summaryrefslogtreecommitdiffstats
path: root/drivers/iio/adc/stm32-dfsdm-adc.c
blob: a428bdb567d52acb635256516ee0b729475f26da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
// SPDX-License-Identifier: GPL-2.0
/*
 * This file is the ADC part of the STM32 DFSDM driver
 *
 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/iio/adc/stm32-dfsdm-adc.h>
#include <linux/iio/buffer.h>
#include <linux/iio/hw-consumer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/timer/stm32-lptim-trigger.h>
#include <linux/iio/timer/stm32-timer-trigger.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>

#include "stm32-dfsdm.h"

#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)

/* Conversion timeout */
#define DFSDM_TIMEOUT_US 100000
#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))

/* Oversampling attribute default */
#define DFSDM_DEFAULT_OVERSAMPLING  100

/* Oversampling max values */
#define DFSDM_MAX_INT_OVERSAMPLING 256
#define DFSDM_MAX_FL_OVERSAMPLING 1024

/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
#define DFSDM_DATA_MAX BIT(30)
/*
 * Data are output as two's complement data in a 24 bit field.
 * Data from filters are in the range +/-2^(n-1)
 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
 * So, the resolution of samples from filter is actually limited to 23 bits
 */
#define DFSDM_DATA_RES 24

/* Filter configuration */
#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
			    DFSDM_CR1_JSCAN_MASK)

enum sd_converter_type {
	DFSDM_AUDIO,
	DFSDM_IIO,
};

struct stm32_dfsdm_dev_data {
	int type;
	int (*init)(struct device *dev, struct iio_dev *indio_dev);
	unsigned int num_channels;
	const struct regmap_config *regmap_cfg;
};

struct stm32_dfsdm_adc {
	struct stm32_dfsdm *dfsdm;
	const struct stm32_dfsdm_dev_data *dev_data;
	unsigned int fl_id;
	unsigned int nconv;
	unsigned long smask;

	/* ADC specific */
	unsigned int oversamp;
	struct iio_hw_consumer *hwc;
	struct completion completion;
	u32 *buffer;

	/* Audio specific */
	unsigned int spi_freq;  /* SPI bus clock frequency */
	unsigned int sample_freq; /* Sample frequency after filter decimation */
	int (*cb)(const void *data, size_t size, void *cb_priv);
	void *cb_priv;

	/* DMA */
	u8 *rx_buf;
	unsigned int bufi; /* Buffer current position */
	unsigned int buf_sz; /* Buffer size */
	struct dma_chan	*dma_chan;
	dma_addr_t dma_buf;
};

struct stm32_dfsdm_str2field {
	const char	*name;
	unsigned int	val;
};

/* DFSDM channel serial interface type */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
	{ "SPI_R", 0 }, /* SPI with data on rising edge */
	{ "SPI_F", 1 }, /* SPI with data on falling edge */
	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
	{},
};

/* DFSDM channel clock source */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
	/* External SPI clock (CLKIN x) */
	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
	/* Internal SPI clock (CLKOUT) */
	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
	/* Internal SPI clock divided by 2 (falling edge) */
	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
	/* Internal SPI clock divided by 2 (falling edge) */
	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
	{},
};

static int stm32_dfsdm_str2val(const char *str,
			       const struct stm32_dfsdm_str2field *list)
{
	const struct stm32_dfsdm_str2field *p = list;

	for (p = list; p && p->name; p++)
		if (!strcmp(p->name, str))
			return p->val;

	return -EINVAL;
}

/**
 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 * @name:		name of the trigger, corresponding to its source
 * @jextsel:		trigger signal selection
 */
struct stm32_dfsdm_trig_info {
	const char *name;
	unsigned int jextsel;
};

/* hardware injected trigger enable, edge selection */
enum stm32_dfsdm_jexten {
	STM32_DFSDM_JEXTEN_DISABLED,
	STM32_DFSDM_JEXTEN_RISING_EDGE,
	STM32_DFSDM_JEXTEN_FALLING_EDGE,
	STM32_DFSDM_EXTEN_BOTH_EDGES,
};

static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
	{ TIM1_TRGO, 0 },
	{ TIM1_TRGO2, 1 },
	{ TIM8_TRGO, 2 },
	{ TIM8_TRGO2, 3 },
	{ TIM3_TRGO, 4 },
	{ TIM4_TRGO, 5 },
	{ TIM16_OC1, 6 },
	{ TIM6_TRGO, 7 },
	{ TIM7_TRGO, 8 },
	{ LPTIM1_OUT, 26 },
	{ LPTIM2_OUT, 27 },
	{ LPTIM3_OUT, 28 },
	{},
};

static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
				   struct iio_trigger *trig)
{
	int i;

	/* lookup triggers registered by stm32 timer trigger driver */
	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
		/**
		 * Checking both stm32 timer trigger type and trig name
		 * should be safe against arbitrary trigger names.
		 */
		if ((is_stm32_timer_trigger(trig) ||
		     is_stm32_lptim_trigger(trig)) &&
		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
			return stm32_dfsdm_trigs[i].jextsel;
		}
	}

	return -EINVAL;
}

static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
				    unsigned int fast, unsigned int oversamp)
{
	unsigned int i, d, fosr, iosr;
	u64 res, max;
	int bits, shift;
	unsigned int m = 1;	/* multiplication factor */
	unsigned int p = fl->ford;	/* filter order (ford) */
	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];

	pr_debug("Requested oversampling: %d\n", oversamp);
	/*
	 * This function tries to compute filter oversampling and integrator
	 * oversampling, base on oversampling ratio requested by user.
	 *
	 * Decimation d depends on the filter order and the oversampling ratios.
	 * ford: filter order
	 * fosr: filter over sampling ratio
	 * iosr: integrator over sampling ratio
	 */
	if (fl->ford == DFSDM_FASTSINC_ORDER) {
		m = 2;
		p = 2;
	}

	/*
	 * Look for filter and integrator oversampling ratios which allows
	 * to maximize data output resolution.
	 */
	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
			if (fast)
				d = fosr * iosr;
			else if (fl->ford == DFSDM_FASTSINC_ORDER)
				d = fosr * (iosr + 3) + 2;
			else
				d = fosr * (iosr - 1 + p) + p;

			if (d > oversamp)
				break;
			else if (d != oversamp)
				continue;
			/*
			 * Check resolution (limited to signed 32 bits)
			 *   res <= 2^31
			 * Sincx filters:
			 *   res = m * fosr^p x iosr (with m=1, p=ford)
			 * FastSinc filter
			 *   res = m * fosr^p x iosr (with m=2, p=2)
			 */
			res = fosr;
			for (i = p - 1; i > 0; i--) {
				res = res * (u64)fosr;
				if (res > DFSDM_DATA_MAX)
					break;
			}
			if (res > DFSDM_DATA_MAX)
				continue;

			res = res * (u64)m * (u64)iosr;
			if (res > DFSDM_DATA_MAX)
				continue;

			if (res >= flo->res) {
				flo->res = res;
				flo->fosr = fosr;
				flo->iosr = iosr;

				bits = fls(flo->res);
				/* 8 LBSs in data register contain chan info */
				max = flo->res << 8;

				/* if resolution is not a power of two */
				if (flo->res > BIT(bits - 1))
					bits++;
				else
					max--;

				shift = DFSDM_DATA_RES - bits;
				/*
				 * Compute right/left shift
				 * Right shift is performed by hardware
				 * when transferring samples to data register.
				 * Left shift is done by software on buffer
				 */
				if (shift > 0) {
					/* Resolution is lower than 24 bits */
					flo->rshift = 0;
					flo->lshift = shift;
				} else {
					/*
					 * If resolution is 24 bits or more,
					 * max positive value may be ambiguous
					 * (equal to max negative value as sign
					 * bit is dropped).
					 * Reduce resolution to 23 bits (rshift)
					 * to keep the sign on bit 23 and treat
					 * saturation before rescaling on 24
					 * bits (lshift).
					 */
					flo->rshift = 1 - shift;
					flo->lshift = 1;
					max >>= flo->rshift;
				}
				flo->max = (s32)max;
				flo->bits = bits;

				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
					 fast, flo->fosr, flo->iosr,
					 flo->res, bits, flo->rshift,
					 flo->lshift);
			}
		}
	}

	if (!flo->res)
		return -EINVAL;

	return 0;
}

static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
					unsigned int oversamp)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
	int ret0, ret1;

	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));

	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
	if (ret0 < 0 && ret1 < 0) {
		dev_err(&indio_dev->dev,
			"Filter parameters not found: errors %d/%d\n",
			ret0, ret1);
		return -EINVAL;
	}

	return 0;
}

static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	const struct iio_chan_spec *chan;
	unsigned int bit;
	int ret;

	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
		chan = indio_dev->channels + bit;
		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
					 DFSDM_CHCFGR1_CHEN_MASK,
					 DFSDM_CHCFGR1_CHEN(1));
		if (ret < 0)
			return ret;
	}

	return 0;
}

static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	const struct iio_chan_spec *chan;
	unsigned int bit;

	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
		chan = indio_dev->channels + bit;
		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
				   DFSDM_CHCFGR1_CHEN_MASK,
				   DFSDM_CHCFGR1_CHEN(0));
	}
}

static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
				      struct stm32_dfsdm_channel *ch)
{
	unsigned int id = ch->id;
	struct regmap *regmap = dfsdm->regmap;
	int ret;

	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				 DFSDM_CHCFGR1_SITP_MASK,
				 DFSDM_CHCFGR1_SITP(ch->type));
	if (ret < 0)
		return ret;
	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				 DFSDM_CHCFGR1_SPICKSEL_MASK,
				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
	if (ret < 0)
		return ret;
	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				  DFSDM_CHCFGR1_CHINSEL_MASK,
				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
}

static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
				    unsigned int fl_id,
				    struct iio_trigger *trig)
{
	struct stm32_dfsdm *dfsdm = adc->dfsdm;
	int ret;

	/* Enable filter */
	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
	if (ret < 0)
		return ret;

	/* Nothing more to do for injected (scan mode/triggered) conversions */
	if (adc->nconv > 1 || trig)
		return 0;

	/* Software start (single or continuous) regular conversion */
	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
				  DFSDM_CR1_RSWSTART_MASK,
				  DFSDM_CR1_RSWSTART(1));
}

static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
				    unsigned int fl_id)
{
	/* Disable conversion */
	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
}

static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
				       unsigned int fl_id,
				       struct iio_trigger *trig)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
	int ret;

	if (trig) {
		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
		if (ret < 0)
			return ret;

		/* set trigger source and polarity (default to rising edge) */
		jextsel = ret;
		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
	}

	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
				 DFSDM_CR1_JEXTSEL(jextsel) |
				 DFSDM_CR1_JEXTEN(jexten));
	if (ret < 0)
		return ret;

	return 0;
}

static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
					  unsigned int fl_id,
					  struct iio_trigger *trig)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
	const struct iio_chan_spec *chan;
	unsigned int bit;
	int ret;

	fl->fast = 0;

	/*
	 * In continuous mode, use fast mode configuration,
	 * if it provides a better resolution.
	 */
	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
		if (fl->flo[1].res >= fl->flo[0].res) {
			fl->fast = 1;
			flo = &fl->flo[1];
		}
	}

	if (!flo->res)
		return -EINVAL;

	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
		min(flo->bits, (u32)DFSDM_DATA_RES - 1));

	for_each_set_bit(bit, &adc->smask,
			 sizeof(adc->smask) * BITS_PER_BYTE) {
		chan = indio_dev->channels + bit;

		ret = regmap_update_bits(regmap,
					 DFSDM_CHCFGR2(chan->channel),
					 DFSDM_CHCFGR2_DTRBS_MASK,
					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
		if (ret)
			return ret;
	}

	return 0;
}

static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
					unsigned int fl_id,
					struct iio_trigger *trig)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
	u32 cr1;
	const struct iio_chan_spec *chan;
	unsigned int bit, jchg = 0;
	int ret;

	/* Average integrator oversampling */
	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
				 DFSDM_FCR_IOSR(flo->iosr - 1));
	if (ret)
		return ret;

	/* Filter order and Oversampling */
	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
				 DFSDM_FCR_FOSR(flo->fosr - 1));
	if (ret)
		return ret;

	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
				 DFSDM_FCR_FORD(fl->ford));
	if (ret)
		return ret;

	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
	if (ret)
		return ret;

	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
				 DFSDM_CR1_FAST_MASK,
				 DFSDM_CR1_FAST(fl->fast));
	if (ret)
		return ret;

	/*
	 * DFSDM modes configuration W.R.T audio/iio type modes
	 * ----------------------------------------------------------------
	 * Modes         | regular |  regular     | injected | injected   |
	 *               |         |  continuous  |          | + scan     |
	 * --------------|---------|--------------|----------|------------|
	 * single conv   |    x    |              |          |            |
	 * (1 chan)      |         |              |          |            |
	 * --------------|---------|--------------|----------|------------|
	 * 1 Audio chan	 |         | sample freq  |          |            |
	 *               |         | or sync_mode |          |            |
	 * --------------|---------|--------------|----------|------------|
	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
	 *               |         | or sync_mode |          |            |
	 * --------------|---------|--------------|----------|------------|
	 * 2+ IIO chans  |         |              |          | trigger or |
	 *               |         |              |          | sync_mode  |
	 * ----------------------------------------------------------------
	 */
	if (adc->nconv == 1 && !trig) {
		bit = __ffs(adc->smask);
		chan = indio_dev->channels + bit;

		/* Use regular conversion for single channel without trigger */
		cr1 = DFSDM_CR1_RCH(chan->channel);

		/* Continuous conversions triggered by SPI clk in buffer mode */
		if (iio_buffer_enabled(indio_dev))
			cr1 |= DFSDM_CR1_RCONT(1);

		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
	} else {
		/* Use injected conversion for multiple channels */
		for_each_set_bit(bit, &adc->smask,
				 sizeof(adc->smask) * BITS_PER_BYTE) {
			chan = indio_dev->channels + bit;
			jchg |= BIT(chan->channel);
		}
		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
		if (ret < 0)
			return ret;

		/* Use scan mode for multiple channels */
		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);

		/*
		 * Continuous conversions not supported in injected mode,
		 * either use:
		 * - conversions in sync with filter 0
		 * - triggered conversions
		 */
		if (!fl->sync_mode && !trig)
			return -EINVAL;
		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
	}

	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
				  cr1);
}

static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
					struct iio_dev *indio_dev,
					struct iio_chan_spec *ch)
{
	struct stm32_dfsdm_channel *df_ch;
	const char *of_str;
	int chan_idx = ch->scan_index;
	int ret, val;

	ret = of_property_read_u32_index(indio_dev->dev.of_node,
					 "st,adc-channels", chan_idx,
					 &ch->channel);
	if (ret < 0) {
		dev_err(&indio_dev->dev,
			" Error parsing 'st,adc-channels' for idx %d\n",
			chan_idx);
		return ret;
	}
	if (ch->channel >= dfsdm->num_chs) {
		dev_err(&indio_dev->dev,
			" Error bad channel number %d (max = %d)\n",
			ch->channel, dfsdm->num_chs);
		return -EINVAL;
	}

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-names", chan_idx,
					    &ch->datasheet_name);
	if (ret < 0) {
		dev_err(&indio_dev->dev,
			" Error parsing 'st,adc-channel-names' for idx %d\n",
			chan_idx);
		return ret;
	}

	df_ch =  &dfsdm->ch_list[ch->channel];
	df_ch->id = ch->channel;

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-types", chan_idx,
					    &of_str);
	if (!ret) {
		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
		if (val < 0)
			return val;
	} else {
		val = 0;
	}
	df_ch->type = val;

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-clk-src", chan_idx,
					    &of_str);
	if (!ret) {
		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
		if (val < 0)
			return val;
	} else {
		val = 0;
	}
	df_ch->src = val;

	ret = of_property_read_u32_index(indio_dev->dev.of_node,
					 "st,adc-alt-channel", chan_idx,
					 &df_ch->alt_si);
	if (ret < 0)
		df_ch->alt_si = 0;

	return 0;
}

static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
					  uintptr_t priv,
					  const struct iio_chan_spec *chan,
					  char *buf)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
}

static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
				   unsigned int sample_freq,
				   unsigned int spi_freq)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	unsigned int oversamp;
	int ret;

	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
	if (spi_freq % sample_freq)
		dev_dbg(&indio_dev->dev,
			"Rate not accurate. requested (%u), actual (%u)\n",
			sample_freq, spi_freq / oversamp);

	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
	if (ret < 0)
		return ret;

	adc->sample_freq = spi_freq / oversamp;
	adc->oversamp = oversamp;

	return 0;
}

static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
					  uintptr_t priv,
					  const struct iio_chan_spec *chan,
					  const char *buf, size_t len)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
	unsigned int sample_freq = adc->sample_freq;
	unsigned int spi_freq;
	int ret;

	dev_err(&indio_dev->dev, "enter %s\n", __func__);
	/* If DFSDM is master on SPI, SPI freq can not be updated */
	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
		return -EPERM;

	ret = kstrtoint(buf, 0, &spi_freq);
	if (ret)
		return ret;

	if (!spi_freq)
		return -EINVAL;

	if (sample_freq) {
		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
		if (ret < 0)
			return ret;
	}
	adc->spi_freq = spi_freq;

	return len;
}

static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
				  struct iio_trigger *trig)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	int ret;

	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
	if (ret < 0)
		return ret;

	ret = stm32_dfsdm_start_channel(indio_dev);
	if (ret < 0)
		return ret;

	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
	if (ret < 0)
		goto stop_channels;

	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
	if (ret < 0)
		goto filter_unconfigure;

	return 0;

filter_unconfigure:
	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_CFG_MASK, 0);
stop_channels:
	stm32_dfsdm_stop_channel(indio_dev);

	return ret;
}

static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;

	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);

	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_CFG_MASK, 0);

	stm32_dfsdm_stop_channel(indio_dev);
}

static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
				     unsigned int val)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;

	/*
	 * DMA cyclic transfers are used, buffer is split into two periods.
	 * There should be :
	 * - always one buffer (period) DMA is working on
	 * - one buffer (period) driver pushed to ASoC side.
	 */
	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);

	return 0;
}

static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
{
	struct dma_tx_state state;
	enum dma_status status;

	status = dmaengine_tx_status(adc->dma_chan,
				     adc->dma_chan->cookie,
				     &state);
	if (status == DMA_IN_PROGRESS) {
		/* Residue is size in bytes from end of buffer */
		unsigned int i = adc->buf_sz - state.residue;
		unsigned int size;

		/* Return available bytes */
		if (i >= adc->bufi)
			size = i - adc->bufi;
		else
			size = adc->buf_sz + i - adc->bufi;

		return size;
	}

	return 0;
}

static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
					    s32 *buffer)
{
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
	unsigned int i = adc->nconv;
	s32 *ptr = buffer;

	while (i--) {
		/* Mask 8 LSB that contains the channel ID */
		*ptr &= 0xFFFFFF00;
		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
		if (*ptr > flo->max)
			*ptr -= 1;
		/*
		 * Samples from filter are retrieved with 23 bits resolution
		 * or less. Shift left to align MSB on 24 bits.
		 */
		*ptr <<= flo->lshift;

		ptr++;
	}
}

static void stm32_dfsdm_dma_buffer_done(void *data)
{
	struct iio_dev *indio_dev = data;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int available = stm32_dfsdm_adc_dma_residue(adc);
	size_t old_pos;

	/*
	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
	 * offers only an interface to push data samples per samples.
	 * For this reason IIO buffer interface is not used and interface is
	 * bypassed using a private callback registered by ASoC.
	 * This should be a temporary solution waiting a cyclic DMA engine
	 * support in IIO.
	 */

	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
		adc->bufi, available);
	old_pos = adc->bufi;

	while (available >= indio_dev->scan_bytes) {
		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];

		stm32_dfsdm_process_data(adc, buffer);

		available -= indio_dev->scan_bytes;
		adc->bufi += indio_dev->scan_bytes;
		if (adc->bufi >= adc->buf_sz) {
			if (adc->cb)
				adc->cb(&adc->rx_buf[old_pos],
					 adc->buf_sz - old_pos, adc->cb_priv);
			adc->bufi = 0;
			old_pos = 0;
		}
		/*
		 * In DMA mode the trigger services of IIO are not used
		 * (e.g. no call to iio_trigger_poll).
		 * Calling irq handler associated to the hardware trigger is not
		 * relevant as the conversions have already been done. Data
		 * transfers are performed directly in DMA callback instead.
		 * This implementation avoids to call trigger irq handler that
		 * may sleep, in an atomic context (DMA irq handler context).
		 */
		if (adc->dev_data->type == DFSDM_IIO)
			iio_push_to_buffers(indio_dev, buffer);
	}
	if (adc->cb)
		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
			adc->cb_priv);
}

static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	/*
	 * The DFSDM supports half-word transfers. However, for 16 bits record,
	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
	 * shift is required.
	 */
	struct dma_slave_config config = {
		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
	};
	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;
	int ret;

	if (!adc->dma_chan)
		return -EINVAL;

	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
		adc->buf_sz, adc->buf_sz / 2);

	if (adc->nconv == 1 && !indio_dev->trig)
		config.src_addr += DFSDM_RDATAR(adc->fl_id);
	else
		config.src_addr += DFSDM_JDATAR(adc->fl_id);
	ret = dmaengine_slave_config(adc->dma_chan, &config);
	if (ret)
		return ret;

	/* Prepare a DMA cyclic transaction */
	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
					 adc->dma_buf,
					 adc->buf_sz, adc->buf_sz / 2,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT);
	if (!desc)
		return -EBUSY;

	desc->callback = stm32_dfsdm_dma_buffer_done;
	desc->callback_param = indio_dev;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret)
		goto err_stop_dma;

	/* Issue pending DMA requests */
	dma_async_issue_pending(adc->dma_chan);

	if (adc->nconv == 1 && !indio_dev->trig) {
		/* Enable regular DMA transfer*/
		ret = regmap_update_bits(adc->dfsdm->regmap,
					 DFSDM_CR1(adc->fl_id),
					 DFSDM_CR1_RDMAEN_MASK,
					 DFSDM_CR1_RDMAEN_MASK);
	} else {
		/* Enable injected DMA transfer*/
		ret = regmap_update_bits(adc->dfsdm->regmap,
					 DFSDM_CR1(adc->fl_id),
					 DFSDM_CR1_JDMAEN_MASK,
					 DFSDM_CR1_JDMAEN_MASK);
	}

	if (ret < 0)
		goto err_stop_dma;

	return 0;

err_stop_dma:
	dmaengine_terminate_all(adc->dma_chan);

	return ret;
}

static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	if (!adc->dma_chan)
		return;

	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
	dmaengine_terminate_all(adc->dma_chan);
}

static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
					const unsigned long *scan_mask)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
	adc->smask = *scan_mask;

	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);

	return 0;
}

static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	/* Reset adc buffer index */
	adc->bufi = 0;

	if (adc->hwc) {
		ret = iio_hw_consumer_enable(adc->hwc);
		if (ret < 0)
			return ret;
	}

	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
	if (ret < 0)
		goto err_stop_hwc;

	ret = stm32_dfsdm_adc_dma_start(indio_dev);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't start DMA\n");
		goto stop_dfsdm;
	}

	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't start conversion\n");
		goto err_stop_dma;
	}

	return 0;

err_stop_dma:
	stm32_dfsdm_adc_dma_stop(indio_dev);
stop_dfsdm:
	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
err_stop_hwc:
	if (adc->hwc)
		iio_hw_consumer_disable(adc->hwc);

	return ret;
}

static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	stm32_dfsdm_stop_conv(indio_dev);

	stm32_dfsdm_adc_dma_stop(indio_dev);

	stm32_dfsdm_stop_dfsdm(adc->dfsdm);

	if (adc->hwc)
		iio_hw_consumer_disable(adc->hwc);

	return 0;
}

static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
	.postenable = &stm32_dfsdm_postenable,
	.predisable = &stm32_dfsdm_predisable,
};

/**
 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
 *                             DMA transfer period is achieved.
 *
 * @iio_dev: Handle to IIO device.
 * @cb: Pointer to callback function:
 *      - data: pointer to data buffer
 *      - size: size in byte of the data buffer
 *      - private: pointer to consumer private structure.
 * @private: Pointer to consumer private structure.
 */
int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
			    int (*cb)(const void *data, size_t size,
				      void *private),
			    void *private)
{
	struct stm32_dfsdm_adc *adc;

	if (!iio_dev)
		return -EINVAL;
	adc = iio_priv(iio_dev);

	adc->cb = cb;
	adc->cb_priv = private;

	return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);

/**
 * stm32_dfsdm_release_buff_cb - unregister buffer callback
 *
 * @iio_dev: Handle to IIO device.
 */
int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
{
	struct stm32_dfsdm_adc *adc;

	if (!iio_dev)
		return -EINVAL;
	adc = iio_priv(iio_dev);

	adc->cb = NULL;
	adc->cb_priv = NULL;

	return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);

static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan, int *res)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	long timeout;
	int ret;

	reinit_completion(&adc->completion);

	adc->buffer = res;

	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
	if (ret < 0)
		return ret;

	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
	if (ret < 0)
		goto stop_dfsdm;

	adc->nconv = 1;
	adc->smask = BIT(chan->scan_index);
	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
	if (ret < 0) {
		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
		goto stop_dfsdm;
	}

	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
							    DFSDM_TIMEOUT);

	/* Mask IRQ for regular conversion achievement*/
	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));

	if (timeout == 0)
		ret = -ETIMEDOUT;
	else if (timeout < 0)
		ret = timeout;
	else
		ret = IIO_VAL_INT;

	stm32_dfsdm_stop_conv(indio_dev);

	stm32_dfsdm_process_data(adc, res);

stop_dfsdm:
	stm32_dfsdm_stop_dfsdm(adc->dfsdm);

	return ret;
}

static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int val, int val2, long mask)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
	unsigned int spi_freq;
	int ret = -EINVAL;

	switch (ch->src) {
	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
		spi_freq = adc->dfsdm->spi_master_freq;
		break;
	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
		spi_freq = adc->dfsdm->spi_master_freq / 2;
		break;
	default:
		spi_freq = adc->spi_freq;
	}

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;

		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
		if (!ret) {
			dev_dbg(&indio_dev->dev,
				"Sampling rate changed from (%u) to (%u)\n",
				adc->sample_freq, spi_freq / val);
			adc->oversamp = val;
			adc->sample_freq = spi_freq / val;
		}
		iio_device_release_direct_mode(indio_dev);
		return ret;

	case IIO_CHAN_INFO_SAMP_FREQ:
		if (!val)
			return -EINVAL;

		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;

		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
		iio_device_release_direct_mode(indio_dev);
		return ret;
	}

	return -EINVAL;
}

static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
				struct iio_chan_spec const *chan, int *val,
				int *val2, long mask)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		ret = iio_hw_consumer_enable(adc->hwc);
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"%s: IIO enable failed (channel %d)\n",
				__func__, chan->channel);
			iio_device_release_direct_mode(indio_dev);
			return ret;
		}
		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
		iio_hw_consumer_disable(adc->hwc);
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"%s: Conversion failed (channel %d)\n",
				__func__, chan->channel);
			iio_device_release_direct_mode(indio_dev);
			return ret;
		}
		iio_device_release_direct_mode(indio_dev);
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*val = adc->oversamp;

		return IIO_VAL_INT;

	case IIO_CHAN_INFO_SAMP_FREQ:
		*val = adc->sample_freq;

		return IIO_VAL_INT;
	}

	return -EINVAL;
}

static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
					struct iio_trigger *trig)
{
	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}

static const struct iio_info stm32_dfsdm_info_audio = {
	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
	.read_raw = stm32_dfsdm_read_raw,
	.write_raw = stm32_dfsdm_write_raw,
	.update_scan_mode = stm32_dfsdm_update_scan_mode,
};

static const struct iio_info stm32_dfsdm_info_adc = {
	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
	.read_raw = stm32_dfsdm_read_raw,
	.write_raw = stm32_dfsdm_write_raw,
	.update_scan_mode = stm32_dfsdm_update_scan_mode,
	.validate_trigger = stm32_dfsdm_validate_trigger,
};

static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
{
	struct iio_dev *indio_dev = arg;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct regmap *regmap = adc->dfsdm->regmap;
	unsigned int status, int_en;

	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);

	if (status & DFSDM_ISR_REOCF_MASK) {
		/* Read the data register clean the IRQ status */
		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
		complete(&adc->completion);
	}

	if (status & DFSDM_ISR_ROVRF_MASK) {
		if (int_en & DFSDM_CR2_ROVRIE_MASK)
			dev_warn(&indio_dev->dev, "Overrun detected\n");
		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
				   DFSDM_ICR_CLRROVRF_MASK,
				   DFSDM_ICR_CLRROVRF_MASK);
	}

	return IRQ_HANDLED;
}

/*
 * Define external info for SPI Frequency and audio sampling rate that can be
 * configured by ASoC driver through consumer.h API
 */
static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
	{
		.name = "spi_clk_freq",
		.shared = IIO_SHARED_BY_TYPE,
		.read = dfsdm_adc_audio_get_spiclk,
		.write = dfsdm_adc_audio_set_spiclk,
	},
	{},
};

static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  DFSDM_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->dma_buf);
		dma_release_channel(adc->dma_chan);
	}
}

static int stm32_dfsdm_dma_request(struct device *dev,
				   struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	adc->dma_chan = dma_request_chan(dev, "rx");
	if (IS_ERR(adc->dma_chan)) {
		int ret = PTR_ERR(adc->dma_chan);

		adc->dma_chan = NULL;
		return ret;
	}

	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
					 DFSDM_DMA_BUFFER_SIZE,
					 &adc->dma_buf, GFP_KERNEL);
	if (!adc->rx_buf) {
		dma_release_channel(adc->dma_chan);
		return -ENOMEM;
	}

	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;

	return 0;
}

static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
					 struct iio_chan_spec *ch)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
	if (ret < 0)
		return ret;

	ch->type = IIO_VOLTAGE;
	ch->indexed = 1;

	/*
	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
	 */
	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
					BIT(IIO_CHAN_INFO_SAMP_FREQ);

	if (adc->dev_data->type == DFSDM_AUDIO) {
		ch->ext_info = dfsdm_adc_audio_ext_info;
	} else {
		ch->scan_type.shift = 8;
	}
	ch->scan_type.sign = 's';
	ch->scan_type.realbits = 24;
	ch->scan_type.storagebits = 32;

	return stm32_dfsdm_chan_configure(adc->dfsdm,
					  &adc->dfsdm->ch_list[ch->channel]);
}

static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
{
	struct iio_chan_spec *ch;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_channel *d_ch;
	int ret;

	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
	if (!ch)
		return -ENOMEM;

	ch->scan_index = 0;

	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
	if (ret < 0) {
		dev_err(&indio_dev->dev, "Channels init failed\n");
		return ret;
	}
	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);

	d_ch = &adc->dfsdm->ch_list[ch->channel];
	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
		adc->spi_freq = adc->dfsdm->spi_master_freq;

	indio_dev->num_channels = 1;
	indio_dev->channels = ch;

	return stm32_dfsdm_dma_request(dev, indio_dev);
}

static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
{
	struct iio_chan_spec *ch;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int num_ch;
	int ret, chan_idx;

	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
	if (ret < 0)
		return ret;

	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
					     "st,adc-channels");
	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
		return num_ch < 0 ? num_ch : -EINVAL;
	}

	/* Bind to SD modulator IIO device */
	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
	if (IS_ERR(adc->hwc))
		return -EPROBE_DEFER;

	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
			  GFP_KERNEL);
	if (!ch)
		return -ENOMEM;

	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
		ch[chan_idx].scan_index = chan_idx;
		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
		if (ret < 0) {
			dev_err(&indio_dev->dev, "Channels init failed\n");
			return ret;
		}
	}

	indio_dev->num_channels = num_ch;
	indio_dev->channels = ch;

	init_completion(&adc->completion);

	/* Optionally request DMA */
	ret = stm32_dfsdm_dma_request(dev, indio_dev);
	if (ret) {
		if (ret != -ENODEV)
			return dev_err_probe(dev, ret,
					     "DMA channel request failed with\n");

		dev_dbg(dev, "No DMA support\n");
		return 0;
	}

	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time, NULL,
					 &stm32_dfsdm_buffer_setup_ops);
	if (ret) {
		stm32_dfsdm_dma_release(indio_dev);
		dev_err(&indio_dev->dev, "buffer setup failed\n");
		return ret;
	}

	/* lptimer/timer hardware triggers */
	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;

	return 0;
}

static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
	.type = DFSDM_IIO,
	.init = stm32_dfsdm_adc_init,
};

static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
	.type = DFSDM_AUDIO,
	.init = stm32_dfsdm_audio_init,
};

static const struct of_device_id stm32_dfsdm_adc_match[] = {
	{
		.compatible = "st,stm32-dfsdm-adc",
		.data = &stm32h7_dfsdm_adc_data,
	},
	{
		.compatible = "st,stm32-dfsdm-dmic",
		.data = &stm32h7_dfsdm_audio_data,
	},
	{}
};
MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);

static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct stm32_dfsdm_adc *adc;
	struct device_node *np = dev->of_node;
	const struct stm32_dfsdm_dev_data *dev_data;
	struct iio_dev *iio;
	char *name;
	int ret, irq, val;

	dev_data = of_device_get_match_data(dev);
	iio = devm_iio_device_alloc(dev, sizeof(*adc));
	if (!iio) {
		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
		return -ENOMEM;
	}

	adc = iio_priv(iio);
	adc->dfsdm = dev_get_drvdata(dev->parent);

	iio->dev.of_node = np;
	iio->modes = INDIO_DIRECT_MODE;

	platform_set_drvdata(pdev, iio);

	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
		dev_err(dev, "Missing or bad reg property\n");
		return -EINVAL;
	}

	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
	if (!name)
		return -ENOMEM;
	if (dev_data->type == DFSDM_AUDIO) {
		iio->info = &stm32_dfsdm_info_audio;
		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
	} else {
		iio->info = &stm32_dfsdm_info_adc;
		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
	}
	iio->name = name;

	/*
	 * In a first step IRQs generated for channels are not treated.
	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
	 */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
			       0, pdev->name, iio);
	if (ret < 0) {
		dev_err(dev, "Failed to request IRQ\n");
		return ret;
	}

	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
	if (ret < 0) {
		dev_err(dev, "Failed to set filter order\n");
		return ret;
	}

	adc->dfsdm->fl_list[adc->fl_id].ford = val;

	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
	if (!ret)
		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;

	adc->dev_data = dev_data;
	ret = dev_data->init(dev, iio);
	if (ret < 0)
		return ret;

	ret = iio_device_register(iio);
	if (ret < 0)
		goto err_cleanup;

	if (dev_data->type == DFSDM_AUDIO) {
		ret = of_platform_populate(np, NULL, NULL, dev);
		if (ret < 0) {
			dev_err(dev, "Failed to find an audio DAI\n");
			goto err_unregister;
		}
	}

	return 0;

err_unregister:
	iio_device_unregister(iio);
err_cleanup:
	stm32_dfsdm_dma_release(iio);

	return ret;
}

static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
{
	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	if (adc->dev_data->type == DFSDM_AUDIO)
		of_platform_depopulate(&pdev->dev);
	iio_device_unregister(indio_dev);
	stm32_dfsdm_dma_release(indio_dev);

	return 0;
}

static int stm32_dfsdm_adc_suspend(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);

	if (iio_buffer_enabled(indio_dev))
		stm32_dfsdm_predisable(indio_dev);

	return 0;
}

static int stm32_dfsdm_adc_resume(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	const struct iio_chan_spec *chan;
	struct stm32_dfsdm_channel *ch;
	int i, ret;

	/* restore channels configuration */
	for (i = 0; i < indio_dev->num_channels; i++) {
		chan = indio_dev->channels + i;
		ch = &adc->dfsdm->ch_list[chan->channel];
		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
		if (ret)
			return ret;
	}

	if (iio_buffer_enabled(indio_dev))
		stm32_dfsdm_postenable(indio_dev);

	return 0;
}

static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
				stm32_dfsdm_adc_suspend,
				stm32_dfsdm_adc_resume);

static struct platform_driver stm32_dfsdm_adc_driver = {
	.driver = {
		.name = "stm32-dfsdm-adc",
		.of_match_table = stm32_dfsdm_adc_match,
		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
	},
	.probe = stm32_dfsdm_adc_probe,
	.remove = stm32_dfsdm_adc_remove,
};
module_platform_driver(stm32_dfsdm_adc_driver);

MODULE_DESCRIPTION("STM32 sigma delta ADC");
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_LICENSE("GPL v2");