index, key_usage, cs); return wmi_del_cipher_key(vif, key_index, mac_addr, key_usage); } /* Need to be present or wiphy_new() will WARN */ static int wil_cfg80211_set_default_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_index, bool unicast, bool multicast) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "set_default_key: entered\n"); return 0; } static int wil_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; wil_dbg_misc(wil, "remain_on_channel: center_freq=%d, duration=%d iftype=%d\n", chan->center_freq, duration, wdev->iftype); rc = wil_p2p_listen(wil, wdev, duration, chan, cookie); return rc; } static int wil_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); wil_dbg_misc(wil, "cancel_remain_on_channel\n"); return wil_p2p_cancel_listen(vif, cookie); } /* * find a specific IE in a list of IEs * return a pointer to the beginning of IE in the list * or NULL if not found */ static const u8 *_wil_cfg80211_find_ie(const u8 *ies, u16 ies_len, const u8 *ie, u16 ie_len) { struct ieee80211_vendor_ie *vie; u32 oui; /* IE tag at offset 0, length at offset 1 */ if (ie_len < 2 || 2 + ie[1] > ie_len) return NULL; if (ie[0] != WLAN_EID_VENDOR_SPECIFIC) return cfg80211_find_ie(ie[0], ies, ies_len); /* make sure there is room for 3 bytes OUI + 1 byte OUI type */ if (ie[1] < 4) return NULL; vie = (struct ieee80211_vendor_ie *)ie; oui = vie->oui[0] << 16 | vie->oui[1] << 8 | vie->oui[2]; return cfg80211_find_vendor_ie(oui, vie->oui_type, ies, ies_len); } /* * merge the IEs in two lists into a single list. * do not include IEs from the second list which exist in the first list. * add only vendor specific IEs from second list to keep * the merged list sorted (since vendor-specific IE has the * highest tag number) * caller must free the allocated memory for merged IEs */ static int _wil_cfg80211_merge_extra_ies(const u8 *ies1, u16 ies1_len, const u8 *ies2, u16 ies2_len, u8 **merged_ies, u16 *merged_len) { u8 *buf, *dpos; const u8 *spos; if (!ies1) ies1_len = 0; if (!ies2) ies2_len = 0; if (ies1_len == 0 && ies2_len == 0) { *merged_ies = NULL; *merged_len = 0; return 0; } buf = kmalloc(ies1_len + ies2_len, GFP_KERNEL); if (!buf) return -ENOMEM; if (ies1) memcpy(buf, ies1, ies1_len); dpos = buf + ies1_len; spos = ies2; while (spos && (spos + 1 < ies2 + ies2_len)) { /* IE tag at offset 0, length at offset 1 */ u16 ielen = 2 + spos[1]; if (spos + ielen > ies2 + ies2_len) break; if (spos[0] == WLAN_EID_VENDOR_SPECIFIC && (!ies1 || !_wil_cfg80211_find_ie(ies1, ies1_len, spos, ielen))) { memcpy(dpos, spos, ielen); dpos += ielen; } spos += ielen; } *merged_ies = buf; *merged_len = dpos - buf; return 0; } static void wil_print_bcon_data(struct cfg80211_beacon_data *b) { wil_hex_dump_misc("head ", DUMP_PREFIX_OFFSET, 16, 1, b->head, b->head_len, true); wil_hex_dump_misc("tail ", DUMP_PREFIX_OFFSET, 16, 1, b->tail, b->tail_len, true); wil_hex_dump_misc("BCON IE ", DUMP_PREFIX_OFFSET, 16, 1, b->beacon_ies, b->beacon_ies_len, true); wil_hex_dump_misc("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, b->probe_resp, b->probe_resp_len, true); wil_hex_dump_misc("PROBE IE ", DUMP_PREFIX_OFFSET, 16, 1, b->proberesp_ies, b->proberesp_ies_len, true); wil_hex_dump_misc("ASSOC IE ", DUMP_PREFIX_OFFSET, 16, 1, b->assocresp_ies, b->assocresp_ies_len, true); } /* internal functions for device reset and starting AP */ static u8 * _wil_cfg80211_get_proberesp_ies(const u8 *proberesp, u16 proberesp_len, u16 *ies_len) { u8 *ies = NULL; if (proberesp) { struct ieee80211_mgmt *f = (struct ieee80211_mgmt *)proberesp; size_t hlen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); ies = f->u.probe_resp.variable; if (ies_len) *ies_len = proberesp_len - hlen; } return ies; } static int _wil_cfg80211_set_ies(struct wil6210_vif *vif, struct cfg80211_beacon_data *bcon) { int rc; u16 len = 0, proberesp_len = 0; u8 *ies = NULL, *proberesp; /* update local storage used for AP recovery */ wil_memdup_ie(&vif->proberesp, &vif->proberesp_len, bcon->probe_resp, bcon->probe_resp_len); wil_memdup_ie(&vif->proberesp_ies, &vif->proberesp_ies_len, bcon->proberesp_ies, bcon->proberesp_ies_len); wil_memdup_ie(&vif->assocresp_ies, &vif->assocresp_ies_len, bcon->assocresp_ies, bcon->assocresp_ies_len); proberesp = _wil_cfg80211_get_proberesp_ies(bcon->probe_resp, bcon->probe_resp_len, &proberesp_len); rc = _wil_cfg80211_merge_extra_ies(proberesp, proberesp_len, bcon->proberesp_ies, bcon->proberesp_ies_len, &ies, &len); if (rc) goto out; rc = wmi_set_ie(vif, WMI_FRAME_PROBE_RESP, len, ies); if (rc) goto out; if (bcon->assocresp_ies) rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_RESP, bcon->assocresp_ies_len, bcon->assocresp_ies); else rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_RESP, len, ies); #if 0 /* to use beacon IE's, remove this #if 0 */ if (rc) goto out; rc = wmi_set_ie(vif, WMI_FRAME_BEACON, bcon->tail_len, bcon->tail); #endif out: kfree(ies); return rc; } static int _wil_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, const u8 *ssid, size_t ssid_len, u32 privacy, int bi, u8 chan, u8 wmi_edmg_channel, struct cfg80211_beacon_data *bcon, u8 hidden_ssid, u32 pbss) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); int rc; struct wireless_dev *wdev = ndev->ieee80211_ptr; u8 wmi_nettype = wil_iftype_nl2wmi(wdev->iftype); u8 is_go = (wdev->iftype == NL80211_IFTYPE_P2P_GO); u16 proberesp_len = 0; u8 *proberesp; bool ft = false; if (pbss) wmi_nettype = WMI_NETTYPE_P2P; wil_dbg_misc(wil, "start_ap: mid=%d, is_go=%d\n", vif->mid, is_go); if (is_go && !pbss) { wil_err(wil, "P2P GO must be in PBSS\n"); return -ENOTSUPP; } wil_set_recovery_state(wil, fw_recovery_idle); proberesp = _wil_cfg80211_get_proberesp_ies(bcon->probe_resp, bcon->probe_resp_len, &proberesp_len); /* check that the probe response IEs has a MDE */ if ((proberesp && proberesp_len > 0 && cfg80211_find_ie(WLAN_EID_MOBILITY_DOMAIN, proberesp, proberesp_len))) ft = true; if (ft) { if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FW does not support FT roaming\n"); return -ENOTSUPP; } set_bit(wil_vif_ft_roam, vif->status); } mutex_lock(&wil->mutex); if (!wil_has_other_active_ifaces(wil, ndev, true, false)) { __wil_down(wil); rc = __wil_up(wil); if (rc) goto out; } rc = wmi_set_ssid(vif, ssid_len, ssid); if (rc) goto out; rc = _wil_cfg80211_set_ies(vif, bcon); if (rc) goto out; vif->privacy = privacy; vif->channel = chan; vif->wmi_edmg_channel = wmi_edmg_channel; vif->hidden_ssid = hidden_ssid; vif->pbss = pbss; vif->bi = bi; memcpy(vif->ssid, ssid, ssid_len); vif->ssid_len = ssid_len; netif_carrier_on(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) wil6210_bus_request(wil, WIL_MAX_BUS_REQUEST_KBPS); rc = wmi_pcp_start(vif, bi, wmi_nettype, chan, wmi_edmg_channel, hidden_ssid, is_go); if (rc) goto err_pcp_start; rc = wil_bcast_init(vif); if (rc) goto err_bcast; goto out; /* success */ err_bcast: wmi_pcp_stop(vif); err_pcp_start: netif_carrier_off(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); out: mutex_unlock(&wil->mutex); return rc; } void wil_cfg80211_ap_recovery(struct wil6210_priv *wil) { int rc, i; struct wiphy *wiphy = wil_to_wiphy(wil); for (i = 0; i < GET_MAX_VIFS(wil); i++) { struct wil6210_vif *vif = wil->vifs[i]; struct net_device *ndev; struct cfg80211_beacon_data bcon = {}; struct key_params key_params = {}; if (!vif || vif->ssid_len == 0) continue; ndev = vif_to_ndev(vif); bcon.proberesp_ies = vif->proberesp_ies; bcon.assocresp_ies = vif->assocresp_ies; bcon.probe_resp = vif->proberesp; bcon.proberesp_ies_len = vif->proberesp_ies_len; bcon.assocresp_ies_len = vif->assocresp_ies_len; bcon.probe_resp_len = vif->proberesp_len; wil_info(wil, "AP (vif %d) recovery: privacy %d, bi %d, channel %d, hidden %d, pbss %d\n", i, vif->privacy, vif->bi, vif->channel, vif->hidden_ssid, vif->pbss); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, vif->ssid, vif->ssid_len, true); rc = _wil_cfg80211_start_ap(wiphy, ndev, vif->ssid, vif->ssid_len, vif->privacy, vif->bi, vif->channel, vif->wmi_edmg_channel, &bcon, vif->hidden_ssid, vif->pbss); if (rc) { wil_err(wil, "vif %d recovery failed (%d)\n", i, rc); continue; } if (!vif->privacy || vif->gtk_len == 0) continue; key_params.key = vif->gtk; key_params.key_len = vif->gtk_len; key_params.seq_len = IEEE80211_GCMP_PN_LEN; rc = wil_cfg80211_add_key(wiphy, ndev, -1, vif->gtk_index, false, NULL, &key_params); if (rc) wil_err(wil, "vif %d recovery add key failed (%d)\n", i, rc); } } static int wil_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_beacon_data *bcon) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = ndev->ieee80211_ptr; struct wil6210_vif *vif = ndev_to_vif(ndev); int rc; u32 privacy = 0; wil_dbg_misc(wil, "change_beacon, mid=%d\n", vif->mid); wil_print_bcon_data(bcon); if (bcon->tail && cfg80211_find_ie(WLAN_EID_RSN, bcon->tail, bcon->tail_len)) privacy = 1; memcpy(vif->ssid, wdev->u.ap.ssid, wdev->u.ap.ssid_len); vif->ssid_len = wdev->u.ap.ssid_len; /* in case privacy has changed, need to restart the AP */ if (vif->privacy != privacy) { wil_dbg_misc(wil, "privacy changed %d=>%d. Restarting AP\n", vif->privacy, privacy); rc = _wil_cfg80211_start_ap(wiphy, ndev, vif->ssid, vif->ssid_len, privacy, wdev->links[0].ap.beacon_interval, vif->channel, vif->wmi_edmg_channel, bcon, vif->hidden_ssid, vif->pbss); } else { rc = _wil_cfg80211_set_ies(vif, bcon); } return rc; } static int wil_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ap_settings *info) { int rc; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct ieee80211_channel *channel = info->chandef.chan; struct cfg80211_beacon_data *bcon = &info->beacon; struct cfg80211_crypto_settings *crypto = &info->crypto; u8 wmi_edmg_channel; u8 hidden_ssid; wil_dbg_misc(wil, "start_ap\n"); rc = wil_get_wmi_edmg_channel(wil, info->chandef.edmg.bw_config, info->chandef.edmg.channels, &wmi_edmg_channel); if (rc < 0) return rc; if (!channel) { wil_err(wil, "AP: No channel???\n"); return -EINVAL; } switch (info->hidden_ssid) { case NL80211_HIDDEN_SSID_NOT_IN_USE: hidden_ssid = WMI_HIDDEN_SSID_DISABLED; break; case NL80211_HIDDEN_SSID_ZERO_LEN: hidden_ssid = WMI_HIDDEN_SSID_SEND_EMPTY; break; case NL80211_HIDDEN_SSID_ZERO_CONTENTS: hidden_ssid = WMI_HIDDEN_SSID_CLEAR; break; default: wil_err(wil, "AP: Invalid hidden SSID %d\n", info->hidden_ssid); return -EOPNOTSUPP; } wil_dbg_misc(wil, "AP on Channel %d %d MHz, %s\n", channel->hw_value, channel->center_freq, info->privacy ? "secure" : "open"); wil_dbg_misc(wil, "Privacy: %d auth_type %d\n", info->privacy, info->auth_type); wil_dbg_misc(wil, "Hidden SSID mode: %d\n", info->hidden_ssid); wil_dbg_misc(wil, "BI %d DTIM %d\n", info->beacon_interval, info->dtim_period); wil_dbg_misc(wil, "PBSS %d\n", info->pbss); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, info->ssid, info->ssid_len, true); wil_print_bcon_data(bcon); wil_print_crypto(wil, crypto); rc = _wil_cfg80211_start_ap(wiphy, ndev, info->ssid, info->ssid_len, info->privacy, info->beacon_interval, channel->hw_value, wmi_edmg_channel, bcon, hidden_ssid, info->pbss); return rc; } static int wil_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev, unsigned int link_id) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); bool last; wil_dbg_misc(wil, "stop_ap, mid=%d\n", vif->mid); netif_carrier_off(ndev); last = !wil_has_other_active_ifaces(wil, ndev, false, true); if (last) { wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); wil_set_recovery_state(wil, fw_recovery_idle); set_bit(wil_status_resetting, wil->status); } mutex_lock(&wil->mutex); wmi_pcp_stop(vif); clear_bit(wil_vif_ft_roam, vif->status); vif->ssid_len = 0; wil_memdup_ie(&vif->proberesp, &vif->proberesp_len, NULL, 0); wil_memdup_ie(&vif->proberesp_ies, &vif->proberesp_ies_len, NULL, 0); wil_memdup_ie(&vif->assocresp_ies, &vif->assocresp_ies_len, NULL, 0); memset(vif->gtk, 0, WMI_MAX_KEY_LEN); vif->gtk_len = 0; if (last) __wil_down(wil); else wil_bcast_fini(vif); mutex_unlock(&wil->mutex); return 0; } static int wil_cfg80211_add_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "add station %pM aid %d mid %d mask 0x%x set 0x%x\n", mac, params->aid, vif->mid, params->sta_flags_mask, params->sta_flags_set); if (!disable_ap_sme) { wil_err(wil, "not supported with AP SME enabled\n"); return -EOPNOTSUPP; } if (params->aid > WIL_MAX_DMG_AID) { wil_err(wil, "invalid aid\n"); return -EINVAL; } return wmi_new_sta(vif, mac, params->aid); } static int wil_cfg80211_del_station(struct wiphy *wiphy, struct net_device *dev, struct station_del_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "del_station: %pM, reason=%d mid=%d\n", params->mac, params->reason_code, vif->mid); mutex_lock(&wil->mutex); wil6210_disconnect(vif, params->mac, params->reason_code); mutex_unlock(&wil->mutex); return 0; } static int wil_cfg80211_change_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int authorize; int cid, i; struct wil_ring_tx_data *txdata = NULL; wil_dbg_misc(wil, "change station %pM mask 0x%x set 0x%x mid %d\n", mac, params->sta_flags_mask, params->sta_flags_set, vif->mid); if (!disable_ap_sme) { wil_dbg_misc(wil, "not supported with AP SME enabled\n"); return -EOPNOTSUPP; } if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED))) return 0; cid = wil_find_cid(wil, vif->mid, mac); if (cid < 0) { wil_err(wil, "station not found\n"); return -ENOLINK; } for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) if (wil->ring2cid_tid[i][0] == cid) { txdata = &wil->ring_tx_data[i]; break; } if (!txdata) { wil_err(wil, "ring data not found\n"); return -ENOLINK; } authorize = params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED); txdata->dot1x_open = authorize ? 1 : 0; wil_dbg_misc(wil, "cid %d ring %d authorize %d\n", cid, i, txdata->dot1x_open); return 0; } /* probe_client handling */ static void wil_probe_client_handle(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_probe_client_req *req) { struct net_device *ndev = vif_to_ndev(vif); struct wil_sta_info *sta = &wil->sta[req->cid]; /* assume STA is alive if it is still connected, * else FW will disconnect it */ bool alive = (sta->status == wil_sta_connected); cfg80211_probe_status(ndev, sta->addr, req->cookie, alive, 0, false, GFP_KERNEL); } static struct list_head *next_probe_client(struct wil6210_vif *vif) { struct list_head *ret = NULL; mutex_lock(&vif->probe_client_mutex); if (!list_empty(&vif->probe_client_pending)) { ret = vif->probe_client_pending.next; list_del(ret); } mutex_unlock(&vif->probe_client_mutex); return ret; } void wil_probe_client_worker(struct work_struct *work) { struct wil6210_vif *vif = container_of(work, struct wil6210_vif, probe_client_worker); struct wil6210_priv *wil = vif_to_wil(vif); struct wil_probe_client_req *req; struct list_head *lh; while ((lh = next_probe_client(vif)) != NULL) { req = list_entry(lh, struct wil_probe_client_req, list); wil_probe_client_handle(wil, vif, req); kfree(req); } } void wil_probe_client_flush(struct wil6210_vif *vif) { struct wil_probe_client_req *req, *t; struct wil6210_priv *wil = vif_to_wil(vif); wil_dbg_misc(wil, "probe_client_flush\n"); mutex_lock(&vif->probe_client_mutex); list_for_each_entry_safe(req, t, &vif->probe_client_pending, list) { list_del(&req->list); kfree(req); } mutex_unlock(&vif->probe_client_mutex); } static int wil_cfg80211_probe_client(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64 *cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); struct wil_probe_client_req *req; int cid = wil_find_cid(wil, vif->mid, peer); wil_dbg_misc(wil, "probe_client: %pM => CID %d MID %d\n", peer, cid, vif->mid); if (cid < 0) return -ENOLINK; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->cid = cid; req->cookie = cid; mutex_lock(&vif->probe_client_mutex); list_add_tail(&req->list, &vif->probe_client_pending); mutex_unlock(&vif->probe_client_mutex); *cookie = req->cookie; queue_work(wil->wq_service, &vif->probe_client_worker); return 0; } static int wil_cfg80211_change_bss(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); if (params->ap_isolate >= 0) { wil_dbg_misc(wil, "change_bss: ap_isolate MID %d, %d => %d\n", vif->mid, vif->ap_isolate, params->ap_isolate); vif->ap_isolate = params->ap_isolate; } return 0; } static int wil_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); enum wmi_ps_profile_type ps_profile; wil_dbg_misc(wil, "enabled=%d, timeout=%d\n", enabled, timeout); if (enabled) ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; else ps_profile = WMI_PS_PROFILE_TYPE_PS_DISABLED; return wil_ps_update(wil, ps_profile); } static int wil_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; /* Setting the wakeup trigger based on wow is TBD */ if (test_bit(wil_status_suspended, wil->status)) { wil_dbg_pm(wil, "trying to suspend while suspended\n"); return 0; } rc = wil_can_suspend(wil, false); if (rc) goto out; wil_dbg_pm(wil, "suspending\n"); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); wil_p2p_stop_radio_operations(wil); wil_abort_scan_all_vifs(wil, true); mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); out: return rc; } static int wil_cfg80211_resume(struct wiphy *wiphy) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_pm(wil, "resuming\n"); return 0; } static int wil_cfg80211_sched_scan_start(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *request) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); int i, rc; if (vif->mid != 0) return -EOPNOTSUPP; wil_dbg_misc(wil, "sched scan start: n_ssids %d, ie_len %zu, flags 0x%x\n", request->n_ssids, request->ie_len, request->flags); for (i = 0; i < request->n_ssids; i++) { wil_dbg_misc(wil, "SSID[%d]:", i); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, request->ssids[i].ssid, request->ssids[i].ssid_len, true); } wil_dbg_misc(wil, "channels:"); for (i = 0; i < request->n_channels; i++) wil_dbg_misc(wil, " %d%s", request->channels[i]->hw_value, i == request->n_channels - 1 ? "\n" : ""); wil_dbg_misc(wil, "n_match_sets %d, min_rssi_thold %d, delay %d\n", request->n_match_sets, request->min_rssi_thold, request->delay); for (i = 0; i < request->n_match_sets; i++) { struct cfg80211_match_set *ms = &request->match_sets[i]; wil_dbg_misc(wil, "MATCHSET[%d]: rssi_thold %d\n", i, ms->rssi_thold); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, ms->ssid.ssid, ms->ssid.ssid_len, true); } wil_dbg_misc(wil, "n_scan_plans %d\n", request->n_scan_plans); for (i = 0; i < request->n_scan_plans; i++) { struct cfg80211_sched_scan_plan *sp = &request->scan_plans[i]; wil_dbg_misc(wil, "SCAN PLAN[%d]: interval %d iterations %d\n", i, sp->interval, sp->iterations); } rc = wmi_set_ie(vif, WMI_FRAME_PROBE_REQ, request->ie_len, request->ie); if (rc) return rc; return wmi_start_sched_scan(wil, request); } static int wil_cfg80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev, u64 reqid) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); int rc; if (vif->mid != 0) return -EOPNOTSUPP; rc = wmi_stop_sched_scan(wil); /* device would return error if it thinks PNO is already stopped. * ignore the return code so user space and driver gets back in-sync */ wil_dbg_misc(wil, "sched scan stopped (%d)\n", rc); return 0; } static int wil_cfg80211_update_ft_ies(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); struct cfg80211_bss *bss; struct wmi_ft_reassoc_cmd reassoc; int rc = 0; wil_dbg_misc(wil, "update ft ies, mid=%d\n", vif->mid); wil_hex_dump_misc("FT IE ", DUMP_PREFIX_OFFSET, 16, 1, ftie->ie, ftie->ie_len, true); if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FW does not support FT roaming\n"); return -EOPNOTSUPP; } rc = wmi_update_ft_ies(vif, ftie->ie_len, ftie->ie); if (rc) return rc; if (!test_bit(wil_vif_ft_roam, vif->status)) /* vif is not roaming */ return 0; /* wil_vif_ft_roam is set. wil_cfg80211_update_ft_ies is used as * a trigger for reassoc */ bss = vif->bss; if (!bss) { wil_err(wil, "FT: bss is NULL\n"); return -EINVAL; } memset(&reassoc, 0, sizeof(reassoc)); ether_addr_copy(reassoc.bssid, bss->bssid); rc = wmi_send(wil, WMI_FT_REASSOC_CMDID, vif->mid, &reassoc, sizeof(reassoc)); if (rc) wil_err(wil, "FT: reassoc failed (%d)\n", rc); return rc; } static int wil_cfg80211_set_multicast_to_unicast(struct wiphy *wiphy, struct net_device *dev, const bool enabled) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); if (wil->multicast_to_unicast == enabled) return 0; wil_info(wil, "set multicast to unicast, enabled=%d\n", enabled); wil->multicast_to_unicast = enabled; return 0; } static int wil_cfg80211_set_cqm_rssi_config(struct wiphy *wiphy, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; wil->cqm_rssi_thold = rssi_thold; rc = wmi_set_cqm_rssi_config(wil, rssi_thold, rssi_hyst); if (rc) /* reset stored value upon failure */ wil->cqm_rssi_thold = 0; return rc; } static const struct cfg80211_ops wil_cfg80211_ops = { .add_virtual_intf = wil_cfg80211_add_iface, .del_virtual_intf = wil_cfg80211_del_iface, .scan = wil_cfg80211_scan, .abort_scan = wil_cfg80211_abort_scan, .connect = wil_cfg80211_connect, .disconnect = wil_cfg80211_disconnect, .set_wiphy_params = wil_cfg80211_set_wiphy_params, .change_virtual_intf = wil_cfg80211_change_iface, .get_station = wil_cfg80211_get_station, .dump_station = wil_cfg80211_dump_station, .remain_on_channel = wil_remain_on_channel, .cancel_remain_on_channel = wil_cancel_remain_on_channel, .mgmt_tx = wil_cfg80211_mgmt_tx, .set_monitor_channel = wil_cfg80211_set_channel, .add_key = wil_cfg80211_add_key, .del_key = wil_cfg80211_del_key, .set_default_key = wil_cfg80211_set_default_key, /* AP mode */ .change_beacon = wil_cfg80211_change_beacon, .start_ap = wil_cfg80211_start_ap, .stop_ap = wil_cfg80211_stop_ap, .add_station = wil_cfg80211_add_station, .del_station = wil_cfg80211_del_station, .change_station = wil_cfg80211_change_station, .probe_client = wil_cfg80211_probe_client, .change_bss = wil_cfg80211_change_bss, /* P2P device */ .start_p2p_device = wil_cfg80211_start_p2p_device, .stop_p2p_device = wil_cfg80211_stop_p2p_device, .set_power_mgmt = wil_cfg80211_set_power_mgmt, .set_cqm_rssi_config = wil_cfg80211_set_cqm_rssi_config, .suspend = wil_cfg80211_suspend, .resume = wil_cfg80211_resume, .sched_scan_start = wil_cfg80211_sched_scan_start, .sched_scan_stop = wil_cfg80211_sched_scan_stop, .update_ft_ies = wil_cfg80211_update_ft_ies, .set_multicast_to_unicast = wil_cfg80211_set_multicast_to_unicast, }; static void wil_wiphy_init(struct wiphy *wiphy) { wiphy->max_scan_ssids = 1; wiphy->max_scan_ie_len = WMI_MAX_IE_LEN; wiphy->max_remain_on_channel_duration = WIL_MAX_ROC_DURATION_MS; wiphy->max_num_pmkids = 0 /* TODO: */; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_DEVICE) | BIT(NL80211_IFTYPE_MONITOR); wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL | WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD | WIPHY_FLAG_PS_ON_BY_DEFAULT; if (!disable_ap_sme) wiphy->flags |= WIPHY_FLAG_HAVE_AP_SME; dev_dbg(wiphy_dev(wiphy), "%s : flags = 0x%08x\n", __func__, wiphy->flags); wiphy->probe_resp_offload = NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P; wiphy->bands[NL80211_BAND_60GHZ] = &wil_band_60ghz; /* may change after reading FW capabilities */ wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; wiphy->cipher_suites = wil_cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(wil_cipher_suites); wiphy->mgmt_stypes = wil_mgmt_stypes; wiphy->features |= NL80211_FEATURE_SK_TX_STATUS; wiphy->n_vendor_commands = ARRAY_SIZE(wil_nl80211_vendor_commands); wiphy->vendor_commands = wil_nl80211_vendor_commands; #ifdef CONFIG_PM wiphy->wowlan = &wil_wowlan_support; #endif } int wil_cfg80211_iface_combinations_from_fw( struct wil6210_priv *wil, const struct wil_fw_record_concurrency *conc) { struct wiphy *wiphy = wil_to_wiphy(wil); u32 total_limits = 0; u16 n_combos; const struct wil_fw_concurrency_combo *combo; const struct wil_fw_concurrency_limit *limit; struct ieee80211_iface_combination *iface_combinations; struct ieee80211_iface_limit *iface_limit; int i, j; if (wiphy->iface_combinations) { wil_dbg_misc(wil, "iface_combinations already set, skipping\n"); return 0; } combo = conc->combos; n_combos = le16_to_cpu(conc->n_combos); for (i = 0; i < n_combos; i++) { total_limits += combo->n_limits; limit = combo->limits + combo->n_limits; combo = (struct wil_fw_concurrency_combo *)limit; } iface_combinations = kzalloc(n_combos * sizeof(struct ieee80211_iface_combination) + total_limits * sizeof(struct ieee80211_iface_limit), GFP_KERNEL); if (!iface_combinations) return -ENOMEM; iface_limit = (struct ieee80211_iface_limit *)(iface_combinations + n_combos); combo = conc->combos; for (i = 0; i < n_combos; i++) { iface_combinations[i].max_interfaces = combo->max_interfaces; iface_combinations[i].num_different_channels = combo->n_diff_channels; iface_combinations[i].beacon_int_infra_match = combo->same_bi; iface_combinations[i].n_limits = combo->n_limits; wil_dbg_misc(wil, "iface_combination %d: max_if %d, num_ch %d, bi_match %d\n", i, iface_combinations[i].max_interfaces, iface_combinations[i].num_different_channels, iface_combinations[i].beacon_int_infra_match); limit = combo->limits; for (j = 0; j < combo->n_limits; j++) { iface_limit[j].max = le16_to_cpu(limit[j].max); iface_limit[j].types = le16_to_cpu(limit[j].types); wil_dbg_misc(wil, "limit %d: max %d types 0x%x\n", j, iface_limit[j].max, iface_limit[j].types); } iface_combinations[i].limits = iface_limit; iface_limit += combo->n_limits; limit += combo->n_limits; combo = (struct wil_fw_concurrency_combo *)limit; } wil_dbg_misc(wil, "multiple VIFs supported, n_mids %d\n", conc->n_mids); wil->max_vifs = conc->n_mids + 1; /* including main interface */ if (wil->max_vifs > WIL_MAX_VIFS) { wil_info(wil, "limited number of VIFs supported(%d, FW %d)\n", WIL_MAX_VIFS, wil->max_vifs); wil->max_vifs = WIL_MAX_VIFS; } wiphy->n_iface_combinations = n_combos; wiphy->iface_combinations = iface_combinations; return 0; } struct wil6210_priv *wil_cfg80211_init(struct device *dev) { struct wiphy *wiphy; struct wil6210_priv *wil; struct ieee80211_channel *ch; dev_dbg(dev, "%s()\n", __func__); /* Note: the wireless_dev structure is no longer allocated here. * Instead, it is allocated as part of the net_device structure * for main interface and each VIF. */ wiphy = wiphy_new(&wil_cfg80211_ops, sizeof(struct wil6210_priv)); if (!wiphy) return ERR_PTR(-ENOMEM); set_wiphy_dev(wiphy, dev); wil_wiphy_init(wiphy); wil = wiphy_to_wil(wiphy); wil->wiphy = wiphy; /* default monitor channel */ ch = wiphy->bands[NL80211_BAND_60GHZ]->channels; cfg80211_chandef_create(&wil->monitor_chandef, ch, NL80211_CHAN_NO_HT); return wil; } void wil_cfg80211_deinit(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); dev_dbg(wil_to_dev(wil), "%s()\n", __func__); if (!wiphy) return; kfree(wiphy->iface_combinations); wiphy->iface_combinations = NULL; wiphy_free(wiphy); /* do not access wil6210_priv after returning from here */ } void wil_p2p_wdev_free(struct wil6210_priv *wil) { struct wireless_dev *p2p_wdev; mutex_lock(&wil->vif_mutex); p2p_wdev = wil->p2p_wdev; wil->p2p_wdev = NULL; wil->radio_wdev = wil->main_ndev->ieee80211_ptr; mutex_unlock(&wil->vif_mutex); if (p2p_wdev) { cfg80211_unregister_wdev(p2p_wdev); kfree(p2p_wdev); } } static int wil_rf_sector_status_to_rc(u8 status) { switch (status) { case WMI_RF_SECTOR_STATUS_SUCCESS: return 0; case WMI_RF_SECTOR_STATUS_BAD_PARAMETERS_ERROR: return -EINVAL; case WMI_RF_SECTOR_STATUS_BUSY_ERROR: return -EAGAIN; case WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR: return -EOPNOTSUPP; default: return -EINVAL; } } static int wil_rf_sector_get_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_DMG_RF_SECTOR_MAX + 1]; u16 sector_index; u8 sector_type; u32 rf_modules_vec; struct wmi_get_rf_sector_params_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_get_rf_sector_params_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct sk_buff *msg; struct nlattr *nl_cfgs, *nl_cfg; u32 i; struct wmi_rf_sector_info *si; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse_deprecated(tb, QCA_ATTR_DMG_RF_SECTOR_MAX, data, data_len, wil_rf_sector_policy, NULL); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE] || !tb[QCA_ATTR_DMG_RF_MODULE_MASK]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } rf_modules_vec = nla_get_u32( tb[QCA_ATTR_DMG_RF_MODULE_MASK]); if (rf_modules_vec >= BIT(WMI_MAX_RF_MODULES_NUM)) { wil_err(wil, "Invalid rf module mask 0x%x\n", rf_modules_vec); return -EINVAL; } cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; cmd.rf_modules_vec = rf_modules_vec & 0xFF; rc = wmi_call(wil, WMI_GET_RF_SECTOR_PARAMS_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "get rf sector cfg failed with status %d\n", reply.evt.status); return wil_rf_sector_status_to_rc(reply.evt.status); } msg = cfg80211_vendor_cmd_alloc_reply_skb( wiphy, 64 * WMI_MAX_RF_MODULES_NUM); if (!msg) return -ENOMEM; if (nla_put_u64_64bit(msg, QCA_ATTR_TSF, le64_to_cpu(reply.evt.tsf), QCA_ATTR_PAD)) goto nla_put_failure; nl_cfgs = nla_nest_start_noflag(msg, QCA_ATTR_DMG_RF_SECTOR_CFG); if (!nl_cfgs) goto nla_put_failure; for (i = 0; i < WMI_MAX_RF_MODULES_NUM; i++) { if (!(rf_modules_vec & BIT(i))) continue; nl_cfg = nla_nest_start_noflag(msg, i); if (!nl_cfg) goto nla_put_failure; si = &reply.evt.sectors_info[i]; if (nla_put_u8(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX, i) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0, le32_to_cpu(si->etype0)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1, le32_to_cpu(si->etype1)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2, le32_to_cpu(si->etype2)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI, le32_to_cpu(si->psh_hi)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO, le32_to_cpu(si->psh_lo)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16, le32_to_cpu(si->dtype_swch_off))) goto nla_put_failure; nla_nest_end(msg, nl_cfg); } nla_nest_end(msg, nl_cfgs); rc = cfg80211_vendor_cmd_reply(msg); return rc; nla_put_failure: kfree_skb(msg); return -ENOBUFS; } static int wil_rf_sector_set_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc, tmp; struct nlattr *tb[QCA_ATTR_DMG_RF_SECTOR_MAX + 1]; struct nlattr *tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MAX + 1]; u16 sector_index, rf_module_index; u8 sector_type; u32 rf_modules_vec = 0; struct wmi_set_rf_sector_params_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_set_rf_sector_params_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct nlattr *nl_cfg; struct wmi_rf_sector_info *si; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse_deprecated(tb, QCA_ATTR_DMG_RF_SECTOR_MAX, data, data_len, wil_rf_sector_policy, NULL); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE] || !tb[QCA_ATTR_DMG_RF_SECTOR_CFG]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } memset(&cmd, 0, sizeof(cmd)); cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; nla_for_each_nested(nl_cfg, tb[QCA_ATTR_DMG_RF_SECTOR_CFG], tmp) { rc = nla_parse_nested_deprecated(tb2, QCA_ATTR_DMG_RF_SECTOR_CFG_MAX, nl_cfg, wil_rf_sector_cfg_policy, NULL); if (rc) { wil_err(wil, "invalid sector cfg\n"); return -EINVAL; } if (!tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16]) { wil_err(wil, "missing cfg params\n"); return -EINVAL; } rf_module_index = nla_get_u8( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX]); if (rf_module_index >= WMI_MAX_RF_MODULES_NUM) { wil_err(wil, "invalid RF module index %d\n", rf_module_index); return -EINVAL; } rf_modules_vec |= BIT(rf_module_index); si = &cmd.sectors_info[rf_module_index]; si->etype0 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0])); si->etype1 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1])); si->etype2 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2])); si->psh_hi = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI])); si->psh_lo = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO])); si->dtype_swch_off = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16])); } cmd.rf_modules_vec = rf_modules_vec & 0xFF; rc = wmi_call(wil, WMI_SET_RF_SECTOR_PARAMS_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; return wil_rf_sector_status_to_rc(reply.evt.status); } static int wil_rf_sector_get_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_DMG_RF_SECTOR_MAX + 1]; u8 sector_type, mac_addr[ETH_ALEN]; int cid = 0; struct wmi_get_selected_rf_sector_index_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_get_selected_rf_sector_index_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct sk_buff *msg; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse_deprecated(tb, QCA_ATTR_DMG_RF_SECTOR_MAX, data, data_len, wil_rf_sector_policy, NULL); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } if (tb[QCA_ATTR_MAC_ADDR]) { ether_addr_copy(mac_addr, nla_data(tb[QCA_ATTR_MAC_ADDR])); cid = wil_find_cid(wil, vif->mid, mac_addr); if (cid < 0) { wil_err(wil, "invalid MAC address %pM\n", mac_addr); return -ENOENT; } } else { if (test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "must specify MAC address when connected\n"); return -EINVAL; } } memset(&cmd, 0, sizeof(cmd)); cmd.cid = (u8)cid; cmd.sector_type = sector_type; rc = wmi_call(wil, WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "get rf selected sector cfg failed with status %d\n", reply.evt.status); return wil_rf_sector_status_to_rc(reply.evt.status); } msg = cfg80211_vendor_cmd_alloc_reply_skb( wiphy, 64 * WMI_MAX_RF_MODULES_NUM); if (!msg) return -ENOMEM; if (nla_put_u64_64bit(msg, QCA_ATTR_TSF, le64_to_cpu(reply.evt.tsf), QCA_ATTR_PAD) || nla_put_u16(msg, QCA_ATTR_DMG_RF_SECTOR_INDEX, le16_to_cpu(reply.evt.sector_idx))) goto nla_put_failure; rc = cfg80211_vendor_cmd_reply(msg); return rc; nla_put_failure: kfree_skb(msg); return -ENOBUFS; } static int wil_rf_sector_wmi_set_selected(struct wil6210_priv *wil, u8 mid, u16 sector_index, u8 sector_type, u8 cid) { struct wmi_set_selected_rf_sector_index_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_set_selected_rf_sector_index_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; cmd.cid = (u8)cid; rc = wmi_call(wil, WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID, mid, &cmd, sizeof(cmd), WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; return wil_rf_sector_status_to_rc(reply.evt.status); } static int wil_rf_sector_set_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_DMG_RF_SECTOR_MAX + 1]; u16 sector_index; u8 sector_type, mac_addr[ETH_ALEN], i; int cid = 0; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse_deprecated(tb, QCA_ATTR_DMG_RF_SECTOR_MAX, data, data_len, wil_rf_sector_policy, NULL); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS && sector_index != WMI_INVALID_RF_SECTOR_INDEX) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } if (tb[QCA_ATTR_MAC_ADDR]) { ether_addr_copy(mac_addr, nla_data(tb[QCA_ATTR_MAC_ADDR])); if (!is_broadcast_ether_addr(mac_addr)) { cid = wil_find_cid(wil, vif->mid, mac_addr); if (cid < 0) { wil_err(wil, "invalid MAC address %pM\n", mac_addr); return -ENOENT; } } else { if (sector_index != WMI_INVALID_RF_SECTOR_INDEX) { wil_err(wil, "broadcast MAC valid only with unlocking\n"); return -EINVAL; } cid = -1; } } else { if (test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "must specify MAC address when connected\n"); return -EINVAL; } /* otherwise, using cid=0 for unassociated station */ } if (cid >= 0) { rc = wil_rf_sector_wmi_set_selected(wil, vif->mid, sector_index, sector_type, cid); } else { /* unlock all cids */ rc = wil_rf_sector_wmi_set_selected( wil, vif->mid, WMI_INVALID_RF_SECTOR_INDEX, sector_type, WIL_CID_ALL); if (rc == -EINVAL) { for (i = 0; i < wil->max_assoc_sta; i++) { if (wil->sta[i].mid != vif->mid) continue; rc = wil_rf_sector_wmi_set_selected( wil, vif->mid, WMI_INVALID_RF_SECTOR_INDEX, sector_type, i); /* the FW will silently ignore and return * success for unused cid, so abort the loop * on any other error */ if (rc) { wil_err(wil, "unlock cid %d failed with status %d\n", i, rc); break; } } } } return rc; }