summaryrefslogtreecommitdiffstats
path: root/src/third-party/scnlib/src/deps/fast_float/single_include/fast_float/fast_float.h
blob: 3f9437277cac94868ba3526b7dc71ca4302bafc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
// fast_float v3.4.0

// fast_float by Daniel Lemire
// fast_float by João Paulo Magalhaes
//
// with contributions from Eugene Golushkov
// with contributions from Maksim Kita
// with contributions from Marcin Wojdyr
// with contributions from Neal Richardson
// with contributions from Tim Paine
// with contributions from Fabio Pellacini
//
// Licensed under the Apache License, Version 2.0, or the
// MIT License at your option. This file may not be copied,
// modified, or distributed except according to those terms.
//
// MIT License Notice
//
//    MIT License
//
//    Copyright (c) 2021 The fast_float authors
//
//    Permission is hereby granted, free of charge, to any
//    person obtaining a copy of this software and associated
//    documentation files (the "Software"), to deal in the
//    Software without restriction, including without
//    limitation the rights to use, copy, modify, merge,
//    publish, distribute, sublicense, and/or sell copies of
//    the Software, and to permit persons to whom the Software
//    is furnished to do so, subject to the following
//    conditions:
//
//    The above copyright notice and this permission notice
//    shall be included in all copies or substantial portions
//    of the Software.
//
//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
//    ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//    TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
//    PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
//    SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
//    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
//    OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
//    IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//    DEALINGS IN THE SOFTWARE.
//
// Apache License (Version 2.0) Notice
//
//    Copyright 2021 The fast_float authors
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//

#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H

#include <system_error>

namespace fast_float {
    enum chars_format {
        scientific = 1<<0,
        fixed = 1<<2,
        hex = 1<<3,
        general = fixed | scientific
    };


    struct from_chars_result {
        const char *ptr;
        std::errc ec;
    };

    struct parse_options {
        constexpr explicit parse_options(chars_format fmt = chars_format::general,
                                         char dot = '.')
            : format(fmt), decimal_point(dot) {}

        /** Which number formats are accepted */
        chars_format format;
        /** The character used as decimal point */
        char decimal_point;
    };

    /**
 * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
 * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
 * The resulting floating-point value is the closest floating-point values (using either float or double),
 * using the "round to even" convention for values that would otherwise fall right in-between two values.
 * That is, we provide exact parsing according to the IEEE standard.
 *
 * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
 * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
 * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
 *
 * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
 *
 * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
 * the type `fast_float::chars_format`. It is a bitset value: we check whether
 * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
 * to determine whether we allowe the fixed point and scientific notation respectively.
 * The default is  `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
     */
    template<typename T>
    from_chars_result from_chars(const char *first, const char *last,
                                 T &value, chars_format fmt = chars_format::general)  noexcept;

    /**
 * Like from_chars, but accepts an `options` argument to govern number parsing.
     */
    template<typename T>
    from_chars_result from_chars_advanced(const char *first, const char *last,
                                          T &value, parse_options options)  noexcept;

}
#endif // FASTFLOAT_FAST_FLOAT_H

#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H

#include <cfloat>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <type_traits>

#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)   \
       || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \
       || defined(__MINGW64__)                                          \
       || defined(__s390x__)                                            \
       || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \
       || defined(__EMSCRIPTEN__))
#define FASTFLOAT_64BIT
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86)   \
     || defined(__arm__) || defined(_M_ARM)                   \
     || defined(__MINGW32__))
#define FASTFLOAT_32BIT
#else
   // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
// We can never tell the register width, but the SIZE_MAX is a good approximation.
// UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability.
#if SIZE_MAX == 0xffff
#error Unknown platform (16-bit, unsupported)
#elif SIZE_MAX == 0xffffffff
#define FASTFLOAT_32BIT
#elif SIZE_MAX == 0xffffffffffffffff
#define FASTFLOAT_64BIT
#else
#error Unknown platform (not 32-bit, not 64-bit?)
#endif
#endif

#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__))
#include <intrin.h>
#endif

#if defined(_MSC_VER) && !defined(__clang__)
#define FASTFLOAT_VISUAL_STUDIO 1
#endif

#ifdef _WIN32
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <machine/endian.h>
#elif defined(sun) || defined(__sun)
#include <sys/byteorder.h>
#else
#include <endian.h>
#endif
#
#ifndef __BYTE_ORDER__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#ifndef __ORDER_LITTLE_ENDIAN__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#define FASTFLOAT_IS_BIG_ENDIAN 1
#endif
#endif

#ifdef FASTFLOAT_VISUAL_STUDIO
#define fastfloat_really_inline __forceinline
#else
#define fastfloat_really_inline inline __attribute__((always_inline))
#endif

#ifndef FASTFLOAT_ASSERT
#define FASTFLOAT_ASSERT(x)  { if (!(x)) abort(); }
#endif

#ifndef FASTFLOAT_DEBUG_ASSERT
#include <cassert>
#define FASTFLOAT_DEBUG_ASSERT(x) assert(x)
#endif

// rust style `try!()` macro, or `?` operator
#define FASTFLOAT_TRY(x) { if (!(x)) return false; }

namespace fast_float {

    // Compares two ASCII strings in a case insensitive manner.
    inline bool fastfloat_strncasecmp(const char *input1, const char *input2,
                                      size_t length) {
        char running_diff{0};
        for (size_t i = 0; i < length; i++) {
            running_diff |= (input1[i] ^ input2[i]);
        }
        return (running_diff == 0) || (running_diff == 32);
    }

#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif

    // a pointer and a length to a contiguous block of memory
    template <typename T>
    struct span {
        const T* ptr;
        size_t length;
        span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {}
        span() : ptr(nullptr), length(0) {}

        constexpr size_t len() const noexcept {
            return length;
        }

        const T& operator[](size_t index) const noexcept {
            FASTFLOAT_DEBUG_ASSERT(index < length);
            return ptr[index];
        }
    };

    struct value128 {
        uint64_t low;
        uint64_t high;
        value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
        value128() : low(0), high(0) {}
    };

    /* result might be undefined when input_num is zero */
    fastfloat_really_inline int leading_zeroes(uint64_t input_num) {
        assert(input_num > 0);
#ifdef FASTFLOAT_VISUAL_STUDIO
        #if defined(_M_X64) || defined(_M_ARM64)
        unsigned long leading_zero = 0;
        // Search the mask data from most significant bit (MSB)
        // to least significant bit (LSB) for a set bit (1).
        _BitScanReverse64(&leading_zero, input_num);
        return (int)(63 - leading_zero);
#else
        int last_bit = 0;
        if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32;
        if(input_num & uint64_t(        0xffff0000)) input_num >>= 16, last_bit |= 16;
        if(input_num & uint64_t(            0xff00)) input_num >>=  8, last_bit |=  8;
        if(input_num & uint64_t(              0xf0)) input_num >>=  4, last_bit |=  4;
        if(input_num & uint64_t(               0xc)) input_num >>=  2, last_bit |=  2;
        if(input_num & uint64_t(               0x2)) input_num >>=  1, last_bit |=  1;
        return 63 - last_bit;
#endif
#else
        return __builtin_clzll(input_num);
#endif
    }

#ifdef FASTFLOAT_32BIT

    // slow emulation routine for 32-bit
    fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) {
        return x * (uint64_t)y;
    }

// slow emulation routine for 32-bit
#if !defined(__MINGW64__)
    fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd,
                                              uint64_t *hi) {
        uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
        uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
        uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
        uint64_t adbc_carry = !!(adbc < ad);
        uint64_t lo = bd + (adbc << 32);
        *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
              (adbc_carry << 32) + !!(lo < bd);
        return lo;
    }
#endif // !__MINGW64__

#endif // FASTFLOAT_32BIT


    // compute 64-bit a*b
    fastfloat_really_inline value128 full_multiplication(uint64_t a,
                                                         uint64_t b) {
        value128 answer;
#ifdef _M_ARM64
        // ARM64 has native support for 64-bit multiplications, no need to emulate
        answer.high = __umulh(a, b);
        answer.low = a * b;
#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
        answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
#elif defined(FASTFLOAT_64BIT)
        __uint128_t r = ((__uint128_t)a) * b;
        answer.low = uint64_t(r);
        answer.high = uint64_t(r >> 64);
#else
#error Not implemented
#endif
        return answer;
    }

    struct adjusted_mantissa {
        uint64_t mantissa{0};
        int32_t power2{0}; // a negative value indicates an invalid result
        adjusted_mantissa() = default;
        bool operator==(const adjusted_mantissa &o) const {
            return mantissa == o.mantissa && power2 == o.power2;
        }
        bool operator!=(const adjusted_mantissa &o) const {
            return mantissa != o.mantissa || power2 != o.power2;
        }
    };

    // Bias so we can get the real exponent with an invalid adjusted_mantissa.
    constexpr static int32_t invalid_am_bias = -0x8000;

    constexpr static double powers_of_ten_double[] = {
        1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
        1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
    constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5,
                                                    1e6, 1e7, 1e8, 1e9, 1e10};

    template <typename T> struct binary_format {
        using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;

        static inline constexpr int mantissa_explicit_bits();
        static inline constexpr int minimum_exponent();
        static inline constexpr int infinite_power();
        static inline constexpr int sign_index();
        static inline constexpr int min_exponent_fast_path();
        static inline constexpr int max_exponent_fast_path();
        static inline constexpr int max_exponent_round_to_even();
        static inline constexpr int min_exponent_round_to_even();
        static inline constexpr uint64_t max_mantissa_fast_path();
        static inline constexpr int largest_power_of_ten();
        static inline constexpr int smallest_power_of_ten();
        static inline constexpr T exact_power_of_ten(int64_t power);
        static inline constexpr size_t max_digits();
        static inline constexpr equiv_uint exponent_mask();
        static inline constexpr equiv_uint mantissa_mask();
        static inline constexpr equiv_uint hidden_bit_mask();
    };

    template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
        return 52;
    }
    template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() {
        return 23;
    }

    template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() {
        return 23;
    }

    template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() {
        return 10;
    }

    template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() {
        return -4;
    }

    template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() {
        return -17;
    }

    template <> inline constexpr int binary_format<double>::minimum_exponent() {
        return -1023;
    }
    template <> inline constexpr int binary_format<float>::minimum_exponent() {
        return -127;
    }

    template <> inline constexpr int binary_format<double>::infinite_power() {
        return 0x7FF;
    }
    template <> inline constexpr int binary_format<float>::infinite_power() {
        return 0xFF;
    }

    template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
    template <> inline constexpr int binary_format<float>::sign_index() { return 31; }

    template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
        return 0;
#else
        return -22;
#endif
    }
    template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
        return 0;
#else
        return -10;
#endif
    }

    template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
        return 22;
    }
    template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
        return 10;
    }

    template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
        return uint64_t(2) << mantissa_explicit_bits();
    }
    template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
        return uint64_t(2) << mantissa_explicit_bits();
    }

    template <>
    inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
        return powers_of_ten_double[power];
    }
    template <>
    inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {

        return powers_of_ten_float[power];
    }


    template <>
    inline constexpr int binary_format<double>::largest_power_of_ten() {
        return 308;
    }
    template <>
    inline constexpr int binary_format<float>::largest_power_of_ten() {
        return 38;
    }

    template <>
    inline constexpr int binary_format<double>::smallest_power_of_ten() {
        return -342;
    }
    template <>
    inline constexpr int binary_format<float>::smallest_power_of_ten() {
        return -65;
    }

    template <> inline constexpr size_t binary_format<double>::max_digits() {
        return 769;
    }
    template <> inline constexpr size_t binary_format<float>::max_digits() {
        return 114;
    }

    template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::exponent_mask() {
        return 0x7F800000;
    }
    template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::exponent_mask() {
        return 0x7FF0000000000000;
    }

    template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::mantissa_mask() {
        return 0x007FFFFF;
    }
    template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::mantissa_mask() {
        return 0x000FFFFFFFFFFFFF;
    }

    template <> inline constexpr binary_format<float>::equiv_uint
    binary_format<float>::hidden_bit_mask() {
        return 0x00800000;
    }
    template <> inline constexpr binary_format<double>::equiv_uint
    binary_format<double>::hidden_bit_mask() {
        return 0x0010000000000000;
    }

    template<typename T>
    fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) {
        uint64_t word = am.mantissa;
        word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits();
        word = negative
               ? word | (uint64_t(1) << binary_format<T>::sign_index()) : word;
#if FASTFLOAT_IS_BIG_ENDIAN == 1
        if (std::is_same<T, float>::value) {
            ::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian
        } else {
            ::memcpy(&value, &word, sizeof(T));
        }
#else
        // For little-endian systems:
        ::memcpy(&value, &word, sizeof(T));
#endif
    }

} // namespace fast_float

#endif

#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H

#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>


namespace fast_float {

    // Next function can be micro-optimized, but compilers are entirely
    // able to optimize it well.
    fastfloat_really_inline bool is_integer(char c)  noexcept  { return c >= '0' && c <= '9'; }

    fastfloat_really_inline uint64_t byteswap(uint64_t val) {
        return (val & 0xFF00000000000000) >> 56
               | (val & 0x00FF000000000000) >> 40
               | (val & 0x0000FF0000000000) >> 24
               | (val & 0x000000FF00000000) >> 8
               | (val & 0x00000000FF000000) << 8
               | (val & 0x0000000000FF0000) << 24
               | (val & 0x000000000000FF00) << 40
               | (val & 0x00000000000000FF) << 56;
    }

    fastfloat_really_inline uint64_t read_u64(const char *chars) {
        uint64_t val;
        ::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
        // Need to read as-if the number was in little-endian order.
        val = byteswap(val);
#endif
        return val;
    }

    fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
#if FASTFLOAT_IS_BIG_ENDIAN == 1
        // Need to read as-if the number was in little-endian order.
        val = byteswap(val);
#endif
        ::memcpy(chars, &val, sizeof(uint64_t));
    }

    // credit  @aqrit
    fastfloat_really_inline uint32_t  parse_eight_digits_unrolled(uint64_t val) {
        const uint64_t mask = 0x000000FF000000FF;
        const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
        const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
        val -= 0x3030303030303030;
        val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
        val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
        return uint32_t(val);
    }

    fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars)  noexcept  {
        return parse_eight_digits_unrolled(read_u64(chars));
    }

    // credit @aqrit
    fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val)  noexcept  {
        return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
                  0x8080808080808080));
    }

    fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars)  noexcept  {
        return is_made_of_eight_digits_fast(read_u64(chars));
    }

    typedef span<const char> byte_span;

    struct parsed_number_string {
        int64_t exponent{0};
        uint64_t mantissa{0};
        const char *lastmatch{nullptr};
        bool negative{false};
        bool valid{false};
        bool too_many_digits{false};
        // contains the range of the significant digits
        byte_span integer{};  // non-nullable
        byte_span fraction{}; // nullable
    };

    // Assuming that you use no more than 19 digits, this will
    // parse an ASCII string.
    fastfloat_really_inline
    parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
        const chars_format fmt = options.format;
        const char decimal_point = options.decimal_point;

        parsed_number_string answer;
        answer.valid = false;
        answer.too_many_digits = false;
        answer.negative = (*p == '-');
        if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
            ++p;
            if (p == pend) {
                return answer;
            }
            if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
                return answer;
            }
        }
        const char *const start_digits = p;

        uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)

        while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
            i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
            p += 8;
        }
        while ((p != pend) && is_integer(*p)) {
            // a multiplication by 10 is cheaper than an arbitrary integer
            // multiplication
            i = 10 * i +
                uint64_t(*p - '0'); // might overflow, we will handle the overflow later
            ++p;
        }
        const char *const end_of_integer_part = p;
        int64_t digit_count = int64_t(end_of_integer_part - start_digits);
        answer.integer = byte_span(start_digits, size_t(digit_count));
        int64_t exponent = 0;
        if ((p != pend) && (*p == decimal_point)) {
            ++p;
            const char* before = p;
            // can occur at most twice without overflowing, but let it occur more, since
            // for integers with many digits, digit parsing is the primary bottleneck.
            while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
                i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
                p += 8;
            }
            while ((p != pend) && is_integer(*p)) {
                uint8_t digit = uint8_t(*p - '0');
                ++p;
                i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
            }
            exponent = before - p;
            answer.fraction = byte_span(before, size_t(p - before));
            digit_count -= exponent;
        }
        // we must have encountered at least one integer!
        if (digit_count == 0) {
            return answer;
        }
        int64_t exp_number = 0;            // explicit exponential part
        if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
            const char * location_of_e = p;
            ++p;
            bool neg_exp = false;
            if ((p != pend) && ('-' == *p)) {
                neg_exp = true;
                ++p;
            } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
                ++p;
            }
            if ((p == pend) || !is_integer(*p)) {
                if(!(fmt & chars_format::fixed)) {
                    // We are in error.
                    return answer;
                }
                // Otherwise, we will be ignoring the 'e'.
                p = location_of_e;
            } else {
                while ((p != pend) && is_integer(*p)) {
                    uint8_t digit = uint8_t(*p - '0');
                    if (exp_number < 0x10000000) {
                        exp_number = 10 * exp_number + digit;
                    }
                    ++p;
                }
                if(neg_exp) { exp_number = - exp_number; }
                exponent += exp_number;
            }
        } else {
            // If it scientific and not fixed, we have to bail out.
            if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
        }
        answer.lastmatch = p;
        answer.valid = true;

        // If we frequently had to deal with long strings of digits,
        // we could extend our code by using a 128-bit integer instead
        // of a 64-bit integer. However, this is uncommon.
        //
        // We can deal with up to 19 digits.
        if (digit_count > 19) { // this is uncommon
            // It is possible that the integer had an overflow.
            // We have to handle the case where we have 0.0000somenumber.
            // We need to be mindful of the case where we only have zeroes...
            // E.g., 0.000000000...000.
            const char *start = start_digits;
            while ((start != pend) && (*start == '0' || *start == decimal_point)) {
                if(*start == '0') { digit_count --; }
                start++;
            }
            if (digit_count > 19) {
                answer.too_many_digits = true;
                // Let us start again, this time, avoiding overflows.
                // We don't need to check if is_integer, since we use the
                // pre-tokenized spans from above.
                i = 0;
                p = answer.integer.ptr;
                const char* int_end = p + answer.integer.len();
                const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
                while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
                    i = i * 10 + uint64_t(*p - '0');
                    ++p;
                }
                if (i >= minimal_nineteen_digit_integer) { // We have a big integers
                    exponent = end_of_integer_part - p + exp_number;
                } else { // We have a value with a fractional component.
                    p = answer.fraction.ptr;
                    const char* frac_end = p + answer.fraction.len();
                    while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
                        i = i * 10 + uint64_t(*p - '0');
                        ++p;
                    }
                    exponent = answer.fraction.ptr - p + exp_number;
                }
                // We have now corrected both exponent and i, to a truncated value
            }
        }
        answer.exponent = exponent;
        answer.mantissa = i;
        return answer;
    }

} // namespace fast_float

#endif

#ifndef FASTFLOAT_FAST_TABLE_H
#define FASTFLOAT_FAST_TABLE_H

#include <cstdint>

namespace fast_float {

    /**
 * When mapping numbers from decimal to binary,
 * we go from w * 10^q to m * 2^p but we have
 * 10^q = 5^q * 2^q, so effectively
 * we are trying to match
 * w * 2^q * 5^q to m * 2^p. Thus the powers of two
 * are not a concern since they can be represented
 * exactly using the binary notation, only the powers of five
 * affect the binary significand.
     */

    /**
 * The smallest non-zero float (binary64) is 2^−1074.
 * We take as input numbers of the form w x 10^q where w < 2^64.
 * We have that w * 10^-343  <  2^(64-344) 5^-343 < 2^-1076.
 * However, we have that
 * (2^64-1) * 10^-342 =  (2^64-1) * 2^-342 * 5^-342 > 2^−1074.
 * Thus it is possible for a number of the form w * 10^-342 where
 * w is a 64-bit value to be a non-zero floating-point number.
 *********
 * Any number of form w * 10^309 where w>= 1 is going to be
 * infinite in binary64 so we never need to worry about powers
 * of 5 greater than 308.
     */
    template <class unused = void>
    struct powers_template {

        constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten();
        constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten();
        constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1);
        // Powers of five from 5^-342 all the way to 5^308 rounded toward one.
        static const uint64_t power_of_five_128[number_of_entries];
    };

    template <class unused>
    const uint64_t powers_template<unused>::power_of_five_128[number_of_entries] = {
        0xeef453d6923bd65a,0x113faa2906a13b3f,
        0x9558b4661b6565f8,0x4ac7ca59a424c507,
        0xbaaee17fa23ebf76,0x5d79bcf00d2df649,
        0xe95a99df8ace6f53,0xf4d82c2c107973dc,
        0x91d8a02bb6c10594,0x79071b9b8a4be869,
        0xb64ec836a47146f9,0x9748e2826cdee284,
        0xe3e27a444d8d98b7,0xfd1b1b2308169b25,
        0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7,
        0xb208ef855c969f4f,0xbdbd2d335e51a935,
        0xde8b2b66b3bc4723,0xad2c788035e61382,
        0x8b16fb203055ac76,0x4c3bcb5021afcc31,
        0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d,
        0xd953e8624b85dd78,0xd71d6dad34a2af0d,
        0x87d4713d6f33aa6b,0x8672648c40e5ad68,
        0xa9c98d8ccb009506,0x680efdaf511f18c2,
        0xd43bf0effdc0ba48,0x212bd1b2566def2,
        0x84a57695fe98746d,0x14bb630f7604b57,
        0xa5ced43b7e3e9188,0x419ea3bd35385e2d,
        0xcf42894a5dce35ea,0x52064cac828675b9,
        0x818995ce7aa0e1b2,0x7343efebd1940993,
        0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8,
        0xca66fa129f9b60a6,0xd41a26e077774ef6,
        0xfd00b897478238d0,0x8920b098955522b4,
        0x9e20735e8cb16382,0x55b46e5f5d5535b0,
        0xc5a890362fddbc62,0xeb2189f734aa831d,
        0xf712b443bbd52b7b,0xa5e9ec7501d523e4,
        0x9a6bb0aa55653b2d,0x47b233c92125366e,
        0xc1069cd4eabe89f8,0x999ec0bb696e840a,
        0xf148440a256e2c76,0xc00670ea43ca250d,
        0x96cd2a865764dbca,0x380406926a5e5728,
        0xbc807527ed3e12bc,0xc605083704f5ecf2,
        0xeba09271e88d976b,0xf7864a44c633682e,
        0x93445b8731587ea3,0x7ab3ee6afbe0211d,
        0xb8157268fdae9e4c,0x5960ea05bad82964,
        0xe61acf033d1a45df,0x6fb92487298e33bd,
        0x8fd0c16206306bab,0xa5d3b6d479f8e056,
        0xb3c4f1ba87bc8696,0x8f48a4899877186c,
        0xe0b62e2929aba83c,0x331acdabfe94de87,
        0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14,
        0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9,
        0xdb71e91432b1a24a,0xc9e82cd9f69d6150,
        0x892731ac9faf056e,0xbe311c083a225cd2,
        0xab70fe17c79ac6ca,0x6dbd630a48aaf406,
        0xd64d3d9db981787d,0x92cbbccdad5b108,
        0x85f0468293f0eb4e,0x25bbf56008c58ea5,
        0xa76c582338ed2621,0xaf2af2b80af6f24e,
        0xd1476e2c07286faa,0x1af5af660db4aee1,
        0x82cca4db847945ca,0x50d98d9fc890ed4d,
        0xa37fce126597973c,0xe50ff107bab528a0,
        0xcc5fc196fefd7d0c,0x1e53ed49a96272c8,
        0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a,
        0x9faacf3df73609b1,0x77b191618c54e9ac,
        0xc795830d75038c1d,0xd59df5b9ef6a2417,
        0xf97ae3d0d2446f25,0x4b0573286b44ad1d,
        0x9becce62836ac577,0x4ee367f9430aec32,
        0xc2e801fb244576d5,0x229c41f793cda73f,
        0xf3a20279ed56d48a,0x6b43527578c1110f,
        0x9845418c345644d6,0x830a13896b78aaa9,
        0xbe5691ef416bd60c,0x23cc986bc656d553,
        0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8,
        0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9,
        0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53,
        0xe858ad248f5c22c9,0xd1b3400f8f9cff68,
        0x91376c36d99995be,0x23100809b9c21fa1,
        0xb58547448ffffb2d,0xabd40a0c2832a78a,
        0xe2e69915b3fff9f9,0x16c90c8f323f516c,
        0x8dd01fad907ffc3b,0xae3da7d97f6792e3,
        0xb1442798f49ffb4a,0x99cd11cfdf41779c,
        0xdd95317f31c7fa1d,0x40405643d711d583,
        0x8a7d3eef7f1cfc52,0x482835ea666b2572,
        0xad1c8eab5ee43b66,0xda3243650005eecf,
        0xd863b256369d4a40,0x90bed43e40076a82,
        0x873e4f75e2224e68,0x5a7744a6e804a291,
        0xa90de3535aaae202,0x711515d0a205cb36,
        0xd3515c2831559a83,0xd5a5b44ca873e03,
        0x8412d9991ed58091,0xe858790afe9486c2,
        0xa5178fff668ae0b6,0x626e974dbe39a872,
        0xce5d73ff402d98e3,0xfb0a3d212dc8128f,
        0x80fa687f881c7f8e,0x7ce66634bc9d0b99,
        0xa139029f6a239f72,0x1c1fffc1ebc44e80,
        0xc987434744ac874e,0xa327ffb266b56220,
        0xfbe9141915d7a922,0x4bf1ff9f0062baa8,
        0x9d71ac8fada6c9b5,0x6f773fc3603db4a9,
        0xc4ce17b399107c22,0xcb550fb4384d21d3,
        0xf6019da07f549b2b,0x7e2a53a146606a48,
        0x99c102844f94e0fb,0x2eda7444cbfc426d,
        0xc0314325637a1939,0xfa911155fefb5308,
        0xf03d93eebc589f88,0x793555ab7eba27ca,
        0x96267c7535b763b5,0x4bc1558b2f3458de,
        0xbbb01b9283253ca2,0x9eb1aaedfb016f16,
        0xea9c227723ee8bcb,0x465e15a979c1cadc,
        0x92a1958a7675175f,0xbfacd89ec191ec9,
        0xb749faed14125d36,0xcef980ec671f667b,
        0xe51c79a85916f484,0x82b7e12780e7401a,
        0x8f31cc0937ae58d2,0xd1b2ecb8b0908810,
        0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15,
        0xdfbdcece67006ac9,0x67a791e093e1d49a,
        0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0,
        0xaecc49914078536d,0x58fae9f773886e18,
        0xda7f5bf590966848,0xaf39a475506a899e,
        0x888f99797a5e012d,0x6d8406c952429603,
        0xaab37fd7d8f58178,0xc8e5087ba6d33b83,
        0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64,
        0x855c3be0a17fcd26,0x5cf2eea09a55067f,
        0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e,
        0xd0601d8efc57b08b,0xf13b94daf124da26,
        0x823c12795db6ce57,0x76c53d08d6b70858,
        0xa2cb1717b52481ed,0x54768c4b0c64ca6e,
        0xcb7ddcdda26da268,0xa9942f5dcf7dfd09,
        0xfe5d54150b090b02,0xd3f93b35435d7c4c,
        0x9efa548d26e5a6e1,0xc47bc5014a1a6daf,
        0xc6b8e9b0709f109a,0x359ab6419ca1091b,
        0xf867241c8cc6d4c0,0xc30163d203c94b62,
        0x9b407691d7fc44f8,0x79e0de63425dcf1d,
        0xc21094364dfb5636,0x985915fc12f542e4,
        0xf294b943e17a2bc4,0x3e6f5b7b17b2939d,
        0x979cf3ca6cec5b5a,0xa705992ceecf9c42,
        0xbd8430bd08277231,0x50c6ff782a838353,
        0xece53cec4a314ebd,0xa4f8bf5635246428,
        0x940f4613ae5ed136,0x871b7795e136be99,
        0xb913179899f68584,0x28e2557b59846e3f,
        0xe757dd7ec07426e5,0x331aeada2fe589cf,
        0x9096ea6f3848984f,0x3ff0d2c85def7621,
        0xb4bca50b065abe63,0xfed077a756b53a9,
        0xe1ebce4dc7f16dfb,0xd3e8495912c62894,
        0x8d3360f09cf6e4bd,0x64712dd7abbbd95c,
        0xb080392cc4349dec,0xbd8d794d96aacfb3,
        0xdca04777f541c567,0xecf0d7a0fc5583a0,
        0x89e42caaf9491b60,0xf41686c49db57244,
        0xac5d37d5b79b6239,0x311c2875c522ced5,
        0xd77485cb25823ac7,0x7d633293366b828b,
        0x86a8d39ef77164bc,0xae5dff9c02033197,
        0xa8530886b54dbdeb,0xd9f57f830283fdfc,
        0xd267caa862a12d66,0xd072df63c324fd7b,
        0x8380dea93da4bc60,0x4247cb9e59f71e6d,
        0xa46116538d0deb78,0x52d9be85f074e608,
        0xcd795be870516656,0x67902e276c921f8b,
        0x806bd9714632dff6,0xba1cd8a3db53b6,
        0xa086cfcd97bf97f3,0x80e8a40eccd228a4,
        0xc8a883c0fdaf7df0,0x6122cd128006b2cd,
        0xfad2a4b13d1b5d6c,0x796b805720085f81,
        0x9cc3a6eec6311a63,0xcbe3303674053bb0,
        0xc3f490aa77bd60fc,0xbedbfc4411068a9c,
        0xf4f1b4d515acb93b,0xee92fb5515482d44,
        0x991711052d8bf3c5,0x751bdd152d4d1c4a,
        0xbf5cd54678eef0b6,0xd262d45a78a0635d,
        0xef340a98172aace4,0x86fb897116c87c34,
        0x9580869f0e7aac0e,0xd45d35e6ae3d4da0,
        0xbae0a846d2195712,0x8974836059cca109,
        0xe998d258869facd7,0x2bd1a438703fc94b,
        0x91ff83775423cc06,0x7b6306a34627ddcf,
        0xb67f6455292cbf08,0x1a3bc84c17b1d542,
        0xe41f3d6a7377eeca,0x20caba5f1d9e4a93,
        0x8e938662882af53e,0x547eb47b7282ee9c,
        0xb23867fb2a35b28d,0xe99e619a4f23aa43,
        0xdec681f9f4c31f31,0x6405fa00e2ec94d4,
        0x8b3c113c38f9f37e,0xde83bc408dd3dd04,
        0xae0b158b4738705e,0x9624ab50b148d445,
        0xd98ddaee19068c76,0x3badd624dd9b0957,
        0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6,
        0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c,
        0xd47487cc8470652b,0x7647c3200069671f,
        0x84c8d4dfd2c63f3b,0x29ecd9f40041e073,
        0xa5fb0a17c777cf09,0xf468107100525890,
        0xcf79cc9db955c2cc,0x7182148d4066eeb4,
        0x81ac1fe293d599bf,0xc6f14cd848405530,
        0xa21727db38cb002f,0xb8ada00e5a506a7c,
        0xca9cf1d206fdc03b,0xa6d90811f0e4851c,
        0xfd442e4688bd304a,0x908f4a166d1da663,
        0x9e4a9cec15763e2e,0x9a598e4e043287fe,
        0xc5dd44271ad3cdba,0x40eff1e1853f29fd,
        0xf7549530e188c128,0xd12bee59e68ef47c,
        0x9a94dd3e8cf578b9,0x82bb74f8301958ce,
        0xc13a148e3032d6e7,0xe36a52363c1faf01,
        0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1,
        0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9,
        0xbcb2b812db11a5de,0x7415d448f6b6f0e7,
        0xebdf661791d60f56,0x111b495b3464ad21,
        0x936b9fcebb25c995,0xcab10dd900beec34,
        0xb84687c269ef3bfb,0x3d5d514f40eea742,
        0xe65829b3046b0afa,0xcb4a5a3112a5112,
        0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab,
        0xb3f4e093db73a093,0x59ed216765690f56,
        0xe0f218b8d25088b8,0x306869c13ec3532c,
        0x8c974f7383725573,0x1e414218c73a13fb,
        0xafbd2350644eeacf,0xe5d1929ef90898fa,
        0xdbac6c247d62a583,0xdf45f746b74abf39,
        0x894bc396ce5da772,0x6b8bba8c328eb783,
        0xab9eb47c81f5114f,0x66ea92f3f326564,
        0xd686619ba27255a2,0xc80a537b0efefebd,
        0x8613fd0145877585,0xbd06742ce95f5f36,
        0xa798fc4196e952e7,0x2c48113823b73704,
        0xd17f3b51fca3a7a0,0xf75a15862ca504c5,
        0x82ef85133de648c4,0x9a984d73dbe722fb,
        0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba,
        0xcc963fee10b7d1b3,0x318df905079926a8,
        0xffbbcfe994e5c61f,0xfdf17746497f7052,
        0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633,
        0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0,
        0xf9bd690a1b68637b,0x3dfdce7aa3c673b0,
        0x9c1661a651213e2d,0x6bea10ca65c084e,
        0xc31bfa0fe5698db8,0x486e494fcff30a62,
        0xf3e2f893dec3f126,0x5a89dba3c3efccfa,
        0x986ddb5c6b3a76b7,0xf89629465a75e01c,
        0xbe89523386091465,0xf6bbb397f1135823,
        0xee2ba6c0678b597f,0x746aa07ded582e2c,
        0x94db483840b717ef,0xa8c2a44eb4571cdc,
        0xba121a4650e4ddeb,0x92f34d62616ce413,
        0xe896a0d7e51e1566,0x77b020baf9c81d17,
        0x915e2486ef32cd60,0xace1474dc1d122e,
        0xb5b5ada8aaff80b8,0xd819992132456ba,
        0xe3231912d5bf60e6,0x10e1fff697ed6c69,
        0x8df5efabc5979c8f,0xca8d3ffa1ef463c1,
        0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2,
        0xddd0467c64bce4a0,0xac7cb3f6d05ddbde,
        0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b,
        0xad4ab7112eb3929d,0x86c16c98d2c953c6,
        0xd89d64d57a607744,0xe871c7bf077ba8b7,
        0x87625f056c7c4a8b,0x11471cd764ad4972,
        0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf,
        0xd389b47879823479,0x4aff1d108d4ec2c3,
        0x843610cb4bf160cb,0xcedf722a585139ba,
        0xa54394fe1eedb8fe,0xc2974eb4ee658828,
        0xce947a3da6a9273e,0x733d226229feea32,
        0x811ccc668829b887,0x806357d5a3f525f,
        0xa163ff802a3426a8,0xca07c2dcb0cf26f7,
        0xc9bcff6034c13052,0xfc89b393dd02f0b5,
        0xfc2c3f3841f17c67,0xbbac2078d443ace2,
        0x9d9ba7832936edc0,0xd54b944b84aa4c0d,
        0xc5029163f384a931,0xa9e795e65d4df11,
        0xf64335bcf065d37d,0x4d4617b5ff4a16d5,
        0x99ea0196163fa42e,0x504bced1bf8e4e45,
        0xc06481fb9bcf8d39,0xe45ec2862f71e1d6,
        0xf07da27a82c37088,0x5d767327bb4e5a4c,
        0x964e858c91ba2655,0x3a6a07f8d510f86f,
        0xbbe226efb628afea,0x890489f70a55368b,
        0xeadab0aba3b2dbe5,0x2b45ac74ccea842e,
        0x92c8ae6b464fc96f,0x3b0b8bc90012929d,
        0xb77ada0617e3bbcb,0x9ce6ebb40173744,
        0xe55990879ddcaabd,0xcc420a6a101d0515,
        0x8f57fa54c2a9eab6,0x9fa946824a12232d,
        0xb32df8e9f3546564,0x47939822dc96abf9,
        0xdff9772470297ebd,0x59787e2b93bc56f7,
        0x8bfbea76c619ef36,0x57eb4edb3c55b65a,
        0xaefae51477a06b03,0xede622920b6b23f1,
        0xdab99e59958885c4,0xe95fab368e45eced,
        0x88b402f7fd75539b,0x11dbcb0218ebb414,
        0xaae103b5fcd2a881,0xd652bdc29f26a119,
        0xd59944a37c0752a2,0x4be76d3346f0495f,
        0x857fcae62d8493a5,0x6f70a4400c562ddb,
        0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952,
        0xd097ad07a71f26b2,0x7e2000a41346a7a7,
        0x825ecc24c873782f,0x8ed400668c0c28c8,
        0xa2f67f2dfa90563b,0x728900802f0f32fa,
        0xcbb41ef979346bca,0x4f2b40a03ad2ffb9,
        0xfea126b7d78186bc,0xe2f610c84987bfa8,
        0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9,
        0xc6ede63fa05d3143,0x91503d1c79720dbb,
        0xf8a95fcf88747d94,0x75a44c6397ce912a,
        0x9b69dbe1b548ce7c,0xc986afbe3ee11aba,
        0xc24452da229b021b,0xfbe85badce996168,
        0xf2d56790ab41c2a2,0xfae27299423fb9c3,
        0x97c560ba6b0919a5,0xdccd879fc967d41a,
        0xbdb6b8e905cb600f,0x5400e987bbc1c920,
        0xed246723473e3813,0x290123e9aab23b68,
        0x9436c0760c86e30b,0xf9a0b6720aaf6521,
        0xb94470938fa89bce,0xf808e40e8d5b3e69,
        0xe7958cb87392c2c2,0xb60b1d1230b20e04,
        0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2,
        0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3,
        0xe2280b6c20dd5232,0x25c6da63c38de1b0,
        0x8d590723948a535f,0x579c487e5a38ad0e,
        0xb0af48ec79ace837,0x2d835a9df0c6d851,
        0xdcdb1b2798182244,0xf8e431456cf88e65,
        0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff,
        0xac8b2d36eed2dac5,0xe272467e3d222f3f,
        0xd7adf884aa879177,0x5b0ed81dcc6abb0f,
        0x86ccbb52ea94baea,0x98e947129fc2b4e9,
        0xa87fea27a539e9a5,0x3f2398d747b36224,
        0xd29fe4b18e88640e,0x8eec7f0d19a03aad,
        0x83a3eeeef9153e89,0x1953cf68300424ac,
        0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7,
        0xcdb02555653131b6,0x3792f412cb06794d,
        0x808e17555f3ebf11,0xe2bbd88bbee40bd0,
        0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4,
        0xc8de047564d20a8b,0xf245825a5a445275,
        0xfb158592be068d2e,0xeed6e2f0f0d56712,
        0x9ced737bb6c4183d,0x55464dd69685606b,
        0xc428d05aa4751e4c,0xaa97e14c3c26b886,
        0xf53304714d9265df,0xd53dd99f4b3066a8,
        0x993fe2c6d07b7fab,0xe546a8038efe4029,
        0xbf8fdb78849a5f96,0xde98520472bdd033,
        0xef73d256a5c0f77c,0x963e66858f6d4440,
        0x95a8637627989aad,0xdde7001379a44aa8,
        0xbb127c53b17ec159,0x5560c018580d5d52,
        0xe9d71b689dde71af,0xaab8f01e6e10b4a6,
        0x9226712162ab070d,0xcab3961304ca70e8,
        0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22,
        0xe45c10c42a2b3b05,0x8cb89a7db77c506a,
        0x8eb98a7a9a5b04e3,0x77f3608e92adb242,
        0xb267ed1940f1c61c,0x55f038b237591ed3,
        0xdf01e85f912e37a3,0x6b6c46dec52f6688,
        0x8b61313bbabce2c6,0x2323ac4b3b3da015,
        0xae397d8aa96c1b77,0xabec975e0a0d081a,
        0xd9c7dced53c72255,0x96e7bd358c904a21,
        0x881cea14545c7575,0x7e50d64177da2e54,
        0xaa242499697392d2,0xdde50bd1d5d0b9e9,
        0xd4ad2dbfc3d07787,0x955e4ec64b44e864,
        0x84ec3c97da624ab4,0xbd5af13bef0b113e,
        0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e,
        0xcfb11ead453994ba,0x67de18eda5814af2,
        0x81ceb32c4b43fcf4,0x80eacf948770ced7,
        0xa2425ff75e14fc31,0xa1258379a94d028d,
        0xcad2f7f5359a3b3e,0x96ee45813a04330,
        0xfd87b5f28300ca0d,0x8bca9d6e188853fc,
        0x9e74d1b791e07e48,0x775ea264cf55347e,
        0xc612062576589dda,0x95364afe032a819e,
        0xf79687aed3eec551,0x3a83ddbd83f52205,
        0x9abe14cd44753b52,0xc4926a9672793543,
        0xc16d9a0095928a27,0x75b7053c0f178294,
        0xf1c90080baf72cb1,0x5324c68b12dd6339,
        0x971da05074da7bee,0xd3f6fc16ebca5e04,
        0xbce5086492111aea,0x88f4bb1ca6bcf585,
        0xec1e4a7db69561a5,0x2b31e9e3d06c32e6,
        0x9392ee8e921d5d07,0x3aff322e62439fd0,
        0xb877aa3236a4b449,0x9befeb9fad487c3,
        0xe69594bec44de15b,0x4c2ebe687989a9b4,
        0x901d7cf73ab0acd9,0xf9d37014bf60a11,
        0xb424dc35095cd80f,0x538484c19ef38c95,
        0xe12e13424bb40e13,0x2865a5f206b06fba,
        0x8cbccc096f5088cb,0xf93f87b7442e45d4,
        0xafebff0bcb24aafe,0xf78f69a51539d749,
        0xdbe6fecebdedd5be,0xb573440e5a884d1c,
        0x89705f4136b4a597,0x31680a88f8953031,
        0xabcc77118461cefc,0xfdc20d2b36ba7c3e,
        0xd6bf94d5e57a42bc,0x3d32907604691b4d,
        0x8637bd05af6c69b5,0xa63f9a49c2c1b110,
        0xa7c5ac471b478423,0xfcf80dc33721d54,
        0xd1b71758e219652b,0xd3c36113404ea4a9,
        0x83126e978d4fdf3b,0x645a1cac083126ea,
        0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4,
        0xcccccccccccccccc,0xcccccccccccccccd,
        0x8000000000000000,0x0,
        0xa000000000000000,0x0,
        0xc800000000000000,0x0,
        0xfa00000000000000,0x0,
        0x9c40000000000000,0x0,
        0xc350000000000000,0x0,
        0xf424000000000000,0x0,
        0x9896800000000000,0x0,
        0xbebc200000000000,0x0,
        0xee6b280000000000,0x0,
        0x9502f90000000000,0x0,
        0xba43b74000000000,0x0,
        0xe8d4a51000000000,0x0,
        0x9184e72a00000000,0x0,
        0xb5e620f480000000,0x0,
        0xe35fa931a0000000,0x0,
        0x8e1bc9bf04000000,0x0,
        0xb1a2bc2ec5000000,0x0,
        0xde0b6b3a76400000,0x0,
        0x8ac7230489e80000,0x0,
        0xad78ebc5ac620000,0x0,
        0xd8d726b7177a8000,0x0,
        0x878678326eac9000,0x0,
        0xa968163f0a57b400,0x0,
        0xd3c21bcecceda100,0x0,
        0x84595161401484a0,0x0,
        0xa56fa5b99019a5c8,0x0,
        0xcecb8f27f4200f3a,0x0,
        0x813f3978f8940984,0x4000000000000000,
        0xa18f07d736b90be5,0x5000000000000000,
        0xc9f2c9cd04674ede,0xa400000000000000,
        0xfc6f7c4045812296,0x4d00000000000000,
        0x9dc5ada82b70b59d,0xf020000000000000,
        0xc5371912364ce305,0x6c28000000000000,
        0xf684df56c3e01bc6,0xc732000000000000,
        0x9a130b963a6c115c,0x3c7f400000000000,
        0xc097ce7bc90715b3,0x4b9f100000000000,
        0xf0bdc21abb48db20,0x1e86d40000000000,
        0x96769950b50d88f4,0x1314448000000000,
        0xbc143fa4e250eb31,0x17d955a000000000,
        0xeb194f8e1ae525fd,0x5dcfab0800000000,
        0x92efd1b8d0cf37be,0x5aa1cae500000000,
        0xb7abc627050305ad,0xf14a3d9e40000000,
        0xe596b7b0c643c719,0x6d9ccd05d0000000,
        0x8f7e32ce7bea5c6f,0xe4820023a2000000,
        0xb35dbf821ae4f38b,0xdda2802c8a800000,
        0xe0352f62a19e306e,0xd50b2037ad200000,
        0x8c213d9da502de45,0x4526f422cc340000,
        0xaf298d050e4395d6,0x9670b12b7f410000,
        0xdaf3f04651d47b4c,0x3c0cdd765f114000,
        0x88d8762bf324cd0f,0xa5880a69fb6ac800,
        0xab0e93b6efee0053,0x8eea0d047a457a00,
        0xd5d238a4abe98068,0x72a4904598d6d880,
        0x85a36366eb71f041,0x47a6da2b7f864750,
        0xa70c3c40a64e6c51,0x999090b65f67d924,
        0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d,
        0x82818f1281ed449f,0xbff8f10e7a8921a4,
        0xa321f2d7226895c7,0xaff72d52192b6a0d,
        0xcbea6f8ceb02bb39,0x9bf4f8a69f764490,
        0xfee50b7025c36a08,0x2f236d04753d5b4,
        0x9f4f2726179a2245,0x1d762422c946590,
        0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5,
        0xf8ebad2b84e0d58b,0xd2e0898765a7deb2,
        0x9b934c3b330c8577,0x63cc55f49f88eb2f,
        0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb,
        0xf316271c7fc3908a,0x8bef464e3945ef7a,
        0x97edd871cfda3a56,0x97758bf0e3cbb5ac,
        0xbde94e8e43d0c8ec,0x3d52eeed1cbea317,
        0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd,
        0x945e455f24fb1cf8,0x8fe8caa93e74ef6a,
        0xb975d6b6ee39e436,0xb3e2fd538e122b44,
        0xe7d34c64a9c85d44,0x60dbbca87196b616,
        0x90e40fbeea1d3a4a,0xbc8955e946fe31cd,
        0xb51d13aea4a488dd,0x6babab6398bdbe41,
        0xe264589a4dcdab14,0xc696963c7eed2dd1,
        0x8d7eb76070a08aec,0xfc1e1de5cf543ca2,
        0xb0de65388cc8ada8,0x3b25a55f43294bcb,
        0xdd15fe86affad912,0x49ef0eb713f39ebe,
        0x8a2dbf142dfcc7ab,0x6e3569326c784337,
        0xacb92ed9397bf996,0x49c2c37f07965404,
        0xd7e77a8f87daf7fb,0xdc33745ec97be906,
        0x86f0ac99b4e8dafd,0x69a028bb3ded71a3,
        0xa8acd7c0222311bc,0xc40832ea0d68ce0c,
        0xd2d80db02aabd62b,0xf50a3fa490c30190,
        0x83c7088e1aab65db,0x792667c6da79e0fa,
        0xa4b8cab1a1563f52,0x577001b891185938,
        0xcde6fd5e09abcf26,0xed4c0226b55e6f86,
        0x80b05e5ac60b6178,0x544f8158315b05b4,
        0xa0dc75f1778e39d6,0x696361ae3db1c721,
        0xc913936dd571c84c,0x3bc3a19cd1e38e9,
        0xfb5878494ace3a5f,0x4ab48a04065c723,
        0x9d174b2dcec0e47b,0x62eb0d64283f9c76,
        0xc45d1df942711d9a,0x3ba5d0bd324f8394,
        0xf5746577930d6500,0xca8f44ec7ee36479,
        0x9968bf6abbe85f20,0x7e998b13cf4e1ecb,
        0xbfc2ef456ae276e8,0x9e3fedd8c321a67e,
        0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e,
        0x95d04aee3b80ece5,0xbba1f1d158724a12,
        0xbb445da9ca61281f,0x2a8a6e45ae8edc97,
        0xea1575143cf97226,0xf52d09d71a3293bd,
        0x924d692ca61be758,0x593c2626705f9c56,
        0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c,
        0xe498f455c38b997a,0xb6dfb9c0f956447,
        0x8edf98b59a373fec,0x4724bd4189bd5eac,
        0xb2977ee300c50fe7,0x58edec91ec2cb657,
        0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed,
        0x8b865b215899f46c,0xbd79e0d20082ee74,
        0xae67f1e9aec07187,0xecd8590680a3aa11,
        0xda01ee641a708de9,0xe80e6f4820cc9495,
        0x884134fe908658b2,0x3109058d147fdcdd,
        0xaa51823e34a7eede,0xbd4b46f0599fd415,
        0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a,
        0x850fadc09923329e,0x3e2cf6bc604ddb0,
        0xa6539930bf6bff45,0x84db8346b786151c,
        0xcfe87f7cef46ff16,0xe612641865679a63,
        0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e,
        0xa26da3999aef7749,0xe3be5e330f38f09d,
        0xcb090c8001ab551c,0x5cadf5bfd3072cc5,
        0xfdcb4fa002162a63,0x73d9732fc7c8f7f6,
        0x9e9f11c4014dda7e,0x2867e7fddcdd9afa,
        0xc646d63501a1511d,0xb281e1fd541501b8,
        0xf7d88bc24209a565,0x1f225a7ca91a4226,
        0x9ae757596946075f,0x3375788de9b06958,
        0xc1a12d2fc3978937,0x52d6b1641c83ae,
        0xf209787bb47d6b84,0xc0678c5dbd23a49a,
        0x9745eb4d50ce6332,0xf840b7ba963646e0,
        0xbd176620a501fbff,0xb650e5a93bc3d898,
        0xec5d3fa8ce427aff,0xa3e51f138ab4cebe,
        0x93ba47c980e98cdf,0xc66f336c36b10137,
        0xb8a8d9bbe123f017,0xb80b0047445d4184,
        0xe6d3102ad96cec1d,0xa60dc059157491e5,
        0x9043ea1ac7e41392,0x87c89837ad68db2f,
        0xb454e4a179dd1877,0x29babe4598c311fb,
        0xe16a1dc9d8545e94,0xf4296dd6fef3d67a,
        0x8ce2529e2734bb1d,0x1899e4a65f58660c,
        0xb01ae745b101e9e4,0x5ec05dcff72e7f8f,
        0xdc21a1171d42645d,0x76707543f4fa1f73,
        0x899504ae72497eba,0x6a06494a791c53a8,
        0xabfa45da0edbde69,0x487db9d17636892,
        0xd6f8d7509292d603,0x45a9d2845d3c42b6,
        0x865b86925b9bc5c2,0xb8a2392ba45a9b2,
        0xa7f26836f282b732,0x8e6cac7768d7141e,
        0xd1ef0244af2364ff,0x3207d795430cd926,
        0x8335616aed761f1f,0x7f44e6bd49e807b8,
        0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6,
        0xcd036837130890a1,0x36dba887c37a8c0f,
        0x802221226be55a64,0xc2494954da2c9789,
        0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c,
        0xc83553c5c8965d3d,0x6f92829494e5acc7,
        0xfa42a8b73abbf48c,0xcb772339ba1f17f9,
        0x9c69a97284b578d7,0xff2a760414536efb,
        0xc38413cf25e2d70d,0xfef5138519684aba,
        0xf46518c2ef5b8cd1,0x7eb258665fc25d69,
        0x98bf2f79d5993802,0xef2f773ffbd97a61,
        0xbeeefb584aff8603,0xaafb550ffacfd8fa,
        0xeeaaba2e5dbf6784,0x95ba2a53f983cf38,
        0x952ab45cfa97a0b2,0xdd945a747bf26183,
        0xba756174393d88df,0x94f971119aeef9e4,
        0xe912b9d1478ceb17,0x7a37cd5601aab85d,
        0x91abb422ccb812ee,0xac62e055c10ab33a,
        0xb616a12b7fe617aa,0x577b986b314d6009,
        0xe39c49765fdf9d94,0xed5a7e85fda0b80b,
        0x8e41ade9fbebc27d,0x14588f13be847307,
        0xb1d219647ae6b31c,0x596eb2d8ae258fc8,
        0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb,
        0x8aec23d680043bee,0x25de7bb9480d5854,
        0xada72ccc20054ae9,0xaf561aa79a10ae6a,
        0xd910f7ff28069da4,0x1b2ba1518094da04,
        0x87aa9aff79042286,0x90fb44d2f05d0842,
        0xa99541bf57452b28,0x353a1607ac744a53,
        0xd3fa922f2d1675f2,0x42889b8997915ce8,
        0x847c9b5d7c2e09b7,0x69956135febada11,
        0xa59bc234db398c25,0x43fab9837e699095,
        0xcf02b2c21207ef2e,0x94f967e45e03f4bb,
        0x8161afb94b44f57d,0x1d1be0eebac278f5,
        0xa1ba1ba79e1632dc,0x6462d92a69731732,
        0xca28a291859bbf93,0x7d7b8f7503cfdcfe,
        0xfcb2cb35e702af78,0x5cda735244c3d43e,
        0x9defbf01b061adab,0x3a0888136afa64a7,
        0xc56baec21c7a1916,0x88aaa1845b8fdd0,
        0xf6c69a72a3989f5b,0x8aad549e57273d45,
        0x9a3c2087a63f6399,0x36ac54e2f678864b,
        0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd,
        0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5,
        0x969eb7c47859e743,0x9f644ae5a4b1b325,
        0xbc4665b596706114,0x873d5d9f0dde1fee,
        0xeb57ff22fc0c7959,0xa90cb506d155a7ea,
        0x9316ff75dd87cbd8,0x9a7f12442d588f2,
        0xb7dcbf5354e9bece,0xc11ed6d538aeb2f,
        0xe5d3ef282a242e81,0x8f1668c8a86da5fa,
        0x8fa475791a569d10,0xf96e017d694487bc,
        0xb38d92d760ec4455,0x37c981dcc395a9ac,
        0xe070f78d3927556a,0x85bbe253f47b1417,
        0x8c469ab843b89562,0x93956d7478ccec8e,
        0xaf58416654a6babb,0x387ac8d1970027b2,
        0xdb2e51bfe9d0696a,0x6997b05fcc0319e,
        0x88fcf317f22241e2,0x441fece3bdf81f03,
        0xab3c2fddeeaad25a,0xd527e81cad7626c3,
        0xd60b3bd56a5586f1,0x8a71e223d8d3b074,
        0x85c7056562757456,0xf6872d5667844e49,
        0xa738c6bebb12d16c,0xb428f8ac016561db,
        0xd106f86e69d785c7,0xe13336d701beba52,
        0x82a45b450226b39c,0xecc0024661173473,
        0xa34d721642b06084,0x27f002d7f95d0190,
        0xcc20ce9bd35c78a5,0x31ec038df7b441f4,
        0xff290242c83396ce,0x7e67047175a15271,
        0x9f79a169bd203e41,0xf0062c6e984d386,
        0xc75809c42c684dd1,0x52c07b78a3e60868,
        0xf92e0c3537826145,0xa7709a56ccdf8a82,
        0x9bbcc7a142b17ccb,0x88a66076400bb691,
        0xc2abf989935ddbfe,0x6acff893d00ea435,
        0xf356f7ebf83552fe,0x583f6b8c4124d43,
        0x98165af37b2153de,0xc3727a337a8b704a,
        0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c,
        0xeda2ee1c7064130c,0x1162def06f79df73,
        0x9485d4d1c63e8be7,0x8addcb5645ac2ba8,
        0xb9a74a0637ce2ee1,0x6d953e2bd7173692,
        0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437,
        0x910ab1d4db9914a0,0x1d9c9892400a22a2,
        0xb54d5e4a127f59c8,0x2503beb6d00cab4b,
        0xe2a0b5dc971f303a,0x2e44ae64840fd61d,
        0x8da471a9de737e24,0x5ceaecfed289e5d2,
        0xb10d8e1456105dad,0x7425a83e872c5f47,
        0xdd50f1996b947518,0xd12f124e28f77719,
        0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f,
        0xace73cbfdc0bfb7b,0x636cc64d1001550b,
        0xd8210befd30efa5a,0x3c47f7e05401aa4e,
        0x8714a775e3e95c78,0x65acfaec34810a71,
        0xa8d9d1535ce3b396,0x7f1839a741a14d0d,
        0xd31045a8341ca07c,0x1ede48111209a050,
        0x83ea2b892091e44d,0x934aed0aab460432,
        0xa4e4b66b68b65d60,0xf81da84d5617853f,
        0xce1de40642e3f4b9,0x36251260ab9d668e,
        0x80d2ae83e9ce78f3,0xc1d72b7c6b426019,
        0xa1075a24e4421730,0xb24cf65b8612f81f,
        0xc94930ae1d529cfc,0xdee033f26797b627,
        0xfb9b7cd9a4a7443c,0x169840ef017da3b1,
        0x9d412e0806e88aa5,0x8e1f289560ee864e,
        0xc491798a08a2ad4e,0xf1a6f2bab92a27e2,
        0xf5b5d7ec8acb58a2,0xae10af696774b1db,
        0x9991a6f3d6bf1765,0xacca6da1e0a8ef29,
        0xbff610b0cc6edd3f,0x17fd090a58d32af3,
        0xeff394dcff8a948e,0xddfc4b4cef07f5b0,
        0x95f83d0a1fb69cd9,0x4abdaf101564f98e,
        0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1,
        0xea53df5fd18d5513,0x84c86189216dc5ed,
        0x92746b9be2f8552c,0x32fd3cf5b4e49bb4,
        0xb7118682dbb66a77,0x3fbc8c33221dc2a1,
        0xe4d5e82392a40515,0xfabaf3feaa5334a,
        0x8f05b1163ba6832d,0x29cb4d87f2a7400e,
        0xb2c71d5bca9023f8,0x743e20e9ef511012,
        0xdf78e4b2bd342cf6,0x914da9246b255416,
        0x8bab8eefb6409c1a,0x1ad089b6c2f7548e,
        0xae9672aba3d0c320,0xa184ac2473b529b1,
        0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e,
        0x8865899617fb1871,0x7e2fa67c7a658892,
        0xaa7eebfb9df9de8d,0xddbb901b98feeab7,
        0xd51ea6fa85785631,0x552a74227f3ea565,
        0x8533285c936b35de,0xd53a88958f87275f,
        0xa67ff273b8460356,0x8a892abaf368f137,
        0xd01fef10a657842c,0x2d2b7569b0432d85,
        0x8213f56a67f6b29b,0x9c3b29620e29fc73,
        0xa298f2c501f45f42,0x8349f3ba91b47b8f,
        0xcb3f2f7642717713,0x241c70a936219a73,
        0xfe0efb53d30dd4d7,0xed238cd383aa0110,
        0x9ec95d1463e8a506,0xf4363804324a40aa,
        0xc67bb4597ce2ce48,0xb143c6053edcd0d5,
        0xf81aa16fdc1b81da,0xdd94b7868e94050a,
        0x9b10a4e5e9913128,0xca7cf2b4191c8326,
        0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0,
        0xf24a01a73cf2dccf,0xbc633b39673c8cec,
        0x976e41088617ca01,0xd5be0503e085d813,
        0xbd49d14aa79dbc82,0x4b2d8644d8a74e18,
        0xec9c459d51852ba2,0xddf8e7d60ed1219e,
        0x93e1ab8252f33b45,0xcabb90e5c942b503,
        0xb8da1662e7b00a17,0x3d6a751f3b936243,
        0xe7109bfba19c0c9d,0xcc512670a783ad4,
        0x906a617d450187e2,0x27fb2b80668b24c5,
        0xb484f9dc9641e9da,0xb1f9f660802dedf6,
        0xe1a63853bbd26451,0x5e7873f8a0396973,
        0x8d07e33455637eb2,0xdb0b487b6423e1e8,
        0xb049dc016abc5e5f,0x91ce1a9a3d2cda62,
        0xdc5c5301c56b75f7,0x7641a140cc7810fb,
        0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d,
        0xac2820d9623bf429,0x546345fa9fbdcd44,
        0xd732290fbacaf133,0xa97c177947ad4095,
        0x867f59a9d4bed6c0,0x49ed8eabcccc485d,
        0xa81f301449ee8c70,0x5c68f256bfff5a74,
        0xd226fc195c6a2f8c,0x73832eec6fff3111,
        0x83585d8fd9c25db7,0xc831fd53c5ff7eab,
        0xa42e74f3d032f525,0xba3e7ca8b77f5e55,
        0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb,
        0x80444b5e7aa7cf85,0x7980d163cf5b81b3,
        0xa0555e361951c366,0xd7e105bcc332621f,
        0xc86ab5c39fa63440,0x8dd9472bf3fefaa7,
        0xfa856334878fc150,0xb14f98f6f0feb951,
        0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3,
        0xc3b8358109e84f07,0xa862f80ec4700c8,
        0xf4a642e14c6262c8,0xcd27bb612758c0fa,
        0x98e7e9cccfbd7dbd,0x8038d51cb897789c,
        0xbf21e44003acdd2c,0xe0470a63e6bd56c3,
        0xeeea5d5004981478,0x1858ccfce06cac74,
        0x95527a5202df0ccb,0xf37801e0c43ebc8,
        0xbaa718e68396cffd,0xd30560258f54e6ba,
        0xe950df20247c83fd,0x47c6b82ef32a2069,
        0x91d28b7416cdd27e,0x4cdc331d57fa5441,
        0xb6472e511c81471d,0xe0133fe4adf8e952,
        0xe3d8f9e563a198e5,0x58180fddd97723a6,
        0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,};
    using powers = powers_template<>;

}

#endif

#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H

#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>

namespace fast_float {

    // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
    // the result, with the "high" part corresponding to the most significant bits and the
    // low part corresponding to the least significant bits.
    //
    template <int bit_precision>
    fastfloat_really_inline
    value128 compute_product_approximation(int64_t q, uint64_t w) {
        const int index = 2 * int(q - powers::smallest_power_of_five);
        // For small values of q, e.g., q in [0,27], the answer is always exact because
        // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
        // gives the exact answer.
        value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
        static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should  be in (0,64]");
        constexpr uint64_t precision_mask = (bit_precision < 64) ?
                                            (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
                                                                 : uint64_t(0xFFFFFFFFFFFFFFFF);
        if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with  (lower + w < lower)
            // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
            value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
            firstproduct.low += secondproduct.high;
            if(secondproduct.high > firstproduct.low) {
                firstproduct.high++;
            }
        }
        return firstproduct;
    }

    namespace detail {
        /**
 * For q in (0,350), we have that
 *  f = (((152170 + 65536) * q ) >> 16);
 * is equal to
 *   floor(p) + q
 * where
 *   p = log(5**q)/log(2) = q * log(5)/log(2)
 *
 * For negative values of q in (-400,0), we have that
 *  f = (((152170 + 65536) * q ) >> 16);
 * is equal to
 *   -ceil(p) + q
 * where
 *   p = log(5**-q)/log(2) = -q * log(5)/log(2)
         */
        constexpr fastfloat_really_inline int32_t power(int32_t q)  noexcept  {
            return (((152170 + 65536) * q) >> 16) + 63;
        }
    } // namespace detail

    // create an adjusted mantissa, biased by the invalid power2
    // for significant digits already multiplied by 10 ** q.
    template <typename binary>
    fastfloat_really_inline
    adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept  {
        int hilz = int(w >> 63) ^ 1;
        adjusted_mantissa answer;
        answer.mantissa = w << hilz;
        int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
        answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
        return answer;
    }

    // w * 10 ** q, without rounding the representation up.
    // the power2 in the exponent will be adjusted by invalid_am_bias.
    template <typename binary>
    fastfloat_really_inline
    adjusted_mantissa compute_error(int64_t q, uint64_t w)  noexcept  {
        int lz = leading_zeroes(w);
        w <<= lz;
        value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
        return compute_error_scaled<binary>(q, product.high, lz);
    }

    // w * 10 ** q
    // The returned value should be a valid ieee64 number that simply need to be packed.
    // However, in some very rare cases, the computation will fail. In such cases, we
    // return an adjusted_mantissa with a negative power of 2: the caller should recompute
    // in such cases.
    template <typename binary>
    fastfloat_really_inline
    adjusted_mantissa compute_float(int64_t q, uint64_t w)  noexcept  {
        adjusted_mantissa answer;
        if ((w == 0) || (q < binary::smallest_power_of_ten())) {
            answer.power2 = 0;
            answer.mantissa = 0;
            // result should be zero
            return answer;
        }
        if (q > binary::largest_power_of_ten()) {
            // we want to get infinity:
            answer.power2 = binary::infinite_power();
            answer.mantissa = 0;
            return answer;
        }
        // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].

        // We want the most significant bit of i to be 1. Shift if needed.
        int lz = leading_zeroes(w);
        w <<= lz;

        // The required precision is binary::mantissa_explicit_bits() + 3 because
        // 1. We need the implicit bit
        // 2. We need an extra bit for rounding purposes
        // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)

        value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
        if(product.low == 0xFFFFFFFFFFFFFFFF) { //  could guard it further
            // In some very rare cases, this could happen, in which case we might need a more accurate
            // computation that what we can provide cheaply. This is very, very unlikely.
            //
            const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0,
            // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation.
            if(!inside_safe_exponent) {
                return compute_error_scaled<binary>(q, product.high, lz);
            }
        }
        // The "compute_product_approximation" function can be slightly slower than a branchless approach:
        // value128 product = compute_product(q, w);
        // but in practice, we can win big with the compute_product_approximation if its additional branch
        // is easily predicted. Which is best is data specific.
        int upperbit = int(product.high >> 63);

        answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);

        answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
        if (answer.power2 <= 0) { // we have a subnormal?
            // Here have that answer.power2 <= 0 so -answer.power2 >= 0
            if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
                answer.power2 = 0;
                answer.mantissa = 0;
                // result should be zero
                return answer;
            }
            // next line is safe because -answer.power2 + 1 < 64
            answer.mantissa >>= -answer.power2 + 1;
            // Thankfully, we can't have both "round-to-even" and subnormals because
            // "round-to-even" only occurs for powers close to 0.
            answer.mantissa += (answer.mantissa & 1); // round up
            answer.mantissa >>= 1;
            // There is a weird scenario where we don't have a subnormal but just.
            // Suppose we start with 2.2250738585072013e-308, we end up
            // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
            // whereas 0x40000000000000 x 2^-1023-53  is normal. Now, we need to round
            // up 0x3fffffffffffff x 2^-1023-53  and once we do, we are no longer
            // subnormal, but we can only know this after rounding.
            // So we only declare a subnormal if we are smaller than the threshold.
            answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
            return answer;
        }

        // usually, we round *up*, but if we fall right in between and and we have an
        // even basis, we need to round down
        // We are only concerned with the cases where 5**q fits in single 64-bit word.
        if ((product.low <= 1) &&  (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
            ((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
            // To be in-between two floats we need that in doing
            //   answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
            // ... we dropped out only zeroes. But if this happened, then we can go back!!!
            if((answer.mantissa  << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) ==  product.high) {
                answer.mantissa &= ~uint64_t(1);          // flip it so that we do not round up
            }
        }

        answer.mantissa += (answer.mantissa & 1); // round up
        answer.mantissa >>= 1;
        if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
            answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
            answer.power2++; // undo previous addition
        }

        answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
        if (answer.power2 >= binary::infinite_power()) { // infinity
            answer.power2 = binary::infinite_power();
            answer.mantissa = 0;
        }
        return answer;
    }

} // namespace fast_float

#endif

#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H

#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>


namespace fast_float {

// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB
    typedef uint64_t limb;
    constexpr size_t limb_bits = 64;
#else
    #define FASTFLOAT_32BIT_LIMB
    typedef uint32_t limb;
    constexpr size_t limb_bits = 32;
#endif

    typedef span<limb> limb_span;

    // number of bits in a bigint. this needs to be at least the number
    // of bits required to store the largest bigint, which is
    // `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
    // ~3600 bits, so we round to 4000.
    constexpr size_t bigint_bits = 4000;
    constexpr size_t bigint_limbs = bigint_bits / limb_bits;

    // vector-like type that is allocated on the stack. the entire
    // buffer is pre-allocated, and only the length changes.
    template <uint16_t size>
    struct stackvec {
        limb data[size];
        // we never need more than 150 limbs
        uint16_t length{0};

        stackvec() = default;
        stackvec(const stackvec &) = delete;
        stackvec &operator=(const stackvec &) = delete;
        stackvec(stackvec &&) = delete;
        stackvec &operator=(stackvec &&other) = delete;

        // create stack vector from existing limb span.
        stackvec(limb_span s) {
            FASTFLOAT_ASSERT(try_extend(s));
        }

        limb& operator[](size_t index) noexcept {
            FASTFLOAT_DEBUG_ASSERT(index < length);
            return data[index];
        }
        const limb& operator[](size_t index) const noexcept {
            FASTFLOAT_DEBUG_ASSERT(index < length);
            return data[index];
        }
        // index from the end of the container
        const limb& rindex(size_t index) const noexcept {
            FASTFLOAT_DEBUG_ASSERT(index < length);
            size_t rindex = length - index - 1;
            return data[rindex];
        }

        // set the length, without bounds checking.
        void set_len(size_t len) noexcept {
            length = uint16_t(len);
        }
        constexpr size_t len() const noexcept {
            return length;
        }
        constexpr bool is_empty() const noexcept {
            return length == 0;
        }
        constexpr size_t capacity() const noexcept {
            return size;
        }
        // append item to vector, without bounds checking
        void push_unchecked(limb value) noexcept {
            data[length] = value;
            length++;
        }
        // append item to vector, returning if item was added
        bool try_push(limb value) noexcept {
            if (len() < capacity()) {
                push_unchecked(value);
                return true;
            } else {
                return false;
            }
        }
        // add items to the vector, from a span, without bounds checking
        void extend_unchecked(limb_span s) noexcept {
            limb* ptr = data + length;
            ::memcpy((void*)ptr, (const void*)s.ptr, sizeof(limb) * s.len());
            set_len(len() + s.len());
        }
        // try to add items to the vector, returning if items were added
        bool try_extend(limb_span s) noexcept {
            if (len() + s.len() <= capacity()) {
                extend_unchecked(s);
                return true;
            } else {
                return false;
            }
        }
        // resize the vector, without bounds checking
        // if the new size is longer than the vector, assign value to each
        // appended item.
        void resize_unchecked(size_t new_len, limb value) noexcept {
            if (new_len > len()) {
                size_t count = new_len - len();
                limb* first = data + len();
                limb* last = first + count;
                ::std::fill(first, last, value);
                set_len(new_len);
            } else {
                set_len(new_len);
            }
        }
        // try to resize the vector, returning if the vector was resized.
        bool try_resize(size_t new_len, limb value) noexcept {
            if (new_len > capacity()) {
                return false;
            } else {
                resize_unchecked(new_len, value);
                return true;
            }
        }
        // check if any limbs are non-zero after the given index.
        // this needs to be done in reverse order, since the index
        // is relative to the most significant limbs.
        bool nonzero(size_t index) const noexcept {
            while (index < len()) {
                if (rindex(index) != 0) {
                    return true;
                }
                index++;
            }
            return false;
        }
        // normalize the big integer, so most-significant zero limbs are removed.
        void normalize() noexcept {
            while (len() > 0 && rindex(0) == 0) {
                length--;
            }
        }
    };

    fastfloat_really_inline
    uint64_t empty_hi64(bool& truncated) noexcept {
        truncated = false;
        return 0;
    }

    fastfloat_really_inline
    uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
        truncated = false;
        int shl = leading_zeroes(r0);
        return r0 << shl;
    }

    fastfloat_really_inline
    uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
        int shl = leading_zeroes(r0);
        if (shl == 0) {
            truncated = r1 != 0;
            return r0;
        } else {
            int shr = 64 - shl;
            truncated = (r1 << shl) != 0;
            return (r0 << shl) | (r1 >> shr);
        }
    }

    fastfloat_really_inline
    uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
        return uint64_hi64(r0, truncated);
    }

    fastfloat_really_inline
    uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
        uint64_t x0 = r0;
        uint64_t x1 = r1;
        return uint64_hi64((x0 << 32) | x1, truncated);
    }

    fastfloat_really_inline
    uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
        uint64_t x0 = r0;
        uint64_t x1 = r1;
        uint64_t x2 = r2;
        return uint64_hi64(x0, (x1 << 32) | x2, truncated);
    }

    // add two small integers, checking for overflow.
    // we want an efficient operation. for msvc, where
    // we don't have built-in intrinsics, this is still
    // pretty fast.
    fastfloat_really_inline
    limb scalar_add(limb x, limb y, bool& overflow) noexcept {
        limb z;

// gcc and clang
#if defined(__has_builtin)
        #if __has_builtin(__builtin_add_overflow)
        overflow = __builtin_add_overflow(x, y, &z);
        return z;
#endif
#endif

        // generic, this still optimizes correctly on MSVC.
        z = x + y;
        overflow = z < x;
        return z;
    }

    // multiply two small integers, getting both the high and low bits.
    fastfloat_really_inline
    limb scalar_mul(limb x, limb y, limb& carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
        // GCC and clang both define it as an extension.
        __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
        carry = limb(z >> limb_bits);
        return limb(z);
#else
        // fallback, no native 128-bit integer multiplication with carry.
        // on msvc, this optimizes identically, somehow.
        value128 z = full_multiplication(x, y);
        bool overflow;
        z.low = scalar_add(z.low, carry, overflow);
        z.high += uint64_t(overflow);  // cannot overflow
        carry = z.high;
        return z.low;
#endif
#else
        uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
        carry = limb(z >> limb_bits);
        return limb(z);
#endif
    }

    // add scalar value to bigint starting from offset.
    // used in grade school multiplication
    template <uint16_t size>
    inline bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
        size_t index = start;
        limb carry = y;
        bool overflow;
        while (carry != 0 && index < vec.len()) {
            vec[index] = scalar_add(vec[index], carry, overflow);
            carry = limb(overflow);
            index += 1;
        }
        if (carry != 0) {
            FASTFLOAT_TRY(vec.try_push(carry));
        }
        return true;
    }

    // add scalar value to bigint.
    template <uint16_t size>
    fastfloat_really_inline bool small_add(stackvec<size>& vec, limb y) noexcept {
        return small_add_from(vec, y, 0);
    }

    // multiply bigint by scalar value.
    template <uint16_t size>
    inline bool small_mul(stackvec<size>& vec, limb y) noexcept {
        limb carry = 0;
        for (size_t index = 0; index < vec.len(); index++) {
            vec[index] = scalar_mul(vec[index], y, carry);
        }
        if (carry != 0) {
            FASTFLOAT_TRY(vec.try_push(carry));
        }
        return true;
    }

    // add bigint to bigint starting from index.
    // used in grade school multiplication
    template <uint16_t size>
    bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
        // the effective x buffer is from `xstart..x.len()`, so exit early
        // if we can't get that current range.
        if (x.len() < start || y.len() > x.len() - start) {
            FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
        }

        bool carry = false;
        for (size_t index = 0; index < y.len(); index++) {
            limb xi = x[index + start];
            limb yi = y[index];
            bool c1 = false;
            bool c2 = false;
            xi = scalar_add(xi, yi, c1);
            if (carry) {
                xi = scalar_add(xi, 1, c2);
            }
            x[index + start] = xi;
            carry = c1 | c2;
        }

        // handle overflow
        if (carry) {
            FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
        }
        return true;
    }

    // add bigint to bigint.
    template <uint16_t size>
    fastfloat_really_inline bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
        return large_add_from(x, y, 0);
    }

    // grade-school multiplication algorithm
    template <uint16_t size>
    bool long_mul(stackvec<size>& x, limb_span y) noexcept {
        limb_span xs = limb_span(x.data, x.len());
        stackvec<size> z(xs);
        limb_span zs = limb_span(z.data, z.len());

        if (y.len() != 0) {
            limb y0 = y[0];
            FASTFLOAT_TRY(small_mul(x, y0));
            for (size_t index = 1; index < y.len(); index++) {
                limb yi = y[index];
                stackvec<size> zi;
                if (yi != 0) {
                    // re-use the same buffer throughout
                    zi.set_len(0);
                    FASTFLOAT_TRY(zi.try_extend(zs));
                    FASTFLOAT_TRY(small_mul(zi, yi));
                    limb_span zis = limb_span(zi.data, zi.len());
                    FASTFLOAT_TRY(large_add_from(x, zis, index));
                }
            }
        }

        x.normalize();
        return true;
    }

    // grade-school multiplication algorithm
    template <uint16_t size>
    bool large_mul(stackvec<size>& x, limb_span y) noexcept {
        if (y.len() == 1) {
            FASTFLOAT_TRY(small_mul(x, y[0]));
        } else {
            FASTFLOAT_TRY(long_mul(x, y));
        }
        return true;
    }

    // big integer type. implements a small subset of big integer
    // arithmetic, using simple algorithms since asymptotically
    // faster algorithms are slower for a small number of limbs.
    // all operations assume the big-integer is normalized.
    struct bigint {
        // storage of the limbs, in little-endian order.
        stackvec<bigint_limbs> vec;

        bigint(): vec() {}
        bigint(const bigint &) = delete;
        bigint &operator=(const bigint &) = delete;
        bigint(bigint &&) = delete;
        bigint &operator=(bigint &&other) = delete;

        bigint(uint64_t value): vec() {
#ifdef FASTFLOAT_64BIT_LIMB
            vec.push_unchecked(value);
#else
            vec.push_unchecked(uint32_t(value));
            vec.push_unchecked(uint32_t(value >> 32));
#endif
            vec.normalize();
        }

        // get the high 64 bits from the vector, and if bits were truncated.
        // this is to get the significant digits for the float.
        uint64_t hi64(bool& truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
            if (vec.len() == 0) {
                return empty_hi64(truncated);
            } else if (vec.len() == 1) {
                return uint64_hi64(vec.rindex(0), truncated);
            } else {
                uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
                truncated |= vec.nonzero(2);
                return result;
            }
#else
            if (vec.len() == 0) {
                return empty_hi64(truncated);
            } else if (vec.len() == 1) {
                return uint32_hi64(vec.rindex(0), truncated);
            } else if (vec.len() == 2) {
                return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
            } else {
                uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
                truncated |= vec.nonzero(3);
                return result;
            }
#endif
        }

        // compare two big integers, returning the large value.
        // assumes both are normalized. if the return value is
        // negative, other is larger, if the return value is
        // positive, this is larger, otherwise they are equal.
        // the limbs are stored in little-endian order, so we
        // must compare the limbs in ever order.
        int compare(const bigint& other) const noexcept {
            if (vec.len() > other.vec.len()) {
                return 1;
            } else if (vec.len() < other.vec.len()) {
                return -1;
            } else {
                for (size_t index = vec.len(); index > 0; index--) {
                    limb xi = vec[index - 1];
                    limb yi = other.vec[index - 1];
                    if (xi > yi) {
                        return 1;
                    } else if (xi < yi) {
                        return -1;
                    }
                }
                return 0;
            }
        }

        // shift left each limb n bits, carrying over to the new limb
        // returns true if we were able to shift all the digits.
        bool shl_bits(size_t n) noexcept {
            // Internally, for each item, we shift left by n, and add the previous
            // right shifted limb-bits.
            // For example, we transform (for u8) shifted left 2, to:
            //      b10100100 b01000010
            //      b10 b10010001 b00001000
            FASTFLOAT_DEBUG_ASSERT(n != 0);
            FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);

            size_t shl = n;
            size_t shr = limb_bits - shl;
            limb prev = 0;
            for (size_t index = 0; index < vec.len(); index++) {
                limb xi = vec[index];
                vec[index] = (xi << shl) | (prev >> shr);
                prev = xi;
            }

            limb carry = prev >> shr;
            if (carry != 0) {
                return vec.try_push(carry);
            }
            return true;
        }

        // move the limbs left by `n` limbs.
        bool shl_limbs(size_t n) noexcept {
            FASTFLOAT_DEBUG_ASSERT(n != 0);
            if (n + vec.len() > vec.capacity()) {
                return false;
            } else if (!vec.is_empty()) {
                // move limbs
                limb* dst = vec.data + n;
                const limb* src = vec.data;
                ::memmove(dst, src, sizeof(limb) * vec.len());
                // fill in empty limbs
                limb* first = vec.data;
                limb* last = first + n;
                ::std::fill(first, last, 0);
                vec.set_len(n + vec.len());
                return true;
            } else {
                return true;
            }
        }

        // move the limbs left by `n` bits.
        bool shl(size_t n) noexcept {
            size_t rem = n % limb_bits;
            size_t div = n / limb_bits;
            if (rem != 0) {
                FASTFLOAT_TRY(shl_bits(rem));
            }
            if (div != 0) {
                FASTFLOAT_TRY(shl_limbs(div));
            }
            return true;
        }

        // get the number of leading zeros in the bigint.
        int ctlz() const noexcept {
            if (vec.is_empty()) {
                return 0;
            } else {
#ifdef FASTFLOAT_64BIT_LIMB
                return leading_zeroes(vec.rindex(0));
#else
                // no use defining a specialized leading_zeroes for a 32-bit type.
                uint64_t r0 = vec.rindex(0);
                return leading_zeroes(r0 << 32);
#endif
            }
        }

        // get the number of bits in the bigint.
        int bit_length() const noexcept {
            int lz = ctlz();
            return int(limb_bits * vec.len()) - lz;
        }

        bool mul(limb y) noexcept {
            return small_mul(vec, y);
        }

        bool add(limb y) noexcept {
            return small_add(vec, y);
        }

        // multiply as if by 2 raised to a power.
        bool pow2(uint32_t exp) noexcept {
            return shl(exp);
        }

        // multiply as if by 5 raised to a power.
        bool pow5(uint32_t exp) noexcept {
            // multiply by a power of 5
            static constexpr uint32_t large_step = 135;
            static constexpr uint64_t small_power_of_5[] = {
                1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
                1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
                6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
                3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
                2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
                298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
            };
#ifdef FASTFLOAT_64BIT_LIMB
            constexpr static limb large_power_of_5[] = {
                1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
                10482974169319127550UL, 198276706040285095UL};
#else
            constexpr static limb large_power_of_5[] = {
                4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
                1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
#endif
            size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
            limb_span large = limb_span(large_power_of_5, large_length);
            while (exp >= large_step) {
                FASTFLOAT_TRY(large_mul(vec, large));
                exp -= large_step;
            }
#ifdef FASTFLOAT_64BIT_LIMB
            uint32_t small_step = 27;
            limb max_native = 7450580596923828125UL;
#else
            uint32_t small_step = 13;
            limb max_native = 1220703125U;
#endif
            while (exp >= small_step) {
                FASTFLOAT_TRY(small_mul(vec, max_native));
                exp -= small_step;
            }
            if (exp != 0) {
                FASTFLOAT_TRY(small_mul(vec, limb(small_power_of_5[exp])));
            }

            return true;
        }

        // multiply as if by 10 raised to a power.
        bool pow10(uint32_t exp) noexcept {
            FASTFLOAT_TRY(pow5(exp));
            return pow2(exp);
        }
    };

} // namespace fast_float

#endif

#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H

#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>


namespace fast_float {

    // Next function can be micro-optimized, but compilers are entirely
    // able to optimize it well.
    fastfloat_really_inline bool is_integer(char c)  noexcept  { return c >= '0' && c <= '9'; }

    fastfloat_really_inline uint64_t byteswap(uint64_t val) {
        return (val & 0xFF00000000000000) >> 56
               | (val & 0x00FF000000000000) >> 40
               | (val & 0x0000FF0000000000) >> 24
               | (val & 0x000000FF00000000) >> 8
               | (val & 0x00000000FF000000) << 8
               | (val & 0x0000000000FF0000) << 24
               | (val & 0x000000000000FF00) << 40
               | (val & 0x00000000000000FF) << 56;
    }

    fastfloat_really_inline uint64_t read_u64(const char *chars) {
        uint64_t val;
        ::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
        // Need to read as-if the number was in little-endian order.
        val = byteswap(val);
#endif
        return val;
    }

    fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
#if FASTFLOAT_IS_BIG_ENDIAN == 1
        // Need to read as-if the number was in little-endian order.
        val = byteswap(val);
#endif
        ::memcpy(chars, &val, sizeof(uint64_t));
    }

    // credit  @aqrit
    fastfloat_really_inline uint32_t  parse_eight_digits_unrolled(uint64_t val) {
        const uint64_t mask = 0x000000FF000000FF;
        const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
        const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
        val -= 0x3030303030303030;
        val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
        val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
        return uint32_t(val);
    }

    fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars)  noexcept  {
        return parse_eight_digits_unrolled(read_u64(chars));
    }

    // credit @aqrit
    fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val)  noexcept  {
        return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
                  0x8080808080808080));
    }

    fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars)  noexcept  {
        return is_made_of_eight_digits_fast(read_u64(chars));
    }

    typedef span<const char> byte_span;

    struct parsed_number_string {
        int64_t exponent{0};
        uint64_t mantissa{0};
        const char *lastmatch{nullptr};
        bool negative{false};
        bool valid{false};
        bool too_many_digits{false};
        // contains the range of the significant digits
        byte_span integer{};  // non-nullable
        byte_span fraction{}; // nullable
    };

    // Assuming that you use no more than 19 digits, this will
    // parse an ASCII string.
    fastfloat_really_inline
        parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
        const chars_format fmt = options.format;
        const char decimal_point = options.decimal_point;

        parsed_number_string answer;
        answer.valid = false;
        answer.too_many_digits = false;
        answer.negative = (*p == '-');
        if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
            ++p;
            if (p == pend) {
                return answer;
            }
            if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
                return answer;
            }
        }
        const char *const start_digits = p;

        uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)

        while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
            i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
            p += 8;
        }
        while ((p != pend) && is_integer(*p)) {
            // a multiplication by 10 is cheaper than an arbitrary integer
            // multiplication
            i = 10 * i +
                uint64_t(*p - '0'); // might overflow, we will handle the overflow later
            ++p;
        }
        const char *const end_of_integer_part = p;
        int64_t digit_count = int64_t(end_of_integer_part - start_digits);
        answer.integer = byte_span(start_digits, size_t(digit_count));
        int64_t exponent = 0;
        if ((p != pend) && (*p == decimal_point)) {
            ++p;
            const char* before = p;
            // can occur at most twice without overflowing, but let it occur more, since
            // for integers with many digits, digit parsing is the primary bottleneck.
            while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
                i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
                p += 8;
            }
            while ((p != pend) && is_integer(*p)) {
                uint8_t digit = uint8_t(*p - '0');
                ++p;
                i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
            }
            exponent = before - p;
            answer.fraction = byte_span(before, size_t(p - before));
            digit_count -= exponent;
        }
        // we must have encountered at least one integer!
        if (digit_count == 0) {
            return answer;
        }
        int64_t exp_number = 0;            // explicit exponential part
        if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
            const char * location_of_e = p;
            ++p;
            bool neg_exp = false;
            if ((p != pend) && ('-' == *p)) {
                neg_exp = true;
                ++p;
            } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
                ++p;
            }
            if ((p == pend) || !is_integer(*p)) {
                if(!(fmt & chars_format::fixed)) {
                    // We are in error.
                    return answer;
                }
                // Otherwise, we will be ignoring the 'e'.
                p = location_of_e;
            } else {
                while ((p != pend) && is_integer(*p)) {
                    uint8_t digit = uint8_t(*p - '0');
                    if (exp_number < 0x10000000) {
                        exp_number = 10 * exp_number + digit;
                    }
                    ++p;
                }
                if(neg_exp) { exp_number = - exp_number; }
                exponent += exp_number;
            }
        } else {
            // If it scientific and not fixed, we have to bail out.
            if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
        }
        answer.lastmatch = p;
        answer.valid = true;

        // If we frequently had to deal with long strings of digits,
        // we could extend our code by using a 128-bit integer instead
        // of a 64-bit integer. However, this is uncommon.
        //
        // We can deal with up to 19 digits.
        if (digit_count > 19) { // this is uncommon
            // It is possible that the integer had an overflow.
            // We have to handle the case where we have 0.0000somenumber.
            // We need to be mindful of the case where we only have zeroes...
            // E.g., 0.000000000...000.
            const char *start = start_digits;
            while ((start != pend) && (*start == '0' || *start == decimal_point)) {
                if(*start == '0') { digit_count --; }
                start++;
            }
            if (digit_count > 19) {
                answer.too_many_digits = true;
                // Let us start again, this time, avoiding overflows.
                // We don't need to check if is_integer, since we use the
                // pre-tokenized spans from above.
                i = 0;
                p = answer.integer.ptr;
                const char* int_end = p + answer.integer.len();
                const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
                while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
                    i = i * 10 + uint64_t(*p - '0');
                    ++p;
                }
                if (i >= minimal_nineteen_digit_integer) { // We have a big integers
                    exponent = end_of_integer_part - p + exp_number;
                } else { // We have a value with a fractional component.
                    p = answer.fraction.ptr;
                    const char* frac_end = p + answer.fraction.len();
                    while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
                        i = i * 10 + uint64_t(*p - '0');
                        ++p;
                    }
                    exponent = answer.fraction.ptr - p + exp_number;
                }
                // We have now corrected both exponent and i, to a truncated value
            }
        }
        answer.exponent = exponent;
        answer.mantissa = i;
        return answer;
    }

} // namespace fast_float

#endif

#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H

#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>


namespace fast_float {

    // 1e0 to 1e19
    constexpr static uint64_t powers_of_ten_uint64[] = {
        1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
        1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
        100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
        1000000000000000000UL, 10000000000000000000UL};

    // calculate the exponent, in scientific notation, of the number.
    // this algorithm is not even close to optimized, but it has no practical
    // effect on performance: in order to have a faster algorithm, we'd need
    // to slow down performance for faster algorithms, and this is still fast.
    fastfloat_really_inline int32_t scientific_exponent(parsed_number_string& num) noexcept {
        uint64_t mantissa = num.mantissa;
        int32_t exponent = int32_t(num.exponent);
        while (mantissa >= 10000) {
            mantissa /= 10000;
            exponent += 4;
        }
        while (mantissa >= 100) {
            mantissa /= 100;
            exponent += 2;
        }
        while (mantissa >= 10) {
            mantissa /= 10;
            exponent += 1;
        }
        return exponent;
    }

    // this converts a native floating-point number to an extended-precision float.
    template <typename T>
    fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept {
        using equiv_uint = typename binary_format<T>::equiv_uint;
        constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
        constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
        constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();

        adjusted_mantissa am;
        int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
        equiv_uint bits;
        ::memcpy(&bits, &value, sizeof(T));
        if ((bits & exponent_mask) == 0) {
            // denormal
            am.power2 = 1 - bias;
            am.mantissa = bits & mantissa_mask;
        } else {
            // normal
            am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
            am.power2 -= bias;
            am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
        }

        return am;
    }

    // get the extended precision value of the halfway point between b and b+u.
    // we are given a native float that represents b, so we need to adjust it
    // halfway between b and b+u.
    template <typename T>
    fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept {
        adjusted_mantissa am = to_extended(value);
        am.mantissa <<= 1;
        am.mantissa += 1;
        am.power2 -= 1;
        return am;
    }

    // round an extended-precision float to the nearest machine float.
    template <typename T, typename callback>
    fastfloat_really_inline void round(adjusted_mantissa& am, callback cb) noexcept {
        int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
        if (-am.power2 >= mantissa_shift) {
            // have a denormal float
            int32_t shift = -am.power2 + 1;
            cb(am, std::min(shift, 64));
            // check for round-up: if rounding-nearest carried us to the hidden bit.
            am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
            return;
        }

        // have a normal float, use the default shift.
        cb(am, mantissa_shift);

        // check for carry
        if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
            am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
            am.power2++;
        }

        // check for infinite: we could have carried to an infinite power
        am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
        if (am.power2 >= binary_format<T>::infinite_power()) {
            am.power2 = binary_format<T>::infinite_power();
            am.mantissa = 0;
        }
    }

    template <typename callback>
    fastfloat_really_inline
    void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
        uint64_t mask;
        uint64_t halfway;
        if (shift == 64) {
            mask = UINT64_MAX;
        } else {
            mask = (uint64_t(1) << shift) - 1;
        }
        if (shift == 0) {
            halfway = 0;
        } else {
            halfway = uint64_t(1) << (shift - 1);
        }
        uint64_t truncated_bits = am.mantissa & mask;
        uint64_t is_above = truncated_bits > halfway;
        uint64_t is_halfway = truncated_bits == halfway;

        // shift digits into position
        if (shift == 64) {
            am.mantissa = 0;
        } else {
            am.mantissa >>= shift;
        }
        am.power2 += shift;

        bool is_odd = (am.mantissa & 1) == 1;
        am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
    }

    fastfloat_really_inline void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
        if (shift == 64) {
            am.mantissa = 0;
        } else {
            am.mantissa >>= shift;
        }
        am.power2 += shift;
    }

    fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept {
        uint64_t val;
        while (std::distance(first, last) >= 8) {
            ::memcpy(&val, first, sizeof(uint64_t));
            if (val != 0x3030303030303030) {
                break;
            }
            first += 8;
        }
        while (first != last) {
            if (*first != '0') {
                break;
            }
            first++;
        }
    }

    // determine if any non-zero digits were truncated.
    // all characters must be valid digits.
    fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept {
        // do 8-bit optimizations, can just compare to 8 literal 0s.
        uint64_t val;
        while (std::distance(first, last) >= 8) {
            ::memcpy(&val, first, sizeof(uint64_t));
            if (val != 0x3030303030303030) {
                return true;
            }
            first += 8;
        }
        while (first != last) {
            if (*first != '0') {
                return true;
            }
            first++;
        }
        return false;
    }

    fastfloat_really_inline bool is_truncated(byte_span s) noexcept {
        return is_truncated(s.ptr, s.ptr + s.len());
    }

    fastfloat_really_inline
    void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
        value = value * 100000000 + parse_eight_digits_unrolled(p);
        p += 8;
        counter += 8;
        count += 8;
    }

    fastfloat_really_inline
    void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
        value = value * 10 + limb(*p - '0');
        p++;
        counter++;
        count++;
    }

    fastfloat_really_inline
    void add_native(bigint& big, limb power, limb value) noexcept {
        big.mul(power);
        big.add(value);
    }

    fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept {
        // need to round-up the digits, but need to avoid rounding
        // ....9999 to ...10000, which could cause a false halfway point.
        add_native(big, 10, 1);
        count++;
    }

    // parse the significant digits into a big integer
    inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept {
        // try to minimize the number of big integer and scalar multiplication.
        // therefore, try to parse 8 digits at a time, and multiply by the largest
        // scalar value (9 or 19 digits) for each step.
        size_t counter = 0;
        digits = 0;
        limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
        size_t step = 19;
#else
        size_t step = 9;
#endif

        // process all integer digits.
        const char* p = num.integer.ptr;
        const char* pend = p + num.integer.len();
        skip_zeros(p, pend);
        // process all digits, in increments of step per loop
        while (p != pend) {
            while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
                parse_eight_digits(p, value, counter, digits);
            }
            while (counter < step && p != pend && digits < max_digits) {
                parse_one_digit(p, value, counter, digits);
            }
            if (digits == max_digits) {
                // add the temporary value, then check if we've truncated any digits
                add_native(result, limb(powers_of_ten_uint64[counter]), value);
                bool truncated = is_truncated(p, pend);
                if (num.fraction.ptr != nullptr) {
                    truncated |= is_truncated(num.fraction);
                }
                if (truncated) {
                    round_up_bigint(result, digits);
                }
                return;
            } else {
                add_native(result, limb(powers_of_ten_uint64[counter]), value);
                counter = 0;
                value = 0;
            }
        }

        // add our fraction digits, if they're available.
        if (num.fraction.ptr != nullptr) {
            p = num.fraction.ptr;
            pend = p + num.fraction.len();
            if (digits == 0) {
                skip_zeros(p, pend);
            }
            // process all digits, in increments of step per loop
            while (p != pend) {
                while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
                    parse_eight_digits(p, value, counter, digits);
                }
                while (counter < step && p != pend && digits < max_digits) {
                    parse_one_digit(p, value, counter, digits);
                }
                if (digits == max_digits) {
                    // add the temporary value, then check if we've truncated any digits
                    add_native(result, limb(powers_of_ten_uint64[counter]), value);
                    bool truncated = is_truncated(p, pend);
                    if (truncated) {
                        round_up_bigint(result, digits);
                    }
                    return;
                } else {
                    add_native(result, limb(powers_of_ten_uint64[counter]), value);
                    counter = 0;
                    value = 0;
                }
            }
        }

        if (counter != 0) {
            add_native(result, limb(powers_of_ten_uint64[counter]), value);
        }
    }

    template <typename T>
    inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
        FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
        adjusted_mantissa answer;
        bool truncated;
        answer.mantissa = bigmant.hi64(truncated);
        int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
        answer.power2 = bigmant.bit_length() - 64 + bias;

        round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
            round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
                return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
            });
        });

        return answer;
    }

    // the scaling here is quite simple: we have, for the real digits `m * 10^e`,
    // and for the theoretical digits `n * 2^f`. Since `e` is always negative,
    // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
    // we then need to scale by `2^(f- e)`, and then the two significant digits
    // are of the same magnitude.
    template <typename T>
    inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
        bigint& real_digits = bigmant;
        int32_t real_exp = exponent;

        // get the value of `b`, rounded down, and get a bigint representation of b+h
        adjusted_mantissa am_b = am;
        // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
        round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
        T b;
        to_float(false, am_b, b);
        adjusted_mantissa theor = to_extended_halfway(b);
        bigint theor_digits(theor.mantissa);
        int32_t theor_exp = theor.power2;

        // scale real digits and theor digits to be same power.
        int32_t pow2_exp = theor_exp - real_exp;
        uint32_t pow5_exp = uint32_t(-real_exp);
        if (pow5_exp != 0) {
            FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
        }
        if (pow2_exp > 0) {
            FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
        } else if (pow2_exp < 0) {
            FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
        }

        // compare digits, and use it to director rounding
        int ord = real_digits.compare(theor_digits);
        adjusted_mantissa answer = am;
        round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
            round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
                (void)_;  // not needed, since we've done our comparison
                (void)__; // not needed, since we've done our comparison
                if (ord > 0) {
                    return true;
                } else if (ord < 0) {
                    return false;
                } else {
                    return is_odd;
                }
            });
        });

        return answer;
    }

    // parse the significant digits as a big integer to unambiguously round the
    // the significant digits. here, we are trying to determine how to round
    // an extended float representation close to `b+h`, halfway between `b`
    // (the float rounded-down) and `b+u`, the next positive float. this
    // algorithm is always correct, and uses one of two approaches. when
    // the exponent is positive relative to the significant digits (such as
    // 1234), we create a big-integer representation, get the high 64-bits,
    // determine if any lower bits are truncated, and use that to direct
    // rounding. in case of a negative exponent relative to the significant
    // digits (such as 1.2345), we create a theoretical representation of
    // `b` as a big-integer type, scaled to the same binary exponent as
    // the actual digits. we then compare the big integer representations
    // of both, and use that to direct rounding.
    template <typename T>
    inline adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept {
        // remove the invalid exponent bias
        am.power2 -= invalid_am_bias;

        int32_t sci_exp = scientific_exponent(num);
        size_t max_digits = binary_format<T>::max_digits();
        size_t digits = 0;
        bigint bigmant;
        parse_mantissa(bigmant, num, max_digits, digits);
        // can't underflow, since digits is at most max_digits.
        int32_t exponent = sci_exp + 1 - int32_t(digits);
        if (exponent >= 0) {
            return positive_digit_comp<T>(bigmant, exponent);
        } else {
            return negative_digit_comp<T>(bigmant, am, exponent);
        }
    }

} // namespace fast_float

#endif

#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H


#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>

namespace fast_float {


    namespace detail {
        /**
 * Special case +inf, -inf, nan, infinity, -infinity.
 * The case comparisons could be made much faster given that we know that the
 * strings a null-free and fixed.
 **/
        template <typename T>
        from_chars_result parse_infnan(const char *first, const char *last, T &value)  noexcept  {
            from_chars_result answer;
            answer.ptr = first;
            answer.ec = std::errc(); // be optimistic
            bool minusSign = false;
            if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
                minusSign = true;
                ++first;
            }
            if (last - first >= 3) {
                if (fastfloat_strncasecmp(first, "nan", 3)) {
                    answer.ptr = (first += 3);
                    value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
                    // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
                    if(first != last && *first == '(') {
                        for(const char* ptr = first + 1; ptr != last; ++ptr) {
                            if (*ptr == ')') {
                                answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
                                break;
                            }
                            else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
                                break; // forbidden char, not nan(n-char-seq-opt)
                        }
                    }
                    return answer;
                }
                if (fastfloat_strncasecmp(first, "inf", 3)) {
                    if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
                        answer.ptr = first + 8;
                    } else {
                        answer.ptr = first + 3;
                    }
                    value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
                    return answer;
                }
            }
            answer.ec = std::errc::invalid_argument;
            return answer;
        }

    } // namespace detail

    template<typename T>
    from_chars_result from_chars(const char *first, const char *last,
                                 T &value, chars_format fmt /*= chars_format::general*/)  noexcept  {
        return from_chars_advanced(first, last, value, parse_options{fmt});
    }

    template<typename T>
    from_chars_result from_chars_advanced(const char *first, const char *last,
                                          T &value, parse_options options)  noexcept  {

        static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");


        from_chars_result answer;
        if (first == last) {
            answer.ec = std::errc::invalid_argument;
            answer.ptr = first;
            return answer;
        }
        parsed_number_string pns = parse_number_string(first, last, options);
        if (!pns.valid) {
            return detail::parse_infnan(first, last, value);
        }
        answer.ec = std::errc(); // be optimistic
        answer.ptr = pns.lastmatch;
        // Next is Clinger's fast path.
        if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) {
            value = T(pns.mantissa);
            if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
            else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
            if (pns.negative) { value = -value; }
            return answer;
        }
        adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
        if(pns.too_many_digits && am.power2 >= 0) {
            if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
                am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
            }
        }
        // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
        // then we need to go the long way around again. This is very uncommon.
        if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
        to_float(pns.negative, am, value);
        return answer;
    }

} // namespace fast_float

#endif