// SPDX-License-Identifier: GPL-2.0+ // // Freescale MXS SPI master driver // // Copyright 2012 DENX Software Engineering, GmbH. // Copyright 2012 Freescale Semiconductor, Inc. // Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. // // Rework and transition to new API by: // Marek Vasut <marex@denx.de> // // Based on previous attempt by: // Fabio Estevam <fabio.estevam@freescale.com> // // Based on code from U-Boot bootloader by: // Marek Vasut <marex@denx.de> // // Based on spi-stmp.c, which is: // Author: Dmitry Pervushin <dimka@embeddedalley.com> #include <linux/kernel.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/highmem.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/pinctrl/consumer.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/module.h> #include <linux/stmp_device.h> #include <linux/spi/spi.h> #include <linux/spi/mxs-spi.h> #include <trace/events/spi.h> #define DRIVER_NAME "mxs-spi" /* Use 10S timeout for very long transfers, it should suffice. */ #define SSP_TIMEOUT 10000 #define SG_MAXLEN 0xff00 /* * Flags for txrx functions. More efficient that using an argument register for * each one. */ #define TXRX_WRITE (1<<0) /* This is a write */ #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */ struct mxs_spi { struct mxs_ssp ssp; struct completion c; unsigned int sck; /* Rate requested (vs actual) */ }; static int mxs_spi_setup_transfer(struct spi_device *dev, const struct spi_transfer *t) { struct mxs_spi *spi = spi_master_get_devdata(dev->master); struct mxs_ssp *ssp = &spi->ssp; const unsigned int hz = min(dev->max_speed_hz, t->speed_hz); if (hz == 0) { dev_err(&dev->dev, "SPI clock rate of zero not allowed\n"); return -EINVAL; } if (hz != spi->sck) { mxs_ssp_set_clk_rate(ssp, hz); /* * Save requested rate, hz, rather than the actual rate, * ssp->clk_rate. Otherwise we would set the rate every transfer * when the actual rate is not quite the same as requested rate. */ spi->sck = hz; /* * Perhaps we should return an error if the actual clock is * nowhere close to what was requested? */ } writel(BM_SSP_CTRL0_LOCK_CS, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) | BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) | ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) | ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0), ssp->base + HW_SSP_CTRL1(ssp)); writel(0x0, ssp->base + HW_SSP_CMD0); writel(0x0, ssp->base + HW_SSP_CMD1); return 0; } static u32 mxs_spi_cs_to_reg(unsigned cs) { u32 select = 0; /* * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0 * * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ * in HW_SSP_CTRL0 register do have multiple usage, please refer to * the datasheet for further details. In SPI mode, they are used to * toggle the chip-select lines (nCS pins). */ if (cs & 1) select |= BM_SSP_CTRL0_WAIT_FOR_CMD; if (cs & 2) select |= BM_SSP_CTRL0_WAIT_FOR_IRQ; return select; } static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set) { const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT); struct mxs_ssp *ssp = &spi->ssp; u32 reg; do { reg = readl_relaxed(ssp->base + offset); if (!set) reg = ~reg; reg &= mask; if (reg == mask) return 0; } while (time_before(jiffies, timeout)); return -ETIMEDOUT; } static void mxs_ssp_dma_irq_callback(void *param) { struct mxs_spi *spi = param; complete(&spi->c); } static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id) { struct mxs_ssp *ssp = dev_id; dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n", __func__, __LINE__, readl(ssp->base + HW_SSP_CTRL1(ssp)), readl(ssp->base + HW_SSP_STATUS(ssp))); return IRQ_HANDLED; } static int mxs_spi_txrx_dma(struct mxs_spi *spi, unsigned char *buf, int len, unsigned int flags) { struct mxs_ssp *ssp = &spi->ssp; struct dma_async_tx_descriptor *desc = NULL; const bool vmalloced_buf = is_vmalloc_addr(buf); const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN; const int sgs = DIV_ROUND_UP(len, desc_len); int sg_count; int min, ret; u32 ctrl0; struct page *vm_page; struct { u32 pio[4]; struct scatterlist sg; } *dma_xfer; if (!len) return -EINVAL; dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL); if (!dma_xfer) return -ENOMEM; reinit_completion(&spi->c); /* Chip select was already programmed into CTRL0 */ ctrl0 = readl(ssp->base + HW_SSP_CTRL0); ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC | BM_SSP_CTRL0_READ); ctrl0 |= BM_SSP_CTRL0_DATA_XFER; if (!(flags & TXRX_WRITE)) ctrl0 |= BM_SSP_CTRL0_READ; /* Queue the DMA data transfer. */ for (sg_count = 0; sg_count < sgs; sg_count++) { /* Prepare the transfer descriptor. */ min = min(len, desc_len); /* * De-assert CS on last segment if flag is set (i.e., no more * transfers will follow) */ if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS)) ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC; if (ssp->devid == IMX23_SSP) { ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT; ctrl0 |= min; } dma_xfer[sg_count].pio[0] = ctrl0; dma_xfer[sg_count].pio[3] = min; if (vmalloced_buf) { vm_page = vmalloc_to_page(buf); if (!vm_page) { ret = -ENOMEM; goto err_vmalloc; } sg_init_table(&dma_xfer[sg_count].sg, 1); sg_set_page(&dma_xfer[sg_count].sg, vm_page, min, offset_in_page(buf)); } else { sg_init_one(&dma_xfer[sg_count].sg, buf, min); } ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); len -= min; buf += min; /* Queue the PIO register write transfer. */ desc = dmaengine_prep_slave_sg(ssp->dmach, (struct scatterlist *)dma_xfer[sg_count].pio, (ssp->devid == IMX23_SSP) ? 1 : 4, DMA_TRANS_NONE, sg_count ? DMA_PREP_INTERRUPT : 0); if (!desc) { dev_err(ssp->dev, "Failed to get PIO reg. write descriptor.\n"); ret = -EINVAL; goto err_mapped; } desc = dmaengine_prep_slave_sg(ssp->dmach, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(ssp->dev, "Failed to get DMA data write descriptor.\n"); ret = -EINVAL; goto err_mapped; } } /* * The last descriptor must have this callback, * to finish the DMA transaction. */ desc->callback = mxs_ssp_dma_irq_callback; desc->callback_param = spi; /* Start the transfer. */ dmaengine_submit(desc); dma_async_issue_pending(ssp->dmach); if (!wait_for_completion_timeout(&spi->c, msecs_to_jiffies(SSP_TIMEOUT))) { dev_err(ssp->dev, "DMA transfer timeout\n"); ret = -ETIMEDOUT; dmaengine_terminate_all(ssp->dmach); goto err_vmalloc; } ret = 0; err_vmalloc: while (--sg_count >= 0) { err_mapped: dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } kfree(dma_xfer); return ret; } static int mxs_spi_txrx_pio(struct mxs_spi *spi, unsigned char *buf, int len, unsigned int flags) { struct mxs_ssp *ssp = &spi->ssp; writel(BM_SSP_CTRL0_IGNORE_CRC, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); while (len--) { if (len == 0 && (flags & TXRX_DEASSERT_CS)) writel(BM_SSP_CTRL0_IGNORE_CRC, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (ssp->devid == IMX23_SSP) { writel(BM_SSP_CTRL0_XFER_COUNT, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); writel(1, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); } else { writel(1, ssp->base + HW_SSP_XFER_SIZE); } if (flags & TXRX_WRITE) writel(BM_SSP_CTRL0_READ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); else writel(BM_SSP_CTRL0_READ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); writel(BM_SSP_CTRL0_RUN, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1)) return -ETIMEDOUT; if (flags & TXRX_WRITE) writel(*buf, ssp->base + HW_SSP_DATA(ssp)); writel(BM_SSP_CTRL0_DATA_XFER, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); if (!(flags & TXRX_WRITE)) { if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp), BM_SSP_STATUS_FIFO_EMPTY, 0)) return -ETIMEDOUT; *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff); } if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0)) return -ETIMEDOUT; buf++; } if (len <= 0) return 0; return -ETIMEDOUT; } static int mxs_spi_transfer_one(struct spi_master *master, struct spi_message *m) { struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; struct spi_transfer *t; unsigned int flag; int status = 0; /* Program CS register bits here, it will be used for all transfers. */ writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); writel(mxs_spi_cs_to_reg(m->spi->chip_select), ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); list_for_each_entry(t, &m->transfers, transfer_list) { trace_spi_transfer_start(m, t); status = mxs_spi_setup_transfer(m->spi, t); if (status) break; /* De-assert on last transfer, inverted by cs_change flag */ flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ? TXRX_DEASSERT_CS : 0; /* * Small blocks can be transfered via PIO. * Measured by empiric means: * * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1 * * DMA only: 2.164808 seconds, 473.0KB/s * Combined: 1.676276 seconds, 610.9KB/s */ if (t->len < 32) { writel(BM_SSP_CTRL1_DMA_ENABLE, ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_CLR); if (t->tx_buf) status = mxs_spi_txrx_pio(spi, (void *)t->tx_buf, t->len, flag | TXRX_WRITE); if (t->rx_buf) status = mxs_spi_txrx_pio(spi, t->rx_buf, t->len, flag); } else { writel(BM_SSP_CTRL1_DMA_ENABLE, ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_SET); if (t->tx_buf) status = mxs_spi_txrx_dma(spi, (void *)t->tx_buf, t->len, flag | TXRX_WRITE); if (t->rx_buf) status = mxs_spi_txrx_dma(spi, t->rx_buf, t->len, flag); } trace_spi_transfer_stop(m, t); if (status) { stmp_reset_block(ssp->base); break; } m->actual_length += t->len; } m->status = status; spi_finalize_current_message(master); return status; } static int mxs_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; int ret; clk_disable_unprepare(ssp->clk); ret = pinctrl_pm_select_idle_state(dev); if (ret) { int ret2 = clk_prepare_enable(ssp->clk); if (ret2) dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n", ret, ret2); } return ret; } static int mxs_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxs_spi *spi = spi_master_get_devdata(master); struct mxs_ssp *ssp = &spi->ssp; int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; ret = clk_prepare_enable(ssp->clk); if (ret) pinctrl_pm_select_idle_state(dev); return ret; } static int __maybe_unused mxs_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; ret = spi_master_suspend(master); if (ret) return ret; if (!pm_runtime_suspended(dev)) return mxs_spi_runtime_suspend(dev); else return 0; } static int __maybe_unused mxs_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; if (!pm_runtime_suspended(dev)) ret = mxs_spi_runtime_resume(dev); else ret = 0; if (ret) return ret; ret = spi_master_resume(master); if (ret < 0 && !pm_runtime_suspended(dev)) mxs_spi_runtime_suspend(dev); return ret; } static const struct dev_pm_ops mxs_spi_pm = { SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend, mxs_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume) }; static const struct of_device_id mxs_spi_dt_ids[] = { { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, }, { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids); static int mxs_spi_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(mxs_spi_dt_ids, &pdev->dev); struct device_node *np = pdev->dev.of_node; struct spi_master *master; struct mxs_spi *spi; struct mxs_ssp *ssp; struct clk *clk; void __iomem *base; int devid, clk_freq; int ret = 0, irq_err; /* * Default clock speed for the SPI core. 160MHz seems to * work reasonably well with most SPI flashes, so use this * as a default. Override with "clock-frequency" DT prop. */ const int clk_freq_default = 160000000; irq_err = platform_get_irq(pdev, 0); if (irq_err < 0) return irq_err; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); devid = (enum mxs_ssp_id) of_id->data; ret = of_property_read_u32(np, "clock-frequency", &clk_freq); if (ret) clk_freq = clk_freq_default; master = spi_alloc_master(&pdev->dev, sizeof(*spi)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); master->transfer_one_message = mxs_spi_transfer_one; master->bits_per_word_mask = SPI_BPW_MASK(8); master->mode_bits = SPI_CPOL | SPI_CPHA; master->num_chipselect = 3; master->dev.of_node = np; master->flags = SPI_MASTER_HALF_DUPLEX; master->auto_runtime_pm = true; spi = spi_master_get_devdata(master); ssp = &spi->ssp; ssp->dev = &pdev->dev; ssp->clk = clk; ssp->base = base; ssp->devid = devid; init_completion(&spi->c); ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0, dev_name(&pdev->dev), ssp); if (ret) goto out_master_free; ssp->dmach = dma_request_chan(&pdev->dev, "rx-tx"); if (IS_ERR(ssp->dmach)) { dev_err(ssp->dev, "Failed to request DMA\n"); ret = PTR_ERR(ssp->dmach); goto out_master_free; } pm_runtime_enable(ssp->dev); if (!pm_runtime_enabled(ssp->dev)) { ret = mxs_spi_runtime_resume(ssp->dev); if (ret < 0) { dev_err(ssp->dev, "runtime resume failed\n"); goto out_dma_release; } } ret = pm_runtime_resume_and_get(ssp->dev); if (ret < 0) { dev_err(ssp->dev, "runtime_get_sync failed\n"); goto out_pm_runtime_disable; } clk_set_rate(ssp->clk, clk_freq); ret = stmp_reset_block(ssp->base); if (ret) goto out_pm_runtime_put; ret = devm_spi_register_master(&pdev->dev, master); if (ret) { dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret); goto out_pm_runtime_put; } pm_runtime_put(ssp->dev); return 0; out_pm_runtime_put: pm_runtime_put(ssp->dev); out_pm_runtime_disable: pm_runtime_disable(ssp->dev); out_dma_release: dma_release_channel(ssp->dmach); out_master_free: spi_master_put(master); return ret; } static int mxs_spi_remove(struct platform_device *pdev) { struct spi_master *master; struct mxs_spi *spi; struct mxs_ssp *ssp; master = platform_get_drvdata(pdev); spi = spi_master_get_devdata(master); ssp = &spi->ssp; pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) mxs_spi_runtime_suspend(&pdev->dev); dma_release_channel(ssp->dmach); return 0; } static struct platform_driver mxs_spi_driver = { .probe = mxs_spi_probe, .remove = mxs_spi_remove, .driver = { .name = DRIVER_NAME, .of_match_table = mxs_spi_dt_ids, .pm = &mxs_spi_pm, }, }; module_platform_driver(mxs_spi_driver); MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); MODULE_DESCRIPTION("MXS SPI master driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:mxs-spi");