summaryrefslogtreecommitdiffstats
path: root/src/third-party/robin_hood/robin_hood.h
blob: 0af031f5f4a9fbacdf63689296f7ed847f83fa92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
//                 ______  _____                 ______                _________
//  ______________ ___  /_ ___(_)_______         ___  /_ ______ ______ ______  /
//  __  ___/_  __ \__  __ \__  / __  __ \        __  __ \_  __ \_  __ \_  __  /
//  _  /    / /_/ /_  /_/ /_  /  _  / / /        _  / / // /_/ // /_/ // /_/ /
//  /_/     \____/ /_.___/ /_/   /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
//                                      _/_____/
//
// Fast & memory efficient hashtable based on robin hood hashing for C++11/14/17/20
// https://github.com/martinus/robin-hood-hashing
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2021 Martin Ankerl <http://martin.ankerl.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef ROBIN_HOOD_H_INCLUDED
#define ROBIN_HOOD_H_INCLUDED

// see https://semver.org/
#define ROBIN_HOOD_VERSION_MAJOR 3  // for incompatible API changes
#define ROBIN_HOOD_VERSION_MINOR 11 // for adding functionality in a backwards-compatible manner
#define ROBIN_HOOD_VERSION_PATCH 5  // for backwards-compatible bug fixes

#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <limits>
#include <memory> // only to support hash of smart pointers
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#if __cplusplus >= 201703L
#    include <string_view>
#endif

// #define ROBIN_HOOD_LOG_ENABLED
#ifdef ROBIN_HOOD_LOG_ENABLED
#    include <iostream>
#    define ROBIN_HOOD_LOG(...) \
        std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
#else
#    define ROBIN_HOOD_LOG(x)
#endif

// #define ROBIN_HOOD_TRACE_ENABLED
#ifdef ROBIN_HOOD_TRACE_ENABLED
#    include <iostream>
#    define ROBIN_HOOD_TRACE(...) \
        std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
#else
#    define ROBIN_HOOD_TRACE(x)
#endif

// #define ROBIN_HOOD_COUNT_ENABLED
#ifdef ROBIN_HOOD_COUNT_ENABLED
#    include <iostream>
#    define ROBIN_HOOD_COUNT(x) ++counts().x;
namespace robin_hood {
struct Counts {
    uint64_t shiftUp{};
    uint64_t shiftDown{};
};
inline std::ostream& operator<<(std::ostream& os, Counts const& c) {
    return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl;
}

static Counts& counts() {
    static Counts counts{};
    return counts;
}
} // namespace robin_hood
#else
#    define ROBIN_HOOD_COUNT(x)
#endif

// all non-argument macros should use this facility. See
// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/
#define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x()

// mark unused members with this macro
#define ROBIN_HOOD_UNUSED(identifier)

// bitness
#if SIZE_MAX == UINT32_MAX
#    define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32
#elif SIZE_MAX == UINT64_MAX
#    define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64
#else
#    error Unsupported bitness
#endif

// endianess
#ifdef _MSC_VER
#    define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1
#    define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \
        (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#    define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#endif

// inline
#ifdef _MSC_VER
#    define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline)
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline))
#endif

// exceptions
#if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND)
#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1
#endif

// count leading/trailing bits
#if !defined(ROBIN_HOOD_DISABLE_INTRINSICS)
#    ifdef _MSC_VER
#        if ROBIN_HOOD(BITNESS) == 32
#            define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward
#        else
#            define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64
#        endif
#        include <intrin.h>
#        pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD))
#        define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x)                                       \
            [](size_t mask) noexcept -> int {                                             \
                unsigned long index;                                                      \
                return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \
                                                                : ROBIN_HOOD(BITNESS);    \
            }(x)
#    else
#        if ROBIN_HOOD(BITNESS) == 32
#            define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl
#            define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl
#        else
#            define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll
#            define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll
#        endif
#        define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS))
#        define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
#    endif
#endif

// fallthrough
#ifndef __has_cpp_attribute // For backwards compatibility
#    define __has_cpp_attribute(x) 0
#endif
#if __has_cpp_attribute(clang::fallthrough)
#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]]
#elif __has_cpp_attribute(gnu::fallthrough)
#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]]
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH()
#endif

// likely/unlikely
#ifdef _MSC_VER
#    define ROBIN_HOOD_LIKELY(condition) condition
#    define ROBIN_HOOD_UNLIKELY(condition) condition
#else
#    define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1)
#    define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0)
#endif

// detect if native wchar_t type is availiable in MSVC
#ifdef _MSC_VER
#    ifdef _NATIVE_WCHAR_T_DEFINED
#        define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
#    else
#        define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0
#    endif
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
#endif

// detect if MSVC supports the pair(std::piecewise_construct_t,...) consructor being constexpr
#ifdef _MSC_VER
#    if _MSC_VER <= 1900
#        define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 1
#    else
#        define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0
#    endif
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0
#endif

// workaround missing "is_trivially_copyable" in g++ < 5.0
// See https://stackoverflow.com/a/31798726/48181
#if defined(__GNUC__) && __GNUC__ < 5
#    define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
#else
#    define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
#endif

// helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L

#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
#    define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]]
#else
#    define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD()
#endif

namespace robin_hood {

#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
#    define ROBIN_HOOD_STD std
#else

// c++11 compatibility layer
namespace ROBIN_HOOD_STD {
template <class T>
struct alignment_of
    : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {};

template <class T, T... Ints>
class integer_sequence {
public:
    using value_type = T;
    static_assert(std::is_integral<value_type>::value, "not integral type");
    static constexpr std::size_t size() noexcept {
        return sizeof...(Ints);
    }
};
template <std::size_t... Inds>
using index_sequence = integer_sequence<std::size_t, Inds...>;

namespace detail_ {
template <class T, T Begin, T End, bool>
struct IntSeqImpl {
    using TValue = T;
    static_assert(std::is_integral<TValue>::value, "not integral type");
    static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)");

    template <class, class>
    struct IntSeqCombiner;

    template <TValue... Inds0, TValue... Inds1>
    struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> {
        using TResult = integer_sequence<TValue, Inds0..., Inds1...>;
    };

    using TResult =
        typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2,
                                                    (End - Begin) / 2 == 1>::TResult,
                                typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End,
                                                    (End - Begin + 1) / 2 == 1>::TResult>::TResult;
};

template <class T, T Begin>
struct IntSeqImpl<T, Begin, Begin, false> {
    using TValue = T;
    static_assert(std::is_integral<TValue>::value, "not integral type");
    static_assert(Begin >= 0, "unexpected argument (Begin<0)");
    using TResult = integer_sequence<TValue>;
};

template <class T, T Begin, T End>
struct IntSeqImpl<T, Begin, End, true> {
    using TValue = T;
    static_assert(std::is_integral<TValue>::value, "not integral type");
    static_assert(Begin >= 0, "unexpected argument (Begin<0)");
    using TResult = integer_sequence<TValue, Begin>;
};
} // namespace detail_

template <class T, T N>
using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult;

template <std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;

template <class... T>
using index_sequence_for = make_index_sequence<sizeof...(T)>;

} // namespace ROBIN_HOOD_STD

#endif

namespace detail {

// make sure we static_cast to the correct type for hash_int
#if ROBIN_HOOD(BITNESS) == 64
using SizeT = uint64_t;
#else
using SizeT = uint32_t;
#endif

template <typename T>
T rotr(T x, unsigned k) {
    return (x >> k) | (x << (8U * sizeof(T) - k));
}

// This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to
// 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with
// care!
template <typename T>
inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept {
    return reinterpret_cast<T>(ptr);
}

template <typename T>
inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept {
    return reinterpret_cast<T>(ptr);
}

// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
// inlinings more difficult. Throws are also generally the slow path.
template <typename E, typename... Args>
[[noreturn]] ROBIN_HOOD(NOINLINE)
#if ROBIN_HOOD(HAS_EXCEPTIONS)
    void doThrow(Args&&... args) {
    // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay)
    throw E(std::forward<Args>(args)...);
}
#else
    void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) {
    abort();
}
#endif

template <typename E, typename T, typename... Args>
T* assertNotNull(T* t, Args&&... args) {
    if (ROBIN_HOOD_UNLIKELY(nullptr == t)) {
        doThrow<E>(std::forward<Args>(args)...);
    }
    return t;
}

template <typename T>
inline T unaligned_load(void const* ptr) noexcept {
    // using memcpy so we don't get into unaligned load problems.
    // compiler should optimize this very well anyways.
    T t;
    std::memcpy(&t, ptr, sizeof(T));
    return t;
}

// Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
// and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
// pointer.
template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
class BulkPoolAllocator {
public:
    BulkPoolAllocator() noexcept = default;

    // does not copy anything, just creates a new allocator.
    BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
        : mHead(nullptr)
        , mListForFree(nullptr) {}

    BulkPoolAllocator(BulkPoolAllocator&& o) noexcept
        : mHead(o.mHead)
        , mListForFree(o.mListForFree) {
        o.mListForFree = nullptr;
        o.mHead = nullptr;
    }

    BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept {
        reset();
        mHead = o.mHead;
        mListForFree = o.mListForFree;
        o.mListForFree = nullptr;
        o.mHead = nullptr;
        return *this;
    }

    BulkPoolAllocator&
    // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
    operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept {
        // does not do anything
        return *this;
    }

    ~BulkPoolAllocator() noexcept {
        reset();
    }

    // Deallocates all allocated memory.
    void reset() noexcept {
        while (mListForFree) {
            T* tmp = *mListForFree;
            ROBIN_HOOD_LOG("std::free")
            std::free(mListForFree);
            mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp);
        }
        mHead = nullptr;
    }

    // allocates, but does NOT initialize. Use in-place new constructor, e.g.
    //   T* obj = pool.allocate();
    //   ::new (static_cast<void*>(obj)) T();
    T* allocate() {
        T* tmp = mHead;
        if (!tmp) {
            tmp = performAllocation();
        }

        mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp);
        return tmp;
    }

    // does not actually deallocate but puts it in store.
    // make sure you have already called the destructor! e.g. with
    //  obj->~T();
    //  pool.deallocate(obj);
    void deallocate(T* obj) noexcept {
        *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead;
        mHead = obj;
    }

    // Adds an already allocated block of memory to the allocator. This allocator is from now on
    // responsible for freeing the data (with free()). If the provided data is not large enough to
    // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
    void addOrFree(void* ptr, const size_t numBytes) noexcept {
        // calculate number of available elements in ptr
        if (numBytes < ALIGNMENT + ALIGNED_SIZE) {
            // not enough data for at least one element. Free and return.
            ROBIN_HOOD_LOG("std::free")
            std::free(ptr);
        } else {
            ROBIN_HOOD_LOG("add to buffer")
            add(ptr, numBytes);
        }
    }

    void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept {
        using std::swap;
        swap(mHead, other.mHead);
        swap(mListForFree, other.mListForFree);
    }

private:
    // iterates the list of allocated memory to calculate how many to alloc next.
    // Recalculating this each time saves us a size_t member.
    // This ignores the fact that memory blocks might have been added manually with addOrFree. In
    // practice, this should not matter much.
    ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept {
        auto tmp = mListForFree;
        size_t numAllocs = MinNumAllocs;

        while (numAllocs * 2 <= MaxNumAllocs && tmp) {
            auto x = reinterpret_cast<T***>(tmp);
            tmp = *x;
            numAllocs *= 2;
        }

        return numAllocs;
    }

    // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
    void add(void* ptr, const size_t numBytes) noexcept {
        const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;

        auto data = reinterpret_cast<T**>(ptr);

        // link free list
        auto x = reinterpret_cast<T***>(data);
        *x = mListForFree;
        mListForFree = data;

        // create linked list for newly allocated data
        auto* const headT =
            reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);

        auto* const head = reinterpret_cast<char*>(headT);

        // Visual Studio compiler automatically unrolls this loop, which is pretty cool
        for (size_t i = 0; i < numElements; ++i) {
            *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) =
                head + (i + 1) * ALIGNED_SIZE;
        }

        // last one points to 0
        *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) =
            mHead;
        mHead = headT;
    }

    // Called when no memory is available (mHead == 0).
    // Don't inline this slow path.
    ROBIN_HOOD(NOINLINE) T* performAllocation() {
        size_t const numElementsToAlloc = calcNumElementsToAlloc();

        // alloc new memory: [prev |T, T, ... T]
        size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
        ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE
                                      << " * " << numElementsToAlloc)
        add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes);
        return mHead;
    }

    // enforce byte alignment of the T's
#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
    static constexpr size_t ALIGNMENT =
        (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
#else
    static const size_t ALIGNMENT =
        (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value)
            ? ROBIN_HOOD_STD::alignment_of<T>::value
            : +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround
#endif

    static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;

    static_assert(MinNumAllocs >= 1, "MinNumAllocs");
    static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
    static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
    static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
    static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");

    T* mHead{nullptr};
    T** mListForFree{nullptr};
};

template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat>
struct NodeAllocator;

// dummy allocator that does nothing
template <typename T, size_t MinSize, size_t MaxSize>
struct NodeAllocator<T, MinSize, MaxSize, true> {

    // we are not using the data, so just free it.
    void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept {
        ROBIN_HOOD_LOG("std::free")
        std::free(ptr);
    }
};

template <typename T, size_t MinSize, size_t MaxSize>
struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {};

// c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making
// my own here.
namespace swappable {
#if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17)
using std::swap;
template <typename T>
struct nothrow {
    static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>()));
};
#else
template <typename T>
struct nothrow {
    static const bool value = std::is_nothrow_swappable<T>::value;
};
#endif
} // namespace swappable

} // namespace detail

struct is_transparent_tag {};

// A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
// which means it would  not be allowed to be used in std::memcpy. This struct is copyable, which is
// also tested.
template <typename T1, typename T2>
struct pair {
    using first_type = T1;
    using second_type = T2;

    template <typename U1 = T1, typename U2 = T2,
              typename = typename std::enable_if<std::is_default_constructible<U1>::value &&
                                                 std::is_default_constructible<U2>::value>::type>
    constexpr pair() noexcept(noexcept(U1()) && noexcept(U2()))
        : first()
        , second() {}

    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
    explicit constexpr pair(std::pair<T1, T2> const& o) noexcept(
        noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>())))
        : first(o.first)
        , second(o.second) {}

    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
    explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(noexcept(
        T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
        : first(std::move(o.first))
        , second(std::move(o.second)) {}

    constexpr pair(T1&& a, T2&& b) noexcept(noexcept(
        T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
        : first(std::move(a))
        , second(std::move(b)) {}

    template <typename U1, typename U2>
    constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>(
        std::declval<U1&&>()))) && noexcept(T2(std::forward<U2>(std::declval<U2&&>()))))
        : first(std::forward<U1>(a))
        , second(std::forward<U2>(b)) {}

    template <typename... U1, typename... U2>
    // MSVC 2015 produces error "C2476: ‘constexpr’ constructor does not initialize all members"
    // if this constructor is constexpr
#if !ROBIN_HOOD(BROKEN_CONSTEXPR)
    constexpr
#endif
        pair(std::piecewise_construct_t /*unused*/, std::tuple<U1...> a,
             std::tuple<U2...>
                 b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(),
                                           std::declval<std::tuple<U2...>&>(),
                                           ROBIN_HOOD_STD::index_sequence_for<U1...>(),
                                           ROBIN_HOOD_STD::index_sequence_for<U2...>())))
        : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(),
               ROBIN_HOOD_STD::index_sequence_for<U2...>()) {
    }

    // constructor called from the std::piecewise_construct_t ctor
    template <typename... U1, size_t... I1, typename... U2, size_t... I2>
    pair(std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/, ROBIN_HOOD_STD::index_sequence<I2...> /*unused*/) noexcept(
        noexcept(T1(std::forward<U1>(std::get<I1>(
            std::declval<std::tuple<
                U1...>&>()))...)) && noexcept(T2(std::
                                                     forward<U2>(std::get<I2>(
                                                         std::declval<std::tuple<U2...>&>()))...)))
        : first(std::forward<U1>(std::get<I1>(a))...)
        , second(std::forward<U2>(std::get<I2>(b))...) {
        // make visual studio compiler happy about warning about unused a & b.
        // Visual studio's pair implementation disables warning 4100.
        (void)a;
        (void)b;
    }

    void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) &&
                                        (detail::swappable::nothrow<T2>::value)) {
        using std::swap;
        swap(first, o.first);
        swap(second, o.second);
    }

    T1 first;  // NOLINT(misc-non-private-member-variables-in-classes)
    T2 second; // NOLINT(misc-non-private-member-variables-in-classes)
};

template <typename A, typename B>
inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept(
    noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) {
    a.swap(b);
}

template <typename A, typename B>
inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y) {
    return (x.first == y.first) && (x.second == y.second);
}
template <typename A, typename B>
inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y) {
    return !(x == y);
}
template <typename A, typename B>
inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(noexcept(
    std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() <
                                                                     std::declval<B const&>())) {
    return x.first < y.first || (!(y.first < x.first) && x.second < y.second);
}
template <typename A, typename B>
inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y) {
    return y < x;
}
template <typename A, typename B>
inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y) {
    return !(x > y);
}
template <typename A, typename B>
inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y) {
    return !(x < y);
}

inline size_t hash_bytes(void const* ptr, size_t len) noexcept {
    static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
    static constexpr uint64_t seed = UINT64_C(0xe17a1465);
    static constexpr unsigned int r = 47;

    auto const* const data64 = static_cast<uint64_t const*>(ptr);
    uint64_t h = seed ^ (len * m);

    size_t const n_blocks = len / 8;
    for (size_t i = 0; i < n_blocks; ++i) {
        auto k = detail::unaligned_load<uint64_t>(data64 + i);

        k *= m;
        k ^= k >> r;
        k *= m;

        h ^= k;
        h *= m;
    }

    auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
    switch (len & 7U) {
    case 7:
        h ^= static_cast<uint64_t>(data8[6]) << 48U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 6:
        h ^= static_cast<uint64_t>(data8[5]) << 40U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 5:
        h ^= static_cast<uint64_t>(data8[4]) << 32U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 4:
        h ^= static_cast<uint64_t>(data8[3]) << 24U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 3:
        h ^= static_cast<uint64_t>(data8[2]) << 16U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 2:
        h ^= static_cast<uint64_t>(data8[1]) << 8U;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    case 1:
        h ^= static_cast<uint64_t>(data8[0]);
        h *= m;
        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
    default:
        break;
    }

    h ^= h >> r;

    // not doing the final step here, because this will be done by keyToIdx anyways
    // h *= m;
    // h ^= h >> r;
    return static_cast<size_t>(h);
}

inline size_t hash_int(uint64_t x) noexcept {
    // tried lots of different hashes, let's stick with murmurhash3. It's simple, fast, well tested,
    // and doesn't need any special 128bit operations.
    x ^= x >> 33U;
    x *= UINT64_C(0xff51afd7ed558ccd);
    x ^= x >> 33U;

    // not doing the final step here, because this will be done by keyToIdx anyways
    // x *= UINT64_C(0xc4ceb9fe1a85ec53);
    // x ^= x >> 33U;
    return static_cast<size_t>(x);
}

// A thin wrapper around std::hash, performing an additional simple mixing step of the result.
template <typename T, typename Enable = void>
struct hash : public std::hash<T> {
    size_t operator()(T const& obj) const
        noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) {
        // call base hash
        auto result = std::hash<T>::operator()(obj);
        // return mixed of that, to be save against identity has
        return hash_int(static_cast<detail::SizeT>(result));
    }
};

template <typename CharT>
struct hash<std::basic_string<CharT>> {
    size_t operator()(std::basic_string<CharT> const& str) const noexcept {
        return hash_bytes(str.data(), sizeof(CharT) * str.size());
    }
};

#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
template <typename CharT>
struct hash<std::basic_string_view<CharT>> {
    size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept {
        return hash_bytes(sv.data(), sizeof(CharT) * sv.size());
    }
};
#endif

template <class T>
struct hash<T*> {
    size_t operator()(T* ptr) const noexcept {
        return hash_int(reinterpret_cast<detail::SizeT>(ptr));
    }
};

template <class T>
struct hash<std::unique_ptr<T>> {
    size_t operator()(std::unique_ptr<T> const& ptr) const noexcept {
        return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
    }
};

template <class T>
struct hash<std::shared_ptr<T>> {
    size_t operator()(std::shared_ptr<T> const& ptr) const noexcept {
        return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
    }
};

template <typename Enum>
struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
    size_t operator()(Enum e) const noexcept {
        using Underlying = typename std::underlying_type<Enum>::type;
        return hash<Underlying>{}(static_cast<Underlying>(e));
    }
};

#define ROBIN_HOOD_HASH_INT(T)                           \
    template <>                                          \
    struct hash<T> {                                     \
        size_t operator()(T const& obj) const noexcept { \
            return hash_int(static_cast<uint64_t>(obj)); \
        }                                                \
    }

#if defined(__GNUC__) && !defined(__clang__)
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wuseless-cast"
#endif
// see https://en.cppreference.com/w/cpp/utility/hash
ROBIN_HOOD_HASH_INT(bool);
ROBIN_HOOD_HASH_INT(char);
ROBIN_HOOD_HASH_INT(signed char);
ROBIN_HOOD_HASH_INT(unsigned char);
ROBIN_HOOD_HASH_INT(char16_t);
ROBIN_HOOD_HASH_INT(char32_t);
#if ROBIN_HOOD(HAS_NATIVE_WCHART)
ROBIN_HOOD_HASH_INT(wchar_t);
#endif
ROBIN_HOOD_HASH_INT(short);
ROBIN_HOOD_HASH_INT(unsigned short);
ROBIN_HOOD_HASH_INT(int);
ROBIN_HOOD_HASH_INT(unsigned int);
ROBIN_HOOD_HASH_INT(long);
ROBIN_HOOD_HASH_INT(long long);
ROBIN_HOOD_HASH_INT(unsigned long);
ROBIN_HOOD_HASH_INT(unsigned long long);
#if defined(__GNUC__) && !defined(__clang__)
#    pragma GCC diagnostic pop
#endif
namespace detail {

template <typename T>
struct void_type {
    using type = void;
};

template <typename T, typename = void>
struct has_is_transparent : public std::false_type {};

template <typename T>
struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type>
    : public std::true_type {};

// using wrapper classes for hash and key_equal prevents the diamond problem when the same type
// is used. see https://stackoverflow.com/a/28771920/48181
template <typename T>
struct WrapHash : public T {
    WrapHash() = default;
    explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
        : T(o) {}
};

template <typename T>
struct WrapKeyEqual : public T {
    WrapKeyEqual() = default;
    explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
        : T(o) {}
};

// A highly optimized hashmap implementation, using the Robin Hood algorithm.
//
// In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but
// be about 2x faster in most cases and require much less allocations.
//
// This implementation uses the following memory layout:
//
// [Node, Node, ... Node | info, info, ... infoSentinel ]
//
// * Node: either a DataNode that directly has the std::pair<key, val> as member,
//   or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
//   depends on how fast the swap() operation is. Heuristically, this is automatically choosen
//   based on sizeof(). there are always 2^n Nodes.
//
// * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
//   Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
//   corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
//   actually belongs to the previous position and was pushed out because that place is already
//   taken.
//
// * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the
//   need for a idx variable.
//
// According to STL, order of templates has effect on throughput. That's why I've moved the
// boolean to the front.
// https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash,
          typename KeyEqual>
class Table
    : public WrapHash<Hash>,
      public WrapKeyEqual<KeyEqual>,
      detail::NodeAllocator<
          typename std::conditional<
              std::is_void<T>::value, Key,
              robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type,
          4, 16384, IsFlat> {
public:
    static constexpr bool is_flat = IsFlat;
    static constexpr bool is_map = !std::is_void<T>::value;
    static constexpr bool is_set = !is_map;
    static constexpr bool is_transparent =
        has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value;

    using key_type = Key;
    using mapped_type = T;
    using value_type = typename std::conditional<
        is_set, Key,
        robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type;
    using size_type = size_t;
    using hasher = Hash;
    using key_equal = KeyEqual;
    using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;

private:
    static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100,
                  "MaxLoadFactor100 needs to be >10 && < 100");

    using WHash = WrapHash<Hash>;
    using WKeyEqual = WrapKeyEqual<KeyEqual>;

    // configuration defaults

    // make sure we have 8 elements, needed to quickly rehash mInfo
    static constexpr size_t InitialNumElements = sizeof(uint64_t);
    static constexpr uint32_t InitialInfoNumBits = 5;
    static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits;
    static constexpr size_t InfoMask = InitialInfoInc - 1U;
    static constexpr uint8_t InitialInfoHashShift = 0;
    using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>;

    // type needs to be wider than uint8_t.
    using InfoType = uint32_t;

    // DataNode ////////////////////////////////////////////////////////

    // Primary template for the data node. We have special implementations for small and big
    // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these
    // on the heap so swap merely swaps a pointer.
    template <typename M, bool>
    class DataNode {};

    // Small: just allocate on the stack.
    template <typename M>
    class DataNode<M, true> final {
    public:
        template <typename... Args>
        explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept(
            noexcept(value_type(std::forward<Args>(args)...)))
            : mData(std::forward<Args>(args)...) {}

        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept(
            std::is_nothrow_move_constructible<value_type>::value)
            : mData(std::move(n.mData)) {}

        // doesn't do anything
        void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {}
        void destroyDoNotDeallocate() noexcept {}

        value_type const* operator->() const noexcept {
            return &mData;
        }
        value_type* operator->() noexcept {
            return &mData;
        }

        const value_type& operator*() const noexcept {
            return mData;
        }

        value_type& operator*() noexcept {
            return mData;
        }

        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
            return mData.first;
        }
        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
            return mData;
        }

        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, typename VT::first_type const&>::type
            getFirst() const noexcept {
            return mData.first;
        }
        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
            return mData;
        }

        template <typename MT = mapped_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
            return mData.second;
        }

        template <typename MT = mapped_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept {
            return mData.second;
        }

        void swap(DataNode<M, true>& o) noexcept(
            noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) {
            mData.swap(o.mData);
        }

    private:
        value_type mData;
    };

    // big object: allocate on heap.
    template <typename M>
    class DataNode<M, false> {
    public:
        template <typename... Args>
        explicit DataNode(M& map, Args&&... args)
            : mData(map.allocate()) {
            ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
        }

        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept
            : mData(std::move(n.mData)) {}

        void destroy(M& map) noexcept {
            // don't deallocate, just put it into list of datapool.
            mData->~value_type();
            map.deallocate(mData);
        }

        void destroyDoNotDeallocate() noexcept {
            mData->~value_type();
        }

        value_type const* operator->() const noexcept {
            return mData;
        }

        value_type* operator->() noexcept {
            return mData;
        }

        const value_type& operator*() const {
            return *mData;
        }

        value_type& operator*() {
            return *mData;
        }

        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
            return mData->first;
        }
        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
            return *mData;
        }

        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, typename VT::first_type const&>::type
            getFirst() const noexcept {
            return mData->first;
        }
        template <typename VT = value_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
            return *mData;
        }

        template <typename MT = mapped_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
            return mData->second;
        }

        template <typename MT = mapped_type>
        ROBIN_HOOD(NODISCARD)
        typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept {
            return mData->second;
        }

        void swap(DataNode<M, false>& o) noexcept {
            using std::swap;
            swap(mData, o.mData);
        }

    private:
        value_type* mData;
    };

    using Node = DataNode<Self, IsFlat>;

    // helpers for insertKeyPrepareEmptySpot: extract first entry (only const required)
    ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept {
        return n.getFirst();
    }

    // in case we have void mapped_type, we are not using a pair, thus we just route k through.
    // No need to disable this because it's just not used if not applicable.
    ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept {
        return k;
    }

    // in case we have non-void mapped_type, we have a standard robin_hood::pair
    template <typename Q = mapped_type>
    ROBIN_HOOD(NODISCARD)
    typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type
        getFirstConst(value_type const& vt) const noexcept {
        return vt.first;
    }

    // Cloner //////////////////////////////////////////////////////////

    template <typename M, bool UseMemcpy>
    struct Cloner;

    // fast path: Just copy data, without allocating anything.
    template <typename M>
    struct Cloner<M, true> {
        void operator()(M const& source, M& target) const {
            auto const* const src = reinterpret_cast<char const*>(source.mKeyVals);
            auto* tgt = reinterpret_cast<char*>(target.mKeyVals);
            auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1);
            std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt);
        }
    };

    template <typename M>
    struct Cloner<M, false> {
        void operator()(M const& s, M& t) const {
            auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1);
            std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo);

            for (size_t i = 0; i < numElementsWithBuffer; ++i) {
                if (t.mInfo[i]) {
                    ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]);
                }
            }
        }
    };

    // Destroyer ///////////////////////////////////////////////////////

    template <typename M, bool IsFlatAndTrivial>
    struct Destroyer {};

    template <typename M>
    struct Destroyer<M, true> {
        void nodes(M& m) const noexcept {
            m.mNumElements = 0;
        }

        void nodesDoNotDeallocate(M& m) const noexcept {
            m.mNumElements = 0;
        }
    };

    template <typename M>
    struct Destroyer<M, false> {
        void nodes(M& m) const noexcept {
            m.mNumElements = 0;
            // clear also resets mInfo to 0, that's sometimes not necessary.
            auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);

            for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
                if (0 != m.mInfo[idx]) {
                    Node& n = m.mKeyVals[idx];
                    n.destroy(m);
                    n.~Node();
                }
            }
        }

        void nodesDoNotDeallocate(M& m) const noexcept {
            m.mNumElements = 0;
            // clear also resets mInfo to 0, that's sometimes not necessary.
            auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
            for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
                if (0 != m.mInfo[idx]) {
                    Node& n = m.mKeyVals[idx];
                    n.destroyDoNotDeallocate();
                    n.~Node();
                }
            }
        }
    };

    // Iter ////////////////////////////////////////////////////////////

    struct fast_forward_tag {};

    // generic iterator for both const_iterator and iterator.
    template <bool IsConst>
    // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions)
    class Iter {
    private:
        using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;

    public:
        using difference_type = std::ptrdiff_t;
        using value_type = typename Self::value_type;
        using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
        using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
        using iterator_category = std::forward_iterator_tag;

        // default constructed iterator can be compared to itself, but WON'T return true when
        // compared to end().
        Iter() = default;

        // Rule of zero: nothing specified. The conversion constructor is only enabled for
        // iterator to const_iterator, so it doesn't accidentally work as a copy ctor.

        // Conversion constructor from iterator to const_iterator.
        template <bool OtherIsConst,
                  typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
        // NOLINTNEXTLINE(hicpp-explicit-conversions)
        Iter(Iter<OtherIsConst> const& other) noexcept
            : mKeyVals(other.mKeyVals)
            , mInfo(other.mInfo) {}

        Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept
            : mKeyVals(valPtr)
            , mInfo(infoPtr) {}

        Iter(NodePtr valPtr, uint8_t const* infoPtr,
             fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept
            : mKeyVals(valPtr)
            , mInfo(infoPtr) {
            fastForward();
        }

        template <bool OtherIsConst,
                  typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
        Iter& operator=(Iter<OtherIsConst> const& other) noexcept {
            mKeyVals = other.mKeyVals;
            mInfo = other.mInfo;
            return *this;
        }

        // prefix increment. Undefined behavior if we are at end()!
        Iter& operator++() noexcept {
            mInfo++;
            mKeyVals++;
            fastForward();
            return *this;
        }

        Iter operator++(int) noexcept {
            Iter tmp = *this;
            ++(*this);
            return tmp;
        }

        reference operator*() const {
            return **mKeyVals;
        }

        pointer operator->() const {
            return &**mKeyVals;
        }

        template <bool O>
        bool operator==(Iter<O> const& o) const noexcept {
            return mKeyVals == o.mKeyVals;
        }

        template <bool O>
        bool operator!=(Iter<O> const& o) const noexcept {
            return mKeyVals != o.mKeyVals;
        }

    private:
        // fast forward to the next non-free info byte
        // I've tried a few variants that don't depend on intrinsics, but unfortunately they are
        // quite a bit slower than this one. So I've reverted that change again. See map_benchmark.
        void fastForward() noexcept {
            size_t n = 0;
            while (0U == (n = detail::unaligned_load<size_t>(mInfo))) {
                mInfo += sizeof(size_t);
                mKeyVals += sizeof(size_t);
            }
#if defined(ROBIN_HOOD_DISABLE_INTRINSICS)
            // we know for certain that within the next 8 bytes we'll find a non-zero one.
            if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo))) {
                mInfo += 4;
                mKeyVals += 4;
            }
            if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo))) {
                mInfo += 2;
                mKeyVals += 2;
            }
            if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) {
                mInfo += 1;
                mKeyVals += 1;
            }
#else
#    if ROBIN_HOOD(LITTLE_ENDIAN)
            auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
#    else
            auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
#    endif
            mInfo += inc;
            mKeyVals += inc;
#endif
        }

        friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
        NodePtr mKeyVals{nullptr};
        uint8_t const* mInfo{nullptr};
    };

    ////////////////////////////////////////////////////////////////////

    // highly performance relevant code.
    // Lower bits are used for indexing into the array (2^n size)
    // The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
    template <typename HashKey>
    void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const {
        // In addition to whatever hash is used, add another mul & shift so we get better hashing.
        // This serves as a bad hash prevention, if the given data is
        // badly mixed.
        auto h = static_cast<uint64_t>(WHash::operator()(key));

        h *= mHashMultiplier;
        h ^= h >> 33U;

        // the lower InitialInfoNumBits are reserved for info.
        *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift);
        *idx = (static_cast<size_t>(h) >> InitialInfoNumBits) & mMask;
    }

    // forwards the index by one, wrapping around at the end
    void next(InfoType* info, size_t* idx) const noexcept {
        *idx = *idx + 1;
        *info += mInfoInc;
    }

    void nextWhileLess(InfoType* info, size_t* idx) const noexcept {
        // unrolling this by hand did not bring any speedups.
        while (*info < mInfo[*idx]) {
            next(info, idx);
        }
    }

    // Shift everything up by one element. Tries to move stuff around.
    void
    shiftUp(size_t startIdx,
            size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
        auto idx = startIdx;
        ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1]));
        while (--idx != insertion_idx) {
            mKeyVals[idx] = std::move(mKeyVals[idx - 1]);
        }

        idx = startIdx;
        while (idx != insertion_idx) {
            ROBIN_HOOD_COUNT(shiftUp)
            mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc);
            if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) {
                mMaxNumElementsAllowed = 0;
            }
            --idx;
        }
    }

    void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
        // until we find one that is either empty or has zero offset.
        // TODO(martinus) we don't need to move everything, just the last one for the same
        // bucket.
        mKeyVals[idx].destroy(*this);

        // until we find one that is either empty or has zero offset.
        while (mInfo[idx + 1] >= 2 * mInfoInc) {
            ROBIN_HOOD_COUNT(shiftDown)
            mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc);
            mKeyVals[idx] = std::move(mKeyVals[idx + 1]);
            ++idx;
        }

        mInfo[idx] = 0;
        // don't destroy, we've moved it
        // mKeyVals[idx].destroy(*this);
        mKeyVals[idx].~Node();
    }

    // copy of find(), except that it returns iterator instead of const_iterator.
    template <typename Other>
    ROBIN_HOOD(NODISCARD)
    size_t findIdx(Other const& key) const {
        size_t idx{};
        InfoType info{};
        keyToIdx(key, &idx, &info);

        do {
            // unrolling this twice gives a bit of a speedup. More unrolling did not help.
            if (info == mInfo[idx] &&
                ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
                return idx;
            }
            next(&info, &idx);
            if (info == mInfo[idx] &&
                ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
                return idx;
            }
            next(&info, &idx);
        } while (info <= mInfo[idx]);

        // nothing found!
        return mMask == 0 ? 0
                          : static_cast<size_t>(std::distance(
                                mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo)));
    }

    void cloneData(const Table& o) {
        Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this);
    }

    // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
    // @return True on success, false if something went wrong
    void insert_move(Node&& keyval) {
        // we don't retry, fail if overflowing
        // don't need to check max num elements
        if (0 == mMaxNumElementsAllowed && !try_increase_info()) {
            throwOverflowError();
        }

        size_t idx{};
        InfoType info{};
        keyToIdx(keyval.getFirst(), &idx, &info);

        // skip forward. Use <= because we are certain that the element is not there.
        while (info <= mInfo[idx]) {
            idx = idx + 1;
            info += mInfoInc;
        }

        // key not found, so we are now exactly where we want to insert it.
        auto const insertion_idx = idx;
        auto const insertion_info = static_cast<uint8_t>(info);
        if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
            mMaxNumElementsAllowed = 0;
        }

        // find an empty spot
        while (0 != mInfo[idx]) {
            next(&info, &idx);
        }

        auto& l = mKeyVals[insertion_idx];
        if (idx == insertion_idx) {
            ::new (static_cast<void*>(&l)) Node(std::move(keyval));
        } else {
            shiftUp(idx, insertion_idx);
            l = std::move(keyval);
        }

        // put at empty spot
        mInfo[insertion_idx] = insertion_info;

        ++mNumElements;
    }

public:
    using iterator = Iter<false>;
    using const_iterator = Iter<true>;

    Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual()))
        : WHash()
        , WKeyEqual() {
        ROBIN_HOOD_TRACE(this)
    }

    // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert.
    // This tremendously speeds up ctor & dtor of a map that never receives an element. The
    // penalty is payed at the first insert, and not before. Lookup of this empty map works
    // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the
    // standard, but we can ignore it.
    explicit Table(
        size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{},
        const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal)))
        : WHash(h)
        , WKeyEqual(equal) {
        ROBIN_HOOD_TRACE(this)
    }

    template <typename Iter>
    Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
          const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
        : WHash(h)
        , WKeyEqual(equal) {
        ROBIN_HOOD_TRACE(this)
        insert(first, last);
    }

    Table(std::initializer_list<value_type> initlist,
          size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
          const KeyEqual& equal = KeyEqual{})
        : WHash(h)
        , WKeyEqual(equal) {
        ROBIN_HOOD_TRACE(this)
        insert(initlist.begin(), initlist.end());
    }

    Table(Table&& o) noexcept
        : WHash(std::move(static_cast<WHash&>(o)))
        , WKeyEqual(std::move(static_cast<WKeyEqual&>(o)))
        , DataPool(std::move(static_cast<DataPool&>(o))) {
        ROBIN_HOOD_TRACE(this)
        if (o.mMask) {
            mHashMultiplier = std::move(o.mHashMultiplier);
            mKeyVals = std::move(o.mKeyVals);
            mInfo = std::move(o.mInfo);
            mNumElements = std::move(o.mNumElements);
            mMask = std::move(o.mMask);
            mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
            mInfoInc = std::move(o.mInfoInc);
            mInfoHashShift = std::move(o.mInfoHashShift);
            // set other's mask to 0 so its destructor won't do anything
            o.init();
        }
    }

    Table& operator=(Table&& o) noexcept {
        ROBIN_HOOD_TRACE(this)
        if (&o != this) {
            if (o.mMask) {
                // only move stuff if the other map actually has some data
                destroy();
                mHashMultiplier = std::move(o.mHashMultiplier);
                mKeyVals = std::move(o.mKeyVals);
                mInfo = std::move(o.mInfo);
                mNumElements = std::move(o.mNumElements);
                mMask = std::move(o.mMask);
                mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
                mInfoInc = std::move(o.mInfoInc);
                mInfoHashShift = std::move(o.mInfoHashShift);
                WHash::operator=(std::move(static_cast<WHash&>(o)));
                WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o)));
                DataPool::operator=(std::move(static_cast<DataPool&>(o)));

                o.init();

            } else {
                // nothing in the other map => just clear us.
                clear();
            }
        }
        return *this;
    }

    Table(const Table& o)
        : WHash(static_cast<const WHash&>(o))
        , WKeyEqual(static_cast<const WKeyEqual&>(o))
        , DataPool(static_cast<const DataPool&>(o)) {
        ROBIN_HOOD_TRACE(this)
        if (!o.empty()) {
            // not empty: create an exact copy. it is also possible to just iterate through all
            // elements and insert them, but copying is probably faster.

            auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
            auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);

            ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
                                          << numElementsWithBuffer << ")")
            mHashMultiplier = o.mHashMultiplier;
            mKeyVals = static_cast<Node*>(
                detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
            // no need for calloc because clonData does memcpy
            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
            mNumElements = o.mNumElements;
            mMask = o.mMask;
            mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
            mInfoInc = o.mInfoInc;
            mInfoHashShift = o.mInfoHashShift;
            cloneData(o);
        }
    }

    // Creates a copy of the given map. Copy constructor of each entry is used.
    // Not sure why clang-tidy thinks this doesn't handle self assignment, it does
    // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
    Table& operator=(Table const& o) {
        ROBIN_HOOD_TRACE(this)
        if (&o == this) {
            // prevent assigning of itself
            return *this;
        }

        // we keep using the old allocator and not assign the new one, because we want to keep
        // the memory available. when it is the same size.
        if (o.empty()) {
            if (0 == mMask) {
                // nothing to do, we are empty too
                return *this;
            }

            // not empty: destroy what we have there
            // clear also resets mInfo to 0, that's sometimes not necessary.
            destroy();
            init();
            WHash::operator=(static_cast<const WHash&>(o));
            WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
            DataPool::operator=(static_cast<DataPool const&>(o));

            return *this;
        }

        // clean up old stuff
        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);

        if (mMask != o.mMask) {
            // no luck: we don't have the same array size allocated, so we need to realloc.
            if (0 != mMask) {
                // only deallocate if we actually have data!
                ROBIN_HOOD_LOG("std::free")
                std::free(mKeyVals);
            }

            auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
            auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
            ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
                                          << numElementsWithBuffer << ")")
            mKeyVals = static_cast<Node*>(
                detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));

            // no need for calloc here because cloneData performs a memcpy.
            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
            // sentinel is set in cloneData
        }
        WHash::operator=(static_cast<const WHash&>(o));
        WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
        DataPool::operator=(static_cast<DataPool const&>(o));
        mHashMultiplier = o.mHashMultiplier;
        mNumElements = o.mNumElements;
        mMask = o.mMask;
        mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
        mInfoInc = o.mInfoInc;
        mInfoHashShift = o.mInfoHashShift;
        cloneData(o);

        return *this;
    }

    // Swaps everything between the two maps.
    void swap(Table& o) {
        ROBIN_HOOD_TRACE(this)
        using std::swap;
        swap(o, *this);
    }

    // Clears all data, without resizing.
    void clear() {
        ROBIN_HOOD_TRACE(this)
        if (empty()) {
            // don't do anything! also important because we don't want to write to
            // DummyInfoByte::b, even though we would just write 0 to it.
            return;
        }

        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);

        auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
        // clear everything, then set the sentinel again
        uint8_t const z = 0;
        std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z);
        mInfo[numElementsWithBuffer] = 1;

        mInfoInc = InitialInfoInc;
        mInfoHashShift = InitialInfoHashShift;
    }

    // Destroys the map and all it's contents.
    ~Table() {
        ROBIN_HOOD_TRACE(this)
        destroy();
    }

    // Checks if both tables contain the same entries. Order is irrelevant.
    bool operator==(const Table& other) const {
        ROBIN_HOOD_TRACE(this)
        if (other.size() != size()) {
            return false;
        }
        for (auto const& otherEntry : other) {
            if (!has(otherEntry)) {
                return false;
            }
        }

        return true;
    }

    bool operator!=(const Table& other) const {
        ROBIN_HOOD_TRACE(this)
        return !operator==(other);
    }

    template <typename Q = mapped_type>
    typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) {
        ROBIN_HOOD_TRACE(this)
        auto idxAndState = insertKeyPrepareEmptySpot(key);
        switch (idxAndState.second) {
        case InsertionState::key_found:
            break;

        case InsertionState::new_node:
            ::new (static_cast<void*>(&mKeyVals[idxAndState.first]))
                Node(*this, std::piecewise_construct, std::forward_as_tuple(key),
                     std::forward_as_tuple());
            break;

        case InsertionState::overwrite_node:
            mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct,
                                               std::forward_as_tuple(key), std::forward_as_tuple());
            break;

        case InsertionState::overflow_error:
            throwOverflowError();
        }

        return mKeyVals[idxAndState.first].getSecond();
    }

    template <typename Q = mapped_type>
    typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) {
        ROBIN_HOOD_TRACE(this)
        auto idxAndState = insertKeyPrepareEmptySpot(key);
        switch (idxAndState.second) {
        case InsertionState::key_found:
            break;

        case InsertionState::new_node:
            ::new (static_cast<void*>(&mKeyVals[idxAndState.first]))
                Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)),
                     std::forward_as_tuple());
            break;

        case InsertionState::overwrite_node:
            mKeyVals[idxAndState.first] =
                Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)),
                     std::forward_as_tuple());
            break;

        case InsertionState::overflow_error:
            throwOverflowError();
        }

        return mKeyVals[idxAndState.first].getSecond();
    }

    template <typename Iter>
    void insert(Iter first, Iter last) {
        for (; first != last; ++first) {
            // value_type ctor needed because this might be called with std::pair's
            insert(value_type(*first));
        }
    }

    void insert(std::initializer_list<value_type> ilist) {
        for (auto&& vt : ilist) {
            insert(std::move(vt));
        }
    }

    template <typename... Args>
    std::pair<iterator, bool> emplace(Args&&... args) {
        ROBIN_HOOD_TRACE(this)
        Node n{*this, std::forward<Args>(args)...};
        auto idxAndState = insertKeyPrepareEmptySpot(getFirstConst(n));
        switch (idxAndState.second) {
        case InsertionState::key_found:
            n.destroy(*this);
            break;

        case InsertionState::new_node:
            ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::move(n));
            break;

        case InsertionState::overwrite_node:
            mKeyVals[idxAndState.first] = std::move(n);
            break;

        case InsertionState::overflow_error:
            n.destroy(*this);
            throwOverflowError();
            break;
        }

        return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first),
                              InsertionState::key_found != idxAndState.second);
    }

    template <typename... Args>
    iterator emplace_hint(const_iterator position, Args&&... args) {
        (void)position;
        return emplace(std::forward<Args>(args)...).first;
    }

    template <typename... Args>
    std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) {
        return try_emplace_impl(key, std::forward<Args>(args)...);
    }

    template <typename... Args>
    std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args) {
        return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
    }

    template <typename... Args>
    iterator try_emplace(const_iterator hint, const key_type& key, Args&&... args) {
        (void)hint;
        return try_emplace_impl(key, std::forward<Args>(args)...).first;
    }

    template <typename... Args>
    iterator try_emplace(const_iterator hint, key_type&& key, Args&&... args) {
        (void)hint;
        return try_emplace_impl(std::move(key), std::forward<Args>(args)...).first;
    }

    template <typename Mapped>
    std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj) {
        return insertOrAssignImpl(key, std::forward<Mapped>(obj));
    }

    template <typename Mapped>
    std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj) {
        return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj));
    }

    template <typename Mapped>
    iterator insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj) {
        (void)hint;
        return insertOrAssignImpl(key, std::forward<Mapped>(obj)).first;
    }

    template <typename Mapped>
    iterator insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) {
        (void)hint;
        return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj)).first;
    }

    std::pair<iterator, bool> insert(const value_type& keyval) {
        ROBIN_HOOD_TRACE(this)
        return emplace(keyval);
    }

    iterator insert(const_iterator hint, const value_type& keyval) {
        (void)hint;
        return emplace(keyval).first;
    }

    std::pair<iterator, bool> insert(value_type&& keyval) {
        return emplace(std::move(keyval));
    }

    iterator insert(const_iterator hint, value_type&& keyval) {
        (void)hint;
        return emplace(std::move(keyval)).first;
    }

    // Returns 1 if key is found, 0 otherwise.
    size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        auto kv = mKeyVals + findIdx(key);
        if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
            return 1;
        }
        return 0;
    }

    template <typename OtherKey, typename Self_ = Self>
    // NOLINTNEXTLINE(modernize-use-nodiscard)
    typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const {
        ROBIN_HOOD_TRACE(this)
        auto kv = mKeyVals + findIdx(key);
        if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
            return 1;
        }
        return 0;
    }

    bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
        return 1U == count(key);
    }

    template <typename OtherKey, typename Self_ = Self>
    // NOLINTNEXTLINE(modernize-use-nodiscard)
    typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const {
        return 1U == count(key);
    }

    // Returns a reference to the value found for key.
    // Throws std::out_of_range if element cannot be found
    template <typename Q = mapped_type>
    // NOLINTNEXTLINE(modernize-use-nodiscard)
    typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) {
        ROBIN_HOOD_TRACE(this)
        auto kv = mKeyVals + findIdx(key);
        if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
            doThrow<std::out_of_range>("key not found");
        }
        return kv->getSecond();
    }

    // Returns a reference to the value found for key.
    // Throws std::out_of_range if element cannot be found
    template <typename Q = mapped_type>
    // NOLINTNEXTLINE(modernize-use-nodiscard)
    typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const {
        ROBIN_HOOD_TRACE(this)
        auto kv = mKeyVals + findIdx(key);
        if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
            doThrow<std::out_of_range>("key not found");
        }
        return kv->getSecond();
    }

    const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return const_iterator{mKeyVals + idx, mInfo + idx};
    }

    template <typename OtherKey>
    const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const {
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return const_iterator{mKeyVals + idx, mInfo + idx};
    }

    template <typename OtherKey, typename Self_ = Self>
    typename std::enable_if<Self_::is_transparent, // NOLINT(modernize-use-nodiscard)
                            const_iterator>::type  // NOLINT(modernize-use-nodiscard)
    find(const OtherKey& key) const {              // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return const_iterator{mKeyVals + idx, mInfo + idx};
    }

    iterator find(const key_type& key) {
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return iterator{mKeyVals + idx, mInfo + idx};
    }

    template <typename OtherKey>
    iterator find(const OtherKey& key, is_transparent_tag /*unused*/) {
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return iterator{mKeyVals + idx, mInfo + idx};
    }

    template <typename OtherKey, typename Self_ = Self>
    typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key) {
        ROBIN_HOOD_TRACE(this)
        const size_t idx = findIdx(key);
        return iterator{mKeyVals + idx, mInfo + idx};
    }

    iterator begin() {
        ROBIN_HOOD_TRACE(this)
        if (empty()) {
            return end();
        }
        return iterator(mKeyVals, mInfo, fast_forward_tag{});
    }
    const_iterator begin() const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return cbegin();
    }
    const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        if (empty()) {
            return cend();
        }
        return const_iterator(mKeyVals, mInfo, fast_forward_tag{});
    }

    iterator end() {
        ROBIN_HOOD_TRACE(this)
        // no need to supply valid info pointer: end() must not be dereferenced, and only node
        // pointer is compared.
        return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
    }
    const_iterator end() const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return cend();
    }
    const_iterator cend() const { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
    }

    iterator erase(const_iterator pos) {
        ROBIN_HOOD_TRACE(this)
        // its safe to perform const cast here
        // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
        return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
    }

    // Erases element at pos, returns iterator to the next element.
    iterator erase(iterator pos) {
        ROBIN_HOOD_TRACE(this)
        // we assume that pos always points to a valid entry, and not end().
        auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);

        shiftDown(idx);
        --mNumElements;

        if (*pos.mInfo) {
            // we've backward shifted, return this again
            return pos;
        }

        // no backward shift, return next element
        return ++pos;
    }

    size_t erase(const key_type& key) {
        ROBIN_HOOD_TRACE(this)
        size_t idx{};
        InfoType info{};
        keyToIdx(key, &idx, &info);

        // check while info matches with the source idx
        do {
            if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
                shiftDown(idx);
                --mNumElements;
                return 1;
            }
            next(&info, &idx);
        } while (info <= mInfo[idx]);

        // nothing found to delete
        return 0;
    }

    // reserves space for the specified number of elements. Makes sure the old data fits.
    // exactly the same as reserve(c).
    void rehash(size_t c) {
        // forces a reserve
        reserve(c, true);
    }

    // reserves space for the specified number of elements. Makes sure the old data fits.
    // Exactly the same as rehash(c). Use rehash(0) to shrink to fit.
    void reserve(size_t c) {
        // reserve, but don't force rehash
        reserve(c, false);
    }

    // If possible reallocates the map to a smaller one. This frees the underlying table.
    // Does not do anything if load_factor is too large for decreasing the table's size.
    void compact() {
        ROBIN_HOOD_TRACE(this)
        auto newSize = InitialNumElements;
        while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0) {
            newSize *= 2;
        }
        if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
            throwOverflowError();
        }

        ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")

        // only actually do anything when the new size is bigger than the old one. This prevents to
        // continuously allocate for each reserve() call.
        if (newSize < mMask + 1) {
            rehashPowerOfTwo(newSize, true);
        }
    }

    size_type size() const noexcept { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return mNumElements;
    }

    size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return static_cast<size_type>(-1);
    }

    ROBIN_HOOD(NODISCARD) bool empty() const noexcept {
        ROBIN_HOOD_TRACE(this)
        return 0 == mNumElements;
    }

    float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return MaxLoadFactor100 / 100.0F;
    }

    // Average number of elements per bucket. Since we allow only 1 per bucket
    float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
        ROBIN_HOOD_TRACE(this)
        return static_cast<float>(size()) / static_cast<float>(mMask + 1);
    }

    ROBIN_HOOD(NODISCARD) size_t mask() const noexcept {
        ROBIN_HOOD_TRACE(this)
        return mMask;
    }

    ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept {
        if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) {
            return maxElements * MaxLoadFactor100 / 100;
        }

        // we might be a bit inprecise, but since maxElements is quite large that doesn't matter
        return (maxElements / 100) * MaxLoadFactor100;
    }

    ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept {
        // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load
        // 64bit types.
        return numElements + sizeof(uint64_t);
    }

    ROBIN_HOOD(NODISCARD)
    size_t calcNumElementsWithBuffer(size_t numElements) const noexcept {
        auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements);
        return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF)));
    }

    // calculation only allowed for 2^n values
    ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const {
#if ROBIN_HOOD(BITNESS) == 64
        return numElements * sizeof(Node) + calcNumBytesInfo(numElements);
#else
        // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows.
        auto const ne = static_cast<uint64_t>(numElements);
        auto const s = static_cast<uint64_t>(sizeof(Node));
        auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements));

        auto const total64 = ne * s + infos;
        auto const total = static_cast<size_t>(total64);

        if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) {
            throwOverflowError();
        }
        return total;
#endif
    }

private:
    template <typename Q = mapped_type>
    ROBIN_HOOD(NODISCARD)
    typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const {
        ROBIN_HOOD_TRACE(this)
        auto it = find(e.first);
        return it != end() && it->second == e.second;
    }

    template <typename Q = mapped_type>
    ROBIN_HOOD(NODISCARD)
    typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const {
        ROBIN_HOOD_TRACE(this)
        return find(e) != end();
    }

    void reserve(size_t c, bool forceRehash) {
        ROBIN_HOOD_TRACE(this)
        auto const minElementsAllowed = (std::max)(c, mNumElements);
        auto newSize = InitialNumElements;
        while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) {
            newSize *= 2;
        }
        if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
            throwOverflowError();
        }

        ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")

        // only actually do anything when the new size is bigger than the old one. This prevents to
        // continuously allocate for each reserve() call.
        if (forceRehash || newSize > mMask + 1) {
            rehashPowerOfTwo(newSize, false);
        }
    }

    // reserves space for at least the specified number of elements.
    // only works if numBuckets if power of two
    // True on success, false otherwise
    void rehashPowerOfTwo(size_t numBuckets, bool forceFree) {
        ROBIN_HOOD_TRACE(this)

        Node* const oldKeyVals = mKeyVals;
        uint8_t const* const oldInfo = mInfo;

        const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);

        // resize operation: move stuff
        initData(numBuckets);
        if (oldMaxElementsWithBuffer > 1) {
            for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) {
                if (oldInfo[i] != 0) {
                    // might throw an exception, which is really bad since we are in the middle of
                    // moving stuff.
                    insert_move(std::move(oldKeyVals[i]));
                    // destroy the node but DON'T destroy the data.
                    oldKeyVals[i].~Node();
                }
            }

            // this check is not necessary as it's guarded by the previous if, but it helps
            // silence g++'s overeager "attempt to free a non-heap object 'map'
            // [-Werror=free-nonheap-object]" warning.
            if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
                // don't destroy old data: put it into the pool instead
                if (forceFree) {
                    std::free(oldKeyVals);
                } else {
                    DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer));
                }
            }
        }
    }

    ROBIN_HOOD(NOINLINE) void throwOverflowError() const {
#if ROBIN_HOOD(HAS_EXCEPTIONS)
        throw std::overflow_error("robin_hood::map overflow");
#else
        abort();
#endif
    }

    template <typename OtherKey, typename... Args>
    std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args) {
        ROBIN_HOOD_TRACE(this)
        auto idxAndState = insertKeyPrepareEmptySpot(key);
        switch (idxAndState.second) {
        case InsertionState::key_found:
            break;

        case InsertionState::new_node:
            ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(
                *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)),
                std::forward_as_tuple(std::forward<Args>(args)...));
            break;

        case InsertionState::overwrite_node:
            mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct,
                                               std::forward_as_tuple(std::forward<OtherKey>(key)),
                                               std::forward_as_tuple(std::forward<Args>(args)...));
            break;

        case InsertionState::overflow_error:
            throwOverflowError();
            break;
        }

        return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first),
                              InsertionState::key_found != idxAndState.second);
    }

    template <typename OtherKey, typename Mapped>
    std::pair<iterator, bool> insertOrAssignImpl(OtherKey&& key, Mapped&& obj) {
        ROBIN_HOOD_TRACE(this)
        auto idxAndState = insertKeyPrepareEmptySpot(key);
        switch (idxAndState.second) {
        case InsertionState::key_found:
            mKeyVals[idxAndState.first].getSecond() = std::forward<Mapped>(obj);
            break;

        case InsertionState::new_node:
            ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(
                *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)),
                std::forward_as_tuple(std::forward<Mapped>(obj)));
            break;

        case InsertionState::overwrite_node:
            mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct,
                                               std::forward_as_tuple(std::forward<OtherKey>(key)),
                                               std::forward_as_tuple(std::forward<Mapped>(obj)));
            break;

        case InsertionState::overflow_error:
            throwOverflowError();
            break;
        }

        return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first),
                              InsertionState::key_found != idxAndState.second);
    }

    void initData(size_t max_elements) {
        mNumElements = 0;
        mMask = max_elements - 1;
        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);

        auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements);

        // malloc & zero mInfo. Faster than calloc everything.
        auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
        ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal("
                                      << numElementsWithBuffer << ")")
        mKeyVals = reinterpret_cast<Node*>(
            detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
        mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
        std::memset(mInfo, 0, numBytesTotal - numElementsWithBuffer * sizeof(Node));

        // set sentinel
        mInfo[numElementsWithBuffer] = 1;

        mInfoInc = InitialInfoInc;
        mInfoHashShift = InitialInfoHashShift;
    }

    enum class InsertionState { overflow_error, key_found, new_node, overwrite_node };

    // Finds key, and if not already present prepares a spot where to pot the key & value.
    // This potentially shifts nodes out of the way, updates mInfo and number of inserted
    // elements, so the only operation left to do is create/assign a new node at that spot.
    template <typename OtherKey>
    std::pair<size_t, InsertionState> insertKeyPrepareEmptySpot(OtherKey&& key) {
        for (int i = 0; i < 256; ++i) {
            size_t idx{};
            InfoType info{};
            keyToIdx(key, &idx, &info);
            nextWhileLess(&info, &idx);

            // while we potentially have a match
            while (info == mInfo[idx]) {
                if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
                    // key already exists, do NOT insert.
                    // see http://en.cppreference.com/w/cpp/container/unordered_map/insert
                    return std::make_pair(idx, InsertionState::key_found);
                }
                next(&info, &idx);
            }

            // unlikely that this evaluates to true
            if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
                if (!increase_size()) {
                    return std::make_pair(size_t(0), InsertionState::overflow_error);
                }
                continue;
            }

            // key not found, so we are now exactly where we want to insert it.
            auto const insertion_idx = idx;
            auto const insertion_info = info;
            if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
                mMaxNumElementsAllowed = 0;
            }

            // find an empty spot
            while (0 != mInfo[idx]) {
                next(&info, &idx);
            }

            if (idx != insertion_idx) {
                shiftUp(idx, insertion_idx);
            }
            // put at empty spot
            mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
            ++mNumElements;
            return std::make_pair(insertion_idx, idx == insertion_idx
                                                     ? InsertionState::new_node
                                                     : InsertionState::overwrite_node);
        }

        // enough attempts failed, so finally give up.
        return std::make_pair(size_t(0), InsertionState::overflow_error);
    }

    bool try_increase_info() {
        ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
                                   << ", maxNumElementsAllowed="
                                   << calcMaxNumElementsAllowed(mMask + 1))
        if (mInfoInc <= 2) {
            // need to be > 2 so that shift works (otherwise undefined behavior!)
            return false;
        }
        // we got space left, try to make info smaller
        mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U);

        // remove one bit of the hash, leaving more space for the distance info.
        // This is extremely fast because we can operate on 8 bytes at once.
        ++mInfoHashShift;
        auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);

        for (size_t i = 0; i < numElementsWithBuffer; i += 8) {
            auto val = unaligned_load<uint64_t>(mInfo + i);
            val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f);
            std::memcpy(mInfo + i, &val, sizeof(val));
        }
        // update sentinel, which might have been cleared out!
        mInfo[numElementsWithBuffer] = 1;

        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
        return true;
    }

    // True if resize was possible, false otherwise
    bool increase_size() {
        // nothing allocated yet? just allocate InitialNumElements
        if (0 == mMask) {
            initData(InitialNumElements);
            return true;
        }

        auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
        if (mNumElements < maxNumElementsAllowed && try_increase_info()) {
            return true;
        }

        ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed="
                                       << maxNumElementsAllowed << ", load="
                                       << (static_cast<double>(mNumElements) * 100.0 /
                                           (static_cast<double>(mMask) + 1)))

        if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) {
            // we have to resize, even though there would still be plenty of space left!
            // Try to rehash instead. Delete freed memory so we don't steadyily increase mem in case
            // we have to rehash a few times
            nextHashMultiplier();
            rehashPowerOfTwo(mMask + 1, true);
        } else {
            // we've reached the capacity of the map, so the hash seems to work nice. Keep using it.
            rehashPowerOfTwo((mMask + 1) * 2, false);
        }
        return true;
    }

    void nextHashMultiplier() {
        // adding an *even* number, so that the multiplier will always stay odd. This is necessary
        // so that the hash stays a mixing function (and thus doesn't have any information loss).
        mHashMultiplier += UINT64_C(0xc4ceb9fe1a85ec54);
    }

    void destroy() {
        if (0 == mMask) {
            // don't deallocate!
            return;
        }

        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}
            .nodesDoNotDeallocate(*this);

        // This protection against not deleting mMask shouldn't be needed as it's sufficiently
        // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise
        // reports a compile error: attempt to free a non-heap object 'fm'
        // [-Werror=free-nonheap-object]
        if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
            ROBIN_HOOD_LOG("std::free")
            std::free(mKeyVals);
        }
    }

    void init() noexcept {
        mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask);
        mInfo = reinterpret_cast<uint8_t*>(&mMask);
        mNumElements = 0;
        mMask = 0;
        mMaxNumElementsAllowed = 0;
        mInfoInc = InitialInfoInc;
        mInfoHashShift = InitialInfoHashShift;
    }

    // members are sorted so no padding occurs
    uint64_t mHashMultiplier = UINT64_C(0xc4ceb9fe1a85ec53);                // 8 byte  8
    Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); // 8 byte 16
    uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask);                    // 8 byte 24
    size_t mNumElements = 0;                                                // 8 byte 32
    size_t mMask = 0;                                                       // 8 byte 40
    size_t mMaxNumElementsAllowed = 0;                                      // 8 byte 48
    InfoType mInfoInc = InitialInfoInc;                                     // 4 byte 52
    InfoType mInfoHashShift = InitialInfoHashShift;                         // 4 byte 56
                                                    // 16 byte 56 if NodeAllocator
};

} // namespace detail

// map

template <typename Key, typename T, typename Hash = hash<Key>,
          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;

template <typename Key, typename T, typename Hash = hash<Key>,
          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;

template <typename Key, typename T, typename Hash = hash<Key>,
          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
using unordered_map =
    detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 &&
                      std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value &&
                      std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value,
                  MaxLoadFactor100, Key, T, Hash, KeyEqual>;

// set

template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
          size_t MaxLoadFactor100 = 80>
using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>;

template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
          size_t MaxLoadFactor100 = 80>
using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>;

template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
          size_t MaxLoadFactor100 = 80>
using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 &&
                                        std::is_nothrow_move_constructible<Key>::value &&
                                        std::is_nothrow_move_assignable<Key>::value,
                                    MaxLoadFactor100, Key, void, Hash, KeyEqual>;

} // namespace robin_hood

#endif