summaryrefslogtreecommitdiffstats
path: root/src/third-party/CLI/Validators.hpp
blob: 1281997aed745f4cd6f90da8a277ca3fe00f6214 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
// Copyright (c) 2017-2022, University of Cincinnati, developed by Henry Schreiner
// under NSF AWARD 1414736 and by the respective contributors.
// All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause

#pragma once

#include "Macros.hpp"
#include "StringTools.hpp"
#include "TypeTools.hpp"

// [CLI11:public_includes:set]
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
// [CLI11:public_includes:end]

// [CLI11:validators_hpp_filesystem:verbatim]

// C standard library
// Only needed for existence checking
#if defined CLI11_CPP17 && defined __has_include && !defined CLI11_HAS_FILESYSTEM
#if __has_include(<filesystem>)
// Filesystem cannot be used if targeting macOS < 10.15
#if defined __MAC_OS_X_VERSION_MIN_REQUIRED && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
#define CLI11_HAS_FILESYSTEM 0
#elif defined(__wasi__)
// As of wasi-sdk-14, filesystem is not implemented
#define CLI11_HAS_FILESYSTEM 0
#else
#include <filesystem>
#if defined __cpp_lib_filesystem && __cpp_lib_filesystem >= 201703
#if defined _GLIBCXX_RELEASE && _GLIBCXX_RELEASE >= 9
#define CLI11_HAS_FILESYSTEM 1
#elif defined(__GLIBCXX__)
// if we are using gcc and Version <9 default to no filesystem
#define CLI11_HAS_FILESYSTEM 0
#else
#define CLI11_HAS_FILESYSTEM 1
#endif
#else
#define CLI11_HAS_FILESYSTEM 0
#endif
#endif
#endif
#endif

#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
#include <filesystem>  // NOLINT(build/include)
#else
#include <sys/stat.h>
#include <sys/types.h>
#endif

// [CLI11:validators_hpp_filesystem:end]

namespace CLI {
// [CLI11:validators_hpp:verbatim]

class Option;

/// @defgroup validator_group Validators

/// @brief Some validators that are provided
///
/// These are simple `std::string(const std::string&)` validators that are useful. They return
/// a string if the validation fails. A custom struct is provided, as well, with the same user
/// semantics, but with the ability to provide a new type name.
/// @{

///
class Validator {
  protected:
    /// This is the description function, if empty the description_ will be used
    std::function<std::string()> desc_function_{[]() { return std::string{}; }};

    /// This is the base function that is to be called.
    /// Returns a string error message if validation fails.
    std::function<std::string(std::string &)> func_{[](std::string &) { return std::string{}; }};
    /// The name for search purposes of the Validator
    std::string name_{};
    /// A Validator will only apply to an indexed value (-1 is all elements)
    int application_index_ = -1;
    /// Enable for Validator to allow it to be disabled if need be
    bool active_{true};
    /// specify that a validator should not modify the input
    bool non_modifying_{false};

  public:
    Validator() = default;
    /// Construct a Validator with just the description string
    explicit Validator(std::string validator_desc) : desc_function_([validator_desc]() { return validator_desc; }) {}
    /// Construct Validator from basic information
    Validator(std::function<std::string(std::string &)> op, std::string validator_desc, std::string validator_name = "")
        : desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(op)),
          name_(std::move(validator_name)) {}
    /// Set the Validator operation function
    Validator &operation(std::function<std::string(std::string &)> op) {
        func_ = std::move(op);
        return *this;
    }
    /// This is the required operator for a Validator - provided to help
    /// users (CLI11 uses the member `func` directly)
    std::string operator()(std::string &str) const {
        std::string retstring;
        if(active_) {
            if(non_modifying_) {
                std::string value = str;
                retstring = func_(value);
            } else {
                retstring = func_(str);
            }
        }
        return retstring;
    }

    /// This is the required operator for a Validator - provided to help
    /// users (CLI11 uses the member `func` directly)
    std::string operator()(const std::string &str) const {
        std::string value = str;
        return (active_) ? func_(value) : std::string{};
    }

    /// Specify the type string
    Validator &description(std::string validator_desc) {
        desc_function_ = [validator_desc]() { return validator_desc; };
        return *this;
    }
    /// Specify the type string
    Validator description(std::string validator_desc) const {
        Validator newval(*this);
        newval.desc_function_ = [validator_desc]() { return validator_desc; };
        return newval;
    }
    /// Generate type description information for the Validator
    std::string get_description() const {
        if(active_) {
            return desc_function_();
        }
        return std::string{};
    }
    /// Specify the type string
    Validator &name(std::string validator_name) {
        name_ = std::move(validator_name);
        return *this;
    }
    /// Specify the type string
    Validator name(std::string validator_name) const {
        Validator newval(*this);
        newval.name_ = std::move(validator_name);
        return newval;
    }
    /// Get the name of the Validator
    const std::string &get_name() const { return name_; }
    /// Specify whether the Validator is active or not
    Validator &active(bool active_val = true) {
        active_ = active_val;
        return *this;
    }
    /// Specify whether the Validator is active or not
    Validator active(bool active_val = true) const {
        Validator newval(*this);
        newval.active_ = active_val;
        return newval;
    }

    /// Specify whether the Validator can be modifying or not
    Validator &non_modifying(bool no_modify = true) {
        non_modifying_ = no_modify;
        return *this;
    }
    /// Specify the application index of a validator
    Validator &application_index(int app_index) {
        application_index_ = app_index;
        return *this;
    }
    /// Specify the application index of a validator
    Validator application_index(int app_index) const {
        Validator newval(*this);
        newval.application_index_ = app_index;
        return newval;
    }
    /// Get the current value of the application index
    int get_application_index() const { return application_index_; }
    /// Get a boolean if the validator is active
    bool get_active() const { return active_; }

    /// Get a boolean if the validator is allowed to modify the input returns true if it can modify the input
    bool get_modifying() const { return !non_modifying_; }

    /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
    /// same.
    Validator operator&(const Validator &other) const {
        Validator newval;

        newval._merge_description(*this, other, " AND ");

        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string & filename)> &f1 = func_;
        const std::function<std::string(std::string & filename)> &f2 = other.func_;

        newval.func_ = [f1, f2](std::string &input) {
            std::string s1 = f1(input);
            std::string s2 = f2(input);
            if(!s1.empty() && !s2.empty())
                return std::string("(") + s1 + ") AND (" + s2 + ")";
            else
                return s1 + s2;
        };

        newval.active_ = (active_ & other.active_);
        newval.application_index_ = application_index_;
        return newval;
    }

    /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
    /// same.
    Validator operator|(const Validator &other) const {
        Validator newval;

        newval._merge_description(*this, other, " OR ");

        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string &)> &f1 = func_;
        const std::function<std::string(std::string &)> &f2 = other.func_;

        newval.func_ = [f1, f2](std::string &input) {
            std::string s1 = f1(input);
            std::string s2 = f2(input);
            if(s1.empty() || s2.empty())
                return std::string();

            return std::string("(") + s1 + ") OR (" + s2 + ")";
        };
        newval.active_ = (active_ & other.active_);
        newval.application_index_ = application_index_;
        return newval;
    }

    /// Create a validator that fails when a given validator succeeds
    Validator operator!() const {
        Validator newval;
        const std::function<std::string()> &dfunc1 = desc_function_;
        newval.desc_function_ = [dfunc1]() {
            auto str = dfunc1();
            return (!str.empty()) ? std::string("NOT ") + str : std::string{};
        };
        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string & res)> &f1 = func_;

        newval.func_ = [f1, dfunc1](std::string &test) -> std::string {
            std::string s1 = f1(test);
            if(s1.empty()) {
                return std::string("check ") + dfunc1() + " succeeded improperly";
            }
            return std::string{};
        };
        newval.active_ = active_;
        newval.application_index_ = application_index_;
        return newval;
    }

  private:
    void _merge_description(const Validator &val1, const Validator &val2, const std::string &merger) {

        const std::function<std::string()> &dfunc1 = val1.desc_function_;
        const std::function<std::string()> &dfunc2 = val2.desc_function_;

        desc_function_ = [=]() {
            std::string f1 = dfunc1();
            std::string f2 = dfunc2();
            if((f1.empty()) || (f2.empty())) {
                return f1 + f2;
            }
            return std::string(1, '(') + f1 + ')' + merger + '(' + f2 + ')';
        };
    }
};  // namespace CLI

/// Class wrapping some of the accessors of Validator
class CustomValidator : public Validator {
  public:
};
// The implementation of the built in validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail {

/// CLI enumeration of different file types
enum class path_type { nonexistent, file, directory };

#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
/// get the type of the path from a file name
inline path_type check_path(const char *file) noexcept {
    std::error_code ec;
    auto stat = std::filesystem::status(file, ec);
    if(ec) {
        return path_type::nonexistent;
    }
    switch(stat.type()) {
    case std::filesystem::file_type::none:
    case std::filesystem::file_type::not_found:
        return path_type::nonexistent;
    case std::filesystem::file_type::directory:
        return path_type::directory;
    case std::filesystem::file_type::symlink:
    case std::filesystem::file_type::block:
    case std::filesystem::file_type::character:
    case std::filesystem::file_type::fifo:
    case std::filesystem::file_type::socket:
    case std::filesystem::file_type::regular:
    case std::filesystem::file_type::unknown:
    default:
        return path_type::file;
    }
}
#else
/// get the type of the path from a file name
inline path_type check_path(const char *file) noexcept {
#if defined(_MSC_VER)
    struct __stat64 buffer;
    if(_stat64(file, &buffer) == 0) {
        return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
    }
#else
    struct stat buffer;
    if(stat(file, &buffer) == 0) {
        return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
    }
#endif
    return path_type::nonexistent;
}
#endif
/// Check for an existing file (returns error message if check fails)
class ExistingFileValidator : public Validator {
  public:
    ExistingFileValidator() : Validator("FILE") {
        func_ = [](std::string &filename) {
            auto path_result = check_path(filename.c_str());
            if(path_result == path_type::nonexistent) {
                return "File does not exist: " + filename;
            }
            if(path_result == path_type::directory) {
                return "File is actually a directory: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an existing directory (returns error message if check fails)
class ExistingDirectoryValidator : public Validator {
  public:
    ExistingDirectoryValidator() : Validator("DIR") {
        func_ = [](std::string &filename) {
            auto path_result = check_path(filename.c_str());
            if(path_result == path_type::nonexistent) {
                return "Directory does not exist: " + filename;
            }
            if(path_result == path_type::file) {
                return "Directory is actually a file: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an existing path
class ExistingPathValidator : public Validator {
  public:
    ExistingPathValidator() : Validator("PATH(existing)") {
        func_ = [](std::string &filename) {
            auto path_result = check_path(filename.c_str());
            if(path_result == path_type::nonexistent) {
                return "Path does not exist: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an non-existing path
class NonexistentPathValidator : public Validator {
  public:
    NonexistentPathValidator() : Validator("PATH(non-existing)") {
        func_ = [](std::string &filename) {
            auto path_result = check_path(filename.c_str());
            if(path_result != path_type::nonexistent) {
                return "Path already exists: " + filename;
            }
            return std::string();
        };
    }
};

/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator {
  public:
    IPV4Validator() : Validator("IPV4") {
        func_ = [](std::string &ip_addr) {
            auto result = CLI::detail::split(ip_addr, '.');
            if(result.size() != 4) {
                return std::string("Invalid IPV4 address must have four parts (") + ip_addr + ')';
            }
            int num;
            for(const auto &var : result) {
                bool retval = detail::lexical_cast(var, num);
                if(!retval) {
                    return std::string("Failed parsing number (") + var + ')';
                }
                if(num < 0 || num > 255) {
                    return std::string("Each IP number must be between 0 and 255 ") + var;
                }
            }
            return std::string();
        };
    }
};

}  // namespace detail

// Static is not needed here, because global const implies static.

/// Check for existing file (returns error message if check fails)
const detail::ExistingFileValidator ExistingFile;

/// Check for an existing directory (returns error message if check fails)
const detail::ExistingDirectoryValidator ExistingDirectory;

/// Check for an existing path
const detail::ExistingPathValidator ExistingPath;

/// Check for an non-existing path
const detail::NonexistentPathValidator NonexistentPath;

/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;

/// Validate the input as a particular type
template <typename DesiredType> class TypeValidator : public Validator {
  public:
    explicit TypeValidator(const std::string &validator_name) : Validator(validator_name) {
        func_ = [](std::string &input_string) {
            auto val = DesiredType();
            if(!detail::lexical_cast(input_string, val)) {
                return std::string("Failed parsing ") + input_string + " as a " + detail::type_name<DesiredType>();
            }
            return std::string();
        };
    }
    TypeValidator() : TypeValidator(detail::type_name<DesiredType>()) {}
};

/// Check for a number
const TypeValidator<double> Number("NUMBER");

/// Modify a path if the file is a particular default location, can be used as Check or transform
/// with the error return optionally disabled
class FileOnDefaultPath : public Validator {
  public:
    explicit FileOnDefaultPath(std::string default_path, bool enableErrorReturn = true) : Validator("FILE") {
        func_ = [default_path, enableErrorReturn](std::string &filename) {
            auto path_result = detail::check_path(filename.c_str());
            if(path_result == detail::path_type::nonexistent) {
                std::string test_file_path = default_path;
                if(default_path.back() != '/' && default_path.back() != '\\') {
                    // Add folder separator
                    test_file_path += '/';
                }
                test_file_path.append(filename);
                path_result = detail::check_path(test_file_path.c_str());
                if(path_result == detail::path_type::file) {
                    filename = test_file_path;
                } else {
                    if(enableErrorReturn) {
                        return "File does not exist: " + filename;
                    }
                }
            }
            return std::string{};
        };
    }
};

/// Produce a range (factory). Min and max are inclusive.
class Range : public Validator {
  public:
    /// This produces a range with min and max inclusive.
    ///
    /// Note that the constructor is templated, but the struct is not, so C++17 is not
    /// needed to provide nice syntax for Range(a,b).
    template <typename T>
    Range(T min_val, T max_val, const std::string &validator_name = std::string{}) : Validator(validator_name) {
        if(validator_name.empty()) {
            std::stringstream out;
            out << detail::type_name<T>() << " in [" << min_val << " - " << max_val << "]";
            description(out.str());
        }

        func_ = [min_val, max_val](std::string &input) {
            T val;
            bool converted = detail::lexical_cast(input, val);
            if((!converted) || (val < min_val || val > max_val)) {
                std::stringstream out;
                out << "Value " << input << " not in range [";
                out << min_val << " - " << max_val << "]";
                return out.str();
            }
            return std::string{};
        };
    }

    /// Range of one value is 0 to value
    template <typename T>
    explicit Range(T max_val, const std::string &validator_name = std::string{})
        : Range(static_cast<T>(0), max_val, validator_name) {}
};

/// Check for a non negative number
const Range NonNegativeNumber((std::numeric_limits<double>::max)(), "NONNEGATIVE");

/// Check for a positive valued number (val>0.0), min() her is the smallest positive number
const Range PositiveNumber((std::numeric_limits<double>::min)(), (std::numeric_limits<double>::max)(), "POSITIVE");

/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator {
  public:
    /// This bounds a value with min and max inclusive.
    ///
    /// Note that the constructor is templated, but the struct is not, so C++17 is not
    /// needed to provide nice syntax for Range(a,b).
    template <typename T> Bound(T min_val, T max_val) {
        std::stringstream out;
        out << detail::type_name<T>() << " bounded to [" << min_val << " - " << max_val << "]";
        description(out.str());

        func_ = [min_val, max_val](std::string &input) {
            T val;
            bool converted = detail::lexical_cast(input, val);
            if(!converted) {
                return std::string("Value ") + input + " could not be converted";
            }
            if(val < min_val)
                input = detail::to_string(min_val);
            else if(val > max_val)
                input = detail::to_string(max_val);

            return std::string{};
        };
    }

    /// Range of one value is 0 to value
    template <typename T> explicit Bound(T max_val) : Bound(static_cast<T>(0), max_val) {}
};

namespace detail {
template <typename T,
          enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value) {
    return *value;
}

template <
    typename T,
    enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type &smart_deref(T &value) {
    return value;
}
/// Generate a string representation of a set
template <typename T> std::string generate_set(const T &set) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(
        detail::smart_deref(set),
        [](const iteration_type_t &v) { return detail::pair_adaptor<element_t>::first(v); },
        ","));
    out.push_back('}');
    return out;
}

/// Generate a string representation of a map
template <typename T> std::string generate_map(const T &map, bool key_only = false) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(
        detail::smart_deref(map),
        [key_only](const iteration_type_t &v) {
            std::string res{detail::to_string(detail::pair_adaptor<element_t>::first(v))};

            if(!key_only) {
                res.append("->");
                res += detail::to_string(detail::pair_adaptor<element_t>::second(v));
            }
            return res;
        },
        ","));
    out.push_back('}');
    return out;
}

template <typename C, typename V> struct has_find {
    template <typename CC, typename VV>
    static auto test(int) -> decltype(std::declval<CC>().find(std::declval<VV>()), std::true_type());
    template <typename, typename> static auto test(...) -> decltype(std::false_type());

    static const auto value = decltype(test<C, V>(0))::value;
    using type = std::integral_constant<bool, value>;
};

/// A search function
template <typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
        return (detail::pair_adaptor<element_t>::first(v) == val);
    });
    return {(it != std::end(setref)), it};
}

/// A search function that uses the built in find function
template <typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    auto &setref = detail::smart_deref(set);
    auto it = setref.find(val);
    return {(it != std::end(setref)), it};
}

/// A search function with a filter function
template <typename T, typename V>
auto search(const T &set, const V &val, const std::function<V(V)> &filter_function)
    -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    // do the potentially faster first search
    auto res = search(set, val);
    if((res.first) || (!(filter_function))) {
        return res;
    }
    // if we haven't found it do the longer linear search with all the element translations
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
        V a{detail::pair_adaptor<element_t>::first(v)};
        a = filter_function(a);
        return (a == val);
    });
    return {(it != std::end(setref)), it};
}

// the following suggestion was made by Nikita Ofitserov(@himikof)
// done in templates to prevent compiler warnings on negation of unsigned numbers

/// Do a check for overflow on signed numbers
template <typename T>
inline typename std::enable_if<std::is_signed<T>::value, T>::type overflowCheck(const T &a, const T &b) {
    if((a > 0) == (b > 0)) {
        return ((std::numeric_limits<T>::max)() / (std::abs)(a) < (std::abs)(b));
    } else {
        return ((std::numeric_limits<T>::min)() / (std::abs)(a) > -(std::abs)(b));
    }
}
/// Do a check for overflow on unsigned numbers
template <typename T>
inline typename std::enable_if<!std::is_signed<T>::value, T>::type overflowCheck(const T &a, const T &b) {
    return ((std::numeric_limits<T>::max)() / a < b);
}

/// Performs a *= b; if it doesn't cause integer overflow. Returns false otherwise.
template <typename T> typename std::enable_if<std::is_integral<T>::value, bool>::type checked_multiply(T &a, T b) {
    if(a == 0 || b == 0 || a == 1 || b == 1) {
        a *= b;
        return true;
    }
    if(a == (std::numeric_limits<T>::min)() || b == (std::numeric_limits<T>::min)()) {
        return false;
    }
    if(overflowCheck(a, b)) {
        return false;
    }
    a *= b;
    return true;
}

/// Performs a *= b; if it doesn't equal infinity. Returns false otherwise.
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type checked_multiply(T &a, T b) {
    T c = a * b;
    if(std::isinf(c) && !std::isinf(a) && !std::isinf(b)) {
        return false;
    }
    a = c;
    return true;
}

}  // namespace detail
/// Verify items are in a set
class IsMember : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction using an initializer list
    template <typename T, typename... Args>
    IsMember(std::initializer_list<T> values, Args &&...args)
        : IsMember(std::vector<T>(values), std::forward<Args>(args)...) {}

    /// This checks to see if an item is in a set (empty function)
    template <typename T> explicit IsMember(T &&set) : IsMember(std::forward<T>(set), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit IsMember(T set, F filter_function) {

        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map

        using local_item_t = typename IsMemberType<item_t>::type;  // This will convert bad types to good ones
                                                                   // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };

        // This is the function that validates
        // It stores a copy of the set pointer-like, so shared_ptr will stay alive
        func_ = [set, filter_fn](std::string &input) {
            local_item_t b;
            if(!detail::lexical_cast(input, b)) {
                throw ValidationError(input);  // name is added later
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(set, b, filter_fn);
            if(res.first) {
                // Make sure the version in the input string is identical to the one in the set
                if(filter_fn) {
                    input = detail::value_string(detail::pair_adaptor<element_t>::first(*(res.second)));
                }

                // Return empty error string (success)
                return std::string{};
            }

            // If you reach this point, the result was not found
            return input + " not in " + detail::generate_set(detail::smart_deref(set));
        };
    }

    /// You can pass in as many filter functions as you like, they nest (string only currently)
    template <typename T, typename... Args>
    IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : IsMember(
              std::forward<T>(set),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// definition of the default transformation object
template <typename T> using TransformPairs = std::vector<std::pair<std::string, T>>;

/// Translate named items to other or a value set
class Transformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
        : Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit Transformer(T &&mapping) : Transformer(std::forward<T>(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit Transformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;             // Will convert bad types to good ones
                                                                              // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };

        func_ = [mapping, filter_fn](std::string &input) {
            local_item_t b;
            if(!detail::lexical_cast(input, b)) {
                return std::string();
                // there is no possible way we can match anything in the mapping if we can't convert so just return
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(mapping, b, filter_fn);
            if(res.first) {
                input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
            }
            return std::string{};
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : Transformer(
              std::forward<T>(mapping),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// translate named items to other or a value set
class CheckedTransformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
        : CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit CheckedTransformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;             // Will convert bad types to good ones
                                                                              // (const char * to std::string)
        using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        auto tfunc = [mapping]() {
            std::string out("value in ");
            out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
            out += detail::join(
                detail::smart_deref(mapping),
                [](const iteration_type_t &v) { return detail::to_string(detail::pair_adaptor<element_t>::second(v)); },
                ",");
            out.push_back('}');
            return out;
        };

        desc_function_ = tfunc;

        func_ = [mapping, tfunc, filter_fn](std::string &input) {
            local_item_t b;
            bool converted = detail::lexical_cast(input, b);
            if(converted) {
                if(filter_fn) {
                    b = filter_fn(b);
                }
                auto res = detail::search(mapping, b, filter_fn);
                if(res.first) {
                    input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
                    return std::string{};
                }
            }
            for(const auto &v : detail::smart_deref(mapping)) {
                auto output_string = detail::value_string(detail::pair_adaptor<element_t>::second(v));
                if(output_string == input) {
                    return std::string();
                }
            }

            return "Check " + input + " " + tfunc() + " FAILED";
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : CheckedTransformer(
              std::forward<T>(mapping),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }

/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }

/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item) {
    item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
    item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
    return item;
}

/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
///   With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
///   one can recognize inputs like "100", "12kb", "100 MB",
///   that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator {
  public:
    /// Adjust AsNumberWithUnit behavior.
    /// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
    /// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
    ///   if UNIT_REQUIRED is set and unit literal is not found.
    enum Options {
        CASE_SENSITIVE = 0,
        CASE_INSENSITIVE = 1,
        UNIT_OPTIONAL = 0,
        UNIT_REQUIRED = 2,
        DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
    };

    template <typename Number>
    explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
                              Options opts = DEFAULT,
                              const std::string &unit_name = "UNIT") {
        description(generate_description<Number>(unit_name, opts));
        validate_mapping(mapping, opts);

        // transform function
        func_ = [mapping, opts](std::string &input) -> std::string {
            Number num;

            detail::rtrim(input);
            if(input.empty()) {
                throw ValidationError("Input is empty");
            }

            // Find split position between number and prefix
            auto unit_begin = input.end();
            while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) {
                --unit_begin;
            }

            std::string unit{unit_begin, input.end()};
            input.resize(static_cast<std::size_t>(std::distance(input.begin(), unit_begin)));
            detail::trim(input);

            if(opts & UNIT_REQUIRED && unit.empty()) {
                throw ValidationError("Missing mandatory unit");
            }
            if(opts & CASE_INSENSITIVE) {
                unit = detail::to_lower(unit);
            }
            if(unit.empty()) {
                if(!detail::lexical_cast(input, num)) {
                    throw ValidationError(std::string("Value ") + input + " could not be converted to " +
                                          detail::type_name<Number>());
                }
                // No need to modify input if no unit passed
                return {};
            }

            // find corresponding factor
            auto it = mapping.find(unit);
            if(it == mapping.end()) {
                throw ValidationError(unit +
                                      " unit not recognized. "
                                      "Allowed values: " +
                                      detail::generate_map(mapping, true));
            }

            if(!input.empty()) {
                bool converted = detail::lexical_cast(input, num);
                if(!converted) {
                    throw ValidationError(std::string("Value ") + input + " could not be converted to " +
                                          detail::type_name<Number>());
                }
                // perform safe multiplication
                bool ok = detail::checked_multiply(num, it->second);
                if(!ok) {
                    throw ValidationError(detail::to_string(num) + " multiplied by " + unit +
                                          " factor would cause number overflow. Use smaller value.");
                }
            } else {
                num = static_cast<Number>(it->second);
            }

            input = detail::to_string(num);

            return {};
        };
    }

  private:
    /// Check that mapping contains valid units.
    /// Update mapping for CASE_INSENSITIVE mode.
    template <typename Number> static void validate_mapping(std::map<std::string, Number> &mapping, Options opts) {
        for(auto &kv : mapping) {
            if(kv.first.empty()) {
                throw ValidationError("Unit must not be empty.");
            }
            if(!detail::isalpha(kv.first)) {
                throw ValidationError("Unit must contain only letters.");
            }
        }

        // make all units lowercase if CASE_INSENSITIVE
        if(opts & CASE_INSENSITIVE) {
            std::map<std::string, Number> lower_mapping;
            for(auto &kv : mapping) {
                auto s = detail::to_lower(kv.first);
                if(lower_mapping.count(s)) {
                    throw ValidationError(std::string("Several matching lowercase unit representations are found: ") +
                                          s);
                }
                lower_mapping[detail::to_lower(kv.first)] = kv.second;
            }
            mapping = std::move(lower_mapping);
        }
    }

    /// Generate description like this: NUMBER [UNIT]
    template <typename Number> static std::string generate_description(const std::string &name, Options opts) {
        std::stringstream out;
        out << detail::type_name<Number>() << ' ';
        if(opts & UNIT_REQUIRED) {
            out << name;
        } else {
            out << '[' << name << ']';
        }
        return out.str();
    }
};

/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
///   "100" => 100
///   "1 b" => 100
///   "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
///   "10 KB" => 10240
///   "10 kb" => 10240
///   "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
///   "10kb" => 10240
///   "2 MB" => 2097152
///   "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit {
  public:
    using result_t = std::uint64_t;

    /// If kb_is_1000 is true,
    /// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
    /// (same applies to higher order units as well).
    /// Otherwise, interpret all literals as factors of 1024.
    /// The first option is formally correct, but
    /// the second interpretation is more wide-spread
    /// (see https://en.wikipedia.org/wiki/Binary_prefix).
    explicit AsSizeValue(bool kb_is_1000) : AsNumberWithUnit(get_mapping(kb_is_1000)) {
        if(kb_is_1000) {
            description("SIZE [b, kb(=1000b), kib(=1024b), ...]");
        } else {
            description("SIZE [b, kb(=1024b), ...]");
        }
    }

  private:
    /// Get <size unit, factor> mapping
    static std::map<std::string, result_t> init_mapping(bool kb_is_1000) {
        std::map<std::string, result_t> m;
        result_t k_factor = kb_is_1000 ? 1000 : 1024;
        result_t ki_factor = 1024;
        result_t k = 1;
        result_t ki = 1;
        m["b"] = 1;
        for(std::string p : {"k", "m", "g", "t", "p", "e"}) {
            k *= k_factor;
            ki *= ki_factor;
            m[p] = k;
            m[p + "b"] = k;
            m[p + "i"] = ki;
            m[p + "ib"] = ki;
        }
        return m;
    }

    /// Cache calculated mapping
    static std::map<std::string, result_t> get_mapping(bool kb_is_1000) {
        if(kb_is_1000) {
            static auto m = init_mapping(true);
            return m;
        } else {
            static auto m = init_mapping(false);
            return m;
        }
    }
};

namespace detail {
/// Split a string into a program name and command line arguments
/// the string is assumed to contain a file name followed by other arguments
/// the return value contains is a pair with the first argument containing the program name and the second
/// everything else.
inline std::pair<std::string, std::string> split_program_name(std::string commandline) {
    // try to determine the programName
    std::pair<std::string, std::string> vals;
    trim(commandline);
    auto esp = commandline.find_first_of(' ', 1);
    while(detail::check_path(commandline.substr(0, esp).c_str()) != path_type::file) {
        esp = commandline.find_first_of(' ', esp + 1);
        if(esp == std::string::npos) {
            // if we have reached the end and haven't found a valid file just assume the first argument is the
            // program name
            if(commandline[0] == '"' || commandline[0] == '\'' || commandline[0] == '`') {
                bool embeddedQuote = false;
                auto keyChar = commandline[0];
                auto end = commandline.find_first_of(keyChar, 1);
                while((end != std::string::npos) && (commandline[end - 1] == '\\')) {  // deal with escaped quotes
                    end = commandline.find_first_of(keyChar, end + 1);
                    embeddedQuote = true;
                }
                if(end != std::string::npos) {
                    vals.first = commandline.substr(1, end - 1);
                    esp = end + 1;
                    if(embeddedQuote) {
                        vals.first = find_and_replace(vals.first, std::string("\\") + keyChar, std::string(1, keyChar));
                    }
                } else {
                    esp = commandline.find_first_of(' ', 1);
                }
            } else {
                esp = commandline.find_first_of(' ', 1);
            }

            break;
        }
    }
    if(vals.first.empty()) {
        vals.first = commandline.substr(0, esp);
        rtrim(vals.first);
    }

    // strip the program name
    vals.second = (esp != std::string::npos) ? commandline.substr(esp + 1) : std::string{};
    ltrim(vals.second);
    return vals;
}

}  // namespace detail
/// @}

// [CLI11:validators_hpp:end]
}  // namespace CLI