1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
|
/*
* backward.hpp
* Copyright 2013 Google Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef H_6B9572DA_A64B_49E6_B234_051480991C89
#define H_6B9572DA_A64B_49E6_B234_051480991C89
#ifndef __cplusplus
#error "It's not going to compile without a C++ compiler..."
#endif
#if defined(BACKWARD_CXX11)
#elif defined(BACKWARD_CXX98)
#else
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800)
#define BACKWARD_CXX11
#define BACKWARD_ATLEAST_CXX11
#define BACKWARD_ATLEAST_CXX98
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define BACKWARD_ATLEAST_CXX17
#endif
#else
#define BACKWARD_CXX98
#define BACKWARD_ATLEAST_CXX98
#endif
#endif
// You can define one of the following (or leave it to the auto-detection):
//
// #define BACKWARD_SYSTEM_LINUX
// - specialization for linux
//
// #define BACKWARD_SYSTEM_DARWIN
// - specialization for Mac OS X 10.5 and later.
//
// #define BACKWARD_SYSTEM_WINDOWS
// - specialization for Windows (Clang 9 and MSVC2017)
//
// #define BACKWARD_SYSTEM_UNKNOWN
// - placebo implementation, does nothing.
//
#if defined(BACKWARD_SYSTEM_LINUX)
#elif defined(BACKWARD_SYSTEM_DARWIN)
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
#elif defined(BACKWARD_SYSTEM_WINDOWS)
#else
#if defined(__linux) || defined(__linux__)
#define BACKWARD_SYSTEM_LINUX
#elif defined(__APPLE__)
#define BACKWARD_SYSTEM_DARWIN
#elif defined(_WIN32)
#define BACKWARD_SYSTEM_WINDOWS
#else
#define BACKWARD_SYSTEM_UNKNOWN
#endif
#endif
#define NOINLINE __attribute__((noinline))
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <new>
#include <sstream>
#include <streambuf>
#include <string>
#include <vector>
#include <exception>
#include <iterator>
#if defined(BACKWARD_SYSTEM_LINUX)
// On linux, backtrace can back-trace or "walk" the stack using the following
// libraries:
//
// #define BACKWARD_HAS_UNWIND 1
// - unwind comes from libgcc, but I saw an equivalent inside clang itself.
// - with unwind, the stacktrace is as accurate as it can possibly be, since
// this is used by the C++ runtine in gcc/clang for stack unwinding on
// exception.
// - normally libgcc is already linked to your program by default.
//
// #define BACKWARD_HAS_LIBUNWIND 1
// - libunwind provides, in some cases, a more accurate stacktrace as it knows
// to decode signal handler frames and lets us edit the context registers when
// unwinding, allowing stack traces over bad function references.
//
// #define BACKWARD_HAS_BACKTRACE == 1
// - backtrace seems to be a little bit more portable than libunwind, but on
// linux, it uses unwind anyway, but abstract away a tiny information that is
// sadly really important in order to get perfectly accurate stack traces.
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_UNWIND == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_UNWIND == 1
#elif BACKWARD_HAS_LIBUNWIND == 1
#elif BACKWARD_HAS_BACKTRACE == 1
#else
#undef BACKWARD_HAS_UNWIND
#define BACKWARD_HAS_UNWIND 1
#undef BACKWARD_HAS_LIBUNWIND
#define BACKWARD_HAS_LIBUNWIND 0
#undef BACKWARD_HAS_BACKTRACE
#define BACKWARD_HAS_BACKTRACE 0
#endif
// On linux, backward can extract detailed information about a stack trace
// using one of the following libraries:
//
// #define BACKWARD_HAS_DW 1
// - libdw gives you the most juicy details out of your stack traces:
// - object filename
// - function name
// - source filename
// - line and column numbers
// - source code snippet (assuming the file is accessible)
// - variables name and values (if not optimized out)
// - You need to link with the lib "dw":
// - apt-get install libdw-dev
// - g++/clang++ -ldw ...
//
// #define BACKWARD_HAS_BFD 1
// - With libbfd, you get a fair amount of details:
// - object filename
// - function name
// - source filename
// - line numbers
// - source code snippet (assuming the file is accessible)
// - You need to link with the lib "bfd":
// - apt-get install binutils-dev
// - g++/clang++ -lbfd ...
//
// #define BACKWARD_HAS_DWARF 1
// - libdwarf gives you the most juicy details out of your stack traces:
// - object filename
// - function name
// - source filename
// - line and column numbers
// - source code snippet (assuming the file is accessible)
// - variables name and values (if not optimized out)
// - You need to link with the lib "dwarf":
// - apt-get install libdwarf-dev
// - g++/clang++ -ldwarf ...
//
// #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
// - backtrace provides minimal details for a stack trace:
// - object filename
// - function name
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_DW == 1
#elif BACKWARD_HAS_BFD == 1
#elif BACKWARD_HAS_DWARF == 1
#elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#else
#undef BACKWARD_HAS_DW
#define BACKWARD_HAS_DW 0
#undef BACKWARD_HAS_BFD
#define BACKWARD_HAS_BFD 0
#undef BACKWARD_HAS_DWARF
#define BACKWARD_HAS_DWARF 0
#undef BACKWARD_HAS_BACKTRACE_SYMBOL
#define BACKWARD_HAS_BACKTRACE_SYMBOL 1
#endif
#include <cxxabi.h>
#include <fcntl.h>
#ifdef __ANDROID__
// Old Android API levels define _Unwind_Ptr in both link.h and
// unwind.h Rename the one in link.h as we are not going to be using
// it
#define _Unwind_Ptr _Unwind_Ptr_Custom
#include <link.h>
#undef _Unwind_Ptr
#else
#include <link.h>
#endif
#include <signal.h>
#include <sys/stat.h>
#include <syscall.h>
#include <unistd.h>
#if BACKWARD_HAS_BFD == 1
// NOTE: defining PACKAGE{,_VERSION} is required before including
// bfd.h on some platforms, see also:
// https://sourceware.org/bugzilla/show_bug.cgi?id=14243
#ifndef PACKAGE
#define PACKAGE
#endif
#ifndef PACKAGE_VERSION
#define PACKAGE_VERSION
#endif
#include <bfd.h>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <dlfcn.h>
#undef _GNU_SOURCE
#else
#include <dlfcn.h>
#endif
#endif
#if BACKWARD_HAS_DW == 1
#include <dwarf.h>
#include <elfutils/libdw.h>
#include <elfutils/libdwfl.h>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <dlfcn.h>
#undef _GNU_SOURCE
#else
#include <dlfcn.h>
#endif
#endif
#if BACKWARD_HAS_DWARF == 1
#include <algorithm>
#include <dwarf.h>
#include <libdwarf.h>
#include <libelf.h>
#include <map>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <dlfcn.h>
#undef _GNU_SOURCE
#else
#include <dlfcn.h>
#endif
#endif
#if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
// then we shall rely on backtrace
#include <execinfo.h>
#endif
#endif // defined(BACKWARD_SYSTEM_LINUX)
#if defined(BACKWARD_SYSTEM_DARWIN)
// On Darwin, backtrace can back-trace or "walk" the stack using the following
// libraries:
//
// #define BACKWARD_HAS_UNWIND 1
// - unwind comes from libgcc, but I saw an equivalent inside clang itself.
// - with unwind, the stacktrace is as accurate as it can possibly be, since
// this is used by the C++ runtine in gcc/clang for stack unwinding on
// exception.
// - normally libgcc is already linked to your program by default.
//
// #define BACKWARD_HAS_LIBUNWIND 1
// - libunwind comes from clang, which implements an API compatible version.
// - libunwind provides, in some cases, a more accurate stacktrace as it knows
// to decode signal handler frames and lets us edit the context registers when
// unwinding, allowing stack traces over bad function references.
//
// #define BACKWARD_HAS_BACKTRACE == 1
// - backtrace is available by default, though it does not produce as much
// information as another library might.
//
// The default is:
// #define BACKWARD_HAS_UNWIND == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_UNWIND == 1
#elif BACKWARD_HAS_BACKTRACE == 1
#elif BACKWARD_HAS_LIBUNWIND == 1
#else
#undef BACKWARD_HAS_UNWIND
#define BACKWARD_HAS_UNWIND 1
#undef BACKWARD_HAS_BACKTRACE
#define BACKWARD_HAS_BACKTRACE 0
#undef BACKWARD_HAS_LIBUNWIND
#define BACKWARD_HAS_LIBUNWIND 0
#endif
// On Darwin, backward can extract detailed information about a stack trace
// using one of the following libraries:
//
// #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
// - backtrace provides minimal details for a stack trace:
// - object filename
// - function name
//
// The default is:
// #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
//
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#else
#undef BACKWARD_HAS_BACKTRACE_SYMBOL
#define BACKWARD_HAS_BACKTRACE_SYMBOL 1
#endif
#include <cxxabi.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <sys/stat.h>
#include <unistd.h>
#if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
#include <execinfo.h>
#endif
#endif // defined(BACKWARD_SYSTEM_DARWIN)
#if defined(BACKWARD_SYSTEM_WINDOWS)
#include <condition_variable>
#include <mutex>
#include <thread>
#include <basetsd.h>
typedef SSIZE_T ssize_t;
#define NOMINMAX
#include <windows.h>
#include <winnt.h>
#include <psapi.h>
#include <signal.h>
#ifndef __clang__
#undef NOINLINE
#define NOINLINE __declspec(noinline)
#endif
#pragma comment(lib, "psapi.lib")
#pragma comment(lib, "dbghelp.lib")
// Comment / packing is from stackoverflow:
// https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
// Some versions of imagehlp.dll lack the proper packing directives themselves
// so we need to do it.
#pragma pack(push, before_imagehlp, 8)
#include <imagehlp.h>
#pragma pack(pop, before_imagehlp)
// TODO maybe these should be undefined somewhere else?
#undef BACKWARD_HAS_UNWIND
#undef BACKWARD_HAS_BACKTRACE
#if BACKWARD_HAS_PDB_SYMBOL == 1
#else
#undef BACKWARD_HAS_PDB_SYMBOL
#define BACKWARD_HAS_PDB_SYMBOL 1
#endif
#endif
#if BACKWARD_HAS_UNWIND == 1
#include <unwind.h>
// while gcc's unwind.h defines something like that:
// extern _Unwind_Ptr _Unwind_GetIP (struct _Unwind_Context *);
// extern _Unwind_Ptr _Unwind_GetIPInfo (struct _Unwind_Context *, int *);
//
// clang's unwind.h defines something like this:
// uintptr_t _Unwind_GetIP(struct _Unwind_Context* __context);
//
// Even if the _Unwind_GetIPInfo can be linked to, it is not declared, worse we
// cannot just redeclare it because clang's unwind.h doesn't define _Unwind_Ptr
// anyway.
//
// Luckily we can play on the fact that the guard macros have a different name:
#ifdef __CLANG_UNWIND_H
// In fact, this function still comes from libgcc (on my different linux boxes,
// clang links against libgcc).
#include <inttypes.h>
extern "C" uintptr_t _Unwind_GetIPInfo(_Unwind_Context *, int *);
#endif
#endif // BACKWARD_HAS_UNWIND == 1
#if BACKWARD_HAS_LIBUNWIND == 1
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#endif // BACKWARD_HAS_LIBUNWIND == 1
#ifdef BACKWARD_ATLEAST_CXX11
#include <unordered_map>
#include <utility> // for std::swap
namespace backward {
namespace details {
template <typename K, typename V> struct hashtable {
typedef std::unordered_map<K, V> type;
};
using std::move;
} // namespace details
} // namespace backward
#else // NOT BACKWARD_ATLEAST_CXX11
#define nullptr NULL
#define override
#include <map>
namespace backward {
namespace details {
template <typename K, typename V> struct hashtable {
typedef std::map<K, V> type;
};
template <typename T> const T &move(const T &v) { return v; }
template <typename T> T &move(T &v) { return v; }
} // namespace details
} // namespace backward
#endif // BACKWARD_ATLEAST_CXX11
namespace backward {
namespace details {
#if defined(BACKWARD_SYSTEM_WINDOWS)
const char kBackwardPathDelimiter[] = ";";
#else
const char kBackwardPathDelimiter[] = ":";
#endif
} // namespace details
} // namespace backward
namespace backward {
namespace system_tag {
struct linux_tag; // seems that I cannot call that "linux" because the name
// is already defined... so I am adding _tag everywhere.
struct darwin_tag;
struct windows_tag;
struct unknown_tag;
#if defined(BACKWARD_SYSTEM_LINUX)
typedef linux_tag current_tag;
#elif defined(BACKWARD_SYSTEM_DARWIN)
typedef darwin_tag current_tag;
#elif defined(BACKWARD_SYSTEM_WINDOWS)
typedef windows_tag current_tag;
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
typedef unknown_tag current_tag;
#else
#error "May I please get my system defines?"
#endif
} // namespace system_tag
namespace trace_resolver_tag {
#if defined(BACKWARD_SYSTEM_LINUX)
struct libdw;
struct libbfd;
struct libdwarf;
struct backtrace_symbol;
#if BACKWARD_HAS_DW == 1
typedef libdw current;
#elif BACKWARD_HAS_BFD == 1
typedef libbfd current;
#elif BACKWARD_HAS_DWARF == 1
typedef libdwarf current;
#elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
typedef backtrace_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#elif defined(BACKWARD_SYSTEM_DARWIN)
struct backtrace_symbol;
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
typedef backtrace_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#elif defined(BACKWARD_SYSTEM_WINDOWS)
struct pdb_symbol;
#if BACKWARD_HAS_PDB_SYMBOL == 1
typedef pdb_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#endif
} // namespace trace_resolver_tag
namespace details {
template <typename T> struct rm_ptr { typedef T type; };
template <typename T> struct rm_ptr<T *> { typedef T type; };
template <typename T> struct rm_ptr<const T *> { typedef const T type; };
template <typename R, typename T, R (*F)(T)> struct deleter {
template <typename U> void operator()(U &ptr) const { (*F)(ptr); }
};
template <typename T> struct default_delete {
void operator()(T &ptr) const { delete ptr; }
};
template <typename T, typename Deleter = deleter<void, void *, &::free>>
class handle {
struct dummy;
T _val;
bool _empty;
#ifdef BACKWARD_ATLEAST_CXX11
handle(const handle &) = delete;
handle &operator=(const handle &) = delete;
#endif
public:
~handle() {
if (!_empty) {
Deleter()(_val);
}
}
explicit handle() : _val(), _empty(true) {}
explicit handle(T val) : _val(val), _empty(false) {
if (!_val)
_empty = true;
}
#ifdef BACKWARD_ATLEAST_CXX11
handle(handle &&from) : _empty(true) { swap(from); }
handle &operator=(handle &&from) {
swap(from);
return *this;
}
#else
explicit handle(const handle &from) : _empty(true) {
// some sort of poor man's move semantic.
swap(const_cast<handle &>(from));
}
handle &operator=(const handle &from) {
// some sort of poor man's move semantic.
swap(const_cast<handle &>(from));
return *this;
}
#endif
void reset(T new_val) {
handle tmp(new_val);
swap(tmp);
}
void update(T new_val) {
_val = new_val;
_empty = !static_cast<bool>(new_val);
}
operator const dummy *() const {
if (_empty) {
return nullptr;
}
return reinterpret_cast<const dummy *>(_val);
}
T get() { return _val; }
T release() {
_empty = true;
return _val;
}
void swap(handle &b) {
using std::swap;
swap(b._val, _val); // can throw, we are safe here.
swap(b._empty, _empty); // should not throw: if you cannot swap two
// bools without throwing... It's a lost cause anyway!
}
T &operator->() { return _val; }
const T &operator->() const { return _val; }
typedef typename rm_ptr<T>::type &ref_t;
typedef const typename rm_ptr<T>::type &const_ref_t;
ref_t operator*() { return *_val; }
const_ref_t operator*() const { return *_val; }
ref_t operator[](size_t idx) { return _val[idx]; }
// Watch out, we've got a badass over here
T *operator&() {
_empty = false;
return &_val;
}
};
// Default demangler implementation (do nothing).
template <typename TAG> struct demangler_impl {
static std::string demangle(const char *funcname) { return funcname; }
};
#if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
template <> struct demangler_impl<system_tag::current_tag> {
demangler_impl() : _demangle_buffer_length(0) {}
std::string demangle(const char *funcname) {
using namespace details;
char *result = abi::__cxa_demangle(funcname, _demangle_buffer.get(),
&_demangle_buffer_length, nullptr);
if (result) {
_demangle_buffer.update(result);
return result;
}
return funcname;
}
private:
details::handle<char *> _demangle_buffer;
size_t _demangle_buffer_length;
};
#endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
struct demangler : public demangler_impl<system_tag::current_tag> {};
// Split a string on the platform's PATH delimiter. Example: if delimiter
// is ":" then:
// "" --> []
// ":" --> ["",""]
// "::" --> ["","",""]
// "/a/b/c" --> ["/a/b/c"]
// "/a/b/c:/d/e/f" --> ["/a/b/c","/d/e/f"]
// etc.
inline std::vector<std::string> split_source_prefixes(const std::string &s) {
std::vector<std::string> out;
size_t last = 0;
size_t next = 0;
size_t delimiter_size = sizeof(kBackwardPathDelimiter) - 1;
while ((next = s.find(kBackwardPathDelimiter, last)) != std::string::npos) {
out.push_back(s.substr(last, next - last));
last = next + delimiter_size;
}
if (last <= s.length()) {
out.push_back(s.substr(last));
}
return out;
}
} // namespace details
/*************** A TRACE ***************/
struct Trace {
void *addr;
size_t idx;
Trace() : addr(nullptr), idx(0) {}
explicit Trace(void *_addr, size_t _idx) : addr(_addr), idx(_idx) {}
};
struct ResolvedTrace : public Trace {
struct SourceLoc {
std::string function;
std::string filename;
unsigned line;
unsigned col;
SourceLoc() : line(0), col(0) {}
bool operator==(const SourceLoc &b) const {
return function == b.function && filename == b.filename &&
line == b.line && col == b.col;
}
bool operator!=(const SourceLoc &b) const { return !(*this == b); }
};
// In which binary object this trace is located.
std::string object_filename;
// The function in the object that contain the trace. This is not the same
// as source.function which can be an function inlined in object_function.
std::string object_function;
// The source location of this trace. It is possible for filename to be
// empty and for line/col to be invalid (value 0) if this information
// couldn't be deduced, for example if there is no debug information in the
// binary object.
SourceLoc source;
// An optionals list of "inliners". All the successive sources location
// from where the source location of the trace (the attribute right above)
// is inlined. It is especially useful when you compiled with optimization.
typedef std::vector<SourceLoc> source_locs_t;
source_locs_t inliners;
ResolvedTrace() : Trace() {}
ResolvedTrace(const Trace &mini_trace) : Trace(mini_trace) {}
};
/*************** STACK TRACE ***************/
// default implemention.
template <typename TAG> class StackTraceImpl {
public:
size_t size() const { return 0; }
Trace operator[](size_t) const { return Trace(); }
size_t load_here(size_t = 0) { return 0; }
size_t load_from(void *, size_t = 0, void * = nullptr, void * = nullptr) {
return 0;
}
size_t thread_id() const { return 0; }
void skip_n_firsts(size_t) {}
};
class StackTraceImplBase {
public:
StackTraceImplBase()
: _thread_id(0), _skip(0), _context(nullptr), _error_addr(nullptr) {}
size_t thread_id() const { return _thread_id; }
void skip_n_firsts(size_t n) { _skip = n; }
protected:
void load_thread_info() {
#ifdef BACKWARD_SYSTEM_LINUX
#ifndef __ANDROID__
_thread_id = static_cast<size_t>(syscall(SYS_gettid));
#else
_thread_id = static_cast<size_t>(gettid());
#endif
if (_thread_id == static_cast<size_t>(getpid())) {
// If the thread is the main one, let's hide that.
// I like to keep little secret sometimes.
_thread_id = 0;
}
#elif defined(BACKWARD_SYSTEM_DARWIN)
_thread_id = reinterpret_cast<size_t>(pthread_self());
if (pthread_main_np() == 1) {
// If the thread is the main one, let's hide that.
_thread_id = 0;
}
#endif
}
void set_context(void *context) { _context = context; }
void *context() const { return _context; }
void set_error_addr(void *error_addr) { _error_addr = error_addr; }
void *error_addr() const { return _error_addr; }
size_t skip_n_firsts() const { return _skip; }
private:
size_t _thread_id;
size_t _skip;
void *_context;
void *_error_addr;
};
class StackTraceImplHolder : public StackTraceImplBase {
public:
size_t size() const {
return (_stacktrace.size() >= skip_n_firsts())
? _stacktrace.size() - skip_n_firsts()
: 0;
}
Trace operator[](size_t idx) const {
if (idx >= size()) {
return Trace();
}
return Trace(_stacktrace[idx + skip_n_firsts()], idx);
}
void *const *begin() const {
if (size()) {
return &_stacktrace[skip_n_firsts()];
}
return nullptr;
}
protected:
std::vector<void *> _stacktrace;
};
#if BACKWARD_HAS_UNWIND == 1
namespace details {
template <typename F> class Unwinder {
public:
size_t operator()(F &f, size_t depth) {
_f = &f;
_index = -1;
_depth = depth;
_Unwind_Backtrace(&this->backtrace_trampoline, this);
return static_cast<size_t>(_index);
}
private:
F *_f;
ssize_t _index;
size_t _depth;
static _Unwind_Reason_Code backtrace_trampoline(_Unwind_Context *ctx,
void *self) {
return (static_cast<Unwinder *>(self))->backtrace(ctx);
}
_Unwind_Reason_Code backtrace(_Unwind_Context *ctx) {
if (_index >= 0 && static_cast<size_t>(_index) >= _depth)
return _URC_END_OF_STACK;
int ip_before_instruction = 0;
uintptr_t ip = _Unwind_GetIPInfo(ctx, &ip_before_instruction);
if (!ip_before_instruction) {
// calculating 0-1 for unsigned, looks like a possible bug to sanitiziers,
// so let's do it explicitly:
if (ip == 0) {
ip = std::numeric_limits<uintptr_t>::max(); // set it to 0xffff... (as
// from casting 0-1)
} else {
ip -= 1; // else just normally decrement it (no overflow/underflow will
// happen)
}
}
if (_index >= 0) { // ignore first frame.
(*_f)(static_cast<size_t>(_index), reinterpret_cast<void *>(ip));
}
_index += 1;
return _URC_NO_REASON;
}
};
template <typename F> size_t unwind(F f, size_t depth) {
Unwinder<F> unwinder;
return unwinder(f, depth);
}
} // namespace details
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_thread_info();
set_context(context);
set_error_addr(error_addr);
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth);
size_t trace_cnt = details::unwind(callback(*this), depth);
_stacktrace.resize(trace_cnt);
skip_n_firsts(0);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
private:
struct callback {
StackTraceImpl &self;
callback(StackTraceImpl &_self) : self(_self) {}
void operator()(size_t idx, void *addr) { self._stacktrace[idx] = addr; }
};
};
#elif BACKWARD_HAS_LIBUNWIND == 1
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
__attribute__((noinline)) size_t load_here(size_t depth = 32,
void *_context = nullptr,
void *_error_addr = nullptr) {
set_context(_context);
set_error_addr(_error_addr);
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth + 1);
int result = 0;
unw_context_t ctx;
size_t index = 0;
// Add the tail call. If the Instruction Pointer is the crash address it
// means we got a bad function pointer dereference, so we "unwind" the
// bad pointer manually by using the return address pointed to by the
// Stack Pointer as the Instruction Pointer and letting libunwind do
// the rest
if (context()) {
ucontext_t *uctx = reinterpret_cast<ucontext_t *>(context());
#ifdef REG_RIP // x86_64
if (uctx->uc_mcontext.gregs[REG_RIP] ==
reinterpret_cast<greg_t>(error_addr())) {
uctx->uc_mcontext.gregs[REG_RIP] =
*reinterpret_cast<size_t *>(uctx->uc_mcontext.gregs[REG_RSP]);
}
_stacktrace[index] =
reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_RIP]);
++index;
ctx = *reinterpret_cast<unw_context_t *>(uctx);
#elif defined(REG_EIP) // x86_32
if (uctx->uc_mcontext.gregs[REG_EIP] ==
reinterpret_cast<greg_t>(error_addr())) {
uctx->uc_mcontext.gregs[REG_EIP] =
*reinterpret_cast<size_t *>(uctx->uc_mcontext.gregs[REG_ESP]);
}
_stacktrace[index] =
reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_EIP]);
++index;
ctx = *reinterpret_cast<unw_context_t *>(uctx);
#elif defined(__arm__)
// libunwind uses its own context type for ARM unwinding.
// Copy the registers from the signal handler's context so we can
// unwind
unw_getcontext(&ctx);
ctx.regs[UNW_ARM_R0] = uctx->uc_mcontext.arm_r0;
ctx.regs[UNW_ARM_R1] = uctx->uc_mcontext.arm_r1;
ctx.regs[UNW_ARM_R2] = uctx->uc_mcontext.arm_r2;
ctx.regs[UNW_ARM_R3] = uctx->uc_mcontext.arm_r3;
ctx.regs[UNW_ARM_R4] = uctx->uc_mcontext.arm_r4;
ctx.regs[UNW_ARM_R5] = uctx->uc_mcontext.arm_r5;
ctx.regs[UNW_ARM_R6] = uctx->uc_mcontext.arm_r6;
ctx.regs[UNW_ARM_R7] = uctx->uc_mcontext.arm_r7;
ctx.regs[UNW_ARM_R8] = uctx->uc_mcontext.arm_r8;
ctx.regs[UNW_ARM_R9] = uctx->uc_mcontext.arm_r9;
ctx.regs[UNW_ARM_R10] = uctx->uc_mcontext.arm_r10;
ctx.regs[UNW_ARM_R11] = uctx->uc_mcontext.arm_fp;
ctx.regs[UNW_ARM_R12] = uctx->uc_mcontext.arm_ip;
ctx.regs[UNW_ARM_R13] = uctx->uc_mcontext.arm_sp;
ctx.regs[UNW_ARM_R14] = uctx->uc_mcontext.arm_lr;
ctx.regs[UNW_ARM_R15] = uctx->uc_mcontext.arm_pc;
// If we have crashed in the PC use the LR instead, as this was
// a bad function dereference
if (reinterpret_cast<unsigned long>(error_addr()) ==
uctx->uc_mcontext.arm_pc) {
ctx.regs[UNW_ARM_R15] =
uctx->uc_mcontext.arm_lr - sizeof(unsigned long);
}
_stacktrace[index] = reinterpret_cast<void *>(ctx.regs[UNW_ARM_R15]);
++index;
#elif defined(__APPLE__) && defined(__x86_64__)
unw_getcontext(&ctx);
// OS X's implementation of libunwind uses its own context object
// so we need to convert the passed context to libunwind's format
// (information about the data layout taken from unw_getcontext.s
// in Apple's libunwind source
ctx.data[0] = uctx->uc_mcontext->__ss.__rax;
ctx.data[1] = uctx->uc_mcontext->__ss.__rbx;
ctx.data[2] = uctx->uc_mcontext->__ss.__rcx;
ctx.data[3] = uctx->uc_mcontext->__ss.__rdx;
ctx.data[4] = uctx->uc_mcontext->__ss.__rdi;
ctx.data[5] = uctx->uc_mcontext->__ss.__rsi;
ctx.data[6] = uctx->uc_mcontext->__ss.__rbp;
ctx.data[7] = uctx->uc_mcontext->__ss.__rsp;
ctx.data[8] = uctx->uc_mcontext->__ss.__r8;
ctx.data[9] = uctx->uc_mcontext->__ss.__r9;
ctx.data[10] = uctx->uc_mcontext->__ss.__r10;
ctx.data[11] = uctx->uc_mcontext->__ss.__r11;
ctx.data[12] = uctx->uc_mcontext->__ss.__r12;
ctx.data[13] = uctx->uc_mcontext->__ss.__r13;
ctx.data[14] = uctx->uc_mcontext->__ss.__r14;
ctx.data[15] = uctx->uc_mcontext->__ss.__r15;
ctx.data[16] = uctx->uc_mcontext->__ss.__rip;
// If the IP is the same as the crash address we have a bad function
// dereference The caller's address is pointed to by %rsp, so we
// dereference that value and set it to be the next frame's IP.
if (uctx->uc_mcontext->__ss.__rip ==
reinterpret_cast<__uint64_t>(error_addr())) {
ctx.data[16] =
*reinterpret_cast<__uint64_t *>(uctx->uc_mcontext->__ss.__rsp);
}
_stacktrace[index] = reinterpret_cast<void *>(ctx.data[16]);
++index;
#elif defined(__APPLE__)
unw_getcontext(&ctx)
// TODO: Convert the ucontext_t to libunwind's unw_context_t like
// we do in 64 bits
if (ctx.uc_mcontext->__ss.__eip ==
reinterpret_cast<greg_t>(error_addr())) {
ctx.uc_mcontext->__ss.__eip = ctx.uc_mcontext->__ss.__esp;
}
_stacktrace[index] =
reinterpret_cast<void *>(ctx.uc_mcontext->__ss.__eip);
++index;
#endif
}
unw_cursor_t cursor;
if (context()) {
result = unw_init_local2(&cursor, &ctx, UNW_INIT_SIGNAL_FRAME);
} else {
unw_getcontext(&ctx);
;
result = unw_init_local(&cursor, &ctx);
}
if (result != 0)
return 1;
unw_word_t ip = 0;
while (index <= depth && unw_step(&cursor) > 0) {
result = unw_get_reg(&cursor, UNW_REG_IP, &ip);
if (result == 0) {
_stacktrace[index] = reinterpret_cast<void *>(--ip);
++index;
}
}
--index;
_stacktrace.resize(index + 1);
skip_n_firsts(0);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
_stacktrace[i] = (void *)((uintptr_t)_stacktrace[i]);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
};
#elif defined(BACKWARD_HAS_BACKTRACE)
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
set_context(context);
set_error_addr(error_addr);
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth + 1);
size_t trace_cnt = backtrace(&_stacktrace[0], _stacktrace.size());
_stacktrace.resize(trace_cnt);
skip_n_firsts(1);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, contxt, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
_stacktrace[i] = (void *)((uintptr_t)_stacktrace[i] + 1);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
};
#elif defined(BACKWARD_SYSTEM_WINDOWS)
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
// We have to load the machine type from the image info
// So we first initialize the resolver, and it tells us this info
void set_machine_type(DWORD machine_type) { machine_type_ = machine_type; }
void set_context(CONTEXT *ctx) { ctx_ = ctx; }
void set_thread_handle(HANDLE handle) { thd_ = handle; }
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
set_context(static_cast<CONTEXT*>(context));
set_error_addr(error_addr);
CONTEXT localCtx; // used when no context is provided
if (depth == 0) {
return 0;
}
if (!ctx_) {
ctx_ = &localCtx;
RtlCaptureContext(ctx_);
}
if (!thd_) {
thd_ = GetCurrentThread();
}
HANDLE process = GetCurrentProcess();
STACKFRAME64 s;
memset(&s, 0, sizeof(STACKFRAME64));
// TODO: 32 bit context capture
s.AddrStack.Mode = AddrModeFlat;
s.AddrFrame.Mode = AddrModeFlat;
s.AddrPC.Mode = AddrModeFlat;
#ifdef _M_X64
s.AddrPC.Offset = ctx_->Rip;
s.AddrStack.Offset = ctx_->Rsp;
s.AddrFrame.Offset = ctx_->Rbp;
#else
s.AddrPC.Offset = ctx_->Eip;
s.AddrStack.Offset = ctx_->Esp;
s.AddrFrame.Offset = ctx_->Ebp;
#endif
if (!machine_type_) {
#ifdef _M_X64
machine_type_ = IMAGE_FILE_MACHINE_AMD64;
#else
machine_type_ = IMAGE_FILE_MACHINE_I386;
#endif
}
for (;;) {
// NOTE: this only works if PDBs are already loaded!
SetLastError(0);
if (!StackWalk64(machine_type_, process, thd_, &s, ctx_, NULL,
SymFunctionTableAccess64, SymGetModuleBase64, NULL))
break;
if (s.AddrReturn.Offset == 0)
break;
_stacktrace.push_back(reinterpret_cast<void *>(s.AddrPC.Offset));
if (size() >= depth)
break;
}
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
private:
DWORD machine_type_ = 0;
HANDLE thd_ = 0;
CONTEXT *ctx_ = nullptr;
};
#endif
class StackTrace : public StackTraceImpl<system_tag::current_tag> {};
/*************** TRACE RESOLVER ***************/
class TraceResolverImplBase {
public:
virtual ~TraceResolverImplBase() {}
virtual void load_addresses(void *const*addresses, int address_count) {
(void)addresses;
(void)address_count;
}
template <class ST> void load_stacktrace(ST &st) {
load_addresses(st.begin(), (int)st.size());
}
virtual ResolvedTrace resolve(ResolvedTrace t) { return t; }
protected:
std::string demangle(const char *funcname) {
return _demangler.demangle(funcname);
}
private:
details::demangler _demangler;
};
template <typename TAG> class TraceResolverImpl;
#ifdef BACKWARD_SYSTEM_UNKNOWN
template <> class TraceResolverImpl<system_tag::unknown_tag>
: public TraceResolverImplBase {};
#endif
#ifdef BACKWARD_SYSTEM_LINUX
class TraceResolverLinuxBase : public TraceResolverImplBase {
public:
TraceResolverLinuxBase()
: argv0_(get_argv0()), exec_path_(read_symlink("/proc/self/exe")) {}
std::string resolve_exec_path(Dl_info &symbol_info) const {
// mutates symbol_info.dli_fname to be filename to open and returns filename
// to display
if (symbol_info.dli_fname == argv0_) {
// dladdr returns argv[0] in dli_fname for symbols contained in
// the main executable, which is not a valid path if the
// executable was found by a search of the PATH environment
// variable; In that case, we actually open /proc/self/exe, which
// is always the actual executable (even if it was deleted/replaced!)
// but display the path that /proc/self/exe links to.
// However, this right away reduces probability of successful symbol
// resolution, because libbfd may try to find *.debug files in the
// same dir, in case symbols are stripped. As a result, it may try
// to find a file /proc/self/<exe_name>.debug, which obviously does
// not exist. /proc/self/exe is a last resort. First load attempt
// should go for the original executable file path.
symbol_info.dli_fname = "/proc/self/exe";
return exec_path_;
} else {
return symbol_info.dli_fname;
}
}
private:
std::string argv0_;
std::string exec_path_;
static std::string get_argv0() {
std::string argv0;
std::ifstream ifs("/proc/self/cmdline");
std::getline(ifs, argv0, '\0');
return argv0;
}
static std::string read_symlink(std::string const &symlink_path) {
std::string path;
path.resize(100);
while (true) {
ssize_t len =
::readlink(symlink_path.c_str(), &*path.begin(), path.size());
if (len < 0) {
return "";
}
if (static_cast<size_t>(len) == path.size()) {
path.resize(path.size() * 2);
} else {
path.resize(static_cast<std::string::size_type>(len));
break;
}
}
return path;
}
};
template <typename STACKTRACE_TAG> class TraceResolverLinuxImpl;
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::backtrace_symbol>
: public TraceResolverLinuxBase {
public:
void load_addresses(void *const*addresses, int address_count) override {
if (address_count == 0) {
return;
}
_symbols.reset(backtrace_symbols(addresses, address_count));
}
ResolvedTrace resolve(ResolvedTrace trace) override {
char *filename = _symbols[trace.idx];
char *funcname = filename;
while (*funcname && *funcname != '(') {
funcname += 1;
}
trace.object_filename.assign(filename,
funcname); // ok even if funcname is the ending
// \0 (then we assign entire string)
if (*funcname) { // if it's not end of string (e.g. from last frame ip==0)
funcname += 1;
char *funcname_end = funcname;
while (*funcname_end && *funcname_end != ')' && *funcname_end != '+') {
funcname_end += 1;
}
*funcname_end = '\0';
trace.object_function = this->demangle(funcname);
trace.source.function = trace.object_function; // we cannot do better.
}
return trace;
}
private:
details::handle<char **> _symbols;
};
#endif // BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#if BACKWARD_HAS_BFD == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libbfd>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _bfd_loaded(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
Dl_info symbol_info;
// trace.addr is a virtual address in memory pointing to some code.
// Let's try to find from which loaded object it comes from.
// The loaded object can be yourself btw.
if (!dladdr(trace.addr, &symbol_info)) {
return trace; // dat broken trace...
}
// Now we get in symbol_info:
// .dli_fname:
// pathname of the shared object that contains the address.
// .dli_fbase:
// where the object is loaded in memory.
// .dli_sname:
// the name of the nearest symbol to trace.addr, we expect a
// function name.
// .dli_saddr:
// the exact address corresponding to .dli_sname.
if (symbol_info.dli_sname) {
trace.object_function = demangle(symbol_info.dli_sname);
}
if (!symbol_info.dli_fname) {
return trace;
}
trace.object_filename = resolve_exec_path(symbol_info);
bfd_fileobject *fobj;
// Before rushing to resolution need to ensure the executable
// file still can be used. For that compare inode numbers of
// what is stored by the executable's file path, and in the
// dli_fname, which not necessarily equals to the executable.
// It can be a shared library, or /proc/self/exe, and in the
// latter case has drawbacks. See the exec path resolution for
// details. In short - the dli object should be used only as
// the last resort.
// If inode numbers are equal, it is known dli_fname and the
// executable file are the same. This is guaranteed by Linux,
// because if the executable file is changed/deleted, it will
// be done in a new inode. The old file will be preserved in
// /proc/self/exe, and may even have inode 0. The latter can
// happen if the inode was actually reused, and the file was
// kept only in the main memory.
//
struct stat obj_stat;
struct stat dli_stat;
if (stat(trace.object_filename.c_str(), &obj_stat) == 0 &&
stat(symbol_info.dli_fname, &dli_stat) == 0 &&
obj_stat.st_ino == dli_stat.st_ino) {
// The executable file, and the shared object containing the
// address are the same file. Safe to use the original path.
// this is preferable. Libbfd will search for stripped debug
// symbols in the same directory.
fobj = load_object_with_bfd(trace.object_filename);
} else{
// The original object file was *deleted*! The only hope is
// that the debug symbols are either inside the shared
// object file, or are in the same directory, and this is
// not /proc/self/exe.
fobj = nullptr;
}
if (fobj == nullptr || !fobj->handle) {
fobj = load_object_with_bfd(symbol_info.dli_fname);
if (!fobj->handle) {
return trace;
}
}
find_sym_result *details_selected; // to be filled.
// trace.addr is the next instruction to be executed after returning
// from the nested stack frame. In C++ this usually relate to the next
// statement right after the function call that leaded to a new stack
// frame. This is not usually what you want to see when printing out a
// stacktrace...
find_sym_result details_call_site =
find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
details_selected = &details_call_site;
#if BACKWARD_HAS_UNWIND == 0
// ...this is why we also try to resolve the symbol that is right
// before the return address. If we are lucky enough, we will get the
// line of the function that was called. But if the code is optimized,
// we might get something absolutely not related since the compiler
// can reschedule the return address with inline functions and
// tail-call optimisation (among other things that I don't even know
// or cannot even dream about with my tiny limited brain).
find_sym_result details_adjusted_call_site = find_symbol_details(
fobj, (void *)(uintptr_t(trace.addr) - 1), symbol_info.dli_fbase);
// In debug mode, we should always get the right thing(TM).
if (details_call_site.found && details_adjusted_call_site.found) {
// Ok, we assume that details_adjusted_call_site is a better estimation.
details_selected = &details_adjusted_call_site;
trace.addr = (void *)(uintptr_t(trace.addr) - 1);
}
if (details_selected == &details_call_site && details_call_site.found) {
// we have to re-resolve the symbol in order to reset some
// internal state in BFD... so we can call backtrace_inliners
// thereafter...
details_call_site =
find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
}
#endif // BACKWARD_HAS_UNWIND
if (details_selected->found) {
if (details_selected->filename) {
trace.source.filename = details_selected->filename;
}
trace.source.line = details_selected->line;
if (details_selected->funcname) {
// this time we get the name of the function where the code is
// located, instead of the function were the address is
// located. In short, if the code was inlined, we get the
// function correspoding to the code. Else we already got in
// trace.function.
trace.source.function = demangle(details_selected->funcname);
if (!symbol_info.dli_sname) {
// for the case dladdr failed to find the symbol name of
// the function, we might as well try to put something
// here.
trace.object_function = trace.source.function;
}
}
// Maybe the source of the trace got inlined inside the function
// (trace.source.function). Let's see if we can get all the inlined
// calls along the way up to the initial call site.
trace.inliners = backtrace_inliners(fobj, *details_selected);
#if 0
if (trace.inliners.size() == 0) {
// Maybe the trace was not inlined... or maybe it was and we
// are lacking the debug information. Let's try to make the
// world better and see if we can get the line number of the
// function (trace.source.function) now.
//
// We will get the location of where the function start (to be
// exact: the first instruction that really start the
// function), not where the name of the function is defined.
// This can be quite far away from the name of the function
// btw.
//
// If the source of the function is the same as the source of
// the trace, we cannot say if the trace was really inlined or
// not. However, if the filename of the source is different
// between the function and the trace... we can declare it as
// an inliner. This is not 100% accurate, but better than
// nothing.
if (symbol_info.dli_saddr) {
find_sym_result details = find_symbol_details(fobj,
symbol_info.dli_saddr,
symbol_info.dli_fbase);
if (details.found) {
ResolvedTrace::SourceLoc diy_inliner;
diy_inliner.line = details.line;
if (details.filename) {
diy_inliner.filename = details.filename;
}
if (details.funcname) {
diy_inliner.function = demangle(details.funcname);
} else {
diy_inliner.function = trace.source.function;
}
if (diy_inliner != trace.source) {
trace.inliners.push_back(diy_inliner);
}
}
}
}
#endif
}
return trace;
}
private:
bool _bfd_loaded;
typedef details::handle<bfd *,
details::deleter<bfd_boolean, bfd *, &bfd_close>>
bfd_handle_t;
typedef details::handle<asymbol **> bfd_symtab_t;
struct bfd_fileobject {
bfd_handle_t handle;
bfd_vma base_addr;
bfd_symtab_t symtab;
bfd_symtab_t dynamic_symtab;
};
typedef details::hashtable<std::string, bfd_fileobject>::type fobj_bfd_map_t;
fobj_bfd_map_t _fobj_bfd_map;
bfd_fileobject *load_object_with_bfd(const std::string &filename_object) {
using namespace details;
if (!_bfd_loaded) {
using namespace details;
bfd_init();
_bfd_loaded = true;
}
fobj_bfd_map_t::iterator it = _fobj_bfd_map.find(filename_object);
if (it != _fobj_bfd_map.end()) {
return &it->second;
}
// this new object is empty for now.
bfd_fileobject *r = &_fobj_bfd_map[filename_object];
// we do the work temporary in this one;
bfd_handle_t bfd_handle;
int fd = open(filename_object.c_str(), O_RDONLY);
bfd_handle.reset(bfd_fdopenr(filename_object.c_str(), "default", fd));
if (!bfd_handle) {
close(fd);
return r;
}
if (!bfd_check_format(bfd_handle.get(), bfd_object)) {
return r; // not an object? You lose.
}
if ((bfd_get_file_flags(bfd_handle.get()) & HAS_SYMS) == 0) {
return r; // that's what happen when you forget to compile in debug.
}
ssize_t symtab_storage_size = bfd_get_symtab_upper_bound(bfd_handle.get());
ssize_t dyn_symtab_storage_size =
bfd_get_dynamic_symtab_upper_bound(bfd_handle.get());
if (symtab_storage_size <= 0 && dyn_symtab_storage_size <= 0) {
return r; // weird, is the file is corrupted?
}
bfd_symtab_t symtab, dynamic_symtab;
ssize_t symcount = 0, dyn_symcount = 0;
if (symtab_storage_size > 0) {
symtab.reset(static_cast<bfd_symbol **>(
malloc(static_cast<size_t>(symtab_storage_size))));
symcount = bfd_canonicalize_symtab(bfd_handle.get(), symtab.get());
}
if (dyn_symtab_storage_size > 0) {
dynamic_symtab.reset(static_cast<bfd_symbol **>(
malloc(static_cast<size_t>(dyn_symtab_storage_size))));
dyn_symcount = bfd_canonicalize_dynamic_symtab(bfd_handle.get(),
dynamic_symtab.get());
}
if (symcount <= 0 && dyn_symcount <= 0) {
return r; // damned, that's a stripped file that you got there!
}
r->handle = move(bfd_handle);
r->symtab = move(symtab);
r->dynamic_symtab = move(dynamic_symtab);
return r;
}
struct find_sym_result {
bool found;
const char *filename;
const char *funcname;
unsigned int line;
};
struct find_sym_context {
TraceResolverLinuxImpl *self;
bfd_fileobject *fobj;
void *addr;
void *base_addr;
find_sym_result result;
};
find_sym_result find_symbol_details(bfd_fileobject *fobj, void *addr,
void *base_addr) {
find_sym_context context;
context.self = this;
context.fobj = fobj;
context.addr = addr;
context.base_addr = base_addr;
context.result.found = false;
bfd_map_over_sections(fobj->handle.get(), &find_in_section_trampoline,
static_cast<void *>(&context));
return context.result;
}
static void find_in_section_trampoline(bfd *, asection *section, void *data) {
find_sym_context *context = static_cast<find_sym_context *>(data);
context->self->find_in_section(
reinterpret_cast<bfd_vma>(context->addr),
reinterpret_cast<bfd_vma>(context->base_addr), context->fobj, section,
context->result);
}
void find_in_section(bfd_vma addr, bfd_vma base_addr, bfd_fileobject *fobj,
asection *section, find_sym_result &result) {
if (result.found)
return;
#ifdef bfd_get_section_flags
if ((bfd_get_section_flags(fobj->handle.get(), section) & SEC_ALLOC) == 0)
#else
if ((bfd_section_flags(section) & SEC_ALLOC) == 0)
#endif
return; // a debug section is never loaded automatically.
#ifdef bfd_get_section_vma
bfd_vma sec_addr = bfd_get_section_vma(fobj->handle.get(), section);
#else
bfd_vma sec_addr = bfd_section_vma(section);
#endif
#ifdef bfd_get_section_size
bfd_size_type size = bfd_get_section_size(section);
#else
bfd_size_type size = bfd_section_size(section);
#endif
// are we in the boundaries of the section?
if (addr < sec_addr || addr >= sec_addr + size) {
addr -= base_addr; // oups, a relocated object, lets try again...
if (addr < sec_addr || addr >= sec_addr + size) {
return;
}
}
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
if (!result.found && fobj->symtab) {
result.found = bfd_find_nearest_line(
fobj->handle.get(), section, fobj->symtab.get(), addr - sec_addr,
&result.filename, &result.funcname, &result.line);
}
if (!result.found && fobj->dynamic_symtab) {
result.found = bfd_find_nearest_line(
fobj->handle.get(), section, fobj->dynamic_symtab.get(),
addr - sec_addr, &result.filename, &result.funcname, &result.line);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
}
ResolvedTrace::source_locs_t
backtrace_inliners(bfd_fileobject *fobj, find_sym_result previous_result) {
// This function can be called ONLY after a SUCCESSFUL call to
// find_symbol_details. The state is global to the bfd_handle.
ResolvedTrace::source_locs_t results;
while (previous_result.found) {
find_sym_result result;
result.found = bfd_find_inliner_info(fobj->handle.get(), &result.filename,
&result.funcname, &result.line);
if (result
.found) /* and not (
cstrings_eq(previous_result.filename,
result.filename) and
cstrings_eq(previous_result.funcname, result.funcname)
and result.line == previous_result.line
)) */
{
ResolvedTrace::SourceLoc src_loc;
src_loc.line = result.line;
if (result.filename) {
src_loc.filename = result.filename;
}
if (result.funcname) {
src_loc.function = demangle(result.funcname);
}
results.push_back(src_loc);
}
previous_result = result;
}
return results;
}
bool cstrings_eq(const char *a, const char *b) {
if (!a || !b) {
return false;
}
return strcmp(a, b) == 0;
}
};
#endif // BACKWARD_HAS_BFD == 1
#if BACKWARD_HAS_DW == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libdw>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _dwfl_handle_initialized(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
using namespace details;
Dwarf_Addr trace_addr = (Dwarf_Addr)trace.addr;
if (!_dwfl_handle_initialized) {
// initialize dwfl...
_dwfl_cb.reset(new Dwfl_Callbacks);
_dwfl_cb->find_elf = &dwfl_linux_proc_find_elf;
_dwfl_cb->find_debuginfo = &dwfl_standard_find_debuginfo;
_dwfl_cb->debuginfo_path = 0;
_dwfl_handle.reset(dwfl_begin(_dwfl_cb.get()));
_dwfl_handle_initialized = true;
if (!_dwfl_handle) {
return trace;
}
// ...from the current process.
dwfl_report_begin(_dwfl_handle.get());
int r = dwfl_linux_proc_report(_dwfl_handle.get(), getpid());
dwfl_report_end(_dwfl_handle.get(), NULL, NULL);
if (r < 0) {
return trace;
}
}
if (!_dwfl_handle) {
return trace;
}
// find the module (binary object) that contains the trace's address.
// This is not using any debug information, but the addresses ranges of
// all the currently loaded binary object.
Dwfl_Module *mod = dwfl_addrmodule(_dwfl_handle.get(), trace_addr);
if (mod) {
// now that we found it, lets get the name of it, this will be the
// full path to the running binary or one of the loaded library.
const char *module_name = dwfl_module_info(mod, 0, 0, 0, 0, 0, 0, 0);
if (module_name) {
trace.object_filename = module_name;
}
// We also look after the name of the symbol, equal or before this
// address. This is found by walking the symtab. We should get the
// symbol corresponding to the function (mangled) containing the
// address. If the code corresponding to the address was inlined,
// this is the name of the out-most inliner function.
const char *sym_name = dwfl_module_addrname(mod, trace_addr);
if (sym_name) {
trace.object_function = demangle(sym_name);
}
}
// now let's get serious, and find out the source location (file and
// line number) of the address.
// This function will look in .debug_aranges for the address and map it
// to the location of the compilation unit DIE in .debug_info and
// return it.
Dwarf_Addr mod_bias = 0;
Dwarf_Die *cudie = dwfl_module_addrdie(mod, trace_addr, &mod_bias);
#if 1
if (!cudie) {
// Sadly clang does not generate the section .debug_aranges, thus
// dwfl_module_addrdie will fail early. Clang doesn't either set
// the lowpc/highpc/range info for every compilation unit.
//
// So in order to save the world:
// for every compilation unit, we will iterate over every single
// DIEs. Normally functions should have a lowpc/highpc/range, which
// we will use to infer the compilation unit.
// note that this is probably badly inefficient.
while ((cudie = dwfl_module_nextcu(mod, cudie, &mod_bias))) {
Dwarf_Die die_mem;
Dwarf_Die *fundie =
find_fundie_by_pc(cudie, trace_addr - mod_bias, &die_mem);
if (fundie) {
break;
}
}
}
#endif
//#define BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
#ifdef BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
if (!cudie) {
// If it's still not enough, lets dive deeper in the shit, and try
// to save the world again: for every compilation unit, we will
// load the corresponding .debug_line section, and see if we can
// find our address in it.
Dwarf_Addr cfi_bias;
Dwarf_CFI *cfi_cache = dwfl_module_eh_cfi(mod, &cfi_bias);
Dwarf_Addr bias;
while ((cudie = dwfl_module_nextcu(mod, cudie, &bias))) {
if (dwarf_getsrc_die(cudie, trace_addr - bias)) {
// ...but if we get a match, it might be a false positive
// because our (address - bias) might as well be valid in a
// different compilation unit. So we throw our last card on
// the table and lookup for the address into the .eh_frame
// section.
handle<Dwarf_Frame *> frame;
dwarf_cfi_addrframe(cfi_cache, trace_addr - cfi_bias, &frame);
if (frame) {
break;
}
}
}
}
#endif
if (!cudie) {
return trace; // this time we lost the game :/
}
// Now that we have a compilation unit DIE, this function will be able
// to load the corresponding section in .debug_line (if not already
// loaded) and hopefully find the source location mapped to our
// address.
Dwarf_Line *srcloc = dwarf_getsrc_die(cudie, trace_addr - mod_bias);
if (srcloc) {
const char *srcfile = dwarf_linesrc(srcloc, 0, 0);
if (srcfile) {
trace.source.filename = srcfile;
}
int line = 0, col = 0;
dwarf_lineno(srcloc, &line);
dwarf_linecol(srcloc, &col);
trace.source.line = line;
trace.source.col = col;
}
deep_first_search_by_pc(cudie, trace_addr - mod_bias,
inliners_search_cb(trace));
if (trace.source.function.size() == 0) {
// fallback.
trace.source.function = trace.object_function;
}
return trace;
}
private:
typedef details::handle<Dwfl *, details::deleter<void, Dwfl *, &dwfl_end>>
dwfl_handle_t;
details::handle<Dwfl_Callbacks *, details::default_delete<Dwfl_Callbacks *>>
_dwfl_cb;
dwfl_handle_t _dwfl_handle;
bool _dwfl_handle_initialized;
// defined here because in C++98, template function cannot take locally
// defined types... grrr.
struct inliners_search_cb {
void operator()(Dwarf_Die *die) {
switch (dwarf_tag(die)) {
const char *name;
case DW_TAG_subprogram:
if ((name = dwarf_diename(die))) {
trace.source.function = name;
}
break;
case DW_TAG_inlined_subroutine:
ResolvedTrace::SourceLoc sloc;
Dwarf_Attribute attr_mem;
if ((name = dwarf_diename(die))) {
sloc.function = name;
}
if ((name = die_call_file(die))) {
sloc.filename = name;
}
Dwarf_Word line = 0, col = 0;
dwarf_formudata(dwarf_attr(die, DW_AT_call_line, &attr_mem), &line);
dwarf_formudata(dwarf_attr(die, DW_AT_call_column, &attr_mem), &col);
sloc.line = (unsigned)line;
sloc.col = (unsigned)col;
trace.inliners.push_back(sloc);
break;
};
}
ResolvedTrace &trace;
inliners_search_cb(ResolvedTrace &t) : trace(t) {}
};
static bool die_has_pc(Dwarf_Die *die, Dwarf_Addr pc) {
Dwarf_Addr low, high;
// continuous range
if (dwarf_hasattr(die, DW_AT_low_pc) && dwarf_hasattr(die, DW_AT_high_pc)) {
if (dwarf_lowpc(die, &low) != 0) {
return false;
}
if (dwarf_highpc(die, &high) != 0) {
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr = dwarf_attr(die, DW_AT_high_pc, &attr_mem);
Dwarf_Word value;
if (dwarf_formudata(attr, &value) != 0) {
return false;
}
high = low + value;
}
return pc >= low && pc < high;
}
// non-continuous range.
Dwarf_Addr base;
ptrdiff_t offset = 0;
while ((offset = dwarf_ranges(die, offset, &base, &low, &high)) > 0) {
if (pc >= low && pc < high) {
return true;
}
}
return false;
}
static Dwarf_Die *find_fundie_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
Dwarf_Die *result) {
if (dwarf_child(parent_die, result) != 0) {
return 0;
}
Dwarf_Die *die = result;
do {
switch (dwarf_tag(die)) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
if (die_has_pc(die, pc)) {
return result;
}
};
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
&declaration);
if (!declaration) {
// let's be curious and look deeper in the tree,
// function are not necessarily at the first level, but
// might be nested inside a namespace, structure etc.
Dwarf_Die die_mem;
Dwarf_Die *indie = find_fundie_by_pc(die, pc, &die_mem);
if (indie) {
*result = die_mem;
return result;
}
}
} while (dwarf_siblingof(die, result) == 0);
return 0;
}
template <typename CB>
static bool deep_first_search_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
CB cb) {
Dwarf_Die die_mem;
if (dwarf_child(parent_die, &die_mem) != 0) {
return false;
}
bool branch_has_pc = false;
Dwarf_Die *die = &die_mem;
do {
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
&declaration);
if (!declaration) {
// let's be curious and look deeper in the tree, function are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
branch_has_pc = deep_first_search_by_pc(die, pc, cb);
}
if (!branch_has_pc) {
branch_has_pc = die_has_pc(die, pc);
}
if (branch_has_pc) {
cb(die);
}
} while (dwarf_siblingof(die, &die_mem) == 0);
return branch_has_pc;
}
static const char *die_call_file(Dwarf_Die *die) {
Dwarf_Attribute attr_mem;
Dwarf_Word file_idx = 0;
dwarf_formudata(dwarf_attr(die, DW_AT_call_file, &attr_mem), &file_idx);
if (file_idx == 0) {
return 0;
}
Dwarf_Die die_mem;
Dwarf_Die *cudie = dwarf_diecu(die, &die_mem, 0, 0);
if (!cudie) {
return 0;
}
Dwarf_Files *files = 0;
size_t nfiles;
dwarf_getsrcfiles(cudie, &files, &nfiles);
if (!files) {
return 0;
}
return dwarf_filesrc(files, file_idx, 0, 0);
}
};
#endif // BACKWARD_HAS_DW == 1
#if BACKWARD_HAS_DWARF == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libdwarf>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _dwarf_loaded(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
// trace.addr is a virtual address in memory pointing to some code.
// Let's try to find from which loaded object it comes from.
// The loaded object can be yourself btw.
Dl_info symbol_info;
int dladdr_result = 0;
#if defined(__GLIBC__)
link_map *link_map;
// We request the link map so we can get information about offsets
dladdr_result =
dladdr1(trace.addr, &symbol_info, reinterpret_cast<void **>(&link_map),
RTLD_DL_LINKMAP);
#else
// Android doesn't have dladdr1. Don't use the linker map.
dladdr_result = dladdr(trace.addr, &symbol_info);
#endif
if (!dladdr_result) {
return trace; // dat broken trace...
}
// Now we get in symbol_info:
// .dli_fname:
// pathname of the shared object that contains the address.
// .dli_fbase:
// where the object is loaded in memory.
// .dli_sname:
// the name of the nearest symbol to trace.addr, we expect a
// function name.
// .dli_saddr:
// the exact address corresponding to .dli_sname.
//
// And in link_map:
// .l_addr:
// difference between the address in the ELF file and the address
// in memory
// l_name:
// absolute pathname where the object was found
if (symbol_info.dli_sname) {
trace.object_function = demangle(symbol_info.dli_sname);
}
if (!symbol_info.dli_fname) {
return trace;
}
trace.object_filename = resolve_exec_path(symbol_info);
dwarf_fileobject &fobj = load_object_with_dwarf(symbol_info.dli_fname);
if (!fobj.dwarf_handle) {
return trace; // sad, we couldn't load the object :(
}
#if defined(__GLIBC__)
// Convert the address to a module relative one by looking at
// the module's loading address in the link map
Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr) -
reinterpret_cast<uintptr_t>(link_map->l_addr);
#else
Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr);
#endif
if (trace.object_function.empty()) {
symbol_cache_t::iterator it = fobj.symbol_cache.lower_bound(address);
if (it != fobj.symbol_cache.end()) {
if (it->first != address) {
if (it != fobj.symbol_cache.begin()) {
--it;
}
}
trace.object_function = demangle(it->second.c_str());
}
}
// Get the Compilation Unit DIE for the address
Dwarf_Die die = find_die(fobj, address);
if (!die) {
return trace; // this time we lost the game :/
}
// libdwarf doesn't give us direct access to its objects, it always
// allocates a copy for the caller. We keep that copy alive in a cache
// and we deallocate it later when it's no longer required.
die_cache_entry &die_object = get_die_cache(fobj, die);
if (die_object.isEmpty())
return trace; // We have no line section for this DIE
die_linemap_t::iterator it = die_object.line_section.lower_bound(address);
if (it != die_object.line_section.end()) {
if (it->first != address) {
if (it == die_object.line_section.begin()) {
// If we are on the first item of the line section
// but the address does not match it means that
// the address is below the range of the DIE. Give up.
return trace;
} else {
--it;
}
}
} else {
return trace; // We didn't find the address.
}
// Get the Dwarf_Line that the address points to and call libdwarf
// to get source file, line and column info.
Dwarf_Line line = die_object.line_buffer[it->second];
Dwarf_Error error = DW_DLE_NE;
char *filename;
if (dwarf_linesrc(line, &filename, &error) == DW_DLV_OK) {
trace.source.filename = std::string(filename);
dwarf_dealloc(fobj.dwarf_handle.get(), filename, DW_DLA_STRING);
}
Dwarf_Unsigned number = 0;
if (dwarf_lineno(line, &number, &error) == DW_DLV_OK) {
trace.source.line = number;
} else {
trace.source.line = 0;
}
if (dwarf_lineoff_b(line, &number, &error) == DW_DLV_OK) {
trace.source.col = number;
} else {
trace.source.col = 0;
}
std::vector<std::string> namespace_stack;
deep_first_search_by_pc(fobj, die, address, namespace_stack,
inliners_search_cb(trace, fobj, die));
dwarf_dealloc(fobj.dwarf_handle.get(), die, DW_DLA_DIE);
return trace;
}
public:
static int close_dwarf(Dwarf_Debug dwarf) {
return dwarf_finish(dwarf, NULL);
}
private:
bool _dwarf_loaded;
typedef details::handle<int, details::deleter<int, int, &::close>>
dwarf_file_t;
typedef details::handle<Elf *, details::deleter<int, Elf *, &elf_end>>
dwarf_elf_t;
typedef details::handle<Dwarf_Debug,
details::deleter<int, Dwarf_Debug, &close_dwarf>>
dwarf_handle_t;
typedef std::map<Dwarf_Addr, int> die_linemap_t;
typedef std::map<Dwarf_Off, Dwarf_Off> die_specmap_t;
struct die_cache_entry {
die_specmap_t spec_section;
die_linemap_t line_section;
Dwarf_Line *line_buffer;
Dwarf_Signed line_count;
Dwarf_Line_Context line_context;
inline bool isEmpty() {
return line_buffer == NULL || line_count == 0 || line_context == NULL ||
line_section.empty();
}
die_cache_entry() : line_buffer(0), line_count(0), line_context(0) {}
~die_cache_entry() {
if (line_context) {
dwarf_srclines_dealloc_b(line_context);
}
}
};
typedef std::map<Dwarf_Off, die_cache_entry> die_cache_t;
typedef std::map<uintptr_t, std::string> symbol_cache_t;
struct dwarf_fileobject {
dwarf_file_t file_handle;
dwarf_elf_t elf_handle;
dwarf_handle_t dwarf_handle;
symbol_cache_t symbol_cache;
// Die cache
die_cache_t die_cache;
die_cache_entry *current_cu;
};
typedef details::hashtable<std::string, dwarf_fileobject>::type
fobj_dwarf_map_t;
fobj_dwarf_map_t _fobj_dwarf_map;
static bool cstrings_eq(const char *a, const char *b) {
if (!a || !b) {
return false;
}
return strcmp(a, b) == 0;
}
dwarf_fileobject &load_object_with_dwarf(const std::string &filename_object) {
if (!_dwarf_loaded) {
// Set the ELF library operating version
// If that fails there's nothing we can do
_dwarf_loaded = elf_version(EV_CURRENT) != EV_NONE;
}
fobj_dwarf_map_t::iterator it = _fobj_dwarf_map.find(filename_object);
if (it != _fobj_dwarf_map.end()) {
return it->second;
}
// this new object is empty for now
dwarf_fileobject &r = _fobj_dwarf_map[filename_object];
dwarf_file_t file_handle;
file_handle.reset(open(filename_object.c_str(), O_RDONLY));
if (file_handle.get() < 0) {
return r;
}
// Try to get an ELF handle. We need to read the ELF sections
// because we want to see if there is a .gnu_debuglink section
// that points to a split debug file
dwarf_elf_t elf_handle;
elf_handle.reset(elf_begin(file_handle.get(), ELF_C_READ, NULL));
if (!elf_handle) {
return r;
}
const char *e_ident = elf_getident(elf_handle.get(), 0);
if (!e_ident) {
return r;
}
// Get the number of sections
// We use the new APIs as elf_getshnum is deprecated
size_t shdrnum = 0;
if (elf_getshdrnum(elf_handle.get(), &shdrnum) == -1) {
return r;
}
// Get the index to the string section
size_t shdrstrndx = 0;
if (elf_getshdrstrndx(elf_handle.get(), &shdrstrndx) == -1) {
return r;
}
std::string debuglink;
// Iterate through the ELF sections to try to get a gnu_debuglink
// note and also to cache the symbol table.
// We go the preprocessor way to avoid having to create templated
// classes or using gelf (which might throw a compiler error if 64 bit
// is not supported
#define ELF_GET_DATA(ARCH) \
Elf_Scn *elf_section = 0; \
Elf_Data *elf_data = 0; \
Elf##ARCH##_Shdr *section_header = 0; \
Elf_Scn *symbol_section = 0; \
size_t symbol_count = 0; \
size_t symbol_strings = 0; \
Elf##ARCH##_Sym *symbol = 0; \
const char *section_name = 0; \
\
while ((elf_section = elf_nextscn(elf_handle.get(), elf_section)) != NULL) { \
section_header = elf##ARCH##_getshdr(elf_section); \
if (section_header == NULL) { \
return r; \
} \
\
if ((section_name = elf_strptr(elf_handle.get(), shdrstrndx, \
section_header->sh_name)) == NULL) { \
return r; \
} \
\
if (cstrings_eq(section_name, ".gnu_debuglink")) { \
elf_data = elf_getdata(elf_section, NULL); \
if (elf_data && elf_data->d_size > 0) { \
debuglink = \
std::string(reinterpret_cast<const char *>(elf_data->d_buf)); \
} \
} \
\
switch (section_header->sh_type) { \
case SHT_SYMTAB: \
symbol_section = elf_section; \
symbol_count = section_header->sh_size / section_header->sh_entsize; \
symbol_strings = section_header->sh_link; \
break; \
\
/* We use .dynsyms as a last resort, we prefer .symtab */ \
case SHT_DYNSYM: \
if (!symbol_section) { \
symbol_section = elf_section; \
symbol_count = section_header->sh_size / section_header->sh_entsize; \
symbol_strings = section_header->sh_link; \
} \
break; \
} \
} \
\
if (symbol_section && symbol_count && symbol_strings) { \
elf_data = elf_getdata(symbol_section, NULL); \
symbol = reinterpret_cast<Elf##ARCH##_Sym *>(elf_data->d_buf); \
for (size_t i = 0; i < symbol_count; ++i) { \
int type = ELF##ARCH##_ST_TYPE(symbol->st_info); \
if (type == STT_FUNC && symbol->st_value > 0) { \
r.symbol_cache[symbol->st_value] = std::string( \
elf_strptr(elf_handle.get(), symbol_strings, symbol->st_name)); \
} \
++symbol; \
} \
}
if (e_ident[EI_CLASS] == ELFCLASS32) {
ELF_GET_DATA(32)
} else if (e_ident[EI_CLASS] == ELFCLASS64) {
// libelf might have been built without 64 bit support
#if __LIBELF64
ELF_GET_DATA(64)
#endif
}
if (!debuglink.empty()) {
// We have a debuglink section! Open an elf instance on that
// file instead. If we can't open the file, then return
// the elf handle we had already opened.
dwarf_file_t debuglink_file;
debuglink_file.reset(open(debuglink.c_str(), O_RDONLY));
if (debuglink_file.get() > 0) {
dwarf_elf_t debuglink_elf;
debuglink_elf.reset(elf_begin(debuglink_file.get(), ELF_C_READ, NULL));
// If we have a valid elf handle, return the new elf handle
// and file handle and discard the original ones
if (debuglink_elf) {
elf_handle = move(debuglink_elf);
file_handle = move(debuglink_file);
}
}
}
// Ok, we have a valid ELF handle, let's try to get debug symbols
Dwarf_Debug dwarf_debug;
Dwarf_Error error = DW_DLE_NE;
dwarf_handle_t dwarf_handle;
int dwarf_result = dwarf_elf_init(elf_handle.get(), DW_DLC_READ, NULL, NULL,
&dwarf_debug, &error);
// We don't do any special handling for DW_DLV_NO_ENTRY specially.
// If we get an error, or the file doesn't have debug information
// we just return.
if (dwarf_result != DW_DLV_OK) {
return r;
}
dwarf_handle.reset(dwarf_debug);
r.file_handle = move(file_handle);
r.elf_handle = move(elf_handle);
r.dwarf_handle = move(dwarf_handle);
return r;
}
die_cache_entry &get_die_cache(dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Error error = DW_DLE_NE;
// Get the die offset, we use it as the cache key
Dwarf_Off die_offset;
if (dwarf_dieoffset(die, &die_offset, &error) != DW_DLV_OK) {
die_offset = 0;
}
die_cache_t::iterator it = fobj.die_cache.find(die_offset);
if (it != fobj.die_cache.end()) {
fobj.current_cu = &it->second;
return it->second;
}
die_cache_entry &de = fobj.die_cache[die_offset];
fobj.current_cu = &de;
Dwarf_Addr line_addr;
Dwarf_Small table_count;
// The addresses in the line section are not fully sorted (they might
// be sorted by block of code belonging to the same file), which makes
// it necessary to do so before searching is possible.
//
// As libdwarf allocates a copy of everything, let's get the contents
// of the line section and keep it around. We also create a map of
// program counter to line table indices so we can search by address
// and get the line buffer index.
//
// To make things more difficult, the same address can span more than
// one line, so we need to keep the index pointing to the first line
// by using insert instead of the map's [ operator.
// Get the line context for the DIE
if (dwarf_srclines_b(die, 0, &table_count, &de.line_context, &error) ==
DW_DLV_OK) {
// Get the source lines for this line context, to be deallocated
// later
if (dwarf_srclines_from_linecontext(de.line_context, &de.line_buffer,
&de.line_count,
&error) == DW_DLV_OK) {
// Add all the addresses to our map
for (int i = 0; i < de.line_count; i++) {
if (dwarf_lineaddr(de.line_buffer[i], &line_addr, &error) !=
DW_DLV_OK) {
line_addr = 0;
}
de.line_section.insert(std::pair<Dwarf_Addr, int>(line_addr, i));
}
}
}
// For each CU, cache the function DIEs that contain the
// DW_AT_specification attribute. When building with -g3 the function
// DIEs are separated in declaration and specification, with the
// declaration containing only the name and parameters and the
// specification the low/high pc and other compiler attributes.
//
// We cache those specifications so we don't skip over the declarations,
// because they have no pc, and we can do namespace resolution for
// DWARF function names.
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Die current_die = 0;
if (dwarf_child(die, ¤t_die, &error) == DW_DLV_OK) {
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
if (tag_value == DW_TAG_subprogram ||
tag_value == DW_TAG_inlined_subroutine) {
Dwarf_Bool has_attr = 0;
if (dwarf_hasattr(current_die, DW_AT_specification, &has_attr,
&error) == DW_DLV_OK) {
if (has_attr) {
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_specification, &attr_mem,
&error) == DW_DLV_OK) {
Dwarf_Off spec_offset = 0;
if (dwarf_formref(attr_mem, &spec_offset, &error) ==
DW_DLV_OK) {
Dwarf_Off spec_die_offset;
if (dwarf_dieoffset(current_die, &spec_die_offset, &error) ==
DW_DLV_OK) {
de.spec_section[spec_offset] = spec_die_offset;
}
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
}
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
break;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
}
return de;
}
static Dwarf_Die get_referenced_die(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Half attr, bool global) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Attribute attr_mem;
Dwarf_Die found_die = NULL;
if (dwarf_attr(die, attr, &attr_mem, &error) == DW_DLV_OK) {
Dwarf_Off offset;
int result = 0;
if (global) {
result = dwarf_global_formref(attr_mem, &offset, &error);
} else {
result = dwarf_formref(attr_mem, &offset, &error);
}
if (result == DW_DLV_OK) {
if (dwarf_offdie(dwarf, offset, &found_die, &error) != DW_DLV_OK) {
found_die = NULL;
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
return found_die;
}
static std::string get_referenced_die_name(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Half attr, bool global) {
Dwarf_Error error = DW_DLE_NE;
std::string value;
Dwarf_Die found_die = get_referenced_die(dwarf, die, attr, global);
if (found_die) {
char *name;
if (dwarf_diename(found_die, &name, &error) == DW_DLV_OK) {
if (name) {
value = std::string(name);
}
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
}
dwarf_dealloc(dwarf, found_die, DW_DLA_DIE);
}
return value;
}
// Returns a spec DIE linked to the passed one. The caller should
// deallocate the DIE
static Dwarf_Die get_spec_die(dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Off die_offset;
if (fobj.current_cu &&
dwarf_die_CU_offset(die, &die_offset, &error) == DW_DLV_OK) {
die_specmap_t::iterator it =
fobj.current_cu->spec_section.find(die_offset);
// If we have a DIE that completes the current one, check if
// that one has the pc we are looking for
if (it != fobj.current_cu->spec_section.end()) {
Dwarf_Die spec_die = 0;
if (dwarf_offdie(dwarf, it->second, &spec_die, &error) == DW_DLV_OK) {
return spec_die;
}
}
}
// Maybe we have an abstract origin DIE with the function information?
return get_referenced_die(fobj.dwarf_handle.get(), die,
DW_AT_abstract_origin, true);
}
static bool die_has_pc(dwarf_fileobject &fobj, Dwarf_Die die, Dwarf_Addr pc) {
Dwarf_Addr low_pc = 0, high_pc = 0;
Dwarf_Half high_pc_form = 0;
Dwarf_Form_Class return_class;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
bool has_lowpc = false;
bool has_highpc = false;
bool has_ranges = false;
if (dwarf_lowpc(die, &low_pc, &error) == DW_DLV_OK) {
// If we have a low_pc check if there is a high pc.
// If we don't have a high pc this might mean we have a base
// address for the ranges list or just an address.
has_lowpc = true;
if (dwarf_highpc_b(die, &high_pc, &high_pc_form, &return_class, &error) ==
DW_DLV_OK) {
// We do have a high pc. In DWARF 4+ this is an offset from the
// low pc, but in earlier versions it's an absolute address.
has_highpc = true;
// In DWARF 2/3 this would be a DW_FORM_CLASS_ADDRESS
if (return_class == DW_FORM_CLASS_CONSTANT) {
high_pc = low_pc + high_pc;
}
// We have low and high pc, check if our address
// is in that range
return pc >= low_pc && pc < high_pc;
}
} else {
// Reset the low_pc, in case dwarf_lowpc failing set it to some
// undefined value.
low_pc = 0;
}
// Check if DW_AT_ranges is present and search for the PC in the
// returned ranges list. We always add the low_pc, as it not set it will
// be 0, in case we had a DW_AT_low_pc and DW_AT_ranges pair
bool result = false;
Dwarf_Attribute attr;
if (dwarf_attr(die, DW_AT_ranges, &attr, &error) == DW_DLV_OK) {
Dwarf_Off offset;
if (dwarf_global_formref(attr, &offset, &error) == DW_DLV_OK) {
Dwarf_Ranges *ranges;
Dwarf_Signed ranges_count = 0;
Dwarf_Unsigned byte_count = 0;
if (dwarf_get_ranges_a(dwarf, offset, die, &ranges, &ranges_count,
&byte_count, &error) == DW_DLV_OK) {
has_ranges = ranges_count != 0;
for (int i = 0; i < ranges_count; i++) {
if (ranges[i].dwr_addr1 != 0 &&
pc >= ranges[i].dwr_addr1 + low_pc &&
pc < ranges[i].dwr_addr2 + low_pc) {
result = true;
break;
}
}
dwarf_ranges_dealloc(dwarf, ranges, ranges_count);
}
}
}
// Last attempt. We might have a single address set as low_pc.
if (!result && low_pc != 0 && pc == low_pc) {
result = true;
}
// If we don't have lowpc, highpc and ranges maybe this DIE is a
// declaration that relies on a DW_AT_specification DIE that happens
// later. Use the specification cache we filled when we loaded this CU.
if (!result && (!has_lowpc && !has_highpc && !has_ranges)) {
Dwarf_Die spec_die = get_spec_die(fobj, die);
if (spec_die) {
result = die_has_pc(fobj, spec_die, pc);
dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
}
}
return result;
}
static void get_type(Dwarf_Debug dwarf, Dwarf_Die die, std::string &type) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Die child = 0;
if (dwarf_child(die, &child, &error) == DW_DLV_OK) {
get_type(dwarf, child, type);
}
if (child) {
type.insert(0, "::");
dwarf_dealloc(dwarf, child, DW_DLA_DIE);
}
char *name;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
type.insert(0, std::string(name));
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
type.insert(0, "<unknown>");
}
}
static std::string get_type_by_signature(Dwarf_Debug dwarf, Dwarf_Die die) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Sig8 signature;
Dwarf_Bool has_attr = 0;
if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) == DW_DLV_OK) {
if (has_attr) {
Dwarf_Attribute attr_mem;
if (dwarf_attr(die, DW_AT_signature, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formsig8(attr_mem, &signature, &error) != DW_DLV_OK) {
return std::string("<no type signature>");
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
}
Dwarf_Unsigned next_cu_header;
Dwarf_Sig8 tu_signature;
std::string result;
bool found = false;
while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, &tu_signature, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (strncmp(signature.signature, tu_signature.signature, 8) == 0) {
Dwarf_Die type_cu_die = 0;
if (dwarf_siblingof_b(dwarf, 0, 0, &type_cu_die, &error) == DW_DLV_OK) {
Dwarf_Die child_die = 0;
if (dwarf_child(type_cu_die, &child_die, &error) == DW_DLV_OK) {
get_type(dwarf, child_die, result);
found = !result.empty();
dwarf_dealloc(dwarf, child_die, DW_DLA_DIE);
}
dwarf_dealloc(dwarf, type_cu_die, DW_DLA_DIE);
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Unfortunately, libdwarf's
// next_cu_header API keeps its own iterator per Dwarf_Debug
// that can't be reset. We need to keep fetching elements until
// the end.
}
} else {
// If we couldn't resolve the type just print out the signature
std::ostringstream string_stream;
string_stream << "<0x" << std::hex << std::setfill('0');
for (int i = 0; i < 8; ++i) {
string_stream << std::setw(2) << std::hex
<< (int)(unsigned char)(signature.signature[i]);
}
string_stream << ">";
result = string_stream.str();
}
return result;
}
struct type_context_t {
bool is_const;
bool is_typedef;
bool has_type;
bool has_name;
std::string text;
type_context_t()
: is_const(false), is_typedef(false), has_type(false), has_name(false) {
}
};
// Types are resolved from right to left: we get the variable name first
// and then all specifiers (like const or pointer) in a chain of DW_AT_type
// DIEs. Call this function recursively until we get a complete type
// string.
static void set_parameter_string(dwarf_fileobject &fobj, Dwarf_Die die,
type_context_t &context) {
char *name;
Dwarf_Error error = DW_DLE_NE;
// typedefs contain also the base type, so we skip it and only
// print the typedef name
if (!context.is_typedef) {
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
if (!context.text.empty()) {
context.text.insert(0, " ");
}
context.text.insert(0, std::string(name));
dwarf_dealloc(fobj.dwarf_handle.get(), name, DW_DLA_STRING);
}
} else {
context.is_typedef = false;
context.has_type = true;
if (context.is_const) {
context.text.insert(0, "const ");
context.is_const = false;
}
}
bool next_type_is_const = false;
bool is_keyword = true;
Dwarf_Half tag = 0;
Dwarf_Bool has_attr = 0;
if (dwarf_tag(die, &tag, &error) == DW_DLV_OK) {
switch (tag) {
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
case DW_TAG_enumeration_type:
context.has_type = true;
if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) ==
DW_DLV_OK) {
// If we have a signature it means the type is defined
// in .debug_types, so we need to load the DIE pointed
// at by the signature and resolve it
if (has_attr) {
std::string type =
get_type_by_signature(fobj.dwarf_handle.get(), die);
if (context.is_const)
type.insert(0, "const ");
if (!context.text.empty())
context.text.insert(0, " ");
context.text.insert(0, type);
}
// Treat enums like typedefs, and skip printing its
// base type
context.is_typedef = (tag == DW_TAG_enumeration_type);
}
break;
case DW_TAG_const_type:
next_type_is_const = true;
break;
case DW_TAG_pointer_type:
context.text.insert(0, "*");
break;
case DW_TAG_reference_type:
context.text.insert(0, "&");
break;
case DW_TAG_restrict_type:
context.text.insert(0, "restrict ");
break;
case DW_TAG_rvalue_reference_type:
context.text.insert(0, "&&");
break;
case DW_TAG_volatile_type:
context.text.insert(0, "volatile ");
break;
case DW_TAG_typedef:
// Propagate the const-ness to the next type
// as typedefs are linked to its base type
next_type_is_const = context.is_const;
context.is_typedef = true;
context.has_type = true;
break;
case DW_TAG_base_type:
context.has_type = true;
break;
case DW_TAG_formal_parameter:
context.has_name = true;
break;
default:
is_keyword = false;
break;
}
}
if (!is_keyword && context.is_const) {
context.text.insert(0, "const ");
}
context.is_const = next_type_is_const;
Dwarf_Die ref =
get_referenced_die(fobj.dwarf_handle.get(), die, DW_AT_type, true);
if (ref) {
set_parameter_string(fobj, ref, context);
dwarf_dealloc(fobj.dwarf_handle.get(), ref, DW_DLA_DIE);
}
if (!context.has_type && context.has_name) {
context.text.insert(0, "void ");
context.has_type = true;
}
}
// Resolve the function return type and parameters
static void set_function_parameters(std::string &function_name,
std::vector<std::string> &ns,
dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Die current_die = 0;
std::string parameters;
bool has_spec = true;
// Check if we have a spec DIE. If we do we use it as it contains
// more information, like parameter names.
Dwarf_Die spec_die = get_spec_die(fobj, die);
if (!spec_die) {
has_spec = false;
spec_die = die;
}
std::vector<std::string>::const_iterator it = ns.begin();
std::string ns_name;
for (it = ns.begin(); it < ns.end(); ++it) {
ns_name.append(*it).append("::");
}
if (!ns_name.empty()) {
function_name.insert(0, ns_name);
}
// See if we have a function return type. It can be either on the
// current die or in its spec one (usually true for inlined functions)
std::string return_type =
get_referenced_die_name(dwarf, die, DW_AT_type, true);
if (return_type.empty()) {
return_type = get_referenced_die_name(dwarf, spec_die, DW_AT_type, true);
}
if (!return_type.empty()) {
return_type.append(" ");
function_name.insert(0, return_type);
}
if (dwarf_child(spec_die, ¤t_die, &error) == DW_DLV_OK) {
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
if (tag_value == DW_TAG_formal_parameter) {
// Ignore artificial (ie, compiler generated) parameters
bool is_artificial = false;
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_artificial, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
is_artificial = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!is_artificial) {
type_context_t context;
set_parameter_string(fobj, current_die, context);
if (parameters.empty()) {
parameters.append("(");
} else {
parameters.append(", ");
}
parameters.append(context.text);
}
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
break;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
}
if (parameters.empty())
parameters = "(";
parameters.append(")");
// If we got a spec DIE we need to deallocate it
if (has_spec)
dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
function_name.append(parameters);
}
// defined here because in C++98, template function cannot take locally
// defined types... grrr.
struct inliners_search_cb {
void operator()(Dwarf_Die die, std::vector<std::string> &ns) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Half tag_value;
Dwarf_Attribute attr_mem;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
dwarf_tag(die, &tag_value, &error);
switch (tag_value) {
char *name;
case DW_TAG_subprogram:
if (!trace.source.function.empty())
break;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
trace.source.function = std::string(name);
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
// We don't have a function name in this DIE.
// Check if there is a referenced non-defining
// declaration.
trace.source.function =
get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
if (trace.source.function.empty()) {
trace.source.function =
get_referenced_die_name(dwarf, die, DW_AT_specification, true);
}
}
// Append the function parameters, if available
set_function_parameters(trace.source.function, ns, fobj, die);
// If the object function name is empty, it's possible that
// there is no dynamic symbol table (maybe the executable
// was stripped or not built with -rdynamic). See if we have
// a DWARF linkage name to use instead. We try both
// linkage_name and MIPS_linkage_name because the MIPS tag
// was the unofficial one until it was adopted in DWARF4.
// Old gcc versions generate MIPS_linkage_name
if (trace.object_function.empty()) {
details::demangler demangler;
if (dwarf_attr(die, DW_AT_linkage_name, &attr_mem, &error) !=
DW_DLV_OK) {
if (dwarf_attr(die, DW_AT_MIPS_linkage_name, &attr_mem, &error) !=
DW_DLV_OK) {
break;
}
}
char *linkage;
if (dwarf_formstring(attr_mem, &linkage, &error) == DW_DLV_OK) {
trace.object_function = demangler.demangle(linkage);
dwarf_dealloc(dwarf, linkage, DW_DLA_STRING);
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
break;
case DW_TAG_inlined_subroutine:
ResolvedTrace::SourceLoc sloc;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
sloc.function = std::string(name);
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
// We don't have a name for this inlined DIE, it could
// be that there is an abstract origin instead.
// Get the DW_AT_abstract_origin value, which is a
// reference to the source DIE and try to get its name
sloc.function =
get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
}
set_function_parameters(sloc.function, ns, fobj, die);
std::string file = die_call_file(dwarf, die, cu_die);
if (!file.empty())
sloc.filename = file;
Dwarf_Unsigned number = 0;
if (dwarf_attr(die, DW_AT_call_line, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
sloc.line = number;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (dwarf_attr(die, DW_AT_call_column, &attr_mem, &error) ==
DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
sloc.col = number;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
trace.inliners.push_back(sloc);
break;
};
}
ResolvedTrace &trace;
dwarf_fileobject &fobj;
Dwarf_Die cu_die;
inliners_search_cb(ResolvedTrace &t, dwarf_fileobject &f, Dwarf_Die c)
: trace(t), fobj(f), cu_die(c) {}
};
static Dwarf_Die find_fundie_by_pc(dwarf_fileobject &fobj,
Dwarf_Die parent_die, Dwarf_Addr pc,
Dwarf_Die result) {
Dwarf_Die current_die = 0;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
if (dwarf_child(parent_die, ¤t_die, &error) != DW_DLV_OK) {
return NULL;
}
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
switch (tag_value) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
if (die_has_pc(fobj, current_die, pc)) {
return current_die;
}
};
bool declaration = false;
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
declaration = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!declaration) {
// let's be curious and look deeper in the tree, functions are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
Dwarf_Die die_mem = 0;
Dwarf_Die indie = find_fundie_by_pc(fobj, current_die, pc, die_mem);
if (indie) {
result = die_mem;
return result;
}
}
int res = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (res == DW_DLV_ERROR) {
return NULL;
} else if (res == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != parent_die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
return NULL;
}
template <typename CB>
static bool deep_first_search_by_pc(dwarf_fileobject &fobj,
Dwarf_Die parent_die, Dwarf_Addr pc,
std::vector<std::string> &ns, CB cb) {
Dwarf_Die current_die = 0;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
if (dwarf_child(parent_die, ¤t_die, &error) != DW_DLV_OK) {
return false;
}
bool branch_has_pc = false;
bool has_namespace = false;
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag;
if (dwarf_tag(current_die, &tag, &error) == DW_DLV_OK) {
if (tag == DW_TAG_namespace || tag == DW_TAG_class_type) {
char *ns_name = NULL;
if (dwarf_diename(current_die, &ns_name, &error) == DW_DLV_OK) {
if (ns_name) {
ns.push_back(std::string(ns_name));
} else {
ns.push_back("<unknown>");
}
dwarf_dealloc(dwarf, ns_name, DW_DLA_STRING);
} else {
ns.push_back("<unknown>");
}
has_namespace = true;
}
}
bool declaration = false;
Dwarf_Attribute attr_mem;
if (tag != DW_TAG_class_type &&
dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
declaration = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!declaration) {
// let's be curious and look deeper in the tree, function are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
branch_has_pc = deep_first_search_by_pc(fobj, current_die, pc, ns, cb);
}
if (!branch_has_pc) {
branch_has_pc = die_has_pc(fobj, current_die, pc);
}
if (branch_has_pc) {
cb(current_die, ns);
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
return false;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != parent_die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
if (has_namespace) {
has_namespace = false;
ns.pop_back();
}
current_die = sibling_die;
}
if (has_namespace) {
ns.pop_back();
}
return branch_has_pc;
}
static std::string die_call_file(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Die cu_die) {
Dwarf_Attribute attr_mem;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Unsigned file_index;
std::string file;
if (dwarf_attr(die, DW_AT_call_file, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &file_index, &error) != DW_DLV_OK) {
file_index = 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
if (file_index == 0) {
return file;
}
char **srcfiles = 0;
Dwarf_Signed file_count = 0;
if (dwarf_srcfiles(cu_die, &srcfiles, &file_count, &error) == DW_DLV_OK) {
if (file_count > 0 && file_index <= static_cast<Dwarf_Unsigned>(file_count)) {
file = std::string(srcfiles[file_index - 1]);
}
// Deallocate all strings!
for (int i = 0; i < file_count; ++i) {
dwarf_dealloc(dwarf, srcfiles[i], DW_DLA_STRING);
}
dwarf_dealloc(dwarf, srcfiles, DW_DLA_LIST);
}
}
return file;
}
Dwarf_Die find_die(dwarf_fileobject &fobj, Dwarf_Addr addr) {
// Let's get to work! First see if we have a debug_aranges section so
// we can speed up the search
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Arange *aranges;
Dwarf_Signed arange_count;
Dwarf_Die returnDie;
bool found = false;
if (dwarf_get_aranges(dwarf, &aranges, &arange_count, &error) !=
DW_DLV_OK) {
aranges = NULL;
}
if (aranges) {
// We have aranges. Get the one where our address is.
Dwarf_Arange arange;
if (dwarf_get_arange(aranges, arange_count, addr, &arange, &error) ==
DW_DLV_OK) {
// We found our address. Get the compilation-unit DIE offset
// represented by the given address range.
Dwarf_Off cu_die_offset;
if (dwarf_get_cu_die_offset(arange, &cu_die_offset, &error) ==
DW_DLV_OK) {
// Get the DIE at the offset returned by the aranges search.
// We set is_info to 1 to specify that the offset is from
// the .debug_info section (and not .debug_types)
int dwarf_result =
dwarf_offdie_b(dwarf, cu_die_offset, 1, &returnDie, &error);
found = dwarf_result == DW_DLV_OK;
}
dwarf_dealloc(dwarf, arange, DW_DLA_ARANGE);
}
}
if (found)
return returnDie; // The caller is responsible for freeing the die
// The search for aranges failed. Try to find our address by scanning
// all compilation units.
Dwarf_Unsigned next_cu_header;
Dwarf_Half tag = 0;
returnDie = 0;
while (!found &&
dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (returnDie)
dwarf_dealloc(dwarf, returnDie, DW_DLA_DIE);
if (dwarf_siblingof(dwarf, 0, &returnDie, &error) == DW_DLV_OK) {
if ((dwarf_tag(returnDie, &tag, &error) == DW_DLV_OK) &&
tag == DW_TAG_compile_unit) {
if (die_has_pc(fobj, returnDie, addr)) {
found = true;
}
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Libdwarf's next_cu_header API
// keeps its own iterator per Dwarf_Debug that can't be reset.
// We need to keep fetching elements until the end.
}
}
if (found)
return returnDie;
// We couldn't find any compilation units with ranges or a high/low pc.
// Try again by looking at all DIEs in all compilation units.
Dwarf_Die cudie;
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (dwarf_siblingof(dwarf, 0, &cudie, &error) == DW_DLV_OK) {
Dwarf_Die die_mem = 0;
Dwarf_Die resultDie = find_fundie_by_pc(fobj, cudie, addr, die_mem);
if (resultDie) {
found = true;
break;
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Libdwarf's next_cu_header API
// keeps its own iterator per Dwarf_Debug that can't be reset.
// We need to keep fetching elements until the end.
}
}
if (found)
return cudie;
// We failed.
return NULL;
}
};
#endif // BACKWARD_HAS_DWARF == 1
template <>
class TraceResolverImpl<system_tag::linux_tag>
: public TraceResolverLinuxImpl<trace_resolver_tag::current> {};
#endif // BACKWARD_SYSTEM_LINUX
#ifdef BACKWARD_SYSTEM_DARWIN
template <typename STACKTRACE_TAG> class TraceResolverDarwinImpl;
template <>
class TraceResolverDarwinImpl<trace_resolver_tag::backtrace_symbol>
: public TraceResolverImplBase {
public:
void load_addresses(void *const*addresses, int address_count) override {
if (address_count == 0) {
return;
}
_symbols.reset(backtrace_symbols(addresses, address_count));
}
ResolvedTrace resolve(ResolvedTrace trace) override {
// parse:
// <n> <file> <addr> <mangled-name> + <offset>
char *filename = _symbols[trace.idx];
// skip "<n> "
while (*filename && *filename != ' ')
filename++;
while (*filename == ' ')
filename++;
// find start of <mangled-name> from end (<file> may contain a space)
char *p = filename + strlen(filename) - 1;
// skip to start of " + <offset>"
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
char *funcname_end = p + 1;
// skip to start of "<manged-name>"
while (p > filename && *p != ' ')
p--;
char *funcname = p + 1;
// skip to start of " <addr> "
while (p > filename && *p == ' ')
p--;
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
// skip "<file>", handling the case where it contains a
char *filename_end = p + 1;
if (p == filename) {
// something went wrong, give up
filename_end = filename + strlen(filename);
funcname = filename_end;
}
trace.object_filename.assign(
filename, filename_end); // ok even if filename_end is the ending \0
// (then we assign entire string)
if (*funcname) { // if it's not end of string
*funcname_end = '\0';
trace.object_function = this->demangle(funcname);
trace.object_function += " ";
trace.object_function += (funcname_end + 1);
trace.source.function = trace.object_function; // we cannot do better.
}
return trace;
}
private:
details::handle<char **> _symbols;
};
template <>
class TraceResolverImpl<system_tag::darwin_tag>
: public TraceResolverDarwinImpl<trace_resolver_tag::current> {};
#endif // BACKWARD_SYSTEM_DARWIN
#ifdef BACKWARD_SYSTEM_WINDOWS
// Load all symbol info
// Based on:
// https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
struct module_data {
std::string image_name;
std::string module_name;
void *base_address;
DWORD load_size;
};
class get_mod_info {
HANDLE process;
static const int buffer_length = 4096;
public:
get_mod_info(HANDLE h) : process(h) {}
module_data operator()(HMODULE module) {
module_data ret;
char temp[buffer_length];
MODULEINFO mi;
GetModuleInformation(process, module, &mi, sizeof(mi));
ret.base_address = mi.lpBaseOfDll;
ret.load_size = mi.SizeOfImage;
GetModuleFileNameExA(process, module, temp, sizeof(temp));
ret.image_name = temp;
GetModuleBaseNameA(process, module, temp, sizeof(temp));
ret.module_name = temp;
std::vector<char> img(ret.image_name.begin(), ret.image_name.end());
std::vector<char> mod(ret.module_name.begin(), ret.module_name.end());
SymLoadModule64(process, 0, &img[0], &mod[0], (DWORD64)ret.base_address,
ret.load_size);
return ret;
}
};
template <> class TraceResolverImpl<system_tag::windows_tag>
: public TraceResolverImplBase {
public:
TraceResolverImpl() {
HANDLE process = GetCurrentProcess();
std::vector<module_data> modules;
DWORD cbNeeded;
std::vector<HMODULE> module_handles(1);
SymInitialize(process, NULL, false);
DWORD symOptions = SymGetOptions();
symOptions |= SYMOPT_LOAD_LINES | SYMOPT_UNDNAME;
SymSetOptions(symOptions);
EnumProcessModules(process, &module_handles[0],
module_handles.size() * sizeof(HMODULE), &cbNeeded);
module_handles.resize(cbNeeded / sizeof(HMODULE));
EnumProcessModules(process, &module_handles[0],
module_handles.size() * sizeof(HMODULE), &cbNeeded);
std::transform(module_handles.begin(), module_handles.end(),
std::back_inserter(modules), get_mod_info(process));
void *base = modules[0].base_address;
IMAGE_NT_HEADERS *h = ImageNtHeader(base);
image_type = h->FileHeader.Machine;
}
static const int max_sym_len = 255;
struct symbol_t {
SYMBOL_INFO sym;
char buffer[max_sym_len];
} sym;
DWORD64 displacement;
ResolvedTrace resolve(ResolvedTrace t) override {
HANDLE process = GetCurrentProcess();
char name[256];
memset(&sym, 0, sizeof(sym));
sym.sym.SizeOfStruct = sizeof(SYMBOL_INFO);
sym.sym.MaxNameLen = max_sym_len;
if (!SymFromAddr(process, (ULONG64)t.addr, &displacement, &sym.sym)) {
// TODO: error handling everywhere
char* lpMsgBuf;
DWORD dw = GetLastError();
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, dw, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(char*)&lpMsgBuf, 0, NULL);
printf(lpMsgBuf);
// abort();
}
UnDecorateSymbolName(sym.sym.Name, (PSTR)name, 256, UNDNAME_COMPLETE);
DWORD offset = 0;
IMAGEHLP_LINE line;
if (SymGetLineFromAddr(process, (ULONG64)t.addr, &offset, &line)) {
t.object_filename = line.FileName;
t.source.filename = line.FileName;
t.source.line = line.LineNumber;
t.source.col = offset;
}
t.source.function = name;
t.object_filename = "";
t.object_function = name;
return t;
}
DWORD machine_type() const { return image_type; }
private:
DWORD image_type;
};
#endif
class TraceResolver : public TraceResolverImpl<system_tag::current_tag> {};
/*************** CODE SNIPPET ***************/
class SourceFile {
public:
typedef std::vector<std::pair<unsigned, std::string>> lines_t;
SourceFile() {}
SourceFile(const std::string &path) {
// 1. If BACKWARD_CXX_SOURCE_PREFIXES is set then assume it contains
// a colon-separated list of path prefixes. Try prepending each
// to the given path until a valid file is found.
const std::vector<std::string> &prefixes = get_paths_from_env_variable();
for (size_t i = 0; i < prefixes.size(); ++i) {
// Double slashes (//) should not be a problem.
std::string new_path = prefixes[i] + '/' + path;
_file.reset(new std::ifstream(new_path.c_str()));
if (is_open())
break;
}
// 2. If no valid file found then fallback to opening the path as-is.
if (!_file || !is_open()) {
_file.reset(new std::ifstream(path.c_str()));
}
}
bool is_open() const { return _file->is_open(); }
lines_t &get_lines(unsigned line_start, unsigned line_count, lines_t &lines) {
using namespace std;
// This function make uses of the dumbest algo ever:
// 1) seek(0)
// 2) read lines one by one and discard until line_start
// 3) read line one by one until line_start + line_count
//
// If you are getting snippets many time from the same file, it is
// somewhat a waste of CPU, feel free to benchmark and propose a
// better solution ;)
_file->clear();
_file->seekg(0);
string line;
unsigned line_idx;
for (line_idx = 1; line_idx < line_start; ++line_idx) {
std::getline(*_file, line);
if (!*_file) {
return lines;
}
}
// think of it like a lambda in C++98 ;)
// but look, I will reuse it two times!
// What a good boy am I.
struct isspace {
bool operator()(char c) { return std::isspace(c); }
};
bool started = false;
for (; line_idx < line_start + line_count; ++line_idx) {
getline(*_file, line);
if (!*_file) {
return lines;
}
if (!started) {
if (std::find_if(line.begin(), line.end(), not_isspace()) == line.end())
continue;
started = true;
}
lines.push_back(make_pair(line_idx, line));
}
lines.erase(
std::find_if(lines.rbegin(), lines.rend(), not_isempty()).base(),
lines.end());
return lines;
}
lines_t get_lines(unsigned line_start, unsigned line_count) {
lines_t lines;
return get_lines(line_start, line_count, lines);
}
// there is no find_if_not in C++98, lets do something crappy to
// workaround.
struct not_isspace {
bool operator()(char c) { return !std::isspace(c); }
};
// and define this one here because C++98 is not happy with local defined
// struct passed to template functions, fuuuu.
struct not_isempty {
bool operator()(const lines_t::value_type &p) {
return !(std::find_if(p.second.begin(), p.second.end(), not_isspace()) ==
p.second.end());
}
};
void swap(SourceFile &b) { _file.swap(b._file); }
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(SourceFile &&from) : _file(nullptr) { swap(from); }
SourceFile &operator=(SourceFile &&from) {
swap(from);
return *this;
}
#else
explicit SourceFile(const SourceFile &from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile &>(from));
}
SourceFile &operator=(const SourceFile &from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile &>(from));
return *this;
}
#endif
private:
details::handle<std::ifstream *, details::default_delete<std::ifstream *>>
_file;
std::vector<std::string> get_paths_from_env_variable_impl() {
std::vector<std::string> paths;
const char *prefixes_str = std::getenv("BACKWARD_CXX_SOURCE_PREFIXES");
if (prefixes_str && prefixes_str[0]) {
paths = details::split_source_prefixes(prefixes_str);
}
return paths;
}
const std::vector<std::string> &get_paths_from_env_variable() {
static std::vector<std::string> paths = get_paths_from_env_variable_impl();
return paths;
}
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(const SourceFile &) = delete;
SourceFile &operator=(const SourceFile &) = delete;
#endif
};
class SnippetFactory {
public:
typedef SourceFile::lines_t lines_t;
lines_t get_snippet(const std::string &filename, unsigned line_start,
unsigned context_size) {
SourceFile &src_file = get_src_file(filename);
unsigned start = line_start - context_size / 2;
return src_file.get_lines(start, context_size);
}
lines_t get_combined_snippet(const std::string &filename_a, unsigned line_a,
const std::string &filename_b, unsigned line_b,
unsigned context_size) {
SourceFile &src_file_a = get_src_file(filename_a);
SourceFile &src_file_b = get_src_file(filename_b);
lines_t lines =
src_file_a.get_lines(line_a - context_size / 4, context_size / 2);
src_file_b.get_lines(line_b - context_size / 4, context_size / 2, lines);
return lines;
}
lines_t get_coalesced_snippet(const std::string &filename, unsigned line_a,
unsigned line_b, unsigned context_size) {
SourceFile &src_file = get_src_file(filename);
using std::max;
using std::min;
unsigned a = min(line_a, line_b);
unsigned b = max(line_a, line_b);
if ((b - a) < (context_size / 3)) {
return src_file.get_lines((a + b - context_size + 1) / 2, context_size);
}
lines_t lines = src_file.get_lines(a - context_size / 4, context_size / 2);
src_file.get_lines(b - context_size / 4, context_size / 2, lines);
return lines;
}
private:
typedef details::hashtable<std::string, SourceFile>::type src_files_t;
src_files_t _src_files;
SourceFile &get_src_file(const std::string &filename) {
src_files_t::iterator it = _src_files.find(filename);
if (it != _src_files.end()) {
return it->second;
}
SourceFile &new_src_file = _src_files[filename];
new_src_file = SourceFile(filename);
return new_src_file;
}
};
/*************** PRINTER ***************/
namespace ColorMode {
enum type { automatic, never, always };
}
class cfile_streambuf : public std::streambuf {
public:
cfile_streambuf(FILE *_sink) : sink(_sink) {}
int_type underflow() override { return traits_type::eof(); }
int_type overflow(int_type ch) override {
if (traits_type::not_eof(ch) && fputc(ch, sink) != EOF) {
return ch;
}
return traits_type::eof();
}
std::streamsize xsputn(const char_type *s, std::streamsize count) override {
return static_cast<std::streamsize>(
fwrite(s, sizeof *s, static_cast<size_t>(count), sink));
}
#ifdef BACKWARD_ATLEAST_CXX11
public:
cfile_streambuf(const cfile_streambuf &) = delete;
cfile_streambuf &operator=(const cfile_streambuf &) = delete;
#else
private:
cfile_streambuf(const cfile_streambuf &);
cfile_streambuf &operator=(const cfile_streambuf &);
#endif
private:
FILE *sink;
std::vector<char> buffer;
};
#ifdef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type { yellow = 33, purple = 35, reset = 39 };
} // namespace Color
class Colorize {
public:
Colorize(std::ostream &os) : _os(os), _reset(false), _enabled(false) {}
void activate(ColorMode::type mode) { _enabled = mode == ColorMode::always; }
void activate(ColorMode::type mode, FILE *fp) { activate(mode, fileno(fp)); }
void set_color(Color::type ccode) {
if (!_enabled)
return;
// I assume that the terminal can handle basic colors. Seriously I
// don't want to deal with all the termcap shit.
_os << "\033[" << static_cast<int>(ccode) << "m";
_reset = (ccode != Color::reset);
}
~Colorize() {
if (_reset) {
set_color(Color::reset);
}
}
private:
void activate(ColorMode::type mode, int fd) {
activate(mode == ColorMode::automatic && isatty(fd) ? ColorMode::always
: mode);
}
std::ostream &_os;
bool _reset;
bool _enabled;
};
#else // ndef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type { yellow = 0, purple = 0, reset = 0 };
} // namespace Color
class Colorize {
public:
Colorize(std::ostream &) {}
void activate(ColorMode::type) {}
void activate(ColorMode::type, FILE *) {}
void set_color(Color::type) {}
};
#endif // BACKWARD_SYSTEM_LINUX
class Printer {
public:
bool snippet;
ColorMode::type color_mode;
bool address;
bool object;
int inliner_context_size;
int trace_context_size;
Printer()
: snippet(true), color_mode(ColorMode::automatic), address(false),
object(false), inliner_context_size(5), trace_context_size(7) {}
template <typename ST> FILE *print(ST &st, FILE *fp = stderr) {
cfile_streambuf obuf(fp);
std::ostream os(&obuf);
Colorize colorize(os);
colorize.activate(color_mode, fp);
print_stacktrace(st, os, colorize);
return fp;
}
template <typename ST> std::ostream &print(ST &st, std::ostream &os) {
Colorize colorize(os);
colorize.activate(color_mode);
print_stacktrace(st, os, colorize);
return os;
}
template <typename IT>
FILE *print(IT begin, IT end, FILE *fp = stderr, size_t thread_id = 0) {
cfile_streambuf obuf(fp);
std::ostream os(&obuf);
Colorize colorize(os);
colorize.activate(color_mode, fp);
print_stacktrace(begin, end, os, thread_id, colorize);
return fp;
}
template <typename IT>
std::ostream &print(IT begin, IT end, std::ostream &os,
size_t thread_id = 0) {
Colorize colorize(os);
colorize.activate(color_mode);
print_stacktrace(begin, end, os, thread_id, colorize);
return os;
}
TraceResolver const &resolver() const { return _resolver; }
private:
TraceResolver _resolver;
SnippetFactory _snippets;
template <typename ST>
void print_stacktrace(ST &st, std::ostream &os, Colorize &colorize) {
print_header(os, st.thread_id());
_resolver.load_stacktrace(st);
for (size_t trace_idx = st.size(); trace_idx > 0; --trace_idx) {
print_trace(os, _resolver.resolve(st[trace_idx - 1]), colorize);
}
}
template <typename IT>
void print_stacktrace(IT begin, IT end, std::ostream &os, size_t thread_id,
Colorize &colorize) {
print_header(os, thread_id);
for (; begin != end; ++begin) {
print_trace(os, *begin, colorize);
}
}
void print_header(std::ostream &os, size_t thread_id) {
os << "Stack trace (most recent call last)";
if (thread_id) {
os << " in thread " << thread_id;
}
os << ":\n";
}
void print_trace(std::ostream &os, const ResolvedTrace &trace,
Colorize &colorize) {
os << "#" << std::left << std::setw(2) << trace.idx << std::right;
bool already_indented = true;
if (!trace.source.filename.size() || object) {
os << " Object \"" << trace.object_filename << "\", at " << trace.addr
<< ", in " << trace.object_function << "\n";
already_indented = false;
}
for (size_t inliner_idx = trace.inliners.size(); inliner_idx > 0;
--inliner_idx) {
if (!already_indented) {
os << " ";
}
const ResolvedTrace::SourceLoc &inliner_loc =
trace.inliners[inliner_idx - 1];
print_source_loc(os, " | ", inliner_loc);
if (snippet) {
print_snippet(os, " | ", inliner_loc, colorize, Color::purple,
inliner_context_size);
}
already_indented = false;
}
if (trace.source.filename.size()) {
if (!already_indented) {
os << " ";
}
print_source_loc(os, " ", trace.source, trace.addr);
if (snippet) {
print_snippet(os, " ", trace.source, colorize, Color::yellow,
trace_context_size);
}
}
}
void print_snippet(std::ostream &os, const char *indent,
const ResolvedTrace::SourceLoc &source_loc,
Colorize &colorize, Color::type color_code,
int context_size) {
using namespace std;
typedef SnippetFactory::lines_t lines_t;
lines_t lines = _snippets.get_snippet(source_loc.filename, source_loc.line,
static_cast<unsigned>(context_size));
for (lines_t::const_iterator it = lines.begin(); it != lines.end(); ++it) {
if (it->first == source_loc.line) {
colorize.set_color(color_code);
os << indent << ">";
} else {
os << indent << " ";
}
os << std::setw(4) << it->first << ": " << it->second << "\n";
if (it->first == source_loc.line) {
colorize.set_color(Color::reset);
}
}
}
void print_source_loc(std::ostream &os, const char *indent,
const ResolvedTrace::SourceLoc &source_loc,
void *addr = nullptr) {
os << indent << "Source \"" << source_loc.filename << "\", line "
<< source_loc.line << ", in " << source_loc.function;
if (address && addr != nullptr) {
os << " [" << addr << "]";
}
os << "\n";
}
};
/*************** SIGNALS HANDLING ***************/
#if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
class SignalHandling {
public:
static std::vector<int> make_default_signals() {
const int posix_signals[] = {
// Signals for which the default action is "Core".
SIGABRT, // Abort signal from abort(3)
SIGBUS, // Bus error (bad memory access)
SIGFPE, // Floating point exception
SIGILL, // Illegal Instruction
SIGIOT, // IOT trap. A synonym for SIGABRT
SIGQUIT, // Quit from keyboard
SIGSEGV, // Invalid memory reference
SIGSYS, // Bad argument to routine (SVr4)
SIGTRAP, // Trace/breakpoint trap
SIGXCPU, // CPU time limit exceeded (4.2BSD)
SIGXFSZ, // File size limit exceeded (4.2BSD)
#if defined(BACKWARD_SYSTEM_DARWIN)
SIGEMT, // emulation instruction executed
#endif
};
return std::vector<int>(posix_signals,
posix_signals +
sizeof posix_signals / sizeof posix_signals[0]);
}
SignalHandling(const std::vector<int> &posix_signals = make_default_signals())
: _loaded(false) {
bool success = true;
const size_t stack_size = 1024 * 1024 * 8;
_stack_content.reset(static_cast<char *>(malloc(stack_size)));
if (_stack_content) {
stack_t ss;
ss.ss_sp = _stack_content.get();
ss.ss_size = stack_size;
ss.ss_flags = 0;
if (sigaltstack(&ss, nullptr) < 0) {
success = false;
}
} else {
success = false;
}
for (size_t i = 0; i < posix_signals.size(); ++i) {
struct sigaction action;
memset(&action, 0, sizeof action);
action.sa_flags =
static_cast<int>(SA_SIGINFO | SA_ONSTACK | SA_NODEFER | SA_RESETHAND);
sigfillset(&action.sa_mask);
sigdelset(&action.sa_mask, posix_signals[i]);
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdisabled-macro-expansion"
#endif
action.sa_sigaction = &sig_handler;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
int r = sigaction(posix_signals[i], &action, nullptr);
if (r < 0)
success = false;
}
_loaded = success;
}
bool loaded() const { return _loaded; }
static void handleSignal(int, siginfo_t *info, void *_ctx) {
ucontext_t *uctx = static_cast<ucontext_t *>(_ctx);
StackTrace st;
void *error_addr = nullptr;
#ifdef REG_RIP // x86_64
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_RIP]);
#elif defined(REG_EIP) // x86_32
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_EIP]);
#elif defined(__arm__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.arm_pc);
#elif defined(__aarch64__)
#if defined(__APPLE__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__pc);
#else
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.pc);
#endif
#elif defined(__mips__)
error_addr = reinterpret_cast<void *>(
reinterpret_cast<struct sigcontext *>(&uctx->uc_mcontext)->sc_pc);
#elif defined(__ppc__) || defined(__powerpc) || defined(__powerpc__) || \
defined(__POWERPC__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.regs->nip);
#elif defined(__riscv)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.__gregs[REG_PC]);
#elif defined(__s390x__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.psw.addr);
#elif defined(__APPLE__) && defined(__x86_64__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__rip);
#elif defined(__APPLE__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__eip);
#else
#warning ":/ sorry, ain't know no nothing none not of your architecture!"
#endif
if (error_addr) {
st.load_from(error_addr, 32, reinterpret_cast<void *>(uctx),
info->si_addr);
} else {
st.load_here(32, reinterpret_cast<void *>(uctx), info->si_addr);
}
Printer printer;
printer.address = true;
printer.print(st, stderr);
#if _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
psiginfo(info, nullptr);
#else
(void)info;
#endif
}
private:
details::handle<char *> _stack_content;
bool _loaded;
#ifdef __GNUC__
__attribute__((noreturn))
#endif
static void
sig_handler(int signo, siginfo_t *info, void *_ctx) {
handleSignal(signo, info, _ctx);
// try to forward the signal.
raise(info->si_signo);
// terminate the process immediately.
puts("watf? exit");
_exit(EXIT_FAILURE);
}
};
#endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
#ifdef BACKWARD_SYSTEM_WINDOWS
class SignalHandling {
public:
SignalHandling(const std::vector<int> & = std::vector<int>())
: reporter_thread_([]() {
/* We handle crashes in a utility thread:
backward structures and some Windows functions called here
need stack space, which we do not have when we encounter a
stack overflow.
To support reporting stack traces during a stack overflow,
we create a utility thread at startup, which waits until a
crash happens or the program exits normally. */
{
std::unique_lock<std::mutex> lk(mtx());
cv().wait(lk, [] { return crashed() != crash_status::running; });
}
if (crashed() == crash_status::crashed) {
handle_stacktrace(skip_recs());
}
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::ending;
}
cv().notify_one();
}) {
SetUnhandledExceptionFilter(crash_handler);
signal(SIGABRT, signal_handler);
_set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT);
std::set_terminate(&terminator);
#ifndef BACKWARD_ATLEAST_CXX17
std::set_unexpected(&terminator);
#endif
_set_purecall_handler(&terminator);
_set_invalid_parameter_handler(&invalid_parameter_handler);
}
bool loaded() const { return true; }
~SignalHandling() {
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::normal_exit;
}
cv().notify_one();
reporter_thread_.join();
}
private:
static CONTEXT *ctx() {
static CONTEXT data;
return &data;
}
enum class crash_status { running, crashed, normal_exit, ending };
static crash_status &crashed() {
static crash_status data;
return data;
}
static std::mutex &mtx() {
static std::mutex data;
return data;
}
static std::condition_variable &cv() {
static std::condition_variable data;
return data;
}
static HANDLE &thread_handle() {
static HANDLE handle;
return handle;
}
std::thread reporter_thread_;
// TODO: how not to hardcode these?
static const constexpr int signal_skip_recs =
#ifdef __clang__
// With clang, RtlCaptureContext also captures the stack frame of the
// current function Below that, there ar 3 internal Windows functions
4
#else
// With MSVC cl, RtlCaptureContext misses the stack frame of the current
// function The first entries during StackWalk are the 3 internal Windows
// functions
3
#endif
;
static int &skip_recs() {
static int data;
return data;
}
static inline void terminator() {
crash_handler(signal_skip_recs);
abort();
}
static inline void signal_handler(int) {
crash_handler(signal_skip_recs);
abort();
}
static inline void __cdecl invalid_parameter_handler(const wchar_t *,
const wchar_t *,
const wchar_t *,
unsigned int,
uintptr_t) {
crash_handler(signal_skip_recs);
abort();
}
NOINLINE static LONG WINAPI crash_handler(EXCEPTION_POINTERS *info) {
// The exception info supplies a trace from exactly where the issue was,
// no need to skip records
crash_handler(0, info->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
}
NOINLINE static void crash_handler(int skip, CONTEXT *ct = nullptr) {
if (ct == nullptr) {
RtlCaptureContext(ctx());
} else {
memcpy(ctx(), ct, sizeof(CONTEXT));
}
DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &thread_handle(), 0, FALSE,
DUPLICATE_SAME_ACCESS);
skip_recs() = skip;
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::crashed;
}
cv().notify_one();
{
std::unique_lock<std::mutex> lk(mtx());
cv().wait(lk, [] { return crashed() != crash_status::crashed; });
}
}
static void handle_stacktrace(int skip_frames = 0) {
// printer creates the TraceResolver, which can supply us a machine type
// for stack walking. Without this, StackTrace can only guess using some
// macros.
// StackTrace also requires that the PDBs are already loaded, which is done
// in the constructor of TraceResolver
Printer printer;
StackTrace st;
st.set_machine_type(printer.resolver().machine_type());
st.set_thread_handle(thread_handle());
st.load_here(32 + skip_frames, ctx());
st.skip_n_firsts(skip_frames);
printer.address = true;
printer.print(st, std::cerr);
}
};
#endif // BACKWARD_SYSTEM_WINDOWS
#ifdef BACKWARD_SYSTEM_UNKNOWN
class SignalHandling {
public:
SignalHandling(const std::vector<int> & = std::vector<int>()) {}
bool init() { return false; }
bool loaded() { return false; }
};
#endif // BACKWARD_SYSTEM_UNKNOWN
} // namespace backward
#endif /* H_GUARD */
|