// The input consists of five valid character sets in the Base64 alphabet, // which we need to map back to the 6-bit values they represent. // There are three ranges, two singles, and then there's the rest. // // # From To LUT Characters // 1 [0..42] [255] #1 invalid input // 2 [43] [62] #1 + // 3 [44..46] [255] #1 invalid input // 4 [47] [63] #1 / // 5 [48..57] [52..61] #1 0..9 // 6 [58..63] [255] #1 invalid input // 7 [64] [255] #2 invalid input // 8 [65..90] [0..25] #2 A..Z // 9 [91..96] [255] #2 invalid input // 10 [97..122] [26..51] #2 a..z // 11 [123..126] [255] #2 invalid input // (12) Everything else => invalid input // The first LUT will use the VTBL instruction (out of range indices are set to // 0 in destination). static const uint8_t dec_lut1[] = { 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 62U, 255U, 255U, 255U, 63U, 52U, 53U, 54U, 55U, 56U, 57U, 58U, 59U, 60U, 61U, 255U, 255U, 255U, 255U, 255U, 255U, }; // The second LUT will use the VTBX instruction (out of range indices will be // unchanged in destination). Input [64..126] will be mapped to index [1..63] // in this LUT. Index 0 means that value comes from LUT #1. static const uint8_t dec_lut2[] = { 0U, 255U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U, 14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U, 255U, 255U, 255U, 255U, 255U, 255U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U, 40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 255U, 255U, 255U, 255U, }; // All input values in range for the first look-up will be 0U in the second // look-up result. All input values out of range for the first look-up will be // 0U in the first look-up result. Thus, the two results can be ORed without // conflicts. // // Invalid characters that are in the valid range for either look-up will be // set to 255U in the combined result. Other invalid characters will just be // passed through with the second look-up result (using the VTBX instruction). // Since the second LUT is 64 bytes, those passed-through values are guaranteed // to have a value greater than 63U. Therefore, valid characters will be mapped // to the valid [0..63] range and all invalid characters will be mapped to // values greater than 63. static inline void dec_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen) { if (*slen < 64) { return; } // Process blocks of 64 bytes per round. Unlike the SSE codecs, no // extra trailing zero bytes are written, so it is not necessary to // reserve extra input bytes: size_t rounds = *slen / 64; *slen -= rounds * 64; // 64 bytes consumed per round *olen += rounds * 48; // 48 bytes produced per round const uint8x16x4_t tbl_dec1 = load_64byte_table(dec_lut1); const uint8x16x4_t tbl_dec2 = load_64byte_table(dec_lut2); do { const uint8x16_t offset = vdupq_n_u8(63U); uint8x16x4_t dec1, dec2; uint8x16x3_t dec; // Load 64 bytes and deinterleave: uint8x16x4_t str = vld4q_u8((uint8_t *) *s); // Get indices for second LUT: dec2.val[0] = vqsubq_u8(str.val[0], offset); dec2.val[1] = vqsubq_u8(str.val[1], offset); dec2.val[2] = vqsubq_u8(str.val[2], offset); dec2.val[3] = vqsubq_u8(str.val[3], offset); // Get values from first LUT: dec1.val[0] = vqtbl4q_u8(tbl_dec1, str.val[0]); dec1.val[1] = vqtbl4q_u8(tbl_dec1, str.val[1]); dec1.val[2] = vqtbl4q_u8(tbl_dec1, str.val[2]); dec1.val[3] = vqtbl4q_u8(tbl_dec1, str.val[3]); // Get values from second LUT: dec2.val[0] = vqtbx4q_u8(dec2.val[0], tbl_dec2, dec2.val[0]); dec2.val[1] = vqtbx4q_u8(dec2.val[1], tbl_dec2, dec2.val[1]); dec2.val[2] = vqtbx4q_u8(dec2.val[2], tbl_dec2, dec2.val[2]); dec2.val[3] = vqtbx4q_u8(dec2.val[3], tbl_dec2, dec2.val[3]); // Get final values: str.val[0] = vorrq_u8(dec1.val[0], dec2.val[0]); str.val[1] = vorrq_u8(dec1.val[1], dec2.val[1]); str.val[2] = vorrq_u8(dec1.val[2], dec2.val[2]); str.val[3] = vorrq_u8(dec1.val[3], dec2.val[3]); // Check for invalid input, any value larger than 63: const uint8x16_t classified = vcgtq_u8(str.val[0], vdupq_n_u8(63)) | vcgtq_u8(str.val[1], vdupq_n_u8(63)) | vcgtq_u8(str.val[2], vdupq_n_u8(63)) | vcgtq_u8(str.val[3], vdupq_n_u8(63)); // Check that all bits are zero: if (vmaxvq_u8(classified) != 0U) { break; } // Compress four bytes into three: dec.val[0] = vshlq_n_u8(str.val[0], 2) | vshrq_n_u8(str.val[1], 4); dec.val[1] = vshlq_n_u8(str.val[1], 4) | vshrq_n_u8(str.val[2], 2); dec.val[2] = vshlq_n_u8(str.val[2], 6) | str.val[3]; // Interleave and store decoded result: vst3q_u8((uint8_t *) *o, dec); *s += 64; *o += 48; } while (--rounds > 0); // Adjust for any rounds that were skipped: *slen += rounds * 64; *olen -= rounds * 48; }