summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/libstub/x86-stub.c
blob: 4f0152b11a89062becff40c01b00f6c91c2ae834 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// SPDX-License-Identifier: GPL-2.0-only

/* -----------------------------------------------------------------------
 *
 *   Copyright 2011 Intel Corporation; author Matt Fleming
 *
 * ----------------------------------------------------------------------- */

#include <linux/efi.h>
#include <linux/pci.h>
#include <linux/stddef.h>

#include <asm/efi.h>
#include <asm/e820/types.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/boot.h>

#include "efistub.h"

/* Maximum physical address for 64-bit kernel with 4-level paging */
#define MAXMEM_X86_64_4LEVEL (1ull << 46)

const efi_system_table_t *efi_system_table;
const efi_dxe_services_table_t *efi_dxe_table;
extern u32 image_offset;
static efi_loaded_image_t *image = NULL;

static efi_status_t
preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
{
	struct pci_setup_rom *rom = NULL;
	efi_status_t status;
	unsigned long size;
	uint64_t romsize;
	void *romimage;

	/*
	 * Some firmware images contain EFI function pointers at the place where
	 * the romimage and romsize fields are supposed to be. Typically the EFI
	 * code is mapped at high addresses, translating to an unrealistically
	 * large romsize. The UEFI spec limits the size of option ROMs to 16
	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
	 */
	romimage = efi_table_attr(pci, romimage);
	romsize = efi_table_attr(pci, romsize);
	if (!romimage || !romsize || romsize > SZ_16M)
		return EFI_INVALID_PARAMETER;

	size = romsize + sizeof(*rom);

	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
			     (void **)&rom);
	if (status != EFI_SUCCESS) {
		efi_err("Failed to allocate memory for 'rom'\n");
		return status;
	}

	memset(rom, 0, sizeof(*rom));

	rom->data.type	= SETUP_PCI;
	rom->data.len	= size - sizeof(struct setup_data);
	rom->data.next	= 0;
	rom->pcilen	= romsize;
	*__rom = rom;

	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
				PCI_VENDOR_ID, 1, &rom->vendor);

	if (status != EFI_SUCCESS) {
		efi_err("Failed to read rom->vendor\n");
		goto free_struct;
	}

	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
				PCI_DEVICE_ID, 1, &rom->devid);

	if (status != EFI_SUCCESS) {
		efi_err("Failed to read rom->devid\n");
		goto free_struct;
	}

	status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
				&rom->device, &rom->function);

	if (status != EFI_SUCCESS)
		goto free_struct;

	memcpy(rom->romdata, romimage, romsize);
	return status;

free_struct:
	efi_bs_call(free_pool, rom);
	return status;
}

/*
 * There's no way to return an informative status from this function,
 * because any analysis (and printing of error messages) needs to be
 * done directly at the EFI function call-site.
 *
 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
 * just didn't find any PCI devices, but there's no way to tell outside
 * the context of the call.
 */
static void setup_efi_pci(struct boot_params *params)
{
	efi_status_t status;
	void **pci_handle = NULL;
	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
	unsigned long size = 0;
	struct setup_data *data;
	efi_handle_t h;
	int i;

	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
			     &pci_proto, NULL, &size, pci_handle);

	if (status == EFI_BUFFER_TOO_SMALL) {
		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
				     (void **)&pci_handle);

		if (status != EFI_SUCCESS) {
			efi_err("Failed to allocate memory for 'pci_handle'\n");
			return;
		}

		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
				     &pci_proto, NULL, &size, pci_handle);
	}

	if (status != EFI_SUCCESS)
		goto free_handle;

	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;

	while (data && data->next)
		data = (struct setup_data *)(unsigned long)data->next;

	for_each_efi_handle(h, pci_handle, size, i) {
		efi_pci_io_protocol_t *pci = NULL;
		struct pci_setup_rom *rom;

		status = efi_bs_call(handle_protocol, h, &pci_proto,
				     (void **)&pci);
		if (status != EFI_SUCCESS || !pci)
			continue;

		status = preserve_pci_rom_image(pci, &rom);
		if (status != EFI_SUCCESS)
			continue;

		if (data)
			data->next = (unsigned long)rom;
		else
			params->hdr.setup_data = (unsigned long)rom;

		data = (struct setup_data *)rom;
	}

free_handle:
	efi_bs_call(free_pool, pci_handle);
}

static void retrieve_apple_device_properties(struct boot_params *boot_params)
{
	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
	struct setup_data *data, *new;
	efi_status_t status;
	u32 size = 0;
	apple_properties_protocol_t *p;

	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
	if (status != EFI_SUCCESS)
		return;

	if (efi_table_attr(p, version) != 0x10000) {
		efi_err("Unsupported properties proto version\n");
		return;
	}

	efi_call_proto(p, get_all, NULL, &size);
	if (!size)
		return;

	do {
		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
				     size + sizeof(struct setup_data),
				     (void **)&new);
		if (status != EFI_SUCCESS) {
			efi_err("Failed to allocate memory for 'properties'\n");
			return;
		}

		status = efi_call_proto(p, get_all, new->data, &size);

		if (status == EFI_BUFFER_TOO_SMALL)
			efi_bs_call(free_pool, new);
	} while (status == EFI_BUFFER_TOO_SMALL);

	new->type = SETUP_APPLE_PROPERTIES;
	new->len  = size;
	new->next = 0;

	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
	if (!data) {
		boot_params->hdr.setup_data = (unsigned long)new;
	} else {
		while (data->next)
			data = (struct setup_data *)(unsigned long)data->next;
		data->next = (unsigned long)new;
	}
}

static void
adjust_memory_range_protection(unsigned long start, unsigned long size)
{
	efi_status_t status;
	efi_gcd_memory_space_desc_t desc;
	unsigned long end, next;
	unsigned long rounded_start, rounded_end;
	unsigned long unprotect_start, unprotect_size;

	if (efi_dxe_table == NULL)
		return;

	rounded_start = rounddown(start, EFI_PAGE_SIZE);
	rounded_end = roundup(start + size, EFI_PAGE_SIZE);

	/*
	 * Don't modify memory region attributes, they are
	 * already suitable, to lower the possibility to
	 * encounter firmware bugs.
	 */

	for (end = start + size; start < end; start = next) {

		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);

		if (status != EFI_SUCCESS)
			return;

		next = desc.base_address + desc.length;

		/*
		 * Only system memory is suitable for trampoline/kernel image placement,
		 * so only this type of memory needs its attributes to be modified.
		 */

		if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
			continue;

		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
		unprotect_size = min(rounded_end, next) - unprotect_start;

		status = efi_dxe_call(set_memory_space_attributes,
				      unprotect_start, unprotect_size,
				      EFI_MEMORY_WB);

		if (status != EFI_SUCCESS) {
			efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
				 unprotect_start,
				 unprotect_start + unprotect_size,
				 status);
		}
	}
}

/*
 * Trampoline takes 2 pages and can be loaded in first megabyte of memory
 * with its end placed between 128k and 640k where BIOS might start.
 * (see arch/x86/boot/compressed/pgtable_64.c)
 *
 * We cannot find exact trampoline placement since memory map
 * can be modified by UEFI, and it can alter the computed address.
 */

#define TRAMPOLINE_PLACEMENT_BASE ((128 - 8)*1024)
#define TRAMPOLINE_PLACEMENT_SIZE (640*1024 - (128 - 8)*1024)

void startup_32(struct boot_params *boot_params);

static void
setup_memory_protection(unsigned long image_base, unsigned long image_size)
{
	/*
	 * Allow execution of possible trampoline used
	 * for switching between 4- and 5-level page tables
	 * and relocated kernel image.
	 */

	adjust_memory_range_protection(TRAMPOLINE_PLACEMENT_BASE,
				       TRAMPOLINE_PLACEMENT_SIZE);

#ifdef CONFIG_64BIT
	if (image_base != (unsigned long)startup_32)
		adjust_memory_range_protection(image_base, image_size);
#else
	/*
	 * Clear protection flags on a whole range of possible
	 * addresses used for KASLR. We don't need to do that
	 * on x86_64, since KASLR/extraction is performed after
	 * dedicated identity page tables are built and we only
	 * need to remove possible protection on relocated image
	 * itself disregarding further relocations.
	 */
	adjust_memory_range_protection(LOAD_PHYSICAL_ADDR,
				       KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR);
#endif
}

static const efi_char16_t apple[] = L"Apple";

static void setup_quirks(struct boot_params *boot_params,
			 unsigned long image_base,
			 unsigned long image_size)
{
	efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
		efi_table_attr(efi_system_table, fw_vendor);

	if (!memcmp(fw_vendor, apple, sizeof(apple))) {
		if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
			retrieve_apple_device_properties(boot_params);
	}

	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES))
		setup_memory_protection(image_base, image_size);
}

/*
 * See if we have Universal Graphics Adapter (UGA) protocol
 */
static efi_status_t
setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
{
	efi_status_t status;
	u32 width, height;
	void **uga_handle = NULL;
	efi_uga_draw_protocol_t *uga = NULL, *first_uga;
	efi_handle_t handle;
	int i;

	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
			     (void **)&uga_handle);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
			     uga_proto, NULL, &size, uga_handle);
	if (status != EFI_SUCCESS)
		goto free_handle;

	height = 0;
	width = 0;

	first_uga = NULL;
	for_each_efi_handle(handle, uga_handle, size, i) {
		efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
		u32 w, h, depth, refresh;
		void *pciio;

		status = efi_bs_call(handle_protocol, handle, uga_proto,
				     (void **)&uga);
		if (status != EFI_SUCCESS)
			continue;

		pciio = NULL;
		efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio);

		status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh);
		if (status == EFI_SUCCESS && (!first_uga || pciio)) {
			width = w;
			height = h;

			/*
			 * Once we've found a UGA supporting PCIIO,
			 * don't bother looking any further.
			 */
			if (pciio)
				break;

			first_uga = uga;
		}
	}

	if (!width && !height)
		goto free_handle;

	/* EFI framebuffer */
	si->orig_video_isVGA	= VIDEO_TYPE_EFI;

	si->lfb_depth		= 32;
	si->lfb_width		= width;
	si->lfb_height		= height;

	si->red_size		= 8;
	si->red_pos		= 16;
	si->green_size		= 8;
	si->green_pos		= 8;
	si->blue_size		= 8;
	si->blue_pos		= 0;
	si->rsvd_size		= 8;
	si->rsvd_pos		= 24;

free_handle:
	efi_bs_call(free_pool, uga_handle);

	return status;
}

static void setup_graphics(struct boot_params *boot_params)
{
	efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
	struct screen_info *si;
	efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
	efi_status_t status;
	unsigned long size;
	void **gop_handle = NULL;
	void **uga_handle = NULL;

	si = &boot_params->screen_info;
	memset(si, 0, sizeof(*si));

	size = 0;
	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
			     &graphics_proto, NULL, &size, gop_handle);
	if (status == EFI_BUFFER_TOO_SMALL)
		status = efi_setup_gop(si, &graphics_proto, size);

	if (status != EFI_SUCCESS) {
		size = 0;
		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
				     &uga_proto, NULL, &size, uga_handle);
		if (status == EFI_BUFFER_TOO_SMALL)
			setup_uga(si, &uga_proto, size);
	}
}


static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
{
	efi_bs_call(exit, handle, status, 0, NULL);
	for(;;)
		asm("hlt");
}

void __noreturn efi_stub_entry(efi_handle_t handle,
			       efi_system_table_t *sys_table_arg,
			       struct boot_params *boot_params);

/*
 * Because the x86 boot code expects to be passed a boot_params we
 * need to create one ourselves (usually the bootloader would create
 * one for us).
 */
efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
				   efi_system_table_t *sys_table_arg)
{
	struct boot_params *boot_params;
	struct setup_header *hdr;
	void *image_base;
	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
	int options_size = 0;
	efi_status_t status;
	char *cmdline_ptr;

	efi_system_table = sys_table_arg;

	/* Check if we were booted by the EFI firmware */
	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		efi_exit(handle, EFI_INVALID_PARAMETER);

	status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
	if (status != EFI_SUCCESS) {
		efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
		efi_exit(handle, status);
	}

	image_base = efi_table_attr(image, image_base);
	image_offset = (void *)startup_32 - image_base;

	status = efi_allocate_pages(sizeof(struct boot_params),
				    (unsigned long *)&boot_params, ULONG_MAX);
	if (status != EFI_SUCCESS) {
		efi_err("Failed to allocate lowmem for boot params\n");
		efi_exit(handle, status);
	}

	memset(boot_params, 0x0, sizeof(struct boot_params));

	hdr = &boot_params->hdr;

	/* Copy the setup header from the second sector to boot_params */
	memcpy(&hdr->jump, image_base + 512,
	       sizeof(struct setup_header) - offsetof(struct setup_header, jump));

	/*
	 * Fill out some of the header fields ourselves because the
	 * EFI firmware loader doesn't load the first sector.
	 */
	hdr->root_flags	= 1;
	hdr->vid_mode	= 0xffff;
	hdr->boot_flag	= 0xAA55;

	hdr->type_of_loader = 0x21;

	/* Convert unicode cmdline to ascii */
	cmdline_ptr = efi_convert_cmdline(image, &options_size);
	if (!cmdline_ptr)
		goto fail;

	efi_set_u64_split((unsigned long)cmdline_ptr,
			  &hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr);

	hdr->ramdisk_image = 0;
	hdr->ramdisk_size = 0;

	/*
	 * Disregard any setup data that was provided by the bootloader:
	 * setup_data could be pointing anywhere, and we have no way of
	 * authenticating or validating the payload.
	 */
	hdr->setup_data = 0;

	efi_stub_entry(handle, sys_table_arg, boot_params);
	/* not reached */

fail:
	efi_free(sizeof(struct boot_params), (unsigned long)boot_params);

	efi_exit(handle, status);
}

static void add_e820ext(struct boot_params *params,
			struct setup_data *e820ext, u32 nr_entries)
{
	struct setup_data *data;

	e820ext->type = SETUP_E820_EXT;
	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
	e820ext->next = 0;

	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;

	while (data && data->next)
		data = (struct setup_data *)(unsigned long)data->next;

	if (data)
		data->next = (unsigned long)e820ext;
	else
		params->hdr.setup_data = (unsigned long)e820ext;
}

static efi_status_t
setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
{
	struct boot_e820_entry *entry = params->e820_table;
	struct efi_info *efi = &params->efi_info;
	struct boot_e820_entry *prev = NULL;
	u32 nr_entries;
	u32 nr_desc;
	int i;

	nr_entries = 0;
	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;

	for (i = 0; i < nr_desc; i++) {
		efi_memory_desc_t *d;
		unsigned int e820_type = 0;
		unsigned long m = efi->efi_memmap;

#ifdef CONFIG_X86_64
		m |= (u64)efi->efi_memmap_hi << 32;
#endif

		d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
		switch (d->type) {
		case EFI_RESERVED_TYPE:
		case EFI_RUNTIME_SERVICES_CODE:
		case EFI_RUNTIME_SERVICES_DATA:
		case EFI_MEMORY_MAPPED_IO:
		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
		case EFI_PAL_CODE:
			e820_type = E820_TYPE_RESERVED;
			break;

		case EFI_UNUSABLE_MEMORY:
			e820_type = E820_TYPE_UNUSABLE;
			break;

		case EFI_ACPI_RECLAIM_MEMORY:
			e820_type = E820_TYPE_ACPI;
			break;

		case EFI_LOADER_CODE:
		case EFI_LOADER_DATA:
		case EFI_BOOT_SERVICES_CODE:
		case EFI_BOOT_SERVICES_DATA:
		case EFI_CONVENTIONAL_MEMORY:
			if (efi_soft_reserve_enabled() &&
			    (d->attribute & EFI_MEMORY_SP))
				e820_type = E820_TYPE_SOFT_RESERVED;
			else
				e820_type = E820_TYPE_RAM;
			break;

		case EFI_ACPI_MEMORY_NVS:
			e820_type = E820_TYPE_NVS;
			break;

		case EFI_PERSISTENT_MEMORY:
			e820_type = E820_TYPE_PMEM;
			break;

		default:
			continue;
		}

		/* Merge adjacent mappings */
		if (prev && prev->type == e820_type &&
		    (prev->addr + prev->size) == d->phys_addr) {
			prev->size += d->num_pages << 12;
			continue;
		}

		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
				   sizeof(struct setup_data);

			if (!e820ext || e820ext_size < need)
				return EFI_BUFFER_TOO_SMALL;

			/* boot_params map full, switch to e820 extended */
			entry = (struct boot_e820_entry *)e820ext->data;
		}

		entry->addr = d->phys_addr;
		entry->size = d->num_pages << PAGE_SHIFT;
		entry->type = e820_type;
		prev = entry++;
		nr_entries++;
	}

	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);

		add_e820ext(params, e820ext, nr_e820ext);
		nr_entries -= nr_e820ext;
	}

	params->e820_entries = (u8)nr_entries;

	return EFI_SUCCESS;
}

static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
				  u32 *e820ext_size)
{
	efi_status_t status;
	unsigned long size;

	size = sizeof(struct setup_data) +
		sizeof(struct e820_entry) * nr_desc;

	if (*e820ext) {
		efi_bs_call(free_pool, *e820ext);
		*e820ext = NULL;
		*e820ext_size = 0;
	}

	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
			     (void **)e820ext);
	if (status == EFI_SUCCESS)
		*e820ext_size = size;

	return status;
}

static efi_status_t allocate_e820(struct boot_params *params,
				  struct setup_data **e820ext,
				  u32 *e820ext_size)
{
	unsigned long map_size, desc_size, map_key;
	efi_status_t status;
	__u32 nr_desc, desc_version;

	/* Only need the size of the mem map and size of each mem descriptor */
	map_size = 0;
	status = efi_bs_call(get_memory_map, &map_size, NULL, &map_key,
			     &desc_size, &desc_version);
	if (status != EFI_BUFFER_TOO_SMALL)
		return (status != EFI_SUCCESS) ? status : EFI_UNSUPPORTED;

	nr_desc = map_size / desc_size + EFI_MMAP_NR_SLACK_SLOTS;

	if (nr_desc > ARRAY_SIZE(params->e820_table)) {
		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table);

		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
		if (status != EFI_SUCCESS)
			return status;
	}

	return EFI_SUCCESS;
}

struct exit_boot_struct {
	struct boot_params	*boot_params;
	struct efi_info		*efi;
};

static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
				   void *priv)
{
	const char *signature;
	struct exit_boot_struct *p = priv;

	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
				   : EFI32_LOADER_SIGNATURE;
	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));

	efi_set_u64_split((unsigned long)efi_system_table,
			  &p->efi->efi_systab, &p->efi->efi_systab_hi);
	p->efi->efi_memdesc_size	= map->desc_size;
	p->efi->efi_memdesc_version	= map->desc_ver;
	efi_set_u64_split((unsigned long)map->map,
			  &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
	p->efi->efi_memmap_size		= map->map_size;

	return EFI_SUCCESS;
}

static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
{
	struct setup_data *e820ext = NULL;
	__u32 e820ext_size = 0;
	efi_status_t status;
	struct exit_boot_struct priv;

	priv.boot_params	= boot_params;
	priv.efi		= &boot_params->efi_info;

	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
	if (status != EFI_SUCCESS)
		return status;

	/* Might as well exit boot services now */
	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
	if (status != EFI_SUCCESS)
		return status;

	/* Historic? */
	boot_params->alt_mem_k	= 32 * 1024;

	status = setup_e820(boot_params, e820ext, e820ext_size);
	if (status != EFI_SUCCESS)
		return status;

	return EFI_SUCCESS;
}

/*
 * On success, we return the address of startup_32, which has potentially been
 * relocated by efi_relocate_kernel.
 * On failure, we exit to the firmware via efi_exit instead of returning.
 */
asmlinkage unsigned long efi_main(efi_handle_t handle,
				  efi_system_table_t *sys_table_arg,
				  struct boot_params *boot_params)
{
	unsigned long bzimage_addr = (unsigned long)startup_32;
	unsigned long buffer_start, buffer_end;
	struct setup_header *hdr = &boot_params->hdr;
	const struct linux_efi_initrd *initrd = NULL;
	efi_status_t status;

	efi_system_table = sys_table_arg;
	/* Check if we were booted by the EFI firmware */
	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		efi_exit(handle, EFI_INVALID_PARAMETER);

	efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
	if (efi_dxe_table &&
	    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
		efi_warn("Ignoring DXE services table: invalid signature\n");
		efi_dxe_table = NULL;
	}

	/*
	 * If the kernel isn't already loaded at a suitable address,
	 * relocate it.
	 *
	 * It must be loaded above LOAD_PHYSICAL_ADDR.
	 *
	 * The maximum address for 64-bit is 1 << 46 for 4-level paging. This
	 * is defined as the macro MAXMEM, but unfortunately that is not a
	 * compile-time constant if 5-level paging is configured, so we instead
	 * define our own macro for use here.
	 *
	 * For 32-bit, the maximum address is complicated to figure out, for
	 * now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what
	 * KASLR uses.
	 *
	 * Also relocate it if image_offset is zero, i.e. the kernel wasn't
	 * loaded by LoadImage, but rather by a bootloader that called the
	 * handover entry. The reason we must always relocate in this case is
	 * to handle the case of systemd-boot booting a unified kernel image,
	 * which is a PE executable that contains the bzImage and an initrd as
	 * COFF sections. The initrd section is placed after the bzImage
	 * without ensuring that there are at least init_size bytes available
	 * for the bzImage, and thus the compressed kernel's startup code may
	 * overwrite the initrd unless it is moved out of the way.
	 */

	buffer_start = ALIGN(bzimage_addr - image_offset,
			     hdr->kernel_alignment);
	buffer_end = buffer_start + hdr->init_size;

	if ((buffer_start < LOAD_PHYSICAL_ADDR)				     ||
	    (IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE)    ||
	    (IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) ||
	    (image_offset == 0)) {
		extern char _bss[];

		status = efi_relocate_kernel(&bzimage_addr,
					     (unsigned long)_bss - bzimage_addr,
					     hdr->init_size,
					     hdr->pref_address,
					     hdr->kernel_alignment,
					     LOAD_PHYSICAL_ADDR);
		if (status != EFI_SUCCESS) {
			efi_err("efi_relocate_kernel() failed!\n");
			goto fail;
		}
		/*
		 * Now that we've copied the kernel elsewhere, we no longer
		 * have a set up block before startup_32(), so reset image_offset
		 * to zero in case it was set earlier.
		 */
		image_offset = 0;
	}

#ifdef CONFIG_CMDLINE_BOOL
	status = efi_parse_options(CONFIG_CMDLINE);
	if (status != EFI_SUCCESS) {
		efi_err("Failed to parse options\n");
		goto fail;
	}
#endif
	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
					       ((u64)boot_params->ext_cmd_line_ptr << 32));
		status = efi_parse_options((char *)cmdline_paddr);
		if (status != EFI_SUCCESS) {
			efi_err("Failed to parse options\n");
			goto fail;
		}
	}

	/*
	 * At this point, an initrd may already have been loaded by the
	 * bootloader and passed via bootparams. We permit an initrd loaded
	 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
	 *
	 * If the device path is not present, any command-line initrd=
	 * arguments will be processed only if image is not NULL, which will be
	 * the case only if we were loaded via the PE entry point.
	 */
	status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
				 &initrd);
	if (status != EFI_SUCCESS)
		goto fail;
	if (initrd && initrd->size > 0) {
		efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
				  &boot_params->ext_ramdisk_image);
		efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
				  &boot_params->ext_ramdisk_size);
	}


	/*
	 * If the boot loader gave us a value for secure_boot then we use that,
	 * otherwise we ask the BIOS.
	 */
	if (boot_params->secure_boot == efi_secureboot_mode_unset)
		boot_params->secure_boot = efi_get_secureboot();

	/* Ask the firmware to clear memory on unclean shutdown */
	efi_enable_reset_attack_mitigation();

	efi_random_get_seed();

	efi_retrieve_tpm2_eventlog();

	setup_graphics(boot_params);

	setup_efi_pci(boot_params);

	setup_quirks(boot_params, bzimage_addr, buffer_end - buffer_start);

	status = exit_boot(boot_params, handle);
	if (status != EFI_SUCCESS) {
		efi_err("exit_boot() failed!\n");
		goto fail;
	}

	return bzimage_addr;
fail:
	efi_err("efi_main() failed!\n");

	efi_exit(handle, status);
}