summaryrefslogtreecommitdiffstats
path: root/src/third-party/intervaltree/IntervalTree.h
blob: d631b5f6ac2ab9ebe1348a1225b8f6ac58d989bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/**
 * Origin: https://github.com/ekg/intervaltree
 */

#ifndef __INTERVAL_TREE_H
#define __INTERVAL_TREE_H

#include <algorithm>
#include <cassert>
#include <iostream>
#include <limits>
#include <memory>
#include <vector>

namespace interval_tree {

template <class Scalar, typename Value>
class Interval {
public:
    Scalar start;
    Scalar stop;
    Value value;
    Interval(const Scalar& s, const Scalar& e, const Value& v)
    : start(std::min(s, e))
    , stop(std::max(s, e))
    , value(v) 
    {}
};

template <class Scalar, typename Value>
Value intervalStart(const Interval<Scalar,Value>& i) {
    return i.start;
}

template <class Scalar, typename Value>
Value intervalStop(const Interval<Scalar, Value>& i) {
    return i.stop;
}

template <class Scalar, typename Value>
std::ostream& operator<<(std::ostream& out, const Interval<Scalar, Value>& i) {
    out << "Interval(" << i.start << ", " << i.stop << "): " << i.value;
    return out;
}

template <class Scalar, class Value>
class IntervalTree {
public:
    typedef Interval<Scalar, Value> interval;
    typedef std::vector<interval> interval_vector;


    struct IntervalStartCmp {
        bool operator()(const interval& a, const interval& b) {
            return a.start < b.start;
        }
    };

    struct IntervalStopCmp {
        bool operator()(const interval& a, const interval& b) {
            return a.stop < b.stop;
        }
    };

    IntervalTree()
        : left(nullptr)
        , right(nullptr)
        , center(0)
    {}

    ~IntervalTree() = default;

    std::unique_ptr<IntervalTree> clone() const {
        return std::unique_ptr<IntervalTree>(new IntervalTree(*this));
    }

    IntervalTree(const IntervalTree& other)
    :   intervals(other.intervals),
        left(other.left ? other.left->clone() : nullptr),
        right(other.right ? other.right->clone() : nullptr),
        center(other.center)
    {}

    IntervalTree& operator=(IntervalTree&&) = default;
    IntervalTree(IntervalTree&&) = default;

    IntervalTree& operator=(const IntervalTree& other) {
        center = other.center;
        intervals = other.intervals;
        left = other.left ? other.left->clone() : nullptr;
        right = other.right ? other.right->clone() : nullptr;
        return *this;
    }

    IntervalTree(
            interval_vector&& ivals,
            std::size_t depth = 16,
            std::size_t minbucket = 64,
            std::size_t maxbucket = 512, 
            Scalar leftextent = 0,
            Scalar rightextent = 0)
      : left(nullptr)
      , right(nullptr)
    {
        --depth;
        const auto minmaxStop = std::minmax_element(ivals.begin(), ivals.end(), 
                                                    IntervalStopCmp());
        const auto minmaxStart = std::minmax_element(ivals.begin(), ivals.end(), 
                                                     IntervalStartCmp());
        if (!ivals.empty()) {
            center = (minmaxStart.first->start + minmaxStop.second->stop) / 2;
        }
        if (leftextent == 0 && rightextent == 0) {
            // sort intervals by start
            std::sort(ivals.begin(), ivals.end(), IntervalStartCmp());
        } else {
            assert(std::is_sorted(ivals.begin(), ivals.end(), IntervalStartCmp()));
        }
        if (depth == 0 || (ivals.size() < minbucket && ivals.size() < maxbucket)) {
            std::sort(ivals.begin(), ivals.end(), IntervalStartCmp());
            intervals = std::move(ivals);
            assert(is_valid().first);
            return;
        } else {
            Scalar leftp = 0;
            Scalar rightp = 0;

            if (leftextent || rightextent) {
                leftp = leftextent;
                rightp = rightextent;
            } else {
                leftp = ivals.front().start;
                rightp = std::max_element(ivals.begin(), ivals.end(),
                                          IntervalStopCmp())->stop;
            }

            interval_vector lefts;
            interval_vector rights;

            for (typename interval_vector::const_iterator i = ivals.begin(); 
                 i != ivals.end(); ++i) {
                const interval& interval = *i;
                if (interval.stop < center) {
                    lefts.push_back(interval);
                } else if (interval.start > center) {
                    rights.push_back(interval);
                } else {
                    assert(interval.start <= center);
                    assert(center <= interval.stop);
                    intervals.push_back(interval);
                }
            }

            if (!lefts.empty()) {
                left.reset(new IntervalTree(std::move(lefts), 
                                            depth, minbucket, maxbucket,
                                            leftp, center));
            }
            if (!rights.empty()) {
                right.reset(new IntervalTree(std::move(rights), 
                                             depth, minbucket, maxbucket, 
                                             center, rightp));
            }
        }
        assert(is_valid().first);
    }

    // Call f on all intervals near the range [start, stop]:
    template <class UnaryFunction>
    void visit_near(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
        if (!intervals.empty() && ! (stop < intervals.front().start)) {
            for (auto & i : intervals) {
              f(i);
            }
        }
        if (left && start <= center) {
            left->visit_near(start, stop, f);
        }
        if (right && stop >= center) {
            right->visit_near(start, stop, f);
        }
    }

    // Call f on all intervals crossing pos
    template <class UnaryFunction>
    void visit_overlapping(const Scalar& pos, UnaryFunction f) const {
        visit_overlapping(pos, pos, f);
    }

    // Call f on all intervals overlapping [start, stop]
    template <class UnaryFunction>
    void visit_overlapping(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
        auto filterF = [&](const interval& interval) {
            if (interval.stop >= start && interval.start <= stop) {
                // Only apply f if overlapping
                f(interval);
            }
        };
        visit_near(start, stop, filterF);
    }

    // Call f on all intervals contained within [start, stop]
    template <class UnaryFunction>
    void visit_contained(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
        auto filterF = [&](const interval& interval) {
            if (start <= interval.start && interval.stop <= stop) {
                f(interval);
            }
        };
        visit_near(start, stop, filterF);
    }

    interval_vector findOverlapping(const Scalar& start, const Scalar& stop) const {
        interval_vector result;
        visit_overlapping(start, stop,
                          [&](const interval& interval) { 
                            result.emplace_back(interval); 
                          });
        return result;
    }

    interval_vector findContained(const Scalar& start, const Scalar& stop) const {
        interval_vector result;
        visit_contained(start, stop,
                        [&](const interval& interval) { 
                          result.push_back(interval); 
                        });
        return result;
    }
    bool empty() const {
        if (left && !left->empty()) {
            return false;
        }
        if (!intervals.empty()) { 
            return false;
        }
        if (right && !right->empty()) {
            return false;
        }
        return true;
    }

    template <class UnaryFunction>
    void visit_all(UnaryFunction f) const {
        if (left) {
            left->visit_all(f);
        }
        std::for_each(intervals.begin(), intervals.end(), f);
        if (right) {
            right->visit_all(f);
        }
    }

    std::pair<Scalar, Scalar> extentBruitForce() const {
        struct Extent {
            std::pair<Scalar, Scalar> x = {std::numeric_limits<Scalar>::max(),
                                                       std::numeric_limits<Scalar>::min() };
            void operator()(const interval & interval) {
                x.first  = std::min(x.first,  interval.start);
                x.second = std::max(x.second, interval.stop);
            }
                                                                };
                                            Extent extent;

        visit_all([&](const interval & interval) { extent(interval); });
        return extent.x;
                                            }

    // Check all constraints.
    // If first is false, second is invalid.
    std::pair<bool, std::pair<Scalar, Scalar>> is_valid() const {
        const auto minmaxStop = std::minmax_element(intervals.begin(), intervals.end(), 
                                                    IntervalStopCmp());
        const auto minmaxStart = std::minmax_element(intervals.begin(), intervals.end(), 
                                                     IntervalStartCmp());
        
        std::pair<bool, std::pair<Scalar, Scalar>> result = {true, { std::numeric_limits<Scalar>::max(),
                                                                     std::numeric_limits<Scalar>::min() }};
        if (!intervals.empty()) {
            result.second.first   = std::min(result.second.first,  minmaxStart.first->start);
            result.second.second  = std::min(result.second.second, minmaxStop.second->stop);
        }
        if (left) {
            auto valid = left->is_valid();
            result.first &= valid.first;
            result.second.first   = std::min(result.second.first,  valid.second.first);
            result.second.second  = std::min(result.second.second, valid.second.second);
            if (!result.first) { return result; }
            if (valid.second.second >= center) {
                result.first = false;
                return result;
            }
        }
        if (right) {
            auto valid = right->is_valid();
            result.first &= valid.first;
            result.second.first   = std::min(result.second.first,  valid.second.first);
            result.second.second  = std::min(result.second.second, valid.second.second);
            if (!result.first) { return result; }
            if (valid.second.first <= center) { 
                result.first = false;
                return result;
            }
        }
        if (!std::is_sorted(intervals.begin(), intervals.end(), IntervalStartCmp())) {
            result.first = false;
        }
        return result;        
    }

    friend std::ostream& operator<<(std::ostream& os, const IntervalTree& itree) {
        return writeOut(os, itree);
    }

    friend std::ostream& writeOut(std::ostream& os, const IntervalTree& itree, 
                                  std::size_t depth = 0) {
        auto pad = [&]() { for (std::size_t i = 0; i != depth; ++i) { os << ' '; } };
        pad(); os << "center: " << itree.center << '\n';
        for (const interval & inter : itree.intervals) {
            pad(); os << inter << '\n';
        }
        if (itree.left) {
            pad(); os << "left:\n";
            writeOut(os, *itree.left, depth + 1);
        } else {
            pad(); os << "left: nullptr\n";
        }
        if (itree.right) {
            pad(); os << "right:\n";
            writeOut(os, *itree.right, depth + 1);
        } else {
            pad(); os << "right: nullptr\n";
        }
        return os;
    }

private:
    interval_vector intervals;
    std::unique_ptr<IntervalTree> left;
    std::unique_ptr<IntervalTree> right;
    Scalar center;
};

}

#endif