summaryrefslogtreecommitdiffstats
path: root/sql/ha_partition.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/ha_partition.cc')
-rw-r--r--sql/ha_partition.cc11959
1 files changed, 11959 insertions, 0 deletions
diff --git a/sql/ha_partition.cc b/sql/ha_partition.cc
new file mode 100644
index 00000000..2c60a98d
--- /dev/null
+++ b/sql/ha_partition.cc
@@ -0,0 +1,11959 @@
+/*
+ Copyright (c) 2005, 2019, Oracle and/or its affiliates.
+ Copyright (c) 2009, 2021, MariaDB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
+*/
+
+/*
+ This handler was developed by Mikael Ronstrom for version 5.1 of MySQL.
+ It is an abstraction layer on top of other handlers such as MyISAM,
+ InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also
+ be handled by a storage engine. The current example of this is NDB
+ Cluster that has internally handled partitioning. This have benefits in
+ that many loops needed in the partition handler can be avoided.
+
+ Partitioning has an inherent feature which in some cases is positive and
+ in some cases is negative. It splits the data into chunks. This makes
+ the data more manageable, queries can easily be parallelised towards the
+ parts and indexes are split such that there are less levels in the
+ index trees. The inherent disadvantage is that to use a split index
+ one has to scan all index parts which is ok for large queries but for
+ small queries it can be a disadvantage.
+
+ Partitioning lays the foundation for more manageable databases that are
+ extremely large. It does also lay the foundation for more parallelism
+ in the execution of queries. This functionality will grow with later
+ versions of MySQL/MariaDB.
+
+ The partition is setup to use table locks. It implements an partition "SHARE"
+ that is inserted into a hash by table name. You can use this to store
+ information of state that any partition handler object will be able to see
+ if it is using the same table.
+
+ Please read the object definition in ha_partition.h before reading the rest
+ if this file.
+*/
+
+#include "mariadb.h"
+#include "sql_priv.h"
+#include "sql_parse.h" // append_file_to_dir
+#include "create_options.h"
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+#include "ha_partition.h"
+#include "sql_table.h" // tablename_to_filename
+#include "key.h"
+#include "sql_plugin.h"
+#include "sql_show.h" // append_identifier
+#include "sql_admin.h" // SQL_ADMIN_MSG_TEXT_SIZE
+#include "sql_select.h"
+
+#include "debug_sync.h"
+
+/* First 4 bytes in the .par file is the number of 32-bit words in the file */
+#define PAR_WORD_SIZE 4
+/* offset to the .par file checksum */
+#define PAR_CHECKSUM_OFFSET 4
+/* offset to the total number of partitions */
+#define PAR_NUM_PARTS_OFFSET 8
+/* offset to the engines array */
+#define PAR_ENGINES_OFFSET 12
+#define PARTITION_ENABLED_TABLE_FLAGS (HA_FILE_BASED | \
+ HA_REC_NOT_IN_SEQ | \
+ HA_CAN_REPAIR | \
+ HA_REUSES_FILE_NAMES)
+#define PARTITION_DISABLED_TABLE_FLAGS (HA_CAN_GEOMETRY | \
+ HA_DUPLICATE_POS | \
+ HA_CAN_INSERT_DELAYED | \
+ HA_READ_BEFORE_WRITE_REMOVAL |\
+ HA_CAN_TABLES_WITHOUT_ROLLBACK)
+
+static const char *ha_par_ext= PAR_EXT;
+
+/****************************************************************************
+ MODULE create/delete handler object
+****************************************************************************/
+
+static handler *partition_create_handler(handlerton *hton,
+ TABLE_SHARE *share,
+ MEM_ROOT *mem_root);
+static uint partition_flags();
+static alter_table_operations alter_table_flags(alter_table_operations flags);
+
+
+int ha_partition::notify_tabledef_changed(LEX_CSTRING *db,
+ LEX_CSTRING *org_table_name,
+ LEX_CUSTRING *frm,
+ LEX_CUSTRING *version)
+{
+ char from_buff[FN_REFLEN + 1], from_lc_buff[FN_REFLEN + 1];
+ const char *from_path, *name_buffer_ptr, *from;
+ int res= 0;
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::notify_tabledef_changed");
+
+ from= table->s->normalized_path.str;
+
+ /* setup m_name_buffer_ptr */
+ if (read_par_file(table->s->normalized_path.str))
+ DBUG_RETURN(1);
+
+ from_path= get_canonical_filename(*file, from, from_lc_buff);
+ name_buffer_ptr= m_name_buffer_ptr;
+ do
+ {
+ LEX_CSTRING table_name;
+ const char *table_name_ptr;
+ if (create_partition_name(from_buff, sizeof(from_buff),
+ from_path, name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))
+ res=1;
+ table_name_ptr= from_buff + dirname_length(from_buff);
+
+ lex_string_set3(&table_name, table_name_ptr, strlen(table_name_ptr));
+
+ if (((*file)->ht)->notify_tabledef_changed((*file)->ht, db, &table_name,
+ frm, version, *file))
+ res=1;
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ } while (*(++file));
+ DBUG_RETURN(res);
+}
+
+
+static int
+partition_notify_tabledef_changed(handlerton *,
+ LEX_CSTRING *db,
+ LEX_CSTRING *table,
+ LEX_CUSTRING *frm,
+ LEX_CUSTRING *version,
+ handler *file)
+{
+ DBUG_ENTER("partition_notify_tabledef_changed");
+ DBUG_RETURN(static_cast<ha_partition*>
+ (file)->notify_tabledef_changed(db, table, frm, version));
+}
+
+
+/*
+ If frm_error() is called then we will use this to to find out what file
+ extensions exist for the storage engine. This is also used by the default
+ rename_table and delete_table method in handler.cc.
+*/
+static const char *ha_partition_ext[]=
+{
+ ha_par_ext, NullS
+};
+
+static PSI_memory_key key_memory_Partition_share;
+static PSI_memory_key key_memory_partition_sort_buffer;
+static PSI_memory_key key_memory_Partition_admin;
+
+static PSI_memory_key key_memory_ha_partition_file;
+//static PSI_memory_key key_memory_ha_partition_engine_array;
+static PSI_memory_key key_memory_ha_partition_part_ids;
+
+#ifdef HAVE_PSI_INTERFACE
+PSI_mutex_key key_partition_auto_inc_mutex;
+PSI_file_key key_file_ha_partition_par;
+
+static PSI_mutex_info all_partition_mutexes[]=
+{
+ { &key_partition_auto_inc_mutex, "Partition_share::auto_inc_mutex", 0}
+};
+static PSI_memory_info all_partitioning_memory[]=
+{ { &key_memory_Partition_share, "Partition_share", 0},
+ { &key_memory_partition_sort_buffer, "partition_sort_buffer", 0},
+ { &key_memory_Partition_admin, "Partition_admin", 0},
+ { &key_memory_ha_partition_file, "ha_partition::file", 0},
+// { &key_memory_ha_partition_engine_array, "ha_partition::engine_array", 0},
+ { &key_memory_ha_partition_part_ids, "ha_partition::part_ids", 0} };
+static PSI_file_info all_partition_file[]=
+{ { &key_file_ha_partition_par, "ha_partition::parfile", 0} };
+
+static void init_partition_psi_keys(void)
+{
+ const char* category= "partition";
+ int count;
+
+ count= array_elements(all_partitioning_memory);
+ mysql_memory_register(category, all_partitioning_memory, count);
+ count= array_elements(all_partition_mutexes);
+ mysql_mutex_register(category, all_partition_mutexes, count);
+ count= array_elements(all_partition_file);
+ mysql_file_register(category, all_partition_file, count);
+}
+#endif /* HAVE_PSI_INTERFACE */
+
+static int partition_initialize(void *p)
+{
+ handlerton *partition_hton;
+ partition_hton= (handlerton *)p;
+
+ partition_hton->db_type= DB_TYPE_PARTITION_DB;
+ partition_hton->create= partition_create_handler;
+
+ partition_hton->partition_flags= partition_flags;
+ partition_hton->notify_tabledef_changed= partition_notify_tabledef_changed;
+ partition_hton->alter_table_flags= alter_table_flags;
+ partition_hton->flags= HTON_NOT_USER_SELECTABLE |
+ HTON_HIDDEN |
+ HTON_TEMPORARY_NOT_SUPPORTED;
+ partition_hton->tablefile_extensions= ha_partition_ext;
+
+#ifdef HAVE_PSI_INTERFACE
+ init_partition_psi_keys();
+#endif
+ return 0;
+}
+
+
+/**
+ Initialize and allocate space for partitions shares.
+
+ @param num_parts Number of partitions to allocate storage for.
+
+ @return Operation status.
+ @retval true Failure (out of memory).
+ @retval false Success.
+*/
+
+bool Partition_share::init(uint num_parts)
+{
+ DBUG_ENTER("Partition_share::init");
+ auto_inc_initialized= false;
+ partition_name_hash_initialized= false;
+ next_auto_inc_val= 0;
+ if (partitions_share_refs.init(num_parts))
+ {
+ DBUG_RETURN(true);
+ }
+ DBUG_RETURN(false);
+}
+
+
+/*
+ Create new partition handler
+
+ SYNOPSIS
+ partition_create_handler()
+ table Table object
+
+ RETURN VALUE
+ New partition object
+*/
+
+static handler *partition_create_handler(handlerton *hton,
+ TABLE_SHARE *share,
+ MEM_ROOT *mem_root)
+{
+ ha_partition *file= new (mem_root) ha_partition(hton, share);
+ if (file && file->initialize_partition(mem_root))
+ {
+ delete file;
+ file= 0;
+ }
+ return file;
+}
+
+static uint partition_flags()
+{
+ return HA_CAN_PARTITION;
+}
+
+static alter_table_operations alter_table_flags(alter_table_operations flags __attribute__((unused)))
+{
+ return (HA_PARTITION_FUNCTION_SUPPORTED |
+ HA_FAST_CHANGE_PARTITION);
+}
+
+/*
+ Constructor method
+
+ SYNOPSIS
+ ha_partition()
+ table Table object
+
+ RETURN VALUE
+ NONE
+*/
+
+ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share)
+ :handler(hton, share)
+{
+ DBUG_ENTER("ha_partition::ha_partition(table)");
+ ha_partition_init();
+ DBUG_VOID_RETURN;
+}
+
+
+/* Initialize all partition variables */
+
+void ha_partition::ha_partition_init()
+{
+ init_alloc_root(PSI_INSTRUMENT_ME, &m_mem_root, 512, 512, MYF(0));
+ init_handler_variables();
+}
+
+/*
+ Constructor method
+
+ SYNOPSIS
+ ha_partition()
+ part_info Partition info
+
+ RETURN VALUE
+ NONE
+*/
+
+ha_partition::ha_partition(handlerton *hton, partition_info *part_info)
+ :handler(hton, NULL)
+{
+ DBUG_ENTER("ha_partition::ha_partition(part_info)");
+ DBUG_ASSERT(part_info);
+ ha_partition_init();
+ m_part_info= part_info;
+ m_create_handler= TRUE;
+ m_is_sub_partitioned= m_part_info->is_sub_partitioned();
+ DBUG_VOID_RETURN;
+}
+
+/**
+ ha_partition constructor method used by ha_partition::clone()
+
+ @param hton Handlerton (partition_hton)
+ @param share Table share object
+ @param part_info_arg partition_info to use
+ @param clone_arg ha_partition to clone
+ @param clme_mem_root_arg MEM_ROOT to use
+
+ @return New partition handler
+*/
+
+ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share,
+ partition_info *part_info_arg,
+ ha_partition *clone_arg,
+ MEM_ROOT *clone_mem_root_arg)
+ :handler(hton, share)
+{
+ DBUG_ENTER("ha_partition::ha_partition(clone)");
+ ha_partition_init();
+ m_part_info= part_info_arg;
+ m_create_handler= TRUE;
+ m_is_sub_partitioned= m_part_info->is_sub_partitioned();
+ m_is_clone_of= clone_arg;
+ m_clone_mem_root= clone_mem_root_arg;
+ part_share= clone_arg->part_share;
+ m_tot_parts= clone_arg->m_tot_parts;
+ DBUG_VOID_RETURN;
+}
+
+/*
+ Initialize handler object
+
+ SYNOPSIS
+ init_handler_variables()
+
+ RETURN VALUE
+ NONE
+*/
+
+void ha_partition::init_handler_variables()
+{
+ active_index= MAX_KEY;
+ m_mode= 0;
+ m_open_test_lock= 0;
+ m_file_buffer= NULL;
+ m_name_buffer_ptr= NULL;
+ m_engine_array= NULL;
+ m_connect_string= NULL;
+ m_file= NULL;
+ m_file_tot_parts= 0;
+ m_reorged_file= NULL;
+ m_new_file= NULL;
+ m_reorged_parts= 0;
+ m_added_file= NULL;
+ m_tot_parts= 0;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ m_scan_value= 2;
+ m_ref_length= 0;
+ m_part_spec.end_part= NO_CURRENT_PART_ID;
+ m_index_scan_type= partition_no_index_scan;
+ m_start_key.key= NULL;
+ m_start_key.length= 0;
+ m_myisam= FALSE;
+ m_innodb= FALSE;
+ m_extra_cache= FALSE;
+ m_extra_cache_size= 0;
+ m_extra_prepare_for_update= FALSE;
+ m_extra_cache_part_id= NO_CURRENT_PART_ID;
+ m_handler_status= handler_not_initialized;
+ m_part_field_array= NULL;
+ m_ordered_rec_buffer= NULL;
+ m_top_entry= NO_CURRENT_PART_ID;
+ m_rec_length= 0;
+ m_last_part= 0;
+ m_rec0= 0;
+ m_err_rec= NULL;
+ m_curr_key_info[0]= NULL;
+ m_curr_key_info[1]= NULL;
+ m_part_func_monotonicity_info= NON_MONOTONIC;
+ m_key_not_found= FALSE;
+ auto_increment_lock= FALSE;
+ auto_increment_safe_stmt_log_lock= FALSE;
+ /*
+ this allows blackhole to work properly
+ */
+ m_num_locks= 0;
+ m_part_info= NULL;
+ m_create_handler= FALSE;
+ m_is_sub_partitioned= 0;
+ m_is_clone_of= NULL;
+ m_clone_mem_root= NULL;
+ part_share= NULL;
+ m_new_partitions_share_refs.empty();
+ m_part_ids_sorted_by_num_of_records= NULL;
+ m_partitions_to_open= NULL;
+
+ m_range_info= NULL;
+ m_mrr_full_buffer_size= 0;
+ m_mrr_new_full_buffer_size= 0;
+ m_mrr_full_buffer= NULL;
+ m_mrr_range_first= NULL;
+
+ m_pre_calling= FALSE;
+ m_pre_call_use_parallel= FALSE;
+
+ ft_first= ft_current= NULL;
+ bulk_access_executing= FALSE; // For future
+
+ /*
+ Clear bitmaps to allow on one to call my_bitmap_free() on them at any time
+ */
+ my_bitmap_clear(&m_bulk_insert_started);
+ my_bitmap_clear(&m_locked_partitions);
+ my_bitmap_clear(&m_partitions_to_reset);
+ my_bitmap_clear(&m_key_not_found_partitions);
+ my_bitmap_clear(&m_mrr_used_partitions);
+ my_bitmap_clear(&m_opened_partitions);
+ m_file_sample= NULL;
+
+#ifdef DONT_HAVE_TO_BE_INITALIZED
+ m_start_key.flag= 0;
+ m_ordered= TRUE;
+#endif
+}
+
+
+const char *ha_partition::table_type() const
+{
+ // we can do this since we only support a single engine type
+ return m_file[0]->table_type();
+}
+
+
+/*
+ Destructor method
+
+ SYNOPSIS
+ ~ha_partition()
+
+ RETURN VALUE
+ NONE
+*/
+
+ha_partition::~ha_partition()
+{
+ DBUG_ENTER("ha_partition::~ha_partition");
+ if (m_new_partitions_share_refs.elements)
+ m_new_partitions_share_refs.delete_elements();
+ if (m_file != NULL)
+ {
+ uint i;
+ for (i= 0; i < m_tot_parts; i++)
+ delete m_file[i];
+ }
+ destroy_record_priority_queue();
+ my_free(m_part_ids_sorted_by_num_of_records);
+
+ if (m_added_file)
+ {
+ for (handler **ph= m_added_file; *ph; ph++)
+ delete (*ph);
+ }
+ clear_handler_file();
+ free_root(&m_mem_root, MYF(0));
+
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Initialize partition handler object
+
+ SYNOPSIS
+ initialize_partition()
+ mem_root Allocate memory through this
+
+ RETURN VALUE
+ 1 Error
+ 0 Success
+
+ DESCRIPTION
+
+ The partition handler is only a layer on top of other engines. Thus it
+ can't really perform anything without the underlying handlers. Thus we
+ add this method as part of the allocation of a handler object.
+
+ 1) Allocation of underlying handlers
+ If we have access to the partition info we will allocate one handler
+ instance for each partition.
+ 2) Allocation without partition info
+ The cases where we don't have access to this information is when called
+ in preparation for delete_table and rename_table and in that case we
+ only need to set HA_FILE_BASED. In that case we will use the .par file
+ that contains information about the partitions and their engines and
+ the names of each partition.
+ 3) Table flags initialisation
+ We need also to set table flags for the partition handler. This is not
+ static since it depends on what storage engines are used as underlying
+ handlers.
+ The table flags is set in this routine to simulate the behaviour of a
+ normal storage engine
+ The flag HA_FILE_BASED will be set independent of the underlying handlers
+ 4) Index flags initialisation
+ When knowledge exists on the indexes it is also possible to initialize the
+ index flags. Again the index flags must be initialized by using the under-
+ lying handlers since this is storage engine dependent.
+ The flag HA_READ_ORDER will be reset for the time being to indicate no
+ ordered output is available from partition handler indexes. Later a merge
+ sort will be performed using the underlying handlers.
+ 5) has_transactions are calculated here.
+
+*/
+
+bool ha_partition::initialize_partition(MEM_ROOT *mem_root)
+{
+ handler **file_array, *file;
+ ulonglong check_table_flags;
+ DBUG_ENTER("ha_partition::initialize_partition");
+
+ if (m_create_handler)
+ {
+ m_tot_parts= m_part_info->get_tot_partitions();
+ DBUG_ASSERT(m_tot_parts > 0);
+ if (new_handlers_from_part_info(mem_root))
+ DBUG_RETURN(1);
+ }
+ else if (!table_share || !table_share->normalized_path.str)
+ {
+ /*
+ Called with dummy table share (delete, rename and alter table).
+ Don't need to set-up anything.
+ */
+ DBUG_RETURN(0);
+ }
+ else if (get_from_handler_file(table_share->normalized_path.str,
+ mem_root, false))
+ {
+ my_error(ER_FAILED_READ_FROM_PAR_FILE, MYF(0));
+ DBUG_RETURN(1);
+ }
+ /*
+ We create all underlying table handlers here. We do it in this special
+ method to be able to report allocation errors.
+
+ Set up has_transactions since they are called often in all kinds of places,
+ other parameters are calculated on demand.
+ Verify that all partitions have the same table_flags.
+ */
+ check_table_flags= m_file[0]->ha_table_flags();
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ if (check_table_flags != file->ha_table_flags())
+ {
+ my_error(ER_MIX_HANDLER_ERROR, MYF(0));
+ DBUG_RETURN(1);
+ }
+ } while (*(++file_array));
+ m_handler_status= handler_initialized;
+ DBUG_RETURN(0);
+}
+
+/****************************************************************************
+ MODULE meta data changes
+****************************************************************************/
+/*
+ Delete a table
+
+ SYNOPSIS
+ delete_table()
+ name Full path of table name
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ Used to delete a table. By the time delete_table() has been called all
+ opened references to this table will have been closed (and your globally
+ shared references released. The variable name will just be the name of
+ the table. You will need to remove any files you have created at this
+ point.
+
+ If you do not implement this, the default delete_table() is called from
+ handler.cc and it will delete all files with the file extensions returned
+ by bas_ext().
+
+ Called from handler.cc by delete_table and ha_create_table(). Only used
+ during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
+ the storage engine.
+*/
+
+int ha_partition::delete_table(const char *name)
+{
+ DBUG_ENTER("ha_partition::delete_table");
+
+ DBUG_RETURN(del_ren_table(name, NULL));
+}
+
+
+/*
+ Rename a table
+
+ SYNOPSIS
+ rename_table()
+ from Full path of old table name
+ to Full path of new table name
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ Renames a table from one name to another from alter table call.
+
+ If you do not implement this, the default rename_table() is called from
+ handler.cc and it will rename all files with the file extensions returned
+ by bas_ext().
+
+ Called from sql_table.cc by mysql_rename_table().
+*/
+
+int ha_partition::rename_table(const char *from, const char *to)
+{
+ DBUG_ENTER("ha_partition::rename_table");
+
+ DBUG_RETURN(del_ren_table(from, to));
+}
+
+
+/*
+ Create the handler file (.par-file)
+
+ SYNOPSIS
+ create_partitioning_metadata()
+ path Path to the new frm file (without ext)
+ old_p Path to the old frm file (without ext)
+ create_info Create info generated for CREATE TABLE
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ create_partitioning_metadata is called to create any handler specific files
+ before opening the file with openfrm to later call ::create on the
+ file object.
+ In the partition handler this is used to store the names of partitions
+ and types of engines in the partitions.
+*/
+
+int ha_partition::create_partitioning_metadata(const char *path,
+ const char *old_path,
+ chf_create_flags action_flag)
+{
+ partition_element *part;
+ DBUG_ENTER("ha_partition::create_partitioning_metadata");
+
+ /*
+ We need to update total number of parts since we might write the handler
+ file as part of a partition management command
+ */
+ if (action_flag == CHF_DELETE_FLAG ||
+ action_flag == CHF_RENAME_FLAG)
+ {
+ char name[FN_REFLEN];
+ char old_name[FN_REFLEN];
+
+ strxmov(name, path, ha_par_ext, NullS);
+ strxmov(old_name, old_path, ha_par_ext, NullS);
+ if ((action_flag == CHF_DELETE_FLAG &&
+ mysql_file_delete(key_file_ha_partition_par, name, MYF(MY_WME))) ||
+ (action_flag == CHF_RENAME_FLAG &&
+ mysql_file_rename(key_file_ha_partition_par, old_name, name,
+ MYF(MY_WME))))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if (action_flag == CHF_CREATE_FLAG)
+ {
+ if (create_handler_file(path))
+ {
+ my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
+ DBUG_RETURN(1);
+ }
+ }
+
+ /* m_part_info is only NULL when we failed to create a partition table */
+ if (m_part_info)
+ {
+ part= m_part_info->partitions.head();
+ /* part->engine_type may be 0 when we failed to create the partition */
+ if (part->engine_type &&
+ (part->engine_type)->create_partitioning_metadata &&
+ ((part->engine_type)->create_partitioning_metadata)(path, old_path,
+ action_flag))
+ {
+ my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
+ DBUG_RETURN(1);
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Create a partitioned table
+
+ SYNOPSIS
+ create()
+ name Full path of table name
+ table_arg Table object
+ create_info Create info generated for CREATE TABLE
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ create() is called to create a table. The variable name will have the name
+ of the table. When create() is called you do not need to worry about
+ opening the table. Also, the FRM file will have already been created so
+ adjusting create_info will not do you any good. You can overwrite the frm
+ file at this point if you wish to change the table definition, but there
+ are no methods currently provided for doing that.
+
+ Called from handler.cc by ha_create_table().
+*/
+
+int ha_partition::create(const char *name, TABLE *table_arg,
+ HA_CREATE_INFO *create_info)
+{
+ int error;
+ char name_buff[FN_REFLEN + 1], name_lc_buff[FN_REFLEN];
+ char *name_buffer_ptr;
+ const char *path;
+ uint i;
+ List_iterator_fast <partition_element> part_it(m_part_info->partitions);
+ partition_element *part_elem;
+ handler **file, **abort_file;
+ DBUG_ENTER("ha_partition::create");
+ DBUG_PRINT("enter", ("name: '%s'", name));
+
+ DBUG_ASSERT(!fn_frm_ext(name));
+
+ /* Not allowed to create temporary partitioned tables */
+ if (create_info && create_info->tmp_table())
+ {
+ my_error(ER_FEATURE_NOT_SUPPORTED_WITH_PARTITIONING, MYF(0), "CREATE TEMPORARY TABLE");
+ DBUG_RETURN(TRUE);
+ }
+
+ if (get_from_handler_file(name, ha_thd()->mem_root, false))
+ DBUG_RETURN(TRUE);
+ DBUG_ASSERT(m_file_buffer);
+ name_buffer_ptr= m_name_buffer_ptr;
+ file= m_file;
+ /*
+ Since ha_partition has HA_FILE_BASED, it must alter underlying table names
+ if they do not have HA_FILE_BASED and lower_case_table_names == 2.
+ See Bug#37402, for Mac OS X.
+ The appended #P#<partname>[#SP#<subpartname>] will remain in current case.
+ Using the first partitions handler, since mixing handlers is not allowed.
+ */
+ path= get_canonical_filename(*file, name, name_lc_buff);
+ for (i= 0; i < m_part_info->num_parts; i++)
+ {
+ part_elem= part_it++;
+ if (m_is_sub_partitioned)
+ {
+ uint j;
+ List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->num_subparts; j++)
+ {
+ part_elem= sub_it++;
+ if (unlikely((error= create_partition_name(name_buff,
+ sizeof(name_buff), path,
+ name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))))
+ goto create_error;
+ if (unlikely((error= set_up_table_before_create(table_arg, name_buff,
+ create_info,
+ part_elem)) ||
+ ((error= (*file)->ha_create(name_buff, table_arg,
+ create_info)))))
+ goto create_error;
+
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ file++;
+ }
+ }
+ else
+ {
+ if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff),
+ path, name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))))
+ goto create_error;
+ if (unlikely((error= set_up_table_before_create(table_arg, name_buff,
+ create_info,
+ part_elem)) ||
+ ((error= (*file)->ha_create(name_buff, table_arg,
+ create_info)))))
+ goto create_error;
+
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ file++;
+ }
+ }
+ DBUG_RETURN(0);
+
+create_error:
+ name_buffer_ptr= m_name_buffer_ptr;
+ for (abort_file= file, file= m_file; file < abort_file; file++)
+ {
+ if (!create_partition_name(name_buff, sizeof(name_buff), path,
+ name_buffer_ptr, NORMAL_PART_NAME, FALSE))
+ (void) (*file)->delete_table((const char*) name_buff);
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ }
+ handler::delete_table(name);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Drop partitions as part of ALTER TABLE of partitions
+
+ SYNOPSIS
+ drop_partitions()
+ path Complete path of db and table name
+
+ RETURN VALUE
+ >0 Failure
+ 0 Success
+
+ DESCRIPTION
+ Use part_info object on handler object to deduce which partitions to
+ drop (each partition has a state attached to it)
+*/
+
+int ha_partition::drop_partitions(const char *path)
+{
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ char part_name_buff[FN_REFLEN + 1];
+ uint num_parts= m_part_info->partitions.elements;
+ uint num_subparts= m_part_info->num_subparts;
+ uint i= 0;
+ uint name_variant;
+ int ret_error;
+ int error= 0;
+ DBUG_ENTER("ha_partition::drop_partitions");
+
+ /*
+ Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
+ We use m_file[0] as long as all partitions have the same storage engine.
+ */
+ DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
+ part_name_buff)));
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_TO_BE_DROPPED)
+ {
+ handler *file;
+ /*
+ This part is to be dropped, meaning the part or all its subparts.
+ */
+ name_variant= NORMAL_PART_NAME;
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint j= 0, part;
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+ part= i * num_subparts + j;
+ if (unlikely((ret_error=
+ create_subpartition_name(part_name_buff,
+ sizeof(part_name_buff), path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ name_variant))))
+ error= ret_error;
+ file= m_file[part];
+ DBUG_PRINT("info", ("Drop subpartition %s", part_name_buff));
+ if (unlikely((ret_error= file->delete_table(part_name_buff))))
+ error= ret_error;
+ if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ if ((ret_error= create_partition_name(part_name_buff,
+ sizeof(part_name_buff), path,
+ part_elem->partition_name, name_variant, TRUE)))
+ error= ret_error;
+ else
+ {
+ file= m_file[i];
+ DBUG_PRINT("info", ("Drop partition %s", part_name_buff));
+ if (unlikely((ret_error= file->delete_table(part_name_buff))))
+ error= ret_error;
+ if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ }
+ }
+ if (part_elem->part_state == PART_IS_CHANGED)
+ part_elem->part_state= PART_NORMAL;
+ else
+ part_elem->part_state= PART_IS_DROPPED;
+ }
+ } while (++i < num_parts);
+ (void) sync_ddl_log();
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Rename partitions as part of ALTER TABLE of partitions
+
+ SYNOPSIS
+ rename_partitions()
+ path Complete path of db and table name
+
+ RETURN VALUE
+ TRUE Failure
+ FALSE Success
+
+ DESCRIPTION
+ When reorganising partitions, adding hash partitions and coalescing
+ partitions it can be necessary to rename partitions while holding
+ an exclusive lock on the table.
+ Which partitions to rename is given by state of partitions found by the
+ partition info struct referenced from the handler object
+*/
+
+int ha_partition::rename_partitions(const char *path)
+{
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ List_iterator<partition_element> temp_it(m_part_info->temp_partitions);
+ char part_name_buff[FN_REFLEN + 1];
+ char norm_name_buff[FN_REFLEN + 1];
+ uint num_parts= m_part_info->partitions.elements;
+ uint part_count= 0;
+ uint num_subparts= m_part_info->num_subparts;
+ uint i= 0;
+ uint j= 0;
+ int error= 0;
+ int ret_error;
+ uint temp_partitions= m_part_info->temp_partitions.elements;
+ handler *file;
+ partition_element *part_elem, *sub_elem;
+ DBUG_ENTER("ha_partition::rename_partitions");
+
+ /*
+ Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
+ We use m_file[0] as long as all partitions have the same storage engine.
+ */
+ DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
+ norm_name_buff)));
+
+ DEBUG_SYNC(ha_thd(), "before_rename_partitions");
+ if (temp_partitions)
+ {
+ /*
+ These are the reorganised partitions that have already been copied.
+ We delete the partitions and log the delete by inactivating the
+ delete log entry in the table log. We only need to synchronise
+ these writes before moving to the next loop since there is no
+ interaction among reorganised partitions, they cannot have the
+ same name.
+ */
+ do
+ {
+ part_elem= temp_it++;
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ j= 0;
+ do
+ {
+ sub_elem= sub_it++;
+ file= m_reorged_file[part_count++];
+ if (unlikely((ret_error=
+ create_subpartition_name(norm_name_buff,
+ sizeof(norm_name_buff), path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ NORMAL_PART_NAME))))
+ error= ret_error;
+ DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
+ if (unlikely((ret_error= file->delete_table(norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ else
+ sub_elem->log_entry= NULL; /* Indicate success */
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ file= m_reorged_file[part_count++];
+ if (unlikely((ret_error=
+ create_partition_name(norm_name_buff,
+ sizeof(norm_name_buff), path,
+ part_elem->partition_name,
+ NORMAL_PART_NAME, TRUE))))
+ error= ret_error;
+ else
+ {
+ DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
+ if (unlikely((ret_error= file->delete_table(norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ else
+ part_elem->log_entry= NULL; /* Indicate success */
+ }
+ }
+ } while (++i < temp_partitions);
+ (void) sync_ddl_log();
+ }
+ i= 0;
+ do
+ {
+ /*
+ When state is PART_IS_CHANGED it means that we have created a new
+ TEMP partition that is to be renamed to normal partition name and
+ we are to delete the old partition with currently the normal name.
+
+ We perform this operation by
+ 1) Delete old partition with normal partition name
+ 2) Signal this in table log entry
+ 3) Synch table log to ensure we have consistency in crashes
+ 4) Rename temporary partition name to normal partition name
+ 5) Signal this to table log entry
+ It is not necessary to synch the last state since a new rename
+ should not corrupt things if there was no temporary partition.
+
+ The only other parts we need to cater for are new parts that
+ replace reorganised parts. The reorganised parts were deleted
+ by the code above that goes through the temp_partitions list.
+ Thus the synch above makes it safe to simply perform step 4 and 5
+ for those entries.
+ */
+ part_elem= part_it++;
+ if (part_elem->part_state == PART_IS_CHANGED ||
+ part_elem->part_state == PART_TO_BE_DROPPED ||
+ (part_elem->part_state == PART_IS_ADDED && temp_partitions))
+ {
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint part;
+
+ j= 0;
+ do
+ {
+ sub_elem= sub_it++;
+ part= i * num_subparts + j;
+ if (unlikely((ret_error=
+ create_subpartition_name(norm_name_buff,
+ sizeof(norm_name_buff), path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ NORMAL_PART_NAME))))
+ error= ret_error;
+ if (part_elem->part_state == PART_IS_CHANGED)
+ {
+ file= m_reorged_file[part_count++];
+ DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
+ if (unlikely((ret_error= file->delete_table(norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ (void) sync_ddl_log();
+ }
+ file= m_new_file[part];
+ if (unlikely((ret_error=
+ create_subpartition_name(part_name_buff,
+ sizeof(part_name_buff), path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ TEMP_PART_NAME))))
+ error= ret_error;
+ DBUG_PRINT("info", ("Rename subpartition from %s to %s",
+ part_name_buff, norm_name_buff));
+ if (unlikely((ret_error= file->ha_rename_table(part_name_buff,
+ norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ else
+ sub_elem->log_entry= NULL;
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ if (unlikely((ret_error=
+ create_partition_name(norm_name_buff,
+ sizeof(norm_name_buff), path,
+ part_elem->partition_name,
+ NORMAL_PART_NAME, TRUE)) ||
+ (ret_error= create_partition_name(part_name_buff,
+ sizeof(part_name_buff),
+ path,
+ part_elem->
+ partition_name,
+ TEMP_PART_NAME, TRUE))))
+ error= ret_error;
+ else
+ {
+ if (part_elem->part_state == PART_IS_CHANGED)
+ {
+ file= m_reorged_file[part_count++];
+ DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
+ if (unlikely((ret_error= file->delete_table(norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ (void) sync_ddl_log();
+ }
+ file= m_new_file[i];
+ DBUG_PRINT("info", ("Rename partition from %s to %s",
+ part_name_buff, norm_name_buff));
+ if (unlikely((ret_error= file->ha_rename_table(part_name_buff,
+ norm_name_buff))))
+ error= ret_error;
+ else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry->
+ entry_pos)))
+ error= 1;
+ else
+ part_elem->log_entry= NULL;
+ }
+ }
+ }
+ } while (++i < num_parts);
+ (void) sync_ddl_log();
+ DBUG_RETURN(error);
+}
+
+
+#define OPTIMIZE_PARTS 1
+#define ANALYZE_PARTS 2
+#define CHECK_PARTS 3
+#define REPAIR_PARTS 4
+#define ASSIGN_KEYCACHE_PARTS 5
+#define PRELOAD_KEYS_PARTS 6
+
+static const char *opt_op_name[]= {NULL,
+ "optimize", "analyze", "check", "repair",
+ "assign_to_keycache", "preload_keys"};
+
+/*
+ Optimize table
+
+ SYNOPSIS
+ optimize()
+ thd Thread object
+ check_opt Check/analyze/repair/optimize options
+
+ RETURN VALUES
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::optimize(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::optimize");
+
+ DBUG_RETURN(handle_opt_partitions(thd, check_opt, OPTIMIZE_PARTS));
+}
+
+
+/*
+ Analyze table
+
+ SYNOPSIS
+ analyze()
+ thd Thread object
+ check_opt Check/analyze/repair/optimize options
+
+ RETURN VALUES
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::analyze(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::analyze");
+
+ int result= handle_opt_partitions(thd, check_opt, ANALYZE_PARTS);
+
+ if ((result == 0) && m_file[0]
+ && (m_file[0]->ha_table_flags() & HA_ONLINE_ANALYZE))
+ {
+ /* If this is ANALYZE TABLE that will not force table definition cache
+ eviction, update statistics for the partition handler. */
+ this->info(HA_STATUS_CONST | HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
+ }
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Check table
+
+ SYNOPSIS
+ check()
+ thd Thread object
+ check_opt Check/analyze/repair/optimize options
+
+ RETURN VALUES
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::check(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::check");
+
+ DBUG_RETURN(handle_opt_partitions(thd, check_opt, CHECK_PARTS));
+}
+
+
+/*
+ Repair table
+
+ SYNOPSIS
+ repair()
+ thd Thread object
+ check_opt Check/analyze/repair/optimize options
+
+ RETURN VALUES
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::repair(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::repair");
+
+ int res= handle_opt_partitions(thd, check_opt, REPAIR_PARTS);
+ DBUG_RETURN(res);
+}
+
+/**
+ Assign to keycache
+
+ @param thd Thread object
+ @param check_opt Check/analyze/repair/optimize options
+
+ @return
+ @retval >0 Error
+ @retval 0 Success
+*/
+
+int ha_partition::assign_to_keycache(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::assign_to_keycache");
+
+ DBUG_RETURN(handle_opt_partitions(thd, check_opt, ASSIGN_KEYCACHE_PARTS));
+}
+
+
+/**
+ Preload to keycache
+
+ @param thd Thread object
+ @param check_opt Check/analyze/repair/optimize options
+
+ @return
+ @retval >0 Error
+ @retval 0 Success
+*/
+
+int ha_partition::preload_keys(THD *thd, HA_CHECK_OPT *check_opt)
+{
+ DBUG_ENTER("ha_partition::preload_keys");
+
+ DBUG_RETURN(handle_opt_partitions(thd, check_opt, PRELOAD_KEYS_PARTS));
+}
+
+
+/*
+ Handle optimize/analyze/check/repair of one partition
+
+ SYNOPSIS
+ handle_opt_part()
+ thd Thread object
+ check_opt Options
+ file Handler object of partition
+ flag Optimize/Analyze/Check/Repair flag
+
+ RETURN VALUE
+ >0 Failure
+ 0 Success
+*/
+
+int ha_partition::handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt,
+ uint part_id, uint flag)
+{
+ int error;
+ handler *file= m_file[part_id];
+ DBUG_ENTER("handle_opt_part");
+ DBUG_PRINT("enter", ("flag: %u", flag));
+
+ if (flag == OPTIMIZE_PARTS)
+ error= file->ha_optimize(thd, check_opt);
+ else if (flag == ANALYZE_PARTS)
+ error= file->ha_analyze(thd, check_opt);
+ else if (flag == CHECK_PARTS)
+ {
+ error= file->ha_check(thd, check_opt);
+ if (!error ||
+ error == HA_ADMIN_ALREADY_DONE ||
+ error == HA_ADMIN_NOT_IMPLEMENTED)
+ {
+ if (check_opt->flags & (T_MEDIUM | T_EXTEND))
+ error= check_misplaced_rows(part_id, false);
+ }
+ }
+ else if (flag == REPAIR_PARTS)
+ {
+ error= file->ha_repair(thd, check_opt);
+ if (!error ||
+ error == HA_ADMIN_ALREADY_DONE ||
+ error == HA_ADMIN_NOT_IMPLEMENTED)
+ {
+ if (check_opt->flags & (T_MEDIUM | T_EXTEND))
+ error= check_misplaced_rows(part_id, true);
+ }
+ }
+ else if (flag == ASSIGN_KEYCACHE_PARTS)
+ error= file->assign_to_keycache(thd, check_opt);
+ else if (flag == PRELOAD_KEYS_PARTS)
+ error= file->preload_keys(thd, check_opt);
+ else
+ {
+ DBUG_ASSERT(FALSE);
+ error= 1;
+ }
+ if (error == HA_ADMIN_ALREADY_DONE)
+ error= 0;
+ DBUG_RETURN(error);
+}
+
+
+/*
+ print a message row formatted for ANALYZE/CHECK/OPTIMIZE/REPAIR TABLE
+ (modelled after mi_check_print_msg)
+ TODO: move this into the handler, or rewrite mysql_admin_table.
+*/
+bool print_admin_msg(THD* thd, uint len,
+ const char* msg_type,
+ const char* db_name, String &table_name,
+ const char* op_name, const char *fmt, ...)
+ ATTRIBUTE_FORMAT(printf, 7, 8);
+bool print_admin_msg(THD* thd, uint len,
+ const char* msg_type,
+ const char* db_name, String &table_name,
+ const char* op_name, const char *fmt, ...)
+{
+ va_list args;
+ Protocol *protocol= thd->protocol;
+ size_t length;
+ size_t msg_length;
+ char name[NAME_LEN*2+2];
+ char *msgbuf;
+ bool error= true;
+
+ if (!(msgbuf= (char*) my_malloc(key_memory_Partition_admin, len, MYF(0))))
+ return true;
+ va_start(args, fmt);
+ msg_length= my_vsnprintf(msgbuf, len, fmt, args);
+ va_end(args);
+ if (msg_length >= (len - 1))
+ goto err;
+ msgbuf[len - 1]= 0; // healthy paranoia
+
+
+ if (!thd->vio_ok())
+ {
+ sql_print_error("%s", msgbuf);
+ goto err;
+ }
+
+ length=(size_t)(strxmov(name, db_name, ".", table_name.c_ptr_safe(), NullS) - name);
+ /*
+ TODO: switch from protocol to push_warning here. The main reason we didn't
+ it yet is parallel repair, which threads have no THD object accessible via
+ current_thd.
+
+ Also we likely need to lock mutex here (in both cases with protocol and
+ push_warning).
+ */
+ DBUG_PRINT("info",("print_admin_msg: %s, %s, %s, %s", name, op_name,
+ msg_type, msgbuf));
+ protocol->prepare_for_resend();
+ protocol->store(name, length, system_charset_info);
+ protocol->store(op_name, system_charset_info);
+ protocol->store(msg_type, system_charset_info);
+ protocol->store(msgbuf, msg_length, system_charset_info);
+ if (protocol->write())
+ {
+ sql_print_error("Failed on my_net_write, writing to stderr instead: %s",
+ msgbuf);
+ goto err;
+ }
+ error= false;
+err:
+ my_free(msgbuf);
+ return error;
+}
+
+
+/*
+ Handle optimize/analyze/check/repair of partitions
+
+ SYNOPSIS
+ handle_opt_partitions()
+ thd Thread object
+ check_opt Options
+ flag Optimize/Analyze/Check/Repair flag
+
+ RETURN VALUE
+ >0 Failure
+ 0 Success
+*/
+
+int ha_partition::handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt,
+ uint flag)
+{
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ uint num_parts= m_part_info->num_parts;
+ uint num_subparts= m_part_info->num_subparts;
+ uint i= 0;
+ int error;
+ DBUG_ENTER("ha_partition::handle_opt_partitions");
+ DBUG_PRINT("enter", ("flag= %u", flag));
+
+ do
+ {
+ partition_element *part_elem= part_it++;
+ /*
+ when ALTER TABLE <CMD> PARTITION ...
+ it should only do named partitions, otherwise all partitions
+ */
+ if (!(thd->lex->alter_info.partition_flags & ALTER_PARTITION_ADMIN) ||
+ part_elem->part_state == PART_ADMIN)
+ {
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> subpart_it(part_elem->subpartitions);
+ partition_element *sub_elem;
+ uint j= 0, part;
+ do
+ {
+ sub_elem= subpart_it++;
+ part= i * num_subparts + j;
+ DBUG_PRINT("info", ("Optimize subpartition %u (%s)",
+ part, sub_elem->partition_name));
+ if (unlikely((error= handle_opt_part(thd, check_opt, part, flag))))
+ {
+ /* print a line which partition the error belongs to */
+ if (error != HA_ADMIN_NOT_IMPLEMENTED &&
+ error != HA_ADMIN_ALREADY_DONE &&
+ error != HA_ADMIN_TRY_ALTER)
+ {
+ print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error",
+ table_share->db.str, table->alias,
+ opt_op_name[flag],
+ "Subpartition %s returned error",
+ sub_elem->partition_name);
+ }
+ /* reset part_state for the remaining partitions */
+ do
+ {
+ if (part_elem->part_state == PART_ADMIN)
+ part_elem->part_state= PART_NORMAL;
+ } while ((part_elem= part_it++));
+ DBUG_RETURN(error);
+ }
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ DBUG_PRINT("info", ("Optimize partition %u (%s)", i,
+ part_elem->partition_name));
+ if (unlikely((error= handle_opt_part(thd, check_opt, i, flag))))
+ {
+ /* print a line which partition the error belongs to */
+ if (error != HA_ADMIN_NOT_IMPLEMENTED &&
+ error != HA_ADMIN_ALREADY_DONE &&
+ error != HA_ADMIN_TRY_ALTER)
+ {
+ print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error",
+ table_share->db.str, table->alias,
+ opt_op_name[flag], "Partition %s returned error",
+ part_elem->partition_name);
+ }
+ /* reset part_state for the remaining partitions */
+ do
+ {
+ if (part_elem->part_state == PART_ADMIN)
+ part_elem->part_state= PART_NORMAL;
+ } while ((part_elem= part_it++));
+ DBUG_RETURN(error);
+ }
+ }
+ part_elem->part_state= PART_NORMAL;
+ }
+ } while (++i < num_parts);
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ @brief Check and repair the table if necessary
+
+ @param thd Thread object
+
+ @retval TRUE Error/Not supported
+ @retval FALSE Success
+
+ @note Called if open_table_from_share fails and ::is_crashed().
+*/
+
+bool ha_partition::check_and_repair(THD *thd)
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::check_and_repair");
+
+ do
+ {
+ if ((*file)->ha_check_and_repair(thd))
+ DBUG_RETURN(TRUE);
+ } while (*(++file));
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ @breif Check if the table can be automatically repaired
+
+ @retval TRUE Can be auto repaired
+ @retval FALSE Cannot be auto repaired
+*/
+
+bool ha_partition::auto_repair(int error) const
+{
+ DBUG_ENTER("ha_partition::auto_repair");
+
+ /*
+ As long as we only support one storage engine per table,
+ we can use the first partition for this function.
+ */
+ DBUG_RETURN(m_file[0]->auto_repair(error));
+}
+
+
+/**
+ @breif Check if the table is crashed
+
+ @retval TRUE Crashed
+ @retval FALSE Not crashed
+*/
+
+bool ha_partition::is_crashed() const
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::is_crashed");
+
+ do
+ {
+ if ((*file)->is_crashed())
+ DBUG_RETURN(TRUE);
+ } while (*(++file));
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Prepare by creating a new partition
+
+ SYNOPSIS
+ prepare_new_partition()
+ table Table object
+ create_info Create info from CREATE TABLE
+ file Handler object of new partition
+ part_name partition name
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::prepare_new_partition(TABLE *tbl,
+ HA_CREATE_INFO *create_info,
+ handler *file, const char *part_name,
+ partition_element *p_elem,
+ uint disable_non_uniq_indexes)
+{
+ int error;
+ DBUG_ENTER("prepare_new_partition");
+
+ /*
+ This call to set_up_table_before_create() is done for an alter table.
+ So this may be the second time around for this partition_element,
+ depending on how many partitions and subpartitions there were before,
+ and how many there are now.
+ The first time, on the CREATE, data_file_name and index_file_name
+ came from the parser. They did not have the file name attached to
+ the end. But if this partition is less than the total number of
+ previous partitions, it's data_file_name has the filename attached.
+ So we need to take the partition filename off if it exists.
+ That file name may be different from part_name, which will be
+ attached in append_file_to_dir().
+ */
+ truncate_partition_filename((char*) p_elem->data_file_name);
+ truncate_partition_filename((char*) p_elem->index_file_name);
+
+ if (unlikely((error= set_up_table_before_create(tbl, part_name, create_info,
+ p_elem))))
+ goto error_create;
+
+ if (!(file->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
+ tbl->s->connect_string= p_elem->connect_string;
+ create_info->options|= HA_CREATE_TMP_ALTER;
+ if ((error= file->ha_create(part_name, tbl, create_info)))
+ {
+ /*
+ Added for safety, InnoDB reports HA_ERR_FOUND_DUPP_KEY
+ if the table/partition already exists.
+ If we return that error code, then print_error would try to
+ get_dup_key on a non-existing partition.
+ So return a more reasonable error code.
+ */
+ if (error == HA_ERR_FOUND_DUPP_KEY)
+ error= HA_ERR_TABLE_EXIST;
+ goto error_create;
+ }
+ DBUG_PRINT("info", ("partition %s created", part_name));
+ if (unlikely((error= file->ha_open(tbl, part_name, m_mode,
+ m_open_test_lock | HA_OPEN_NO_PSI_CALL |
+ HA_OPEN_FOR_CREATE))))
+ goto error_open;
+ DBUG_PRINT("info", ("partition %s opened", part_name));
+
+ /*
+ Note: if you plan to add another call that may return failure,
+ better to do it before external_lock() as cleanup_new_partition()
+ assumes that external_lock() is last call that may fail here.
+ Otherwise see description for cleanup_new_partition().
+ */
+ if (unlikely((error= file->ha_external_lock(ha_thd(), F_WRLCK))))
+ goto error_external_lock;
+ DBUG_PRINT("info", ("partition %s external locked", part_name));
+
+ if (disable_non_uniq_indexes)
+ file->ha_disable_indexes(HA_KEY_SWITCH_NONUNIQ_SAVE);
+
+ DBUG_RETURN(0);
+error_external_lock:
+ (void) file->ha_close();
+error_open:
+ (void) file->delete_table(part_name);
+error_create:
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Cleanup by removing all created partitions after error
+
+ SYNOPSIS
+ cleanup_new_partition()
+ part_count Number of partitions to remove
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ This function is called immediately after prepare_new_partition() in
+ case the latter fails.
+
+ In prepare_new_partition() last call that may return failure is
+ external_lock(). That means if prepare_new_partition() fails,
+ partition does not have external lock. Thus no need to call
+ external_lock(F_UNLCK) here.
+
+ TODO:
+ We must ensure that in the case that we get an error during the process
+ that we call external_lock with F_UNLCK, close the table and delete the
+ table in the case where we have been successful with prepare_handler.
+ We solve this by keeping an array of successful calls to prepare_handler
+ which can then be used to undo the call.
+*/
+
+void ha_partition::cleanup_new_partition(uint part_count)
+{
+ DBUG_ENTER("ha_partition::cleanup_new_partition");
+
+ if (m_added_file)
+ {
+ THD *thd= ha_thd();
+ handler **file= m_added_file;
+ while ((part_count > 0) && (*file))
+ {
+ (*file)->ha_external_unlock(thd);
+ (*file)->ha_close();
+
+ /* Leave the (*file)->delete_table(part_name) to the ddl-log */
+
+ file++;
+ part_count--;
+ }
+ m_added_file= NULL;
+ }
+ DBUG_VOID_RETURN;
+}
+
+/*
+ Implement the partition changes defined by ALTER TABLE of partitions
+
+ SYNOPSIS
+ change_partitions()
+ create_info HA_CREATE_INFO object describing all
+ fields and indexes in table
+ path Complete path of db and table name
+ out: copied Output parameter where number of copied
+ records are added
+ out: deleted Output parameter where number of deleted
+ records are added
+ pack_frm_data Reference to packed frm file
+ pack_frm_len Length of packed frm file
+
+ RETURN VALUE
+ >0 Failure
+ 0 Success
+
+ DESCRIPTION
+ Add and copy if needed a number of partitions, during this operation
+ no other operation is ongoing in the server. This is used by
+ ADD PARTITION all types as well as by REORGANIZE PARTITION. For
+ one-phased implementations it is used also by DROP and COALESCE
+ PARTITIONs.
+ One-phased implementation needs the new frm file, other handlers will
+ get zero length and a NULL reference here.
+*/
+
+int ha_partition::change_partitions(HA_CREATE_INFO *create_info,
+ const char *path,
+ ulonglong * const copied,
+ ulonglong * const deleted,
+ const uchar *pack_frm_data
+ __attribute__((unused)),
+ size_t pack_frm_len
+ __attribute__((unused)))
+{
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ List_iterator <partition_element> t_it(m_part_info->temp_partitions);
+ char part_name_buff[FN_REFLEN + 1];
+ uint num_parts= m_part_info->partitions.elements;
+ uint num_subparts= m_part_info->num_subparts;
+ uint i= 0;
+ uint num_remain_partitions, part_count, orig_count;
+ handler **new_file_array;
+ int error= 1;
+ bool first;
+ uint temp_partitions= m_part_info->temp_partitions.elements;
+ THD *thd= ha_thd();
+ DBUG_ENTER("ha_partition::change_partitions");
+
+ /*
+ Assert that it works without HA_FILE_BASED and lower_case_table_name = 2.
+ We use m_file[0] as long as all partitions have the same storage engine.
+ */
+ DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path,
+ part_name_buff)));
+ m_reorged_parts= 0;
+ if (!m_part_info->is_sub_partitioned())
+ num_subparts= 1;
+
+ /*
+ Step 1:
+ Calculate number of reorganised partitions and allocate space for
+ their handler references.
+ */
+ if (temp_partitions)
+ {
+ m_reorged_parts= temp_partitions * num_subparts;
+ }
+ else
+ {
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_CHANGED ||
+ part_elem->part_state == PART_REORGED_DROPPED)
+ {
+ m_reorged_parts+= num_subparts;
+ }
+ } while (++i < num_parts);
+ }
+ if (m_reorged_parts &&
+ !(m_reorged_file= (handler**) thd->calloc(sizeof(handler*)*
+ (m_reorged_parts + 1))))
+ {
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+
+ /*
+ Step 2:
+ Calculate number of partitions after change and allocate space for
+ their handler references.
+ */
+ num_remain_partitions= 0;
+ if (temp_partitions)
+ {
+ num_remain_partitions= num_parts * num_subparts;
+ }
+ else
+ {
+ part_it.rewind();
+ i= 0;
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_NORMAL ||
+ part_elem->part_state == PART_TO_BE_ADDED ||
+ part_elem->part_state == PART_CHANGED)
+ {
+ num_remain_partitions+= num_subparts;
+ }
+ } while (++i < num_parts);
+ }
+ if (!(new_file_array= ((handler**)
+ thd->calloc(sizeof(handler*)*
+ (2*(num_remain_partitions + 1))))))
+ {
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+ m_added_file= &new_file_array[num_remain_partitions + 1];
+
+ /*
+ Step 3:
+ Fill m_reorged_file with handler references and NULL at the end
+ */
+ if (m_reorged_parts)
+ {
+ i= 0;
+ part_count= 0;
+ first= TRUE;
+ part_it.rewind();
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_CHANGED ||
+ part_elem->part_state == PART_REORGED_DROPPED)
+ {
+ memcpy((void*)&m_reorged_file[part_count],
+ (void*)&m_file[i*num_subparts],
+ sizeof(handler*)*num_subparts);
+ part_count+= num_subparts;
+ }
+ else if (first && temp_partitions &&
+ part_elem->part_state == PART_TO_BE_ADDED)
+ {
+ /*
+ When doing an ALTER TABLE REORGANIZE PARTITION a number of
+ partitions is to be reorganised into a set of new partitions.
+ The reorganised partitions are in this case in the temp_partitions
+ list. We copy all of them in one batch and thus we only do this
+ until we find the first partition with state PART_TO_BE_ADDED
+ since this is where the new partitions go in and where the old
+ ones used to be.
+ */
+ first= FALSE;
+ DBUG_ASSERT(((i*num_subparts) + m_reorged_parts) <= m_file_tot_parts);
+ memcpy((void*)m_reorged_file, &m_file[i*num_subparts],
+ sizeof(handler*)*m_reorged_parts);
+ }
+ } while (++i < num_parts);
+ }
+
+ /*
+ Step 4:
+ Fill new_array_file with handler references. Create the handlers if
+ needed.
+ */
+ i= 0;
+ part_count= 0;
+ orig_count= 0;
+ first= TRUE;
+ part_it.rewind();
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_NORMAL)
+ {
+ DBUG_ASSERT(orig_count + num_subparts <= m_file_tot_parts);
+ memcpy((void*)&new_file_array[part_count], (void*)&m_file[orig_count],
+ sizeof(handler*)*num_subparts);
+ part_count+= num_subparts;
+ orig_count+= num_subparts;
+ }
+ else if (part_elem->part_state == PART_CHANGED ||
+ part_elem->part_state == PART_TO_BE_ADDED)
+ {
+ uint j= 0;
+ Parts_share_refs *p_share_refs;
+ /*
+ The Handler_shares for each partition's handler can be allocated
+ within this handler, since there will not be any more instances of the
+ new partitions, until the table is reopened after the ALTER succeeded.
+ */
+ p_share_refs= new Parts_share_refs;
+ if (!p_share_refs)
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ if (p_share_refs->init(num_subparts))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ if (m_new_partitions_share_refs.push_back(p_share_refs, thd->mem_root))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ do
+ {
+ handler **new_file= &new_file_array[part_count++];
+ if (!(*new_file=
+ get_new_handler(table->s,
+ thd->mem_root,
+ part_elem->engine_type)))
+ {
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+ if ((*new_file)->set_ha_share_ref(&p_share_refs->ha_shares[j]))
+ {
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+ } while (++j < num_subparts);
+ if (part_elem->part_state == PART_CHANGED)
+ orig_count+= num_subparts;
+ else if (temp_partitions && first)
+ {
+ orig_count+= (num_subparts * temp_partitions);
+ first= FALSE;
+ }
+ }
+ } while (++i < num_parts);
+ first= FALSE;
+ /*
+ Step 5:
+ Create the new partitions and also open, lock and call external_lock
+ on them to prepare them for copy phase and also for later close
+ calls
+ */
+
+ /*
+ Before creating new partitions check whether indexes are disabled
+ in the partitions.
+ */
+
+ uint disable_non_uniq_indexes= indexes_are_disabled();
+
+ i= 0;
+ part_count= 0;
+ part_it.rewind();
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_TO_BE_ADDED ||
+ part_elem->part_state == PART_CHANGED)
+ {
+ /*
+ A new partition needs to be created PART_TO_BE_ADDED means an
+ entirely new partition and PART_CHANGED means a changed partition
+ that will still exist with either more or less data in it.
+ */
+ uint name_variant= NORMAL_PART_NAME;
+ if (part_elem->part_state == PART_CHANGED ||
+ (part_elem->part_state == PART_TO_BE_ADDED && temp_partitions))
+ name_variant= TEMP_PART_NAME;
+ if (m_part_info->is_sub_partitioned())
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint j= 0, part;
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+ if (unlikely((error=
+ create_subpartition_name(part_name_buff,
+ sizeof(part_name_buff), path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ name_variant))))
+ {
+ cleanup_new_partition(part_count);
+ DBUG_RETURN(error);
+ }
+ part= i * num_subparts + j;
+ DBUG_PRINT("info", ("Add subpartition %s", part_name_buff));
+ if (unlikely((error=
+ prepare_new_partition(table, create_info,
+ new_file_array[part],
+ (const char *)part_name_buff,
+ sub_elem,
+ disable_non_uniq_indexes))))
+ {
+ cleanup_new_partition(part_count);
+ DBUG_RETURN(error);
+ }
+
+ m_added_file[part_count++]= new_file_array[part];
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ if (unlikely((error=
+ create_partition_name(part_name_buff,
+ sizeof(part_name_buff), path,
+ part_elem->partition_name,
+ name_variant, TRUE))))
+ {
+ cleanup_new_partition(part_count);
+ DBUG_RETURN(error);
+ }
+
+ DBUG_PRINT("info", ("Add partition %s", part_name_buff));
+ if (unlikely((error=
+ prepare_new_partition(table, create_info,
+ new_file_array[i],
+ (const char *)part_name_buff,
+ part_elem,
+ disable_non_uniq_indexes))))
+ {
+ cleanup_new_partition(part_count);
+ DBUG_RETURN(error);
+ }
+
+ m_added_file[part_count++]= new_file_array[i];
+ }
+ }
+ } while (++i < num_parts);
+
+ /*
+ Step 6:
+ State update to prepare for next write of the frm file.
+ */
+ i= 0;
+ part_it.rewind();
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_TO_BE_ADDED)
+ part_elem->part_state= PART_IS_ADDED;
+ else if (part_elem->part_state == PART_CHANGED)
+ part_elem->part_state= PART_IS_CHANGED;
+ else if (part_elem->part_state == PART_REORGED_DROPPED)
+ part_elem->part_state= PART_TO_BE_DROPPED;
+ } while (++i < num_parts);
+ for (i= 0; i < temp_partitions; i++)
+ {
+ partition_element *part_elem= t_it++;
+ DBUG_ASSERT(part_elem->part_state == PART_TO_BE_REORGED);
+ part_elem->part_state= PART_TO_BE_DROPPED;
+ }
+ DBUG_ASSERT(m_new_file == 0);
+ m_new_file= new_file_array;
+ if (unlikely((error= copy_partitions(copied, deleted))))
+ {
+ /*
+ Close and unlock the new temporary partitions.
+ They will later be deleted through the ddl-log.
+ */
+ cleanup_new_partition(part_count);
+ m_new_file= 0;
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Copy partitions as part of ALTER TABLE of partitions
+
+ SYNOPSIS
+ copy_partitions()
+ out:copied Number of records copied
+ out:deleted Number of records deleted
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ change_partitions has done all the preparations, now it is time to
+ actually copy the data from the reorganised partitions to the new
+ partitions.
+*/
+
+int ha_partition::copy_partitions(ulonglong * const copied,
+ ulonglong * const deleted)
+{
+ uint reorg_part= 0;
+ int result= 0;
+ longlong func_value;
+ DBUG_ENTER("ha_partition::copy_partitions");
+
+ if (m_part_info->linear_hash_ind)
+ {
+ if (m_part_info->part_type == HASH_PARTITION)
+ set_linear_hash_mask(m_part_info, m_part_info->num_parts);
+ else
+ set_linear_hash_mask(m_part_info, m_part_info->num_subparts);
+ }
+ else if (m_part_info->part_type == VERSIONING_PARTITION)
+ {
+ if (m_part_info->check_constants(ha_thd(), m_part_info))
+ goto init_error;
+ }
+
+ while (reorg_part < m_reorged_parts)
+ {
+ handler *file= m_reorged_file[reorg_part];
+ uint32 new_part;
+
+ late_extra_cache(reorg_part);
+ if (unlikely((result= file->ha_rnd_init_with_error(1))))
+ goto init_error;
+ while (TRUE)
+ {
+ if ((result= file->ha_rnd_next(m_rec0)))
+ {
+ if (result != HA_ERR_END_OF_FILE)
+ goto error;
+ /*
+ End-of-file reached, break out to continue with next partition or
+ end the copy process.
+ */
+ break;
+ }
+ /* Found record to insert into new handler */
+ if (m_part_info->get_partition_id(m_part_info, &new_part,
+ &func_value))
+ {
+ /*
+ This record is in the original table but will not be in the new
+ table since it doesn't fit into any partition any longer due to
+ changed partitioning ranges or list values.
+ */
+ (*deleted)++;
+ }
+ else
+ {
+ /* Copy record to new handler */
+ (*copied)++;
+ DBUG_ASSERT(!m_new_file[new_part]->row_logging);
+ result= m_new_file[new_part]->ha_write_row(m_rec0);
+ if (result)
+ goto error;
+ }
+ }
+ late_extra_no_cache(reorg_part);
+ file->ha_rnd_end();
+ reorg_part++;
+ }
+ DBUG_EXECUTE_IF("debug_abort_copy_partitions",
+ DBUG_RETURN(HA_ERR_UNSUPPORTED); );
+ DBUG_RETURN(FALSE);
+error:
+ m_reorged_file[reorg_part]->ha_rnd_end();
+init_error:
+ DBUG_RETURN(result);
+}
+
+/*
+ Update create info as part of ALTER TABLE
+
+ SYNOPSIS
+ update_create_info()
+ create_info Create info from ALTER TABLE
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ Forward this handler call to the storage engine foreach
+ partition handler. The data_file_name for each partition may
+ need to be reset if the tablespace was moved. Use a dummy
+ HA_CREATE_INFO structure and transfer necessary data.
+*/
+
+void ha_partition::update_create_info(HA_CREATE_INFO *create_info)
+{
+ DBUG_ENTER("ha_partition::update_create_info");
+
+ /*
+ Fix for bug#38751, some engines needs info-calls in ALTER.
+ Archive need this since it flushes in ::info.
+ HA_STATUS_AUTO is optimized so it will not always be forwarded
+ to all partitions, but HA_STATUS_VARIABLE will.
+ */
+ info(HA_STATUS_VARIABLE | HA_STATUS_OPEN);
+
+ info(HA_STATUS_AUTO);
+
+ if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
+ create_info->auto_increment_value= stats.auto_increment_value;
+
+ /*
+ DATA DIRECTORY and INDEX DIRECTORY are never applied to the whole
+ partitioned table, only its parts.
+ */
+ my_bool from_alter= (create_info->data_file_name == (const char*) -1);
+ create_info->data_file_name= create_info->index_file_name= NULL;
+
+ if (!(m_file[0]->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
+ create_info->connect_string= null_clex_str;
+
+ /*
+ We do not need to update the individual partition DATA DIRECTORY settings
+ since they can be changed by ALTER TABLE ... REORGANIZE PARTITIONS.
+ */
+ if (from_alter)
+ DBUG_VOID_RETURN;
+
+ /*
+ send Handler::update_create_info() to the storage engine for each
+ partition that currently has a handler object. Using a dummy
+ HA_CREATE_INFO structure to collect DATA and INDEX DIRECTORYs.
+ */
+
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ partition_element *part_elem, *sub_elem;
+ uint num_subparts= m_part_info->num_subparts;
+ uint num_parts= (num_subparts ? m_file_tot_parts / num_subparts :
+ m_file_tot_parts);
+ HA_CREATE_INFO dummy_info;
+ dummy_info.init();
+
+ /*
+ Since update_create_info() can be called from mysql_prepare_alter_table()
+ when not all handlers are set up, we look for that condition first.
+ If all handlers are not available, do not call update_create_info for any.
+ */
+ uint i, j, part;
+ for (i= 0; i < num_parts; i++)
+ {
+ part_elem= part_it++;
+ if (!part_elem)
+ DBUG_VOID_RETURN;
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> subpart_it(part_elem->subpartitions);
+ for (j= 0; j < num_subparts; j++)
+ {
+ sub_elem= subpart_it++;
+ if (!sub_elem)
+ DBUG_VOID_RETURN;
+ part= i * num_subparts + j;
+ if (part >= m_file_tot_parts || !m_file[part])
+ DBUG_VOID_RETURN;
+ }
+ }
+ else
+ {
+ if (!m_file[i])
+ DBUG_VOID_RETURN;
+ }
+ }
+ part_it.rewind();
+
+ for (i= 0; i < num_parts; i++)
+ {
+ part_elem= part_it++;
+ DBUG_ASSERT(part_elem);
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> subpart_it(part_elem->subpartitions);
+ for (j= 0; j < num_subparts; j++)
+ {
+ sub_elem= subpart_it++;
+ DBUG_ASSERT(sub_elem);
+ part= i * num_subparts + j;
+ DBUG_ASSERT(part < m_file_tot_parts);
+ DBUG_ASSERT(m_file[part]);
+ dummy_info.data_file_name= dummy_info.index_file_name = NULL;
+ m_file[part]->update_create_info(&dummy_info);
+ sub_elem->data_file_name = (char*) dummy_info.data_file_name;
+ sub_elem->index_file_name = (char*) dummy_info.index_file_name;
+ }
+ }
+ else
+ {
+ DBUG_ASSERT(m_file[i]);
+ dummy_info.data_file_name= dummy_info.index_file_name= NULL;
+ m_file[i]->update_create_info(&dummy_info);
+ part_elem->data_file_name = (char*) dummy_info.data_file_name;
+ part_elem->index_file_name = (char*) dummy_info.index_file_name;
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Change the internal TABLE_SHARE pointer
+
+ @param table_arg TABLE object
+ @param share New share to use
+
+ @note Is used in error handling in delete_table.
+ All handlers should exist (lock_partitions should not be used)
+*/
+
+void ha_partition::change_table_ptr(TABLE *table_arg, TABLE_SHARE *share)
+{
+ handler **file_array;
+ table= table_arg;
+ table_share= share;
+ /*
+ m_file can be NULL when using an old cached table in DROP TABLE, when the
+ table just has REMOVED PARTITIONING, see Bug#42438
+ */
+ if (m_file)
+ {
+ file_array= m_file;
+ DBUG_ASSERT(*file_array);
+ do
+ {
+ (*file_array)->change_table_ptr(table_arg, share);
+ } while (*(++file_array));
+ }
+
+ if (m_added_file && m_added_file[0])
+ {
+ /* if in middle of a drop/rename etc */
+ file_array= m_added_file;
+ do
+ {
+ (*file_array)->change_table_ptr(table_arg, share);
+ } while (*(++file_array));
+ }
+}
+
+
+/**
+ Handle delete and rename table
+
+ @param from Full path of old table
+ @param to Full path of new table. May be NULL in case of delete
+
+ @return Operation status
+ @retval >0 Error
+ @retval 0 Success
+
+ @note Common routine to handle delete_table and rename_table.
+ The routine uses the partition handler file to get the
+ names of the partition instances. Both these routines
+ are called after creating the handler without table
+ object and thus the file is needed to discover the
+ names of the partitions and the underlying storage engines.
+*/
+
+uint ha_partition::del_ren_table(const char *from, const char *to)
+{
+ int save_error= 0;
+ int error;
+ char from_buff[FN_REFLEN + 1], to_buff[FN_REFLEN + 1],
+ from_lc_buff[FN_REFLEN], to_lc_buff[FN_REFLEN];
+ char *name_buffer_ptr;
+ const char *from_path;
+ const char *to_path= NULL;
+ uint i;
+ handler **file, **abort_file;
+ THD *thd= ha_thd();
+ DBUG_ENTER("ha_partition::del_ren_table");
+
+ if (get_from_handler_file(from, thd->mem_root, false))
+ DBUG_RETURN(my_errno ? my_errno : ENOENT);
+ DBUG_ASSERT(m_file_buffer);
+ DBUG_PRINT("enter", ("from: (%s) to: (%s)", from, to ? to : "(nil)"));
+ name_buffer_ptr= m_name_buffer_ptr;
+
+ file= m_file;
+ /* The command should be logged with IF EXISTS if using a shared table */
+ if (m_file[0]->ht->flags & HTON_TABLE_MAY_NOT_EXIST_ON_SLAVE)
+ thd->replication_flags|= OPTION_IF_EXISTS;
+
+ if (to == NULL)
+ {
+ /*
+ Delete table, start by delete the .par file. If error, break, otherwise
+ delete as much as possible.
+ */
+ if (unlikely((error= handler::delete_table(from))))
+ DBUG_RETURN(error);
+ }
+
+ if (ha_check_if_updates_are_ignored(thd, partition_ht(),
+ to ? "RENAME" : "DROP"))
+ DBUG_RETURN(0);
+
+ /*
+ Since ha_partition has HA_FILE_BASED, it must alter underlying table names
+ if they do not have HA_FILE_BASED and lower_case_table_names == 2.
+ See Bug#37402, for Mac OS X.
+ The appended #P#<partname>[#SP#<subpartname>] will remain in current case.
+ Using the first partitions handler, since mixing handlers is not allowed.
+ */
+ from_path= get_canonical_filename(*file, from, from_lc_buff);
+ if (to != NULL)
+ to_path= get_canonical_filename(*file, to, to_lc_buff);
+ i= 0;
+ do
+ {
+ if (unlikely((error= create_partition_name(from_buff, sizeof(from_buff),
+ from_path, name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))))
+ goto rename_error;
+
+ if (to != NULL)
+ { // Rename branch
+ if (unlikely((error= create_partition_name(to_buff, sizeof(to_buff),
+ to_path, name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))))
+ goto rename_error;
+ error= (*file)->ha_rename_table(from_buff, to_buff);
+ if (unlikely(error))
+ goto rename_error;
+ }
+ else // delete branch
+ {
+ error= (*file)->delete_table(from_buff);
+ }
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ if (unlikely(error))
+ save_error= error;
+ i++;
+ } while (*(++file));
+ if (to != NULL)
+ {
+ if (unlikely((error= handler::rename_table(from, to))))
+ {
+ /* Try to revert everything, ignore errors */
+ (void) handler::rename_table(to, from);
+ goto rename_error;
+ }
+ }
+
+ /* Update .par file in the handlers that supports it */
+ if ((*m_file)->ht->create_partitioning_metadata)
+ {
+ error= (*m_file)->ht->create_partitioning_metadata(to, from,
+ to == NULL ?
+ CHF_DELETE_FLAG :
+ CHF_RENAME_FLAG);
+ DBUG_EXECUTE_IF("failed_create_partitioning_metadata",
+ { my_message_sql(ER_OUT_OF_RESOURCES,"Simulated crash",MYF(0));
+ error= 1;
+ });
+ if (error)
+ {
+ if (to)
+ {
+ (void) handler::rename_table(to, from);
+ (void) (*m_file)->ht->create_partitioning_metadata(from, to,
+ CHF_RENAME_FLAG);
+ goto rename_error;
+ }
+ else
+ save_error=error;
+ }
+ }
+ DBUG_RETURN(save_error);
+
+rename_error:
+ name_buffer_ptr= m_name_buffer_ptr;
+ for (abort_file= file, file= m_file; file < abort_file; file++)
+ {
+ /* Revert the rename, back from 'to' to the original 'from' */
+ if (!create_partition_name(from_buff, sizeof(from_buff), from_path,
+ name_buffer_ptr, NORMAL_PART_NAME, FALSE) &&
+ !create_partition_name(to_buff, sizeof(to_buff), to_path,
+ name_buffer_ptr, NORMAL_PART_NAME, FALSE))
+ {
+ /* Ignore error here */
+ (void) (*file)->ha_rename_table(to_buff, from_buff);
+ }
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ }
+ DBUG_RETURN(error);
+}
+
+uint ha_partition::count_query_cache_dependant_tables(uint8 *tables_type)
+{
+ DBUG_ENTER("ha_partition::count_query_cache_dependant_tables");
+ /* Here we rely on the fact that all tables are of the same type */
+ uint8 type= m_file[0]->table_cache_type();
+ (*tables_type)|= type;
+ DBUG_PRINT("enter", ("cnt: %u", (uint) m_tot_parts));
+ /*
+ We need save underlying tables only for HA_CACHE_TBL_ASKTRANSACT:
+ HA_CACHE_TBL_NONTRANSACT - because all changes goes through partition table
+ HA_CACHE_TBL_NOCACHE - because will not be cached
+ HA_CACHE_TBL_TRANSACT - QC need to know that such type present
+ */
+ DBUG_RETURN(type == HA_CACHE_TBL_ASKTRANSACT ? m_tot_parts : 0);
+}
+
+my_bool ha_partition::
+reg_query_cache_dependant_table(THD *thd,
+ char *engine_key, uint engine_key_len,
+ char *cache_key, uint cache_key_len,
+ uint8 type,
+ Query_cache *cache,
+ Query_cache_block_table **block_table,
+ handler *file,
+ uint *n)
+{
+ DBUG_ENTER("ha_partition::reg_query_cache_dependant_table");
+ qc_engine_callback engine_callback;
+ ulonglong engine_data;
+ /* ask undelying engine */
+ if (!file->register_query_cache_table(thd, engine_key,
+ engine_key_len,
+ &engine_callback,
+ &engine_data))
+ {
+ DBUG_PRINT("qcache", ("Handler does not allow caching for %.*s",
+ engine_key_len, engine_key));
+ /*
+ As this can change from call to call, don't reset set
+ thd->lex->safe_to_cache_query
+ */
+ thd->query_cache_is_applicable= 0; // Query can't be cached
+ DBUG_RETURN(TRUE);
+ }
+ (++(*block_table))->n= ++(*n);
+ if (!cache->insert_table(thd, cache_key_len,
+ cache_key, (*block_table),
+ (uint32) table_share->db.length,
+ (uint8) (cache_key_len -
+ table_share->table_cache_key.length),
+ type,
+ engine_callback, engine_data,
+ FALSE))
+ DBUG_RETURN(TRUE);
+ DBUG_RETURN(FALSE);
+}
+
+
+my_bool ha_partition::
+register_query_cache_dependant_tables(THD *thd,
+ Query_cache *cache,
+ Query_cache_block_table **block_table,
+ uint *n)
+{
+ char *engine_key_end, *query_cache_key_end;
+ uint i;
+ uint num_parts= m_part_info->num_parts;
+ uint num_subparts= m_part_info->num_subparts;
+ int diff_length;
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ char engine_key[FN_REFLEN], query_cache_key[FN_REFLEN];
+ DBUG_ENTER("ha_partition::register_query_cache_dependant_tables");
+
+ /* see ha_partition::count_query_cache_dependant_tables */
+ if (m_file[0]->table_cache_type() != HA_CACHE_TBL_ASKTRANSACT)
+ DBUG_RETURN(FALSE); // nothing to register
+
+ /* prepare static part of the key */
+ memcpy(engine_key, table_share->normalized_path.str,
+ table_share->normalized_path.length);
+ memcpy(query_cache_key, table_share->table_cache_key.str,
+ table_share->table_cache_key.length);
+
+ diff_length= ((int) table_share->table_cache_key.length -
+ (int) table_share->normalized_path.length -1);
+
+ engine_key_end= engine_key + table_share->normalized_path.length;
+ query_cache_key_end= query_cache_key + table_share->table_cache_key.length -1;
+
+ engine_key_end[0]= engine_key_end[2]= query_cache_key_end[0]=
+ query_cache_key_end[2]= '#';
+ query_cache_key_end[1]= engine_key_end[1]= 'P';
+ engine_key_end+= 3;
+ query_cache_key_end+= 3;
+
+ i= 0;
+ do
+ {
+ partition_element *part_elem= part_it++;
+ char *engine_pos= strmov(engine_key_end, part_elem->partition_name);
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> subpart_it(part_elem->subpartitions);
+ partition_element *sub_elem;
+ uint j= 0, part;
+ engine_pos[0]= engine_pos[3]= '#';
+ engine_pos[1]= 'S';
+ engine_pos[2]= 'P';
+ engine_pos += 4;
+ do
+ {
+ char *end;
+ uint length;
+ sub_elem= subpart_it++;
+ part= i * num_subparts + j;
+ /* we store the end \0 as part of the key */
+ end= strmov(engine_pos, sub_elem->partition_name) + 1;
+ length= (uint)(end - engine_key);
+ /* Copy the suffix and end 0 to query cache key */
+ memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end));
+ if (reg_query_cache_dependant_table(thd, engine_key, length,
+ query_cache_key,
+ length + diff_length,
+ m_file[part]->table_cache_type(),
+ cache,
+ block_table, m_file[part],
+ n))
+ DBUG_RETURN(TRUE);
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ char *end= engine_pos+1; // copy end \0
+ uint length= (uint)(end - engine_key);
+ /* Copy the suffix and end 0 to query cache key */
+ memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end));
+ if (reg_query_cache_dependant_table(thd, engine_key, length,
+ query_cache_key,
+ length + diff_length,
+ m_file[i]->table_cache_type(),
+ cache,
+ block_table, m_file[i],
+ n))
+ DBUG_RETURN(TRUE);
+ }
+ } while (++i < num_parts);
+ DBUG_PRINT("info", ("cnt: %u", (uint)m_tot_parts));
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Set up table share object before calling create on underlying handler
+
+ @param table Table object
+ @param info Create info
+ @param part_elem[in,out] Pointer to used partition_element, searched if NULL
+
+ @return status
+ @retval TRUE Error
+ @retval FALSE Success
+
+ @details
+ Set up
+ 1) Comment on partition
+ 2) MAX_ROWS, MIN_ROWS on partition
+ 3) Index file name on partition
+ 4) Data file name on partition
+*/
+
+int ha_partition::set_up_table_before_create(TABLE *tbl,
+ const char *partition_name_with_path,
+ HA_CREATE_INFO *info,
+ partition_element *part_elem)
+{
+ int error= 0;
+ LEX_CSTRING part_name;
+ THD *thd= ha_thd();
+ DBUG_ENTER("set_up_table_before_create");
+
+ DBUG_ASSERT(part_elem);
+
+ if (!part_elem)
+ DBUG_RETURN(1);
+ tbl->s->max_rows= part_elem->part_max_rows;
+ tbl->s->min_rows= part_elem->part_min_rows;
+ part_name.str= strrchr(partition_name_with_path, FN_LIBCHAR)+1;
+ part_name.length= strlen(part_name.str);
+ if ((part_elem->index_file_name &&
+ (error= append_file_to_dir(thd,
+ (const char**)&part_elem->index_file_name,
+ &part_name))) ||
+ (part_elem->data_file_name &&
+ (error= append_file_to_dir(thd,
+ (const char**)&part_elem->data_file_name,
+ &part_name))))
+ {
+ DBUG_RETURN(error);
+ }
+ info->index_file_name= part_elem->index_file_name;
+ info->data_file_name= part_elem->data_file_name;
+ info->connect_string= part_elem->connect_string;
+ if (info->connect_string.length)
+ info->used_fields|= HA_CREATE_USED_CONNECTION;
+ tbl->s->connect_string= part_elem->connect_string;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Add two names together
+
+ SYNOPSIS
+ name_add()
+ out:dest Destination string
+ first_name First name
+ sec_name Second name
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ Routine used to add two names with '_' in between then. Service routine
+ to create_handler_file
+ Include the NULL in the count of characters since it is needed as separator
+ between the partition names.
+*/
+
+static uint name_add(char *dest, const char *first_name, const char *sec_name)
+{
+ return (uint) (strxmov(dest, first_name, "#SP#", sec_name, NullS) -dest) + 1;
+}
+
+
+/**
+ Create the special .par file
+
+ @param name Full path of table name
+
+ @return Operation status
+ @retval FALSE Error code
+ @retval TRUE Success
+
+ @note
+ Method used to create handler file with names of partitions, their
+ engine types and the number of partitions.
+*/
+
+bool ha_partition::create_handler_file(const char *name)
+{
+ partition_element *part_elem, *subpart_elem;
+ size_t i, j, part_name_len, subpart_name_len;
+ size_t tot_partition_words, tot_name_len, num_parts;
+ size_t tot_parts= 0;
+ size_t tot_len_words, tot_len_byte, chksum, tot_name_words;
+ char *name_buffer_ptr;
+ uchar *file_buffer, *engine_array;
+ bool result= TRUE;
+ char file_name[FN_REFLEN];
+ char part_name[FN_REFLEN];
+ char subpart_name[FN_REFLEN];
+ File file;
+ List_iterator_fast <partition_element> part_it(m_part_info->partitions);
+ DBUG_ENTER("create_handler_file");
+
+ num_parts= m_part_info->partitions.elements;
+ DBUG_PRINT("enter", ("table name: %s num_parts: %zu", name, num_parts));
+ tot_name_len= 0;
+ for (i= 0; i < num_parts; i++)
+ {
+ part_elem= part_it++;
+ if (part_elem->part_state != PART_NORMAL &&
+ part_elem->part_state != PART_TO_BE_ADDED &&
+ part_elem->part_state != PART_CHANGED)
+ continue;
+ tablename_to_filename(part_elem->partition_name, part_name,
+ FN_REFLEN);
+ part_name_len= strlen(part_name);
+ if (!m_is_sub_partitioned)
+ {
+ tot_name_len+= part_name_len + 1;
+ tot_parts++;
+ }
+ else
+ {
+ List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->num_subparts; j++)
+ {
+ subpart_elem= sub_it++;
+ tablename_to_filename(subpart_elem->partition_name,
+ subpart_name,
+ FN_REFLEN);
+ subpart_name_len= strlen(subpart_name);
+ tot_name_len+= part_name_len + subpart_name_len + 5;
+ tot_parts++;
+ }
+ }
+ }
+ /*
+ File format:
+ Length in words 4 byte
+ Checksum 4 byte
+ Total number of partitions 4 byte
+ Array of engine types n * 4 bytes where
+ n = (m_tot_parts + 3)/4
+ Length of name part in bytes 4 bytes
+ (Names in filename format)
+ Name part m * 4 bytes where
+ m = ((length_name_part + 3)/4)*4
+
+ All padding bytes are zeroed
+ */
+ tot_partition_words= (tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;
+ tot_name_words= (tot_name_len + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;
+ /* 4 static words (tot words, checksum, tot partitions, name length) */
+ tot_len_words= 4 + tot_partition_words + tot_name_words;
+ tot_len_byte= PAR_WORD_SIZE * tot_len_words;
+ if (!(file_buffer= (uchar *) my_malloc(key_memory_ha_partition_file,
+ tot_len_byte, MYF(MY_ZEROFILL))))
+ DBUG_RETURN(TRUE);
+ engine_array= (file_buffer + PAR_ENGINES_OFFSET);
+ name_buffer_ptr= (char*) (engine_array + tot_partition_words * PAR_WORD_SIZE
+ + PAR_WORD_SIZE);
+ part_it.rewind();
+ for (i= 0; i < num_parts; i++)
+ {
+ part_elem= part_it++;
+ if (part_elem->part_state != PART_NORMAL &&
+ part_elem->part_state != PART_TO_BE_ADDED &&
+ part_elem->part_state != PART_CHANGED)
+ continue;
+ if (!m_is_sub_partitioned)
+ {
+ tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN);
+ name_buffer_ptr= strmov(name_buffer_ptr, part_name)+1;
+ *engine_array= (uchar) ha_legacy_type(part_elem->engine_type);
+ DBUG_PRINT("info", ("engine: %u", *engine_array));
+ engine_array++;
+ }
+ else
+ {
+ List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->num_subparts; j++)
+ {
+ subpart_elem= sub_it++;
+ tablename_to_filename(part_elem->partition_name, part_name,
+ FN_REFLEN);
+ tablename_to_filename(subpart_elem->partition_name, subpart_name,
+ FN_REFLEN);
+ name_buffer_ptr+= name_add(name_buffer_ptr,
+ part_name,
+ subpart_name);
+ *engine_array= (uchar) ha_legacy_type(subpart_elem->engine_type);
+ DBUG_PRINT("info", ("engine: %u", *engine_array));
+ engine_array++;
+ }
+ }
+ }
+ chksum= 0;
+ int4store(file_buffer, tot_len_words);
+ int4store(file_buffer + PAR_NUM_PARTS_OFFSET, tot_parts);
+ int4store(file_buffer + PAR_ENGINES_OFFSET +
+ (tot_partition_words * PAR_WORD_SIZE),
+ tot_name_len);
+ for (i= 0; i < tot_len_words; i++)
+ chksum^= uint4korr(file_buffer + PAR_WORD_SIZE * i);
+ int4store(file_buffer + PAR_CHECKSUM_OFFSET, chksum);
+ /*
+ Add .par extension to the file name.
+ Create and write and close file
+ to be used at open, delete_table and rename_table
+ */
+ fn_format(file_name, name, "", ha_par_ext, MY_APPEND_EXT);
+ if ((file= mysql_file_create(key_file_ha_partition_par,
+ file_name, CREATE_MODE, O_RDWR | O_TRUNC,
+ MYF(MY_WME))) >= 0)
+ {
+ result= mysql_file_write(file, (uchar *) file_buffer, tot_len_byte,
+ MYF(MY_WME | MY_NABP)) != 0;
+
+ /* Write connection information (for federatedx engine) */
+ part_it.rewind();
+ for (i= 0; i < num_parts && !result; i++)
+ {
+ uchar buffer[4];
+ part_elem= part_it++;
+ size_t length= part_elem->connect_string.length;
+ int4store(buffer, length);
+ if (my_write(file, buffer, 4, MYF(MY_WME | MY_NABP)) ||
+ my_write(file, (uchar *) part_elem->connect_string.str, length,
+ MYF(MY_WME | MY_NABP)))
+ {
+ result= TRUE;
+ break;
+ }
+ }
+ (void) mysql_file_close(file, MYF(0));
+ if (result)
+ mysql_file_delete(key_file_ha_partition_par, file_name, MYF(MY_WME));
+ }
+ else
+ result= TRUE;
+ my_free(file_buffer);
+ DBUG_RETURN(result);
+}
+
+
+/**
+ Clear handler variables and free some memory
+*/
+
+void ha_partition::clear_handler_file()
+{
+ if (m_engine_array)
+ plugin_unlock_list(NULL, m_engine_array, m_tot_parts);
+ free_root(&m_mem_root, MYF(MY_KEEP_PREALLOC));
+ m_file_buffer= NULL;
+ m_engine_array= NULL;
+ m_connect_string= NULL;
+}
+
+
+/**
+ Create underlying handler objects
+
+ @param mem_root Allocate memory through this
+
+ @return Operation status
+ @retval TRUE Error
+ @retval FALSE Success
+*/
+
+bool ha_partition::create_handlers(MEM_ROOT *mem_root)
+{
+ uint i;
+ uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
+ handlerton *hton0;
+ DBUG_ENTER("create_handlers");
+
+ if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
+ DBUG_RETURN(TRUE);
+ m_file_tot_parts= m_tot_parts;
+ bzero((char*) m_file, alloc_len);
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ handlerton *hton= plugin_data(m_engine_array[i], handlerton*);
+ if (!(m_file[i]= get_new_handler(table_share, mem_root, hton)))
+ DBUG_RETURN(TRUE);
+ DBUG_PRINT("info", ("engine_type: %u", hton->db_type));
+ }
+ /* For the moment we only support partition over the same table engine */
+ hton0= plugin_data(m_engine_array[0], handlerton*);
+ if (hton0 == myisam_hton)
+ {
+ DBUG_PRINT("info", ("MyISAM"));
+ m_myisam= TRUE;
+ }
+ /* INNODB may not be compiled in... */
+ else if (ha_legacy_type(hton0) == DB_TYPE_INNODB)
+ {
+ DBUG_PRINT("info", ("InnoDB"));
+ m_innodb= TRUE;
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Create underlying handler objects from partition info
+
+ SYNOPSIS
+ new_handlers_from_part_info()
+ mem_root Allocate memory through this
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Success
+*/
+
+bool ha_partition::new_handlers_from_part_info(MEM_ROOT *mem_root)
+{
+ uint i, j, part_count;
+ partition_element *part_elem;
+ uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
+ List_iterator_fast <partition_element> part_it(m_part_info->partitions);
+ DBUG_ENTER("ha_partition::new_handlers_from_part_info");
+
+ if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
+ goto error;
+
+ m_file_tot_parts= m_tot_parts;
+ bzero((char*) m_file, alloc_len);
+ DBUG_ASSERT(m_part_info->num_parts > 0);
+
+ i= 0;
+ part_count= 0;
+ /*
+ Don't know the size of the underlying storage engine, invent a number of
+ bytes allocated for error message if allocation fails
+ */
+ do
+ {
+ part_elem= part_it++;
+ if (m_is_sub_partitioned)
+ {
+ for (j= 0; j < m_part_info->num_subparts; j++)
+ {
+ if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
+ part_elem->engine_type)))
+ goto error;
+ DBUG_PRINT("info", ("engine_type: %u",
+ (uint) ha_legacy_type(part_elem->engine_type)));
+ }
+ }
+ else
+ {
+ if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
+ part_elem->engine_type)))
+ goto error;
+ DBUG_PRINT("info", ("engine_type: %u",
+ (uint) ha_legacy_type(part_elem->engine_type)));
+ }
+ } while (++i < m_part_info->num_parts);
+ if (part_elem->engine_type == myisam_hton)
+ {
+ DBUG_PRINT("info", ("MyISAM"));
+ m_myisam= TRUE;
+ }
+ DBUG_RETURN(FALSE);
+error:
+ DBUG_RETURN(TRUE);
+}
+
+
+/**
+ Read the .par file to get the partitions engines and names
+
+ @param name Name of table file (without extension)
+
+ @return Operation status
+ @retval true Failure
+ @retval false Success
+
+ @note On success, m_file_buffer is allocated and must be
+ freed by the caller. m_name_buffer_ptr and m_tot_parts is also set.
+*/
+
+bool ha_partition::read_par_file(const char *name)
+{
+ char buff[FN_REFLEN];
+ uchar *tot_name_len_offset;
+ File file;
+ uchar *file_buffer;
+ uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum;
+ DBUG_ENTER("ha_partition::read_par_file");
+ DBUG_PRINT("enter", ("table name: '%s'", name));
+
+ if (m_file_buffer)
+ DBUG_RETURN(false);
+ fn_format(buff, name, "", ha_par_ext, MY_APPEND_EXT);
+
+ /* Following could be done with mysql_file_stat to read in whole file */
+ if ((file= mysql_file_open(key_file_ha_partition_par,
+ buff, O_RDONLY | O_SHARE, MYF(0))) < 0)
+ DBUG_RETURN(TRUE);
+ if (mysql_file_read(file, (uchar *) &buff[0], PAR_WORD_SIZE, MYF(MY_NABP)))
+ goto err1;
+ len_words= uint4korr(buff);
+ len_bytes= PAR_WORD_SIZE * len_words;
+ if (mysql_file_seek(file, 0, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR)
+ goto err1;
+ if (!(file_buffer= (uchar*) alloc_root(&m_mem_root, len_bytes)))
+ goto err1;
+ if (mysql_file_read(file, file_buffer, len_bytes, MYF(MY_NABP)))
+ goto err2;
+
+ chksum= 0;
+ for (i= 0; i < len_words; i++)
+ chksum ^= uint4korr((file_buffer) + PAR_WORD_SIZE * i);
+ if (chksum)
+ goto err2;
+ m_tot_parts= uint4korr((file_buffer) + PAR_NUM_PARTS_OFFSET);
+ DBUG_PRINT("info", ("No of parts: %u", m_tot_parts));
+ tot_partition_words= (m_tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE;
+
+ tot_name_len_offset= file_buffer + PAR_ENGINES_OFFSET +
+ PAR_WORD_SIZE * tot_partition_words;
+ tot_name_words= (uint4korr(tot_name_len_offset) + PAR_WORD_SIZE - 1) /
+ PAR_WORD_SIZE;
+ /*
+ Verify the total length = tot size word, checksum word, num parts word +
+ engines array + name length word + name array.
+ */
+ if (len_words != (tot_partition_words + tot_name_words + 4))
+ goto err2;
+ m_file_buffer= file_buffer; // Will be freed in clear_handler_file()
+ m_name_buffer_ptr= (char*) (tot_name_len_offset + PAR_WORD_SIZE);
+
+ if (!(m_connect_string= (LEX_CSTRING*)
+ alloc_root(&m_mem_root, m_tot_parts * sizeof(LEX_CSTRING))))
+ goto err2;
+ bzero(m_connect_string, m_tot_parts * sizeof(LEX_CSTRING));
+
+ /* Read connection arguments (for federated X engine) */
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ LEX_CSTRING connect_string;
+ uchar buffer[4];
+ char *tmp;
+ if (my_read(file, buffer, 4, MYF(MY_NABP)))
+ {
+ /* No extra options; Probably not a federatedx engine */
+ break;
+ }
+ connect_string.length= uint4korr(buffer);
+ connect_string.str= tmp= (char*) alloc_root(&m_mem_root,
+ connect_string.length+1);
+ if (my_read(file, (uchar*) connect_string.str, connect_string.length,
+ MYF(MY_NABP)))
+ break;
+ tmp[connect_string.length]= 0;
+ m_connect_string[i]= connect_string;
+ }
+
+ (void) mysql_file_close(file, MYF(0));
+ DBUG_RETURN(false);
+
+err2:
+err1:
+ (void) mysql_file_close(file, MYF(0));
+ DBUG_RETURN(true);
+}
+
+
+/**
+ Setup m_engine_array
+
+ @param mem_root MEM_ROOT to use for allocating new handlers
+
+ @return Operation status
+ @retval false Success
+ @retval true Failure
+*/
+
+bool ha_partition::setup_engine_array(MEM_ROOT *mem_root)
+{
+ uint i;
+ uchar *buff;
+ handlerton **engine_array, *first_engine;
+ enum legacy_db_type db_type, first_db_type;
+
+ DBUG_ASSERT(!m_file);
+ DBUG_ENTER("ha_partition::setup_engine_array");
+ engine_array= (handlerton **) my_alloca(m_tot_parts * sizeof(handlerton*));
+ if (!engine_array)
+ DBUG_RETURN(true);
+
+ buff= (uchar *) (m_file_buffer + PAR_ENGINES_OFFSET);
+ first_db_type= (enum legacy_db_type) buff[0];
+ first_engine= ha_resolve_by_legacy_type(ha_thd(), first_db_type);
+ if (!first_engine)
+ goto err;
+
+ if (!(m_engine_array= (plugin_ref*)
+ alloc_root(&m_mem_root, m_tot_parts * sizeof(plugin_ref))))
+ goto err;
+
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ db_type= (enum legacy_db_type) buff[i];
+ if (db_type != first_db_type)
+ {
+ DBUG_PRINT("error", ("partition %u engine %d is not same as "
+ "first partition %d", i, db_type,
+ (int) first_db_type));
+ DBUG_ASSERT(0);
+ clear_handler_file();
+ goto err;
+ }
+ m_engine_array[i]= ha_lock_engine(NULL, first_engine);
+ if (!m_engine_array[i])
+ {
+ clear_handler_file();
+ goto err;
+ }
+ }
+
+ my_afree(engine_array);
+
+ if (create_handlers(mem_root))
+ {
+ clear_handler_file();
+ DBUG_RETURN(true);
+ }
+
+ DBUG_RETURN(false);
+
+err:
+ my_afree(engine_array);
+ DBUG_RETURN(true);
+}
+
+
+/**
+ Get info about partition engines and their names from the .par file
+
+ @param name Full path of table name
+ @param mem_root Allocate memory through this
+ @param is_clone If it is a clone, don't create new handlers
+
+ @return Operation status
+ @retval true Error
+ @retval false Success
+
+ @note Open handler file to get partition names, engine types and number of
+ partitions.
+*/
+
+bool ha_partition::get_from_handler_file(const char *name, MEM_ROOT *mem_root,
+ bool is_clone)
+{
+ DBUG_ENTER("ha_partition::get_from_handler_file");
+ DBUG_PRINT("enter", ("table name: '%s'", name));
+
+ if (m_file_buffer)
+ DBUG_RETURN(false);
+
+ if (read_par_file(name))
+ DBUG_RETURN(true);
+
+ if (!is_clone && setup_engine_array(mem_root))
+ DBUG_RETURN(true);
+
+ DBUG_RETURN(false);
+}
+
+
+/****************************************************************************
+ MODULE open/close object
+****************************************************************************/
+
+/**
+ Get the partition name.
+
+ @param part Struct containing name and length
+ @param[out] length Length of the name
+
+ @return Partition name
+*/
+
+static uchar *get_part_name(PART_NAME_DEF *part, size_t *length,
+ my_bool not_used __attribute__((unused)))
+{
+ *length= part->length;
+ return part->partition_name;
+}
+
+
+/**
+ Insert a partition name in the partition_name_hash.
+
+ @param name Name of partition
+ @param part_id Partition id (number)
+ @param is_subpart Set if the name belongs to a subpartition
+
+ @return Operation status
+ @retval true Failure
+ @retval false Success
+*/
+
+bool ha_partition::insert_partition_name_in_hash(const char *name, uint part_id,
+ bool is_subpart)
+{
+ PART_NAME_DEF *part_def;
+ uchar *part_name;
+ size_t part_name_length;
+ DBUG_ENTER("ha_partition::insert_partition_name_in_hash");
+ /*
+ Calculate and store the length here, to avoid doing it when
+ searching the hash.
+ */
+ part_name_length= strlen(name);
+ /*
+ Must use memory that lives as long as table_share.
+ Freed in the Partition_share destructor.
+ Since we use my_multi_malloc, then my_free(part_def) will also free
+ part_name, as a part of my_hash_free.
+ */
+ if (!my_multi_malloc(key_memory_Partition_share, MY_WME,
+ &part_def, sizeof(PART_NAME_DEF),
+ &part_name, part_name_length + 1,
+ NULL))
+ DBUG_RETURN(true);
+ memcpy(part_name, name, part_name_length + 1);
+ part_def->partition_name= part_name;
+ part_def->length= (uint)part_name_length;
+ part_def->part_id= part_id;
+ part_def->is_subpart= is_subpart;
+ if (my_hash_insert(&part_share->partition_name_hash, (uchar *) part_def))
+ {
+ my_free(part_def);
+ DBUG_RETURN(true);
+ }
+ DBUG_RETURN(false);
+}
+
+
+/**
+ Populate the partition_name_hash in part_share.
+*/
+
+bool ha_partition::populate_partition_name_hash()
+{
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ uint num_parts= m_part_info->num_parts;
+ uint num_subparts= m_is_sub_partitioned ? m_part_info->num_subparts : 1;
+ uint tot_names;
+ uint i= 0;
+ DBUG_ASSERT(part_share);
+
+ DBUG_ENTER("ha_partition::populate_partition_name_hash");
+
+ /*
+ partition_name_hash is only set once and never changed
+ -> OK to check without locking.
+ */
+
+ if (part_share->partition_name_hash_initialized)
+ DBUG_RETURN(false);
+ lock_shared_ha_data();
+ if (part_share->partition_name_hash_initialized)
+ {
+ unlock_shared_ha_data();
+ DBUG_RETURN(false);
+ }
+ tot_names= m_is_sub_partitioned ? m_tot_parts + num_parts : num_parts;
+ if (my_hash_init(key_memory_Partition_share,
+ &part_share->partition_name_hash, system_charset_info,
+ tot_names, 0, 0, (my_hash_get_key) get_part_name, my_free,
+ HASH_UNIQUE))
+ {
+ unlock_shared_ha_data();
+ DBUG_RETURN(TRUE);
+ }
+
+ do
+ {
+ partition_element *part_elem= part_it++;
+ DBUG_ASSERT(part_elem->part_state == PART_NORMAL);
+ if (part_elem->part_state == PART_NORMAL)
+ {
+ if (insert_partition_name_in_hash(part_elem->partition_name,
+ i * num_subparts, false))
+ goto err;
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element>
+ subpart_it(part_elem->subpartitions);
+ partition_element *sub_elem;
+ uint j= 0;
+ do
+ {
+ sub_elem= subpart_it++;
+ if (insert_partition_name_in_hash(sub_elem->partition_name,
+ i * num_subparts + j, true))
+ goto err;
+
+ } while (++j < num_subparts);
+ }
+ }
+ } while (++i < num_parts);
+
+ part_share->partition_name_hash_initialized= true;
+ unlock_shared_ha_data();
+
+ DBUG_RETURN(FALSE);
+err:
+ my_hash_free(&part_share->partition_name_hash);
+ unlock_shared_ha_data();
+
+ DBUG_RETURN(TRUE);
+}
+
+
+/**
+ Set Handler_share pointer and allocate Handler_share pointers
+ for each partition and set those.
+
+ @param ha_share_arg Where to store/retrieve the Partitioning_share pointer
+ to be shared by all instances of the same table.
+
+ @return Operation status
+ @retval true Failure
+ @retval false Success
+*/
+
+bool ha_partition::set_ha_share_ref(Handler_share **ha_share_arg)
+{
+ Handler_share **ha_shares;
+ uint i;
+ DBUG_ENTER("ha_partition::set_ha_share_ref");
+
+ DBUG_ASSERT(!part_share);
+ DBUG_ASSERT(table_share);
+ DBUG_ASSERT(!m_is_clone_of);
+ DBUG_ASSERT(m_tot_parts);
+ if (handler::set_ha_share_ref(ha_share_arg))
+ DBUG_RETURN(true);
+ if (!(part_share= get_share()))
+ DBUG_RETURN(true);
+ DBUG_ASSERT(part_share->partitions_share_refs.num_parts >= m_tot_parts);
+ ha_shares= part_share->partitions_share_refs.ha_shares;
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ if (m_file[i]->set_ha_share_ref(&ha_shares[i]))
+ DBUG_RETURN(true);
+ }
+ DBUG_RETURN(false);
+}
+
+
+/**
+ Get the PARTITION_SHARE for the table.
+
+ @return Operation status
+ @retval true Error
+ @retval false Success
+
+ @note Gets or initializes the Partition_share object used by partitioning.
+ The Partition_share is used for handling the auto_increment etc.
+*/
+
+Partition_share *ha_partition::get_share()
+{
+ Partition_share *tmp_share;
+ DBUG_ENTER("ha_partition::get_share");
+ DBUG_ASSERT(table_share);
+
+ lock_shared_ha_data();
+ if (!(tmp_share= static_cast<Partition_share*>(get_ha_share_ptr())))
+ {
+ tmp_share= new Partition_share;
+ if (!tmp_share)
+ goto err;
+ if (tmp_share->init(m_tot_parts))
+ {
+ delete tmp_share;
+ tmp_share= NULL;
+ goto err;
+ }
+ set_ha_share_ptr(static_cast<Handler_share*>(tmp_share));
+ }
+err:
+ unlock_shared_ha_data();
+ DBUG_RETURN(tmp_share);
+}
+
+
+
+/**
+ Helper function for freeing all internal bitmaps.
+*/
+
+void ha_partition::free_partition_bitmaps()
+{
+ /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */
+ my_bitmap_free(&m_bulk_insert_started);
+ my_bitmap_free(&m_locked_partitions);
+ my_bitmap_free(&m_partitions_to_reset);
+ my_bitmap_free(&m_key_not_found_partitions);
+ my_bitmap_free(&m_opened_partitions);
+ my_bitmap_free(&m_mrr_used_partitions);
+}
+
+
+/**
+ Helper function for initializing all internal bitmaps.
+
+ Note:
+ All bitmaps, including partially allocated, are freed in
+ free_partion_bitmaps()
+*/
+
+bool ha_partition::init_partition_bitmaps()
+{
+ DBUG_ENTER("ha_partition::init_partition_bitmaps");
+
+ /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */
+ if (my_bitmap_init(&m_bulk_insert_started, NULL, m_tot_parts + 1, FALSE))
+ DBUG_RETURN(true);
+
+ /* Initialize the bitmap we use to keep track of locked partitions */
+ if (my_bitmap_init(&m_locked_partitions, NULL, m_tot_parts, FALSE))
+ DBUG_RETURN(true);
+
+ /*
+ Initialize the bitmap we use to keep track of partitions which may have
+ something to reset in ha_reset().
+ */
+ if (my_bitmap_init(&m_partitions_to_reset, NULL, m_tot_parts, FALSE))
+ DBUG_RETURN(true);
+
+ /*
+ Initialize the bitmap we use to keep track of partitions which returned
+ HA_ERR_KEY_NOT_FOUND from index_read_map.
+ */
+ if (my_bitmap_init(&m_key_not_found_partitions, NULL, m_tot_parts, FALSE))
+ DBUG_RETURN(true);
+
+ if (bitmap_init(&m_mrr_used_partitions, NULL, m_tot_parts, TRUE))
+ DBUG_RETURN(true);
+
+ if (my_bitmap_init(&m_opened_partitions, NULL, m_tot_parts, FALSE))
+ DBUG_RETURN(true);
+
+ m_file_sample= NULL;
+
+ /* Initialize the bitmap for read/lock_partitions */
+ if (!m_is_clone_of)
+ {
+ DBUG_ASSERT(!m_clone_mem_root);
+ if (m_part_info->set_partition_bitmaps(NULL))
+ DBUG_RETURN(true);
+ }
+ DBUG_RETURN(false);
+}
+
+
+/*
+ Open handler object
+SYNOPSIS
+ open()
+ name Full path of table name
+ mode Open mode flags
+ test_if_locked ?
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+
+ DESCRIPTION
+ Used for opening tables. The name will be the name of the file.
+ A table is opened when it needs to be opened. For instance
+ when a request comes in for a select on the table (tables are not
+ open and closed for each request, they are cached).
+
+ Called from handler.cc by handler::ha_open(). The server opens all tables
+ by calling ha_open() which then calls the handler specific open().
+*/
+
+int ha_partition::open(const char *name, int mode, uint test_if_locked)
+{
+ int error= HA_ERR_INITIALIZATION;
+ handler **file;
+ char name_buff[FN_REFLEN + 1];
+ ulonglong check_table_flags;
+ DBUG_ENTER("ha_partition::open");
+
+ DBUG_ASSERT(table->s == table_share);
+ ref_length= 0;
+ m_mode= mode;
+ m_open_test_lock= test_if_locked;
+ m_part_field_array= m_part_info->full_part_field_array;
+ if (get_from_handler_file(name, &table->mem_root, MY_TEST(m_is_clone_of)))
+ DBUG_RETURN(error);
+ if (populate_partition_name_hash())
+ {
+ DBUG_RETURN(HA_ERR_INITIALIZATION);
+ }
+ m_start_key.length= 0;
+ m_rec0= table->record[0];
+ m_rec_length= table_share->reclength;
+ if (!m_part_ids_sorted_by_num_of_records)
+ {
+ if (!(m_part_ids_sorted_by_num_of_records=
+ (uint32*) my_malloc(key_memory_ha_partition_part_ids,
+ m_tot_parts * sizeof(uint32), MYF(MY_WME))))
+ DBUG_RETURN(error);
+ uint32 i;
+ /* Initialize it with all partition ids. */
+ for (i= 0; i < m_tot_parts; i++)
+ m_part_ids_sorted_by_num_of_records[i]= i;
+ }
+
+ if (init_partition_bitmaps())
+ goto err_alloc;
+
+ if (!MY_TEST(m_is_clone_of) &&
+ unlikely((error=
+ m_part_info->set_partition_bitmaps(m_partitions_to_open))))
+ goto err_alloc;
+
+ /* Allocate memory used with MMR */
+ if (!(m_range_info= (void **)
+ my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME),
+ &m_range_info, sizeof(range_id_t) * m_tot_parts,
+ &m_stock_range_seq, sizeof(uint) * m_tot_parts,
+ &m_mrr_buffer, sizeof(HANDLER_BUFFER) * m_tot_parts,
+ &m_mrr_buffer_size, sizeof(uint) * m_tot_parts,
+ &m_part_mrr_range_length, sizeof(uint) * m_tot_parts,
+ &m_part_mrr_range_first,
+ sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts,
+ &m_part_mrr_range_current,
+ sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts,
+ &m_partition_part_key_multi_range_hld,
+ sizeof(PARTITION_PART_KEY_MULTI_RANGE_HLD) * m_tot_parts,
+ NullS)))
+ goto err_alloc;
+
+ bzero(m_mrr_buffer, m_tot_parts * sizeof(HANDLER_BUFFER));
+ bzero(m_part_mrr_range_first,
+ sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts);
+
+ if (m_is_clone_of)
+ {
+ uint i, alloc_len;
+ char *name_buffer_ptr;
+ DBUG_ASSERT(m_clone_mem_root);
+ /* Allocate an array of handler pointers for the partitions handlers. */
+ alloc_len= (m_tot_parts + 1) * sizeof(handler*);
+ if (!(m_file= (handler **) alloc_root(m_clone_mem_root, alloc_len)))
+ {
+ error= HA_ERR_INITIALIZATION;
+ goto err_alloc;
+ }
+ memset(m_file, 0, alloc_len);
+ name_buffer_ptr= m_name_buffer_ptr;
+ /*
+ Populate them by cloning the original partitions. This also opens them.
+ Note that file->ref is allocated too.
+ */
+ file= m_is_clone_of->m_file;
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ if (!bitmap_is_set(&m_is_clone_of->m_opened_partitions, i))
+ continue;
+
+ if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff),
+ name, name_buffer_ptr,
+ NORMAL_PART_NAME, FALSE))))
+ goto err_handler;
+ /* ::clone() will also set ha_share from the original. */
+ if (!(m_file[i]= file[i]->clone(name_buff, m_clone_mem_root)))
+ {
+ error= HA_ERR_INITIALIZATION;
+ file= &m_file[i];
+ goto err_handler;
+ }
+ if (!m_file_sample)
+ m_file_sample= m_file[i];
+ name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
+ bitmap_set_bit(&m_opened_partitions, i);
+ }
+ }
+ else
+ {
+ check_insert_autoincrement();
+ if (unlikely((error= open_read_partitions(name_buff, sizeof(name_buff)))))
+ goto err_handler;
+ m_num_locks= m_file_sample->lock_count();
+ }
+ /*
+ We want to know the upper bound for locks, to allocate enough memory.
+ There is no performance lost if we simply return in lock_count() the
+ maximum number locks needed, only some minor over allocation of memory
+ in get_lock_data().
+ */
+ m_num_locks*= m_tot_parts;
+
+ file= m_file;
+ ref_length= get_open_file_sample()->ref_length;
+ check_table_flags= ((get_open_file_sample()->ha_table_flags() &
+ ~(PARTITION_DISABLED_TABLE_FLAGS)) |
+ (PARTITION_ENABLED_TABLE_FLAGS));
+ while (*(++file))
+ {
+ if (!bitmap_is_set(&m_opened_partitions, (uint)(file - m_file)))
+ continue;
+ /* MyISAM can have smaller ref_length for partitions with MAX_ROWS set */
+ set_if_bigger(ref_length, ((*file)->ref_length));
+ /*
+ Verify that all partitions have the same set of table flags.
+ Mask all flags that partitioning enables/disables.
+ */
+ if (check_table_flags != (((*file)->ha_table_flags() &
+ ~(PARTITION_DISABLED_TABLE_FLAGS)) |
+ (PARTITION_ENABLED_TABLE_FLAGS)))
+ {
+ error= HA_ERR_INITIALIZATION;
+ /* set file to last handler, so all of them are closed */
+ file= &m_file[m_tot_parts - 1];
+ goto err_handler;
+ }
+ }
+ key_used_on_scan= get_open_file_sample()->key_used_on_scan;
+ implicit_emptied= get_open_file_sample()->implicit_emptied;
+ /*
+ Add 2 bytes for partition id in position ref length.
+ ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS
+ */
+ ref_length+= PARTITION_BYTES_IN_POS;
+ m_ref_length= ref_length;
+
+ /*
+ Release buffer read from .par file. It will not be reused again after
+ being opened once.
+ */
+ clear_handler_file();
+
+ /*
+ Some handlers update statistics as part of the open call. This will in
+ some cases corrupt the statistics of the partition handler and thus
+ to ensure we have correct statistics we call info from open after
+ calling open on all individual handlers.
+ */
+ m_handler_status= handler_opened;
+ if (m_part_info->part_expr)
+ m_part_func_monotonicity_info=
+ m_part_info->part_expr->get_monotonicity_info();
+ else if (m_part_info->list_of_part_fields)
+ m_part_func_monotonicity_info= MONOTONIC_STRICT_INCREASING;
+ info(HA_STATUS_VARIABLE | HA_STATUS_CONST | HA_STATUS_OPEN);
+ DBUG_RETURN(0);
+
+err_handler:
+ DEBUG_SYNC(ha_thd(), "partition_open_error");
+ DBUG_ASSERT(m_tot_parts > 0);
+ for (uint i= m_tot_parts - 1; ; --i)
+ {
+ if (bitmap_is_set(&m_opened_partitions, i))
+ m_file[i]->ha_close();
+ if (!i)
+ break;
+ }
+err_alloc:
+ free_partition_bitmaps();
+ my_free(m_range_info);
+ m_range_info= 0;
+
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Disabled since it is not possible to prune yet.
+ without pruning, it need to rebind/unbind every partition in every
+ statement which uses a table from the table cache. Will also use
+ as many PSI_tables as there are partitions.
+*/
+
+#ifdef HAVE_M_PSI_PER_PARTITION
+void ha_partition::unbind_psi()
+{
+ uint i;
+
+ DBUG_ENTER("ha_partition::unbind_psi");
+ handler::unbind_psi();
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ DBUG_ASSERT(m_file[i] != NULL);
+ m_file[i]->unbind_psi();
+ }
+ DBUG_VOID_RETURN;
+}
+
+int ha_partition::rebind()
+{
+ uint i;
+
+ DBUG_ENTER("ha_partition::rebind");
+ if (int error= handler::rebind())
+ DBUG_RETURN(error);
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ DBUG_ASSERT(m_file[i] != NULL);
+ if (int error= m_file[i]->rebind())
+ {
+ while (i)
+ m_file[--i]->unbind_psi();
+ handler::unbind_psi();
+ DBUG_RETURN(error);
+ }
+ }
+ DBUG_RETURN(0);
+}
+#endif /* HAVE_M_PSI_PER_PARTITION */
+
+
+/*
+ Check if the table definition has changed for the part tables
+ We use the first partition for the check.
+*/
+
+int ha_partition::discover_check_version()
+{
+ return m_file[0]->discover_check_version();
+}
+
+/**
+ Clone the open and locked partitioning handler.
+
+ @param mem_root MEM_ROOT to use.
+
+ @return Pointer to the successfully created clone or NULL
+
+ @details
+ This function creates a new ha_partition handler as a clone/copy. The
+ original (this) must already be opened and locked. The clone will use
+ the originals m_part_info.
+ It also allocates memory for ref + ref_dup.
+ In ha_partition::open() it will clone its original handlers partitions
+ which will allocate then on the correct MEM_ROOT and also open them.
+*/
+
+handler *ha_partition::clone(const char *name, MEM_ROOT *mem_root)
+{
+ ha_partition *new_handler;
+
+ DBUG_ENTER("ha_partition::clone");
+ new_handler= new (mem_root) ha_partition(ht, table_share, m_part_info,
+ this, mem_root);
+ if (!new_handler)
+ DBUG_RETURN(NULL);
+
+ /*
+ We will not clone each partition's handler here, it will be done in
+ ha_partition::open() for clones. Also set_ha_share_ref is not needed
+ here, since 1) ha_share is copied in the constructor used above
+ 2) each partition's cloned handler will set it from its original.
+ */
+
+ /*
+ Allocate new_handler->ref here because otherwise ha_open will allocate it
+ on this->table->mem_root and we will not be able to reclaim that memory
+ when the clone handler object is destroyed.
+ */
+ if (!(new_handler->ref= (uchar*) alloc_root(mem_root,
+ ALIGN_SIZE(m_ref_length)*2)))
+ goto err;
+
+ if (new_handler->ha_open(table, name,
+ table->db_stat,
+ HA_OPEN_IGNORE_IF_LOCKED | HA_OPEN_NO_PSI_CALL))
+ goto err;
+
+ DBUG_RETURN((handler*) new_handler);
+
+err:
+ delete new_handler;
+ DBUG_RETURN(NULL);
+}
+
+
+/*
+ Close handler object
+
+ SYNOPSIS
+ close()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ Called from sql_base.cc, sql_select.cc, and table.cc.
+ In sql_select.cc it is only used to close up temporary tables or during
+ the process where a temporary table is converted over to being a
+ myisam table.
+ For sql_base.cc look at close_data_tables().
+*/
+
+int ha_partition::close(void)
+{
+ bool first= TRUE;
+ handler **file;
+ uint i;
+ st_partition_ft_info *tmp_ft_info;
+ DBUG_ENTER("ha_partition::close");
+ DBUG_ASSERT(table->s == table_share);
+ DBUG_ASSERT(m_part_info);
+
+ destroy_record_priority_queue();
+
+ for (; ft_first ; ft_first= tmp_ft_info)
+ {
+ tmp_ft_info= ft_first->next;
+ my_free(ft_first);
+ }
+
+ /* Free active mrr_ranges */
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ if (m_part_mrr_range_first[i])
+ {
+ PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_first=
+ m_part_mrr_range_first[i];
+ do
+ {
+ PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_current;
+ tmp_mrr_range_current= tmp_mrr_range_first;
+ tmp_mrr_range_first= tmp_mrr_range_first->next;
+ my_free(tmp_mrr_range_current);
+ } while (tmp_mrr_range_first);
+ }
+ }
+ if (m_mrr_range_first)
+ {
+ do
+ {
+ m_mrr_range_current= m_mrr_range_first;
+ m_mrr_range_first= m_mrr_range_first->next;
+ if (m_mrr_range_current->key[0])
+ my_free(m_mrr_range_current->key[0]);
+ if (m_mrr_range_current->key[1])
+ my_free(m_mrr_range_current->key[1]);
+ my_free(m_mrr_range_current);
+ } while (m_mrr_range_first);
+ }
+ my_free(m_range_info);
+ m_range_info= NULL; // Safety
+
+ if (m_mrr_full_buffer)
+ {
+ my_free(m_mrr_full_buffer);
+ m_mrr_full_buffer= NULL;
+ m_mrr_full_buffer_size= 0;
+ }
+ file= m_file;
+
+repeat:
+ do
+ {
+ if (!first || bitmap_is_set(&m_opened_partitions, (uint)(file - m_file)))
+ (*file)->ha_close();
+ } while (*(++file));
+
+ free_partition_bitmaps();
+
+ if (first && m_added_file && m_added_file[0])
+ {
+ file= m_added_file;
+ first= FALSE;
+ goto repeat;
+ }
+
+ m_handler_status= handler_closed;
+ DBUG_RETURN(0);
+}
+
+/****************************************************************************
+ MODULE start/end statement
+****************************************************************************/
+/*
+ A number of methods to define various constants for the handler. In
+ the case of the partition handler we need to use some max and min
+ of the underlying handlers in most cases.
+*/
+
+/*
+ Set external locks on table
+
+ SYNOPSIS
+ external_lock()
+ thd Thread object
+ lock_type Type of external lock
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ First you should go read the section "locking functions for mysql" in
+ lock.cc to understand this.
+ This create a lock on the table. If you are implementing a storage engine
+ that can handle transactions look at ha_berkeley.cc to see how you will
+ want to go about doing this. Otherwise you should consider calling
+ flock() here.
+ Originally this method was used to set locks on file level to enable
+ several MySQL Servers to work on the same data. For transactional
+ engines it has been "abused" to also mean start and end of statements
+ to enable proper rollback of statements and transactions. When LOCK
+ TABLES has been issued the start_stmt method takes over the role of
+ indicating start of statement but in this case there is no end of
+ statement indicator(?).
+
+ Called from lock.cc by lock_external() and unlock_external(). Also called
+ from sql_table.cc by copy_data_between_tables().
+*/
+
+int ha_partition::external_lock(THD *thd, int lock_type)
+{
+ int error;
+ uint i, first_used_partition;
+ MY_BITMAP *used_partitions;
+ DBUG_ENTER("ha_partition::external_lock");
+
+ DBUG_ASSERT(!auto_increment_lock);
+ DBUG_ASSERT(!auto_increment_safe_stmt_log_lock);
+
+ if (lock_type == F_UNLCK)
+ used_partitions= &m_locked_partitions;
+ else
+ used_partitions= &(m_part_info->lock_partitions);
+
+ first_used_partition= bitmap_get_first_set(used_partitions);
+
+ for (i= first_used_partition;
+ i < m_tot_parts;
+ i= bitmap_get_next_set(used_partitions, i))
+ {
+ DBUG_PRINT("info", ("external_lock(thd, %d) part %u", lock_type, i));
+ if (unlikely((error= m_file[i]->ha_external_lock(thd, lock_type))))
+ {
+ if (lock_type != F_UNLCK)
+ goto err_handler;
+ }
+ DBUG_PRINT("info", ("external_lock part %u lock %d", i, lock_type));
+ if (lock_type != F_UNLCK)
+ bitmap_set_bit(&m_locked_partitions, i);
+ }
+ if (lock_type == F_UNLCK)
+ {
+ bitmap_clear_all(used_partitions);
+ }
+ else
+ {
+ /* Add touched partitions to be included in reset(). */
+ bitmap_union(&m_partitions_to_reset, used_partitions);
+ }
+
+ if (m_added_file && m_added_file[0])
+ {
+ handler **file= m_added_file;
+ DBUG_ASSERT(lock_type == F_UNLCK);
+ do
+ {
+ (void) (*file)->ha_external_lock(thd, lock_type);
+ } while (*(++file));
+ }
+ if (lock_type == F_WRLCK)
+ {
+ if (m_part_info->part_expr)
+ m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0);
+ if (m_part_info->part_type == VERSIONING_PARTITION &&
+ /* TODO: MDEV-20345 exclude more inapproriate commands like INSERT
+ These commands may be excluded because working history partition is needed
+ only for versioned DML. */
+ thd->lex->sql_command != SQLCOM_SELECT &&
+ thd->lex->sql_command != SQLCOM_INSERT_SELECT)
+ m_part_info->vers_set_hist_part(thd);
+ }
+ DBUG_RETURN(0);
+
+err_handler:
+ uint j;
+ for (j= first_used_partition;
+ j < i;
+ j= bitmap_get_next_set(&m_locked_partitions, j))
+ {
+ (void) m_file[j]->ha_external_unlock(thd);
+ }
+ bitmap_clear_all(&m_locked_partitions);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Get the lock(s) for the table and perform conversion of locks if needed
+
+ SYNOPSIS
+ store_lock()
+ thd Thread object
+ to Lock object array
+ lock_type Table lock type
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ The idea with handler::store_lock() is the following:
+
+ The statement decided which locks we should need for the table
+ for updates/deletes/inserts we get WRITE locks, for SELECT... we get
+ read locks.
+
+ Before adding the lock into the table lock handler (see thr_lock.c)
+ mysqld calls store lock with the requested locks. Store lock can now
+ modify a write lock to a read lock (or some other lock), ignore the
+ lock (if we don't want to use MySQL table locks at all) or add locks
+ for many tables (like we do when we are using a MERGE handler).
+
+ Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE
+ (which signals that we are doing WRITES, but we are still allowing other
+ reader's and writer's.
+
+ When releasing locks, store_lock() is also called. In this case one
+ usually doesn't have to do anything.
+
+ store_lock is called when holding a global mutex to ensure that only
+ one thread at a time changes the locking information of tables.
+
+ In some exceptional cases MySQL may send a request for a TL_IGNORE;
+ This means that we are requesting the same lock as last time and this
+ should also be ignored. (This may happen when someone does a flush
+ table when we have opened a part of the tables, in which case mysqld
+ closes and reopens the tables and tries to get the same locks as last
+ time). In the future we will probably try to remove this.
+
+ Called from lock.cc by get_lock_data().
+*/
+
+THR_LOCK_DATA **ha_partition::store_lock(THD *thd,
+ THR_LOCK_DATA **to,
+ enum thr_lock_type lock_type)
+{
+ uint i;
+ DBUG_ENTER("ha_partition::store_lock");
+ DBUG_ASSERT(thd == current_thd);
+
+ /*
+ This can be called from get_lock_data() in mysql_lock_abort_for_thread(),
+ even when thd != table->in_use. In that case don't use partition pruning,
+ but use all partitions instead to avoid using another threads structures.
+ */
+ if (thd != table->in_use)
+ {
+ for (i= 0; i < m_tot_parts; i++)
+ to= m_file[i]->store_lock(thd, to, lock_type);
+ }
+ else
+ {
+ MY_BITMAP *used_partitions= lock_type == TL_UNLOCK ||
+ lock_type == TL_IGNORE ?
+ &m_locked_partitions :
+ &m_part_info->lock_partitions;
+
+ for (i= bitmap_get_first_set(used_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(used_partitions, i))
+ {
+ DBUG_PRINT("info", ("store lock %u iteration", i));
+ to= m_file[i]->store_lock(thd, to, lock_type);
+ }
+ }
+ DBUG_RETURN(to);
+}
+
+/*
+ Start a statement when table is locked
+
+ SYNOPSIS
+ start_stmt()
+ thd Thread object
+ lock_type Type of external lock
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ This method is called instead of external lock when the table is locked
+ before the statement is executed.
+*/
+
+int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type)
+{
+ int error= 0;
+ uint i;
+ /* Assert that read_partitions is included in lock_partitions */
+ DBUG_ASSERT(bitmap_is_subset(&m_part_info->read_partitions,
+ &m_part_info->lock_partitions));
+ /*
+ m_locked_partitions is set in previous external_lock/LOCK TABLES.
+ Current statement's lock requests must not include any partitions
+ not previously locked.
+ */
+ DBUG_ASSERT(bitmap_is_subset(&m_part_info->lock_partitions,
+ &m_locked_partitions));
+ DBUG_ENTER("ha_partition::start_stmt");
+
+ for (i= bitmap_get_first_set(&(m_part_info->lock_partitions));
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
+ {
+ if (unlikely((error= m_file[i]->start_stmt(thd, lock_type))))
+ break;
+ /* Add partition to be called in reset(). */
+ bitmap_set_bit(&m_partitions_to_reset, i);
+ }
+ switch (lock_type)
+ {
+ case TL_WRITE_ALLOW_WRITE:
+ case TL_WRITE_CONCURRENT_INSERT:
+ case TL_WRITE_DELAYED:
+ case TL_WRITE_DEFAULT:
+ case TL_WRITE_LOW_PRIORITY:
+ case TL_WRITE:
+ case TL_WRITE_ONLY:
+ if (m_part_info->part_expr)
+ m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0);
+ if (m_part_info->part_type == VERSIONING_PARTITION &&
+ // TODO: MDEV-20345 (see above)
+ thd->lex->sql_command != SQLCOM_SELECT &&
+ thd->lex->sql_command != SQLCOM_INSERT_SELECT)
+ m_part_info->vers_set_hist_part(thd);
+ default:;
+ }
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Get number of lock objects returned in store_lock
+
+ @returns Number of locks returned in call to store_lock
+
+ @desc
+ Returns the maxinum possible number of store locks needed in call to
+ store lock.
+*/
+
+uint ha_partition::lock_count() const
+{
+ DBUG_ENTER("ha_partition::lock_count");
+ DBUG_RETURN(m_num_locks);
+}
+
+
+/*
+ Unlock last accessed row
+
+ SYNOPSIS
+ unlock_row()
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ Record currently processed was not in the result set of the statement
+ and is thus unlocked. Used for UPDATE and DELETE queries.
+*/
+
+void ha_partition::unlock_row()
+{
+ DBUG_ENTER("ha_partition::unlock_row");
+ m_file[m_last_part]->unlock_row();
+ DBUG_VOID_RETURN;
+}
+
+/**
+ Check if semi consistent read was used
+
+ SYNOPSIS
+ was_semi_consistent_read()
+
+ RETURN VALUE
+ TRUE Previous read was a semi consistent read
+ FALSE Previous read was not a semi consistent read
+
+ DESCRIPTION
+ See handler.h:
+ In an UPDATE or DELETE, if the row under the cursor was locked by another
+ transaction, and the engine used an optimistic read of the last
+ committed row value under the cursor, then the engine returns 1 from this
+ function. MySQL must NOT try to update this optimistic value. If the
+ optimistic value does not match the WHERE condition, MySQL can decide to
+ skip over this row. Currently only works for InnoDB. This can be used to
+ avoid unnecessary lock waits.
+
+ If this method returns nonzero, it will also signal the storage
+ engine that the next read will be a locking re-read of the row.
+*/
+bool ha_partition::was_semi_consistent_read()
+{
+ DBUG_ENTER("ha_partition::was_semi_consistent_read");
+ DBUG_ASSERT(m_last_part < m_tot_parts);
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
+ DBUG_RETURN(m_file[m_last_part]->was_semi_consistent_read());
+}
+
+/**
+ Use semi consistent read if possible
+
+ SYNOPSIS
+ try_semi_consistent_read()
+ yes Turn on semi consistent read
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ See handler.h:
+ Tell the engine whether it should avoid unnecessary lock waits.
+ If yes, in an UPDATE or DELETE, if the row under the cursor was locked
+ by another transaction, the engine may try an optimistic read of
+ the last committed row value under the cursor.
+ Note: prune_partitions are already called before this call, so using
+ pruning is OK.
+*/
+void ha_partition::try_semi_consistent_read(bool yes)
+{
+ uint i;
+ DBUG_ENTER("ha_partition::try_semi_consistent_read");
+
+ i= bitmap_get_first_set(&(m_part_info->read_partitions));
+ DBUG_ASSERT(i != MY_BIT_NONE);
+ for (;
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ m_file[i]->try_semi_consistent_read(yes);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/****************************************************************************
+ MODULE change record
+****************************************************************************/
+
+/*
+ Insert a row to the table
+
+ SYNOPSIS
+ write_row()
+ buf The row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ write_row() inserts a row. buf() is a byte array of data, normally
+ record[0].
+
+ You can use the field information to extract the data from the native byte
+ array type.
+
+ Example of this would be:
+ for (Field **field=table->field ; *field ; field++)
+ {
+ ...
+ }
+
+ See ha_tina.cc for a variant of extracting all of the data as strings.
+ ha_berkeley.cc has a variant of how to store it intact by "packing" it
+ for ha_berkeley's own native storage type.
+
+ Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
+ sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.
+
+ ADDITIONAL INFO:
+
+ We have to set auto_increment fields, because those may be used in
+ determining which partition the row should be written to.
+*/
+
+int ha_partition::write_row(const uchar * buf)
+{
+ uint32 part_id;
+ int error;
+ longlong func_value;
+ bool have_auto_increment= table->next_number_field && buf == table->record[0];
+ MY_BITMAP *old_map;
+ THD *thd= ha_thd();
+ Sql_mode_save sms(thd);
+ bool saved_auto_inc_field_not_null= table->auto_increment_field_not_null;
+ DBUG_ENTER("ha_partition::write_row");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ /*
+ If we have an auto_increment column and we are writing a changed row
+ or a new row, then update the auto_increment value in the record.
+ */
+ if (have_auto_increment)
+ {
+ if (!table_share->next_number_keypart)
+ update_next_auto_inc_val();
+ error= update_auto_increment();
+
+ /*
+ If we have failed to set the auto-increment value for this row,
+ it is highly likely that we will not be able to insert it into
+ the correct partition. We must check and fail if necessary.
+ */
+ if (unlikely(error))
+ goto exit;
+
+ /*
+ Don't allow generation of auto_increment value the partitions handler.
+ If a partitions handler would change the value, then it might not
+ match the partition any longer.
+ This can occur if 'SET INSERT_ID = 0; INSERT (NULL)',
+ So allow this by adding 'MODE_NO_AUTO_VALUE_ON_ZERO' to sql_mode.
+ The partitions handler::next_insert_id must always be 0. Otherwise
+ we need to forward release_auto_increment, or reset it for all
+ partitions.
+ */
+ if (table->next_number_field->val_int() == 0)
+ {
+ table->auto_increment_field_not_null= TRUE;
+ thd->variables.sql_mode|= MODE_NO_AUTO_VALUE_ON_ZERO;
+ }
+ }
+ old_map= dbug_tmp_use_all_columns(table, &table->read_set);
+ error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
+ dbug_tmp_restore_column_map(&table->read_set, old_map);
+ if (unlikely(error))
+ {
+ m_part_info->err_value= func_value;
+ goto exit;
+ }
+ if (!bitmap_is_set(&(m_part_info->lock_partitions), part_id))
+ {
+ DBUG_PRINT("info", ("Write to non-locked partition %u (func_value: %ld)",
+ part_id, (long) func_value));
+ error= HA_ERR_NOT_IN_LOCK_PARTITIONS;
+ goto exit;
+ }
+ m_last_part= part_id;
+ DBUG_PRINT("info", ("Insert in partition %u", part_id));
+
+ start_part_bulk_insert(thd, part_id);
+
+ DBUG_ASSERT(!m_file[part_id]->row_logging);
+ error= m_file[part_id]->ha_write_row(buf);
+ if (!error && have_auto_increment && !table->s->next_number_keypart)
+ set_auto_increment_if_higher(table->next_number_field);
+
+exit:
+ table->auto_increment_field_not_null= saved_auto_inc_field_not_null;
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Update an existing row
+
+ SYNOPSIS
+ update_row()
+ old_data Old record in MySQL Row Format
+ new_data New record in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ Yes, update_row() does what you expect, it updates a row. old_data will
+ have the previous row record in it, while new_data will have the newest
+ data in it.
+ Keep in mind that the server can do updates based on ordering if an
+ ORDER BY clause was used. Consecutive ordering is not guaranteed.
+
+ Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
+ new_data is always record[0]
+ old_data is always record[1]
+*/
+
+int ha_partition::update_row(const uchar *old_data, const uchar *new_data)
+{
+ THD *thd= ha_thd();
+ uint32 new_part_id, old_part_id= m_last_part;
+ int error= 0;
+ DBUG_ENTER("ha_partition::update_row");
+ m_err_rec= NULL;
+
+ // Need to read partition-related columns, to locate the row's partition:
+ DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set,
+ table->read_set));
+#ifndef DBUG_OFF
+ /*
+ The protocol for updating a row is:
+ 1) position the handler (cursor) on the row to be updated,
+ either through the last read row (rnd or index) or by rnd_pos.
+ 2) call update_row with both old and new full records as arguments.
+
+ This means that m_last_part should already be set to actual partition
+ where the row was read from. And if that is not the same as the
+ calculated part_id we found a misplaced row, we return an error to
+ notify the user that something is broken in the row distribution
+ between partitions! Since we don't check all rows on read, we return an
+ error instead of correcting m_last_part, to make the user aware of the
+ problem!
+
+ Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol,
+ so this is not supported for this engine.
+ */
+ error= get_part_for_buf(old_data, m_rec0, m_part_info, &old_part_id);
+ DBUG_ASSERT(!error);
+ DBUG_ASSERT(old_part_id == m_last_part);
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), old_part_id));
+#endif
+
+ if (unlikely((error= get_part_for_buf(new_data, m_rec0, m_part_info,
+ &new_part_id))))
+ goto exit;
+ if (unlikely(!bitmap_is_set(&(m_part_info->lock_partitions), new_part_id)))
+ {
+ error= HA_ERR_NOT_IN_LOCK_PARTITIONS;
+ goto exit;
+ }
+
+
+ m_last_part= new_part_id;
+ start_part_bulk_insert(thd, new_part_id);
+ DBUG_ASSERT(!m_file[new_part_id]->row_logging);
+ if (new_part_id == old_part_id)
+ {
+ DBUG_PRINT("info", ("Update in partition %u", (uint) new_part_id));
+ error= m_file[new_part_id]->ha_update_row(old_data, new_data);
+ goto exit;
+ }
+ else
+ {
+ Field *saved_next_number_field= table->next_number_field;
+ /*
+ Don't allow generation of auto_increment value for update.
+ table->next_number_field is never set on UPDATE.
+ But is set for INSERT ... ON DUPLICATE KEY UPDATE,
+ and since update_row() does not generate or update an auto_inc value,
+ we cannot have next_number_field set when moving a row
+ to another partition with write_row(), since that could
+ generate/update the auto_inc value.
+ This gives the same behavior for partitioned vs non partitioned tables.
+ */
+ table->next_number_field= NULL;
+ DBUG_PRINT("info", ("Update from partition %u to partition %u",
+ (uint) old_part_id, (uint) new_part_id));
+ error= m_file[new_part_id]->ha_write_row((uchar*) new_data);
+ table->next_number_field= saved_next_number_field;
+ if (unlikely(error))
+ goto exit;
+
+ error= m_file[old_part_id]->ha_delete_row(old_data);
+ if (unlikely(error))
+ goto exit;
+ }
+
+exit:
+ /*
+ if updating an auto_increment column, update
+ part_share->next_auto_inc_val if needed.
+ (not to be used if auto_increment on secondary field in a multi-column
+ index)
+ mysql_update does not set table->next_number_field, so we use
+ table->found_next_number_field instead.
+ Also checking that the field is marked in the write set.
+ */
+ if (table->found_next_number_field &&
+ new_data == table->record[0] &&
+ !table->s->next_number_keypart &&
+ bitmap_is_set(table->write_set,
+ table->found_next_number_field->field_index))
+ {
+ update_next_auto_inc_val();
+ if (part_share->auto_inc_initialized)
+ set_auto_increment_if_higher(table->found_next_number_field);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Remove an existing row
+
+ SYNOPSIS
+ delete_row
+ buf Deleted row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error Code
+ 0 Success
+
+ DESCRIPTION
+ This will delete a row. buf will contain a copy of the row to be deleted.
+ The server will call this right after the current row has been read
+ (from either a previous rnd_xxx() or index_xxx() call).
+ If you keep a pointer to the last row or can access a primary key it will
+ make doing the deletion quite a bit easier.
+ Keep in mind that the server does no guarantee consecutive deletions.
+ ORDER BY clauses can be used.
+
+ Called in sql_acl.cc and sql_udf.cc to manage internal table information.
+ Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select
+ it is used for removing duplicates while in insert it is used for REPLACE
+ calls.
+
+ buf is either record[0] or record[1]
+*/
+
+int ha_partition::delete_row(const uchar *buf)
+{
+ int error;
+ DBUG_ENTER("ha_partition::delete_row");
+ m_err_rec= NULL;
+
+ DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set,
+ table->read_set));
+#ifndef DBUG_OFF
+ THD* thd = ha_thd();
+ /*
+ The protocol for deleting a row is:
+ 1) position the handler (cursor) on the row to be deleted,
+ either through the last read row (rnd or index) or by rnd_pos.
+ 2) call delete_row with the full record as argument.
+
+ This means that m_last_part should already be set to actual partition
+ where the row was read from. And if that is not the same as the
+ calculated part_id we found a misplaced row, we return an error to
+ notify the user that something is broken in the row distribution
+ between partitions! Since we don't check all rows on read, we return an
+ error instead of forwarding the delete to the correct (m_last_part)
+ partition!
+
+ Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol,
+ so this is not supported for this engine.
+
+ For partitions by system_time, get_part_for_buf() is always either current
+ or last historical partition, but DELETE HISTORY can delete from any
+ historical partition. So, skip the check in this case.
+ */
+ if (!thd->lex->vers_conditions.delete_history)
+ {
+ uint32 part_id;
+ error= get_part_for_buf(buf, m_rec0, m_part_info, &part_id);
+ DBUG_ASSERT(!error);
+ DBUG_ASSERT(part_id == m_last_part);
+ }
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), m_last_part));
+#endif
+
+ if (!bitmap_is_set(&(m_part_info->lock_partitions), m_last_part))
+ DBUG_RETURN(HA_ERR_NOT_IN_LOCK_PARTITIONS);
+
+ DBUG_ASSERT(!m_file[m_last_part]->row_logging);
+ error= m_file[m_last_part]->ha_delete_row(buf);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Delete all rows in a table
+
+ SYNOPSIS
+ delete_all_rows()
+
+ RETURN VALUE
+ >0 Error Code
+ 0 Success
+
+ DESCRIPTION
+ Used to delete all rows in a table. Both for cases of truncate and
+ for cases where the optimizer realizes that all rows will be
+ removed as a result of a SQL statement.
+
+ Called from item_sum.cc by Item_func_group_concat::clear(),
+ Item_sum_count::clear(), and Item_func_group_concat::clear().
+ Called from sql_delete.cc by mysql_delete().
+ Called from sql_select.cc by JOIN::reset().
+ Called from sql_union.cc by st_select_lex_unit::exec().
+*/
+
+int ha_partition::delete_all_rows()
+{
+ int error;
+ uint i;
+ DBUG_ENTER("ha_partition::delete_all_rows");
+
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ /* Can be pruned, like DELETE FROM t PARTITION (pX) */
+ if (unlikely((error= m_file[i]->ha_delete_all_rows())))
+ DBUG_RETURN(error);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Manually truncate the table.
+
+ @retval 0 Success.
+ @retval > 0 Error code.
+*/
+
+int ha_partition::truncate()
+{
+ int error;
+ handler **file;
+ DBUG_ENTER("ha_partition::truncate");
+
+ /*
+ TRUNCATE also means resetting auto_increment. Hence, reset
+ it so that it will be initialized again at the next use.
+ */
+ lock_auto_increment();
+ part_share->next_auto_inc_val= 0;
+ part_share->auto_inc_initialized= false;
+ unlock_auto_increment();
+
+ file= m_file;
+ do
+ {
+ if (unlikely((error= (*file)->ha_truncate())))
+ DBUG_RETURN(error);
+ } while (*(++file));
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Truncate a set of specific partitions.
+
+ @remark Auto increment value will be truncated in that partition as well!
+
+ ALTER TABLE t TRUNCATE PARTITION ...
+*/
+
+int ha_partition::truncate_partition(Alter_info *alter_info, bool *binlog_stmt)
+{
+ int error= 0;
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ uint num_parts= m_part_info->num_parts;
+ uint num_subparts= m_part_info->num_subparts;
+ uint i= 0;
+ DBUG_ENTER("ha_partition::truncate_partition");
+
+ /* Only binlog when it starts any call to the partitions handlers */
+ *binlog_stmt= false;
+
+ if (set_part_state(alter_info, m_part_info, PART_ADMIN))
+ DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
+
+ /*
+ TRUNCATE also means resetting auto_increment. Hence, reset
+ it so that it will be initialized again at the next use.
+ */
+ lock_auto_increment();
+ part_share->next_auto_inc_val= 0;
+ part_share->auto_inc_initialized= FALSE;
+ unlock_auto_increment();
+
+ *binlog_stmt= true;
+
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_ADMIN)
+ {
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element>
+ subpart_it(part_elem->subpartitions);
+ partition_element *sub_elem;
+ uint j= 0, part;
+ do
+ {
+ sub_elem= subpart_it++;
+ part= i * num_subparts + j;
+ DBUG_PRINT("info", ("truncate subpartition %u (%s)",
+ part, sub_elem->partition_name));
+ if (unlikely((error= m_file[part]->ha_truncate())))
+ break;
+ sub_elem->part_state= PART_NORMAL;
+ } while (++j < num_subparts);
+ }
+ else
+ {
+ DBUG_PRINT("info", ("truncate partition %u (%s)", i,
+ part_elem->partition_name));
+ error= m_file[i]->ha_truncate();
+ }
+ part_elem->part_state= PART_NORMAL;
+ }
+ } while (!error && (++i < num_parts));
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Start a large batch of insert rows
+
+ SYNOPSIS
+ start_bulk_insert()
+ rows Number of rows to insert
+ flags Flags to control index creation
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ rows == 0 means we will probably insert many rows
+*/
+void ha_partition::start_bulk_insert(ha_rows rows, uint flags)
+{
+ DBUG_ENTER("ha_partition::start_bulk_insert");
+
+ m_bulk_inserted_rows= 0;
+ bitmap_clear_all(&m_bulk_insert_started);
+ /* use the last bit for marking if bulk_insert_started was called */
+ bitmap_set_bit(&m_bulk_insert_started, m_tot_parts);
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Check if start_bulk_insert has been called for this partition,
+ if not, call it and mark it called
+*/
+void ha_partition::start_part_bulk_insert(THD *thd, uint part_id)
+{
+ long old_buffer_size;
+ if (!bitmap_is_set(&m_bulk_insert_started, part_id) &&
+ bitmap_is_set(&m_bulk_insert_started, m_tot_parts))
+ {
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), part_id));
+ old_buffer_size= thd->variables.read_buff_size;
+ /* Update read_buffer_size for this partition */
+ thd->variables.read_buff_size= estimate_read_buffer_size(old_buffer_size);
+ m_file[part_id]->ha_start_bulk_insert(guess_bulk_insert_rows());
+ bitmap_set_bit(&m_bulk_insert_started, part_id);
+ thd->variables.read_buff_size= old_buffer_size;
+ }
+ m_bulk_inserted_rows++;
+}
+
+/*
+ Estimate the read buffer size for each partition.
+ SYNOPSIS
+ ha_partition::estimate_read_buffer_size()
+ original_size read buffer size originally set for the server
+ RETURN VALUE
+ estimated buffer size.
+ DESCRIPTION
+ If the estimated number of rows to insert is less than 10 (but not 0)
+ the new buffer size is same as original buffer size.
+ In case of first partition of when partition function is monotonic
+ new buffer size is same as the original buffer size.
+ For rest of the partition total buffer of 10*original_size is divided
+ equally if number of partition is more than 10 other wise each partition
+ will be allowed to use original buffer size.
+*/
+long ha_partition::estimate_read_buffer_size(long original_size)
+{
+ /*
+ If number of rows to insert is less than 10, but not 0,
+ return original buffer size.
+ */
+ if (estimation_rows_to_insert && (estimation_rows_to_insert < 10))
+ return (original_size);
+ /*
+ If first insert/partition and monotonic partition function,
+ allow using buffer size originally set.
+ */
+ if (!m_bulk_inserted_rows &&
+ m_part_func_monotonicity_info != NON_MONOTONIC &&
+ m_tot_parts > 1)
+ return original_size;
+ /*
+ Allow total buffer used in all partition to go up to 10*read_buffer_size.
+ 11*read_buffer_size in case of monotonic partition function.
+ */
+
+ if (m_tot_parts < 10)
+ return original_size;
+ return (original_size * 10 / m_tot_parts);
+}
+
+/*
+ Try to predict the number of inserts into this partition.
+
+ If less than 10 rows (including 0 which means Unknown)
+ just give that as a guess
+ If monotonic partitioning function was used
+ guess that 50 % of the inserts goes to the first partition
+ For all other cases, guess on equal distribution between the partitions
+*/
+ha_rows ha_partition::guess_bulk_insert_rows()
+{
+ DBUG_ENTER("guess_bulk_insert_rows");
+
+ if (estimation_rows_to_insert < 10)
+ DBUG_RETURN(estimation_rows_to_insert);
+
+ /* If first insert/partition and monotonic partition function, guess 50%. */
+ if (!m_bulk_inserted_rows &&
+ m_part_func_monotonicity_info != NON_MONOTONIC &&
+ m_tot_parts > 1)
+ DBUG_RETURN(estimation_rows_to_insert / 2);
+
+ /* Else guess on equal distribution (+1 is to avoid returning 0/Unknown) */
+ if (m_bulk_inserted_rows < estimation_rows_to_insert)
+ DBUG_RETURN(((estimation_rows_to_insert - m_bulk_inserted_rows)
+ / m_tot_parts) + 1);
+ /* The estimation was wrong, must say 'Unknown' */
+ DBUG_RETURN(0);
+}
+
+
+void ha_partition::sum_copy_info(handler *file)
+{
+ copy_info.records+= file->copy_info.records;
+ copy_info.touched+= file->copy_info.touched;
+ copy_info.copied+= file->copy_info.copied;
+ copy_info.deleted+= file->copy_info.deleted;
+ copy_info.updated+= file->copy_info.updated;
+}
+
+
+void ha_partition::sum_copy_infos()
+{
+ handler **file_array;
+ bzero(&copy_info, sizeof(copy_info));
+ file_array= m_file;
+ do
+ {
+ if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
+ sum_copy_info(*file_array);
+ } while (*(++file_array));
+}
+
+void ha_partition::reset_copy_info()
+{
+ handler **file_array;
+ bzero(&copy_info, sizeof(copy_info));
+ file_array= m_file;
+ do
+ {
+ if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
+ bzero(&(*file_array)->copy_info, sizeof(copy_info));
+ } while (*(++file_array));
+}
+
+
+
+/*
+ Finish a large batch of insert rows
+
+ SYNOPSIS
+ end_bulk_insert()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ Note: end_bulk_insert can be called without start_bulk_insert
+ being called, see bug#44108.
+
+*/
+
+int ha_partition::end_bulk_insert()
+{
+ int error= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::end_bulk_insert");
+
+ if (!bitmap_is_set(&m_bulk_insert_started, m_tot_parts))
+ DBUG_RETURN(error);
+
+ for (i= bitmap_get_first_set(&m_bulk_insert_started);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_bulk_insert_started, i))
+ {
+ int tmp;
+ if ((tmp= m_file[i]->ha_end_bulk_insert()))
+ error= tmp;
+ sum_copy_info(m_file[i]);
+ }
+ bitmap_clear_all(&m_bulk_insert_started);
+ DBUG_RETURN(error);
+}
+
+
+/****************************************************************************
+ MODULE full table scan
+****************************************************************************/
+/*
+ Initialize engine for random reads
+
+ SYNOPSIS
+ ha_partition::rnd_init()
+ scan 0 Initialize for random reads through rnd_pos()
+ 1 Initialize for random scan through rnd_next()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ rnd_init() is called when the server wants the storage engine to do a
+ table scan or when the server wants to access data through rnd_pos.
+
+ When scan is used we will scan one handler partition at a time.
+ When preparing for rnd_pos we will init all handler partitions.
+ No extra cache handling is needed when scanning is not performed.
+
+ Before initialising we will call rnd_end to ensure that we clean up from
+ any previous incarnation of a table scan.
+ Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
+ sql_table.cc, and sql_update.cc.
+*/
+
+int ha_partition::rnd_init(bool scan)
+{
+ int error;
+ uint i= 0;
+ uint32 part_id;
+ DBUG_ENTER("ha_partition::rnd_init");
+
+ /*
+ For operations that may need to change data, we may need to extend
+ read_set.
+ */
+ if (get_lock_type() == F_WRLCK)
+ {
+ /*
+ If write_set contains any of the fields used in partition and
+ subpartition expression, we need to set all bits in read_set because
+ the row may need to be inserted in a different [sub]partition. In
+ other words update_row() can be converted into write_row(), which
+ requires a complete record.
+ */
+ if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
+ table->write_set))
+ {
+ DBUG_PRINT("info", ("partition set full bitmap"));
+ bitmap_set_all(table->read_set);
+ }
+ else
+ {
+ /*
+ Some handlers only read fields as specified by the bitmap for the
+ read set. For partitioned handlers we always require that the
+ fields of the partition functions are read such that we can
+ calculate the partition id to place updated and deleted records.
+ */
+ DBUG_PRINT("info", ("partition set part_field bitmap"));
+ bitmap_union(table->read_set, &m_part_info->full_part_field_set);
+ }
+ }
+
+ /* Now we see what the index of our first important partition is */
+ DBUG_PRINT("info", ("m_part_info->read_partitions: %p",
+ m_part_info->read_partitions.bitmap));
+ part_id= bitmap_get_first_set(&(m_part_info->read_partitions));
+ DBUG_PRINT("info", ("m_part_spec.start_part: %u", (uint) part_id));
+
+ if (part_id == MY_BIT_NONE)
+ {
+ error= 0;
+ goto err1;
+ }
+
+ /*
+ We have a partition and we are scanning with rnd_next
+ so we bump our cache
+ */
+ DBUG_PRINT("info", ("rnd_init on partition: %u", (uint) part_id));
+ if (scan)
+ {
+ /*
+ rnd_end() is needed for partitioning to reset internal data if scan
+ is already in use
+ */
+ rnd_end();
+ late_extra_cache(part_id);
+
+ m_index_scan_type= partition_no_index_scan;
+ }
+
+ for (i= part_id;
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ if (unlikely((error= m_file[i]->ha_rnd_init(scan))))
+ goto err;
+ }
+
+ m_scan_value= scan;
+ m_part_spec.start_part= part_id;
+ m_part_spec.end_part= m_tot_parts - 1;
+ m_rnd_init_and_first= TRUE;
+ DBUG_PRINT("info", ("m_scan_value: %u", m_scan_value));
+ DBUG_RETURN(0);
+
+err:
+ if (scan)
+ late_extra_no_cache(part_id);
+
+ /* Call rnd_end for all previously inited partitions. */
+ for (;
+ part_id < i;
+ part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id))
+ {
+ m_file[part_id]->ha_rnd_end();
+ }
+err1:
+ m_scan_value= 2;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ DBUG_RETURN(error);
+}
+
+
+/*
+ End of a table scan
+
+ SYNOPSIS
+ rnd_end()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+*/
+
+int ha_partition::rnd_end()
+{
+ DBUG_ENTER("ha_partition::rnd_end");
+ switch (m_scan_value) {
+ case 2: // Error
+ break;
+ case 1: // Table scan
+ if (m_part_spec.start_part != NO_CURRENT_PART_ID)
+ late_extra_no_cache(m_part_spec.start_part);
+ /* fall through */
+ case 0:
+ uint i;
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ m_file[i]->ha_rnd_end();
+ }
+ break;
+ }
+ m_scan_value= 2;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ read next row during full table scan (scan in random row order)
+
+ SYNOPSIS
+ rnd_next()
+ buf buffer that should be filled with data
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ This is called for each row of the table scan. When you run out of records
+ you should return HA_ERR_END_OF_FILE.
+ The Field structure for the table is the key to getting data into buf
+ in a manner that will allow the server to understand it.
+
+ Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
+ sql_table.cc, and sql_update.cc.
+*/
+
+int ha_partition::rnd_next(uchar *buf)
+{
+ handler *file;
+ int result= HA_ERR_END_OF_FILE, error;
+ uint part_id= m_part_spec.start_part;
+ DBUG_ENTER("ha_partition::rnd_next");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ /* upper level will increment this once again at end of call */
+ decrement_statistics(&SSV::ha_read_rnd_next_count);
+
+ if (part_id == NO_CURRENT_PART_ID)
+ {
+ /*
+ The original set of partitions to scan was empty and thus we report
+ the result here.
+ */
+ goto end;
+ }
+
+ DBUG_ASSERT(m_scan_value == 1);
+
+ if (m_rnd_init_and_first)
+ {
+ m_rnd_init_and_first= FALSE;
+ error= handle_pre_scan(FALSE, check_parallel_search());
+ if (m_pre_calling || error)
+ DBUG_RETURN(error);
+ }
+
+ file= m_file[part_id];
+
+ while (TRUE)
+ {
+ result= file->ha_rnd_next(buf);
+ if (!result)
+ {
+ m_last_part= part_id;
+ DBUG_PRINT("info", ("partition m_last_part: %u", (uint) m_last_part));
+ m_part_spec.start_part= part_id;
+ table->status= 0;
+ DBUG_RETURN(0);
+ }
+
+ /*
+ if we get here, then the current partition ha_rnd_next returned failure
+ */
+ if (result != HA_ERR_END_OF_FILE)
+ goto end_dont_reset_start_part; // Return error
+
+ /* End current partition */
+ late_extra_no_cache(part_id);
+ /* Shift to next partition */
+ part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id);
+ if (part_id >= m_tot_parts)
+ {
+ result= HA_ERR_END_OF_FILE;
+ break;
+ }
+ m_last_part= part_id;
+ DBUG_PRINT("info", ("partition m_last_part: %u", (uint) m_last_part));
+ m_part_spec.start_part= part_id;
+ file= m_file[part_id];
+ late_extra_cache(part_id);
+ }
+
+end:
+ DBUG_PRINT("exit", ("reset start_part"));
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+end_dont_reset_start_part:
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Save position of current row
+
+ SYNOPSIS
+ position()
+ record Current record in MySQL Row Format
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ position() is called after each call to rnd_next() if the data needs
+ to be ordered. You can do something like the following to store
+ the position:
+ ha_store_ptr(ref, ref_length, current_position);
+
+ The server uses ref to store data. ref_length in the above case is
+ the size needed to store current_position. ref is just a byte array
+ that the server will maintain. If you are using offsets to mark rows, then
+ current_position should be the offset. If it is a primary key like in
+ BDB, then it needs to be a primary key.
+
+ Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
+*/
+
+void ha_partition::position(const uchar *record)
+{
+ handler *file= m_file[m_last_part];
+ size_t pad_length;
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part));
+ DBUG_ENTER("ha_partition::position");
+
+ file->position(record);
+ int2store(ref, m_last_part);
+ memcpy((ref + PARTITION_BYTES_IN_POS), file->ref, file->ref_length);
+ pad_length= m_ref_length - PARTITION_BYTES_IN_POS - file->ref_length;
+ if (pad_length)
+ memset((ref + PARTITION_BYTES_IN_POS + file->ref_length), 0, pad_length);
+
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Read row using position
+
+ SYNOPSIS
+ rnd_pos()
+ out:buf Row read in MySQL Row Format
+ position Position of read row
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ This is like rnd_next, but you are given a position to use
+ to determine the row. The position will be of the type that you stored in
+ ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
+ or position you saved when position() was called.
+ Called from filesort.cc records.cc sql_insert.cc sql_select.cc
+ sql_update.cc.
+*/
+
+int ha_partition::rnd_pos(uchar * buf, uchar *pos)
+{
+ uint part_id;
+ handler *file;
+ DBUG_ENTER("ha_partition::rnd_pos");
+ decrement_statistics(&SSV::ha_read_rnd_count);
+
+ part_id= uint2korr((const uchar *) pos);
+ DBUG_ASSERT(part_id < m_tot_parts);
+ file= m_file[part_id];
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id));
+ m_last_part= part_id;
+ DBUG_RETURN(file->ha_rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS)));
+}
+
+
+/*
+ Read row using position using given record to find
+
+ SYNOPSIS
+ rnd_pos_by_record()
+ record Current record in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ this works as position()+rnd_pos() functions, but does some extra work,
+ calculating m_last_part - the partition to where the 'record'
+ should go.
+
+ called from replication (log_event.cc)
+*/
+
+int ha_partition::rnd_pos_by_record(uchar *record)
+{
+ DBUG_ENTER("ha_partition::rnd_pos_by_record");
+
+ if (unlikely(get_part_for_buf(record, m_rec0, m_part_info, &m_last_part)))
+ DBUG_RETURN(1);
+
+ int err= m_file[m_last_part]->rnd_pos_by_record(record);
+ DBUG_RETURN(err);
+}
+
+
+/****************************************************************************
+ MODULE index scan
+****************************************************************************/
+/*
+ Positions an index cursor to the index specified in the handle. Fetches the
+ row if available. If the key value is null, begin at the first key of the
+ index.
+
+ There are loads of optimisations possible here for the partition handler.
+ The same optimisations can also be checked for full table scan although
+ only through conditions and not from index ranges.
+ Phase one optimisations:
+ Check if the fields of the partition function are bound. If so only use
+ the single partition it becomes bound to.
+ Phase two optimisations:
+ If it can be deducted through range or list partitioning that only a
+ subset of the partitions are used, then only use those partitions.
+*/
+
+
+/**
+ Setup the ordered record buffer and the priority queue.
+*/
+
+bool ha_partition::init_record_priority_queue()
+{
+ DBUG_ENTER("ha_partition::init_record_priority_queue");
+ DBUG_ASSERT(!m_ordered_rec_buffer);
+ /*
+ Initialize the ordered record buffer.
+ */
+ if (!m_ordered_rec_buffer)
+ {
+ size_t alloc_len;
+ uint used_parts= bitmap_bits_set(&m_part_info->read_partitions);
+
+ if (used_parts == 0) /* Do nothing since no records expected. */
+ DBUG_RETURN(false);
+
+ /* Allocate record buffer for each used partition. */
+ m_priority_queue_rec_len= m_rec_length + PARTITION_BYTES_IN_POS;
+ if (!m_using_extended_keys)
+ m_priority_queue_rec_len += get_open_file_sample()->ref_length;
+ alloc_len= used_parts * m_priority_queue_rec_len;
+ /* Allocate a key for temporary use when setting up the scan. */
+ alloc_len+= table_share->max_key_length;
+
+ if (!(m_ordered_rec_buffer= (uchar*)my_malloc(key_memory_partition_sort_buffer,
+ alloc_len, MYF(MY_WME))))
+ DBUG_RETURN(true);
+
+ /*
+ We set-up one record per partition and each record has 2 bytes in
+ front where the partition id is written. This is used by ordered
+ index_read.
+ We also set-up a reference to the first record for temporary use in
+ setting up the scan.
+ */
+ char *ptr= (char*) m_ordered_rec_buffer;
+ uint i;
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ DBUG_PRINT("info", ("init rec-buf for part %u", i));
+ int2store(ptr, i);
+ ptr+= m_priority_queue_rec_len;
+ }
+ m_start_key.key= (const uchar*)ptr;
+
+ /* Initialize priority queue, initialized to reading forward. */
+ int (*cmp_func)(void *, uchar *, uchar *);
+ void *cmp_arg= (void*) this;
+ if (!m_using_extended_keys && !(table_flags() & HA_SLOW_CMP_REF))
+ cmp_func= cmp_key_rowid_part_id;
+ else
+ cmp_func= cmp_key_part_id;
+ DBUG_PRINT("info", ("partition queue_init(1) used_parts: %u", used_parts));
+ if (init_queue(&m_queue, used_parts, 0, 0, cmp_func, cmp_arg, 0, 0))
+ {
+ my_free(m_ordered_rec_buffer);
+ m_ordered_rec_buffer= NULL;
+ DBUG_RETURN(true);
+ }
+ }
+ DBUG_RETURN(false);
+}
+
+
+/**
+ Destroy the ordered record buffer and the priority queue.
+*/
+
+void ha_partition::destroy_record_priority_queue()
+{
+ DBUG_ENTER("ha_partition::destroy_record_priority_queue");
+ if (m_ordered_rec_buffer)
+ {
+ delete_queue(&m_queue);
+ my_free(m_ordered_rec_buffer);
+ m_ordered_rec_buffer= NULL;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Initialize handler before start of index scan
+
+ SYNOPSIS
+ index_init()
+ inx Index number
+ sorted Is rows to be returned in sorted order
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ index_init is always called before starting index scans (except when
+ starting through index_read_idx and using read_range variants).
+*/
+
+int ha_partition::index_init(uint inx, bool sorted)
+{
+ int error= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::index_init");
+ DBUG_PRINT("enter", ("partition this: %p inx: %u sorted: %u", this, inx, sorted));
+
+ active_index= inx;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ m_start_key.length= 0;
+ m_ordered= sorted;
+ m_ordered_scan_ongoing= FALSE;
+ m_curr_key_info[0]= table->key_info+inx;
+ if (pk_is_clustering_key(table->s->primary_key))
+ {
+ /*
+ if PK is clustered, then the key cmp must use the pk to
+ differentiate between equal key in given index.
+ */
+ DBUG_PRINT("info", ("Clustered pk, using pk as secondary cmp"));
+ m_curr_key_info[1]= table->key_info+table->s->primary_key;
+ m_curr_key_info[2]= NULL;
+ m_using_extended_keys= TRUE;
+ }
+ else
+ {
+ m_curr_key_info[1]= NULL;
+ m_using_extended_keys= FALSE;
+ }
+
+ if (init_record_priority_queue())
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+
+ /*
+ Some handlers only read fields as specified by the bitmap for the
+ read set. For partitioned handlers we always require that the
+ fields of the partition functions are read such that we can
+ calculate the partition id to place updated and deleted records.
+ But this is required for operations that may need to change data only.
+ */
+ if (get_lock_type() == F_WRLCK)
+ {
+ DBUG_PRINT("info", ("partition set part_field bitmap"));
+ bitmap_union(table->read_set, &m_part_info->full_part_field_set);
+ }
+ if (sorted)
+ {
+ /*
+ An ordered scan is requested. We must make sure all fields of the
+ used index are in the read set, as partitioning requires them for
+ sorting (see ha_partition::handle_ordered_index_scan).
+
+ The SQL layer may request an ordered index scan without having index
+ fields in the read set when
+ - it needs to do an ordered scan over an index prefix.
+ - it evaluates ORDER BY with SELECT COUNT(*) FROM t1.
+
+ TODO: handle COUNT(*) queries via unordered scan.
+ */
+ KEY **key_info= m_curr_key_info;
+ do
+ {
+ for (i= 0; i < (*key_info)->user_defined_key_parts; i++)
+ (*key_info)->key_part[i].field->register_field_in_read_map();
+ } while (*(++key_info));
+ }
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ if (unlikely((error= m_file[i]->ha_index_init(inx, sorted))))
+ goto err;
+
+ DBUG_EXECUTE_IF("ha_partition_fail_index_init", {
+ i++;
+ error= HA_ERR_NO_PARTITION_FOUND;
+ goto err;
+ });
+ }
+err:
+ if (unlikely(error))
+ {
+ /* End the previously initialized indexes. */
+ uint j;
+ for (j= bitmap_get_first_set(&m_part_info->read_partitions);
+ j < i;
+ j= bitmap_get_next_set(&m_part_info->read_partitions, j))
+ {
+ (void) m_file[j]->ha_index_end();
+ }
+ destroy_record_priority_queue();
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ End of index scan
+
+ SYNOPSIS
+ index_end()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ index_end is called at the end of an index scan to clean up any
+ things needed to clean up.
+*/
+
+int ha_partition::index_end()
+{
+ int error= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::index_end");
+
+ active_index= MAX_KEY;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ file= m_file;
+ do
+ {
+ if ((*file)->inited == INDEX)
+ {
+ int tmp;
+ if ((tmp= (*file)->ha_index_end()))
+ error= tmp;
+ }
+ else if ((*file)->inited == RND)
+ {
+ // Possible due to MRR
+ int tmp;
+ if ((tmp= (*file)->ha_rnd_end()))
+ error= tmp;
+ }
+ } while (*(++file));
+ destroy_record_priority_queue();
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Read one record in an index scan and start an index scan
+
+ SYNOPSIS
+ index_read_map()
+ buf Read row in MySQL Row Format
+ key Key parts in consecutive order
+ keypart_map Which part of key is used
+ find_flag What type of key condition is used
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ index_read_map starts a new index scan using a start key. The MySQL Server
+ will check the end key on its own. Thus to function properly the
+ partitioned handler need to ensure that it delivers records in the sort
+ order of the MySQL Server.
+ index_read_map can be restarted without calling index_end on the previous
+ index scan and without calling index_init. In this case the index_read_map
+ is on the same index as the previous index_scan. This is particularly
+ used in conjuntion with multi read ranges.
+*/
+
+int ha_partition::index_read_map(uchar *buf, const uchar *key,
+ key_part_map keypart_map,
+ enum ha_rkey_function find_flag)
+{
+ DBUG_ENTER("ha_partition::index_read_map");
+ decrement_statistics(&SSV::ha_read_key_count);
+ end_range= 0;
+ m_index_scan_type= partition_index_read;
+ m_start_key.key= key;
+ m_start_key.keypart_map= keypart_map;
+ m_start_key.flag= find_flag;
+ DBUG_RETURN(common_index_read(buf, TRUE));
+}
+
+
+/* Compare two part_no partition numbers */
+static int cmp_part_ids(uchar *ref1, uchar *ref2)
+{
+ uint32 diff2= uint2korr(ref2);
+ uint32 diff1= uint2korr(ref1);
+ if (diff2 > diff1)
+ return -1;
+ if (diff2 < diff1)
+ return 1;
+ return 0;
+}
+
+
+/*
+ @brief
+ Provide ordering by (key_value, part_no).
+*/
+
+extern "C" int cmp_key_part_id(void *ptr, uchar *ref1, uchar *ref2)
+{
+ ha_partition *file= (ha_partition*)ptr;
+ int res;
+ if ((res= key_rec_cmp(file->m_curr_key_info, ref1 + PARTITION_BYTES_IN_POS,
+ ref2 + PARTITION_BYTES_IN_POS)))
+ {
+ return res;
+ }
+ return cmp_part_ids(ref1, ref2);
+}
+
+/*
+ @brief
+ Provide ordering by (key_value, underying_table_rowid, part_no).
+*/
+extern "C" int cmp_key_rowid_part_id(void *ptr, uchar *ref1, uchar *ref2)
+{
+ ha_partition *file= (ha_partition*)ptr;
+ int res;
+
+ if ((res= key_rec_cmp(file->m_curr_key_info, ref1 + PARTITION_BYTES_IN_POS,
+ ref2 + PARTITION_BYTES_IN_POS)))
+ {
+ return res;
+ }
+ if ((res= file->get_open_file_sample()->cmp_ref(ref1 +
+ PARTITION_BYTES_IN_POS + file->m_rec_length,
+ ref2 + PARTITION_BYTES_IN_POS + file->m_rec_length)))
+ {
+ return res;
+ }
+ return cmp_part_ids(ref1, ref2);
+}
+
+
+/**
+ Common routine for a number of index_read variants
+
+ @param buf Buffer where the record should be returned.
+ @param have_start_key TRUE <=> the left endpoint is available, i.e.
+ we're in index_read call or in read_range_first
+ call and the range has left endpoint.
+ FALSE <=> there is no left endpoint (we're in
+ read_range_first() call and the range has no left
+ endpoint).
+
+ @return Operation status
+ @retval 0 OK
+ @retval HA_ERR_END_OF_FILE Whole index scanned, without finding the record.
+ @retval HA_ERR_KEY_NOT_FOUND Record not found, but index cursor positioned.
+ @retval other error code.
+
+ @details
+ Start scanning the range (when invoked from read_range_first()) or doing
+ an index lookup (when invoked from index_read_XXX):
+ - If possible, perform partition selection
+ - Find the set of partitions we're going to use
+ - Depending on whether we need ordering:
+ NO: Get the first record from first used partition (see
+ handle_unordered_scan_next_partition)
+ YES: Fill the priority queue and get the record that is the first in
+ the ordering
+*/
+
+int ha_partition::common_index_read(uchar *buf, bool have_start_key)
+{
+ int error;
+ uint UNINIT_VAR(key_len); /* used if have_start_key==TRUE */
+ bool reverse_order= FALSE;
+ DBUG_ENTER("ha_partition::common_index_read");
+
+ DBUG_PRINT("info", ("m_ordered %u m_ordered_scan_ong %u",
+ m_ordered, m_ordered_scan_ongoing));
+
+ if (have_start_key)
+ {
+ m_start_key.length= key_len= calculate_key_len(table, active_index,
+ m_start_key.key,
+ m_start_key.keypart_map);
+ DBUG_PRINT("info", ("have_start_key map %lu find_flag %u len %u",
+ m_start_key.keypart_map, m_start_key.flag, key_len));
+ DBUG_ASSERT(key_len);
+ }
+ if (unlikely((error= partition_scan_set_up(buf, have_start_key))))
+ {
+ DBUG_RETURN(error);
+ }
+
+ if (have_start_key &&
+ (m_start_key.flag == HA_READ_PREFIX_LAST ||
+ m_start_key.flag == HA_READ_PREFIX_LAST_OR_PREV ||
+ m_start_key.flag == HA_READ_BEFORE_KEY))
+ {
+ reverse_order= TRUE;
+ m_ordered_scan_ongoing= TRUE;
+ }
+ DBUG_PRINT("info", ("m_ordered %u m_o_scan_ong %u have_start_key %u",
+ m_ordered, m_ordered_scan_ongoing, have_start_key));
+ if (!m_ordered_scan_ongoing)
+ {
+ /*
+ We use unordered index scan when read_range is used and flag
+ is set to not use ordered.
+ We also use an unordered index scan when the number of partitions to
+ scan is only one.
+ The unordered index scan will use the partition set created.
+ */
+ DBUG_PRINT("info", ("doing unordered scan"));
+ error= handle_pre_scan(FALSE, FALSE);
+ if (likely(!error))
+ error= handle_unordered_scan_next_partition(buf);
+ }
+ else
+ {
+ /*
+ In all other cases we will use the ordered index scan. This will use
+ the partition set created by the get_partition_set method.
+ */
+ error= handle_ordered_index_scan(buf, reverse_order);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Start an index scan from leftmost record and return first record
+
+ SYNOPSIS
+ index_first()
+ buf Read row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ index_first() asks for the first key in the index.
+ This is similar to index_read except that there is no start key since
+ the scan starts from the leftmost entry and proceeds forward with
+ index_next.
+
+ Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
+ and sql_select.cc.
+*/
+
+int ha_partition::index_first(uchar * buf)
+{
+ DBUG_ENTER("ha_partition::index_first");
+ decrement_statistics(&SSV::ha_read_first_count);
+
+ end_range= 0;
+ m_index_scan_type= partition_index_first;
+ DBUG_RETURN(common_first_last(buf));
+}
+
+
+/*
+ Start an index scan from rightmost record and return first record
+
+ SYNOPSIS
+ index_last()
+ buf Read row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ index_last() asks for the last key in the index.
+ This is similar to index_read except that there is no start key since
+ the scan starts from the rightmost entry and proceeds forward with
+ index_prev.
+
+ Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
+ and sql_select.cc.
+*/
+
+int ha_partition::index_last(uchar * buf)
+{
+ DBUG_ENTER("ha_partition::index_last");
+ decrement_statistics(&SSV::ha_read_last_count);
+
+ m_index_scan_type= partition_index_last;
+ DBUG_RETURN(common_first_last(buf));
+}
+
+/*
+ Common routine for index_first/index_last
+
+ SYNOPSIS
+ ha_partition::common_first_last()
+
+ see index_first for rest
+*/
+
+int ha_partition::common_first_last(uchar *buf)
+{
+ int error;
+
+ if (unlikely((error= partition_scan_set_up(buf, FALSE))))
+ return error;
+ if (!m_ordered_scan_ongoing &&
+ m_index_scan_type != partition_index_last)
+ {
+ if (unlikely((error= handle_pre_scan(FALSE, check_parallel_search()))))
+ return error;
+ return handle_unordered_scan_next_partition(buf);
+ }
+ return handle_ordered_index_scan(buf, FALSE);
+}
+
+
+/*
+ Optimization of the default implementation to take advantage of dynamic
+ partition pruning.
+*/
+int ha_partition::index_read_idx_map(uchar *buf, uint index,
+ const uchar *key,
+ key_part_map keypart_map,
+ enum ha_rkey_function find_flag)
+{
+ int error= HA_ERR_KEY_NOT_FOUND;
+ DBUG_ENTER("ha_partition::index_read_idx_map");
+ decrement_statistics(&SSV::ha_read_key_count);
+
+ if (find_flag == HA_READ_KEY_EXACT)
+ {
+ uint part;
+ m_start_key.key= key;
+ m_start_key.keypart_map= keypart_map;
+ m_start_key.flag= find_flag;
+ m_start_key.length= calculate_key_len(table, index, m_start_key.key,
+ m_start_key.keypart_map);
+
+ get_partition_set(table, buf, index, &m_start_key, &m_part_spec);
+
+ /* The start part is must be marked as used. */
+ DBUG_ASSERT(m_part_spec.start_part > m_part_spec.end_part ||
+ bitmap_is_set(&(m_part_info->read_partitions),
+ m_part_spec.start_part));
+
+ for (part= m_part_spec.start_part;
+ part <= m_part_spec.end_part;
+ part= bitmap_get_next_set(&m_part_info->read_partitions, part))
+ {
+ error= m_file[part]->ha_index_read_idx_map(buf, index, key,
+ keypart_map, find_flag);
+ if (likely(error != HA_ERR_KEY_NOT_FOUND &&
+ error != HA_ERR_END_OF_FILE))
+ break;
+ }
+ if (part <= m_part_spec.end_part)
+ m_last_part= part;
+ }
+ else
+ {
+ /*
+ If not only used with READ_EXACT, we should investigate if possible
+ to optimize for other find_flag's as well.
+ */
+ DBUG_ASSERT(0);
+ /* fall back on the default implementation */
+ error= handler::index_read_idx_map(buf, index, key, keypart_map, find_flag);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Read next record in a forward index scan
+
+ SYNOPSIS
+ index_next()
+ buf Read row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ Used to read forward through the index.
+*/
+
+int ha_partition::index_next(uchar * buf)
+{
+ DBUG_ENTER("ha_partition::index_next");
+ decrement_statistics(&SSV::ha_read_next_count);
+
+ /*
+ TODO(low priority):
+ If we want partition to work with the HANDLER commands, we
+ must be able to do index_last() -> index_prev() -> index_next()
+ and if direction changes, we must step back those partitions in
+ the record queue so we don't return a value from the wrong direction.
+ */
+ if (m_index_scan_type == partition_index_last)
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ if (!m_ordered_scan_ongoing)
+ {
+ DBUG_RETURN(handle_unordered_next(buf, FALSE));
+ }
+ DBUG_RETURN(handle_ordered_next(buf, FALSE));
+}
+
+
+/*
+ Read next record special
+
+ SYNOPSIS
+ index_next_same()
+ buf Read row in MySQL Row Format
+ key Key
+ keylen Length of key
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ This routine is used to read the next but only if the key is the same
+ as supplied in the call.
+*/
+
+int ha_partition::index_next_same(uchar *buf, const uchar *key, uint keylen)
+{
+ DBUG_ENTER("ha_partition::index_next_same");
+ decrement_statistics(&SSV::ha_read_next_count);
+
+ DBUG_ASSERT(keylen == m_start_key.length);
+ if (m_index_scan_type == partition_index_last)
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ if (!m_ordered_scan_ongoing)
+ DBUG_RETURN(handle_unordered_next(buf, TRUE));
+ DBUG_RETURN(handle_ordered_next(buf, TRUE));
+}
+
+
+int ha_partition::index_read_last_map(uchar *buf,
+ const uchar *key,
+ key_part_map keypart_map)
+{
+ DBUG_ENTER("ha_partition::index_read_last_map");
+
+ m_ordered= true; // Safety measure
+ end_range= NULL;
+ m_index_scan_type= partition_index_read_last;
+ m_start_key.key= key;
+ m_start_key.keypart_map= keypart_map;
+ m_start_key.flag= HA_READ_PREFIX_LAST;
+ DBUG_RETURN(common_index_read(buf, true));
+}
+
+
+/*
+ Read next record when performing index scan backwards
+
+ SYNOPSIS
+ index_prev()
+ buf Read row in MySQL Row Format
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ Used to read backwards through the index.
+*/
+
+int ha_partition::index_prev(uchar * buf)
+{
+ DBUG_ENTER("ha_partition::index_prev");
+ decrement_statistics(&SSV::ha_read_prev_count);
+
+ /* TODO: read comment in index_next */
+ if (m_index_scan_type == partition_index_first)
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ DBUG_RETURN(handle_ordered_prev(buf));
+}
+
+
+/*
+ Start a read of one range with start and end key
+
+ SYNOPSIS
+ read_range_first()
+ start_key Specification of start key
+ end_key Specification of end key
+ eq_range_arg Is it equal range
+ sorted Should records be returned in sorted order
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+
+ DESCRIPTION
+ We reimplement read_range_first since we don't want the compare_key
+ check at the end. This is already performed in the partition handler.
+ read_range_next is very much different due to that we need to scan
+ all underlying handlers.
+*/
+
+int ha_partition::read_range_first(const key_range *start_key,
+ const key_range *end_key,
+ bool eq_range_arg, bool sorted)
+{
+ int error;
+ DBUG_ENTER("ha_partition::read_range_first");
+
+ m_ordered= sorted;
+ eq_range= eq_range_arg;
+ set_end_range(end_key);
+
+ range_key_part= m_curr_key_info[0]->key_part;
+ if (start_key)
+ m_start_key= *start_key;
+ else
+ m_start_key.key= NULL;
+
+ m_index_scan_type= partition_read_range;
+ error= common_index_read(m_rec0, MY_TEST(start_key));
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Read next record in read of a range with start and end key
+
+ SYNOPSIS
+ read_range_next()
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+*/
+
+int ha_partition::read_range_next()
+{
+ DBUG_ENTER("ha_partition::read_range_next");
+
+ if (m_ordered_scan_ongoing)
+ {
+ DBUG_RETURN(handle_ordered_next(table->record[0], eq_range));
+ }
+ DBUG_RETURN(handle_unordered_next(table->record[0], eq_range));
+}
+
+/**
+ Create a copy of all keys used by multi_range_read()
+
+ @retval 0 ok
+ @retval HA_ERR_END_OF_FILE no keys in range
+ @retval other value: error
+
+ TODO to save memory:
+ - If (mrr_mode & HA_MRR_MATERIALIZED_KEYS) is set then the keys data is
+ stable and we don't have to copy the keys, only store a pointer to the
+ key.
+ - When allocating key data, store things in a MEM_ROOT buffer instead of
+ a malloc() per key. This will simplify and speed up the current code
+ and use less memory.
+*/
+
+int ha_partition::multi_range_key_create_key(RANGE_SEQ_IF *seq,
+ range_seq_t seq_it)
+{
+ uint i, length;
+ key_range *start_key, *end_key;
+ KEY_MULTI_RANGE *range;
+ DBUG_ENTER("ha_partition::multi_range_key_create_key");
+
+ bitmap_clear_all(&m_mrr_used_partitions);
+ m_mrr_range_length= 0;
+ bzero(m_part_mrr_range_length,
+ sizeof(*m_part_mrr_range_length) * m_tot_parts);
+ if (!m_mrr_range_first)
+ {
+ if (!(m_mrr_range_first= (PARTITION_KEY_MULTI_RANGE *)
+ my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME),
+ &m_mrr_range_current, sizeof(PARTITION_KEY_MULTI_RANGE),
+ NullS)))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+
+ m_mrr_range_first->id= 1;
+ m_mrr_range_first->key[0]= NULL;
+ m_mrr_range_first->key[1]= NULL;
+ m_mrr_range_first->next= NULL;
+ }
+ else
+ m_mrr_range_current= m_mrr_range_first;
+
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ if (!m_part_mrr_range_first[i])
+ {
+ if (!(m_part_mrr_range_first[i]= (PARTITION_PART_KEY_MULTI_RANGE *)
+ my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME | MY_ZEROFILL),
+ &m_part_mrr_range_current[i], sizeof(PARTITION_PART_KEY_MULTI_RANGE),
+ NullS)))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+ else
+ {
+ m_part_mrr_range_current[i]= m_part_mrr_range_first[i];
+ m_part_mrr_range_current[i]->partition_key_multi_range= NULL;
+ }
+ }
+ m_mrr_range_current->key_multi_range.start_key.key= NULL;
+ m_mrr_range_current->key_multi_range.end_key.key= NULL;
+
+ while (!seq->next(seq_it, &m_mrr_range_current->key_multi_range))
+ {
+ m_mrr_range_length++;
+ range= &m_mrr_range_current->key_multi_range;
+
+ /* Copy start key */
+ start_key= &range->start_key;
+ DBUG_PRINT("info",("partition range->range_flag: %u", range->range_flag));
+ DBUG_PRINT("info",("partition start_key->key: %p", start_key->key));
+ DBUG_PRINT("info",("partition start_key->length: %u", start_key->length));
+ DBUG_PRINT("info",("partition start_key->keypart_map: %lu",
+ start_key->keypart_map));
+ DBUG_PRINT("info",("partition start_key->flag: %u", start_key->flag));
+
+ if (start_key->key)
+ {
+ length= start_key->length;
+ if (!m_mrr_range_current->key[0] ||
+ m_mrr_range_current->length[0] < length)
+ {
+ if (m_mrr_range_current->key[0])
+ my_free(m_mrr_range_current->key[0]);
+ if (!(m_mrr_range_current->key[0]=
+ (uchar *) my_malloc(PSI_INSTRUMENT_ME, length, MYF(MY_WME))))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ m_mrr_range_current->length[0]= length;
+ }
+ memcpy(m_mrr_range_current->key[0], start_key->key, length);
+ start_key->key= m_mrr_range_current->key[0];
+ }
+
+ /* Copy end key */
+ end_key= &range->end_key;
+ DBUG_PRINT("info",("partition end_key->key: %p", end_key->key));
+ DBUG_PRINT("info",("partition end_key->length: %u", end_key->length));
+ DBUG_PRINT("info",("partition end_key->keypart_map: %lu",
+ end_key->keypart_map));
+ DBUG_PRINT("info",("partition end_key->flag: %u", end_key->flag));
+ if (end_key->key)
+ {
+ length= end_key->length;
+ if (!m_mrr_range_current->key[1] ||
+ m_mrr_range_current->length[1] < length)
+ {
+ if (m_mrr_range_current->key[1])
+ my_free(m_mrr_range_current->key[1]);
+ if (!(m_mrr_range_current->key[1]=
+ (uchar *) my_malloc(PSI_INSTRUMENT_ME, length, MYF(MY_WME))))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ m_mrr_range_current->length[1]= length;
+ }
+ memcpy(m_mrr_range_current->key[1], end_key->key, length);
+ end_key->key= m_mrr_range_current->key[1];
+ }
+
+ m_mrr_range_current->ptr= m_mrr_range_current->key_multi_range.ptr;
+ m_mrr_range_current->key_multi_range.ptr= m_mrr_range_current;
+
+ if (start_key->key && (start_key->flag & HA_READ_KEY_EXACT))
+ get_partition_set(table, table->record[0], active_index,
+ start_key, &m_part_spec);
+ else
+ {
+ m_part_spec.start_part= 0;
+ m_part_spec.end_part= m_tot_parts - 1;
+ }
+
+ /* Copy key to those partitions that needs it */
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), i))
+ {
+ bitmap_set_bit(&m_mrr_used_partitions, i);
+ m_part_mrr_range_length[i]++;
+ m_part_mrr_range_current[i]->partition_key_multi_range=
+ m_mrr_range_current;
+
+ if (!m_part_mrr_range_current[i]->next)
+ {
+ PARTITION_PART_KEY_MULTI_RANGE *tmp_part_mrr_range;
+ if (!(tmp_part_mrr_range= (PARTITION_PART_KEY_MULTI_RANGE *)
+ my_malloc(PSI_INSTRUMENT_ME, sizeof(PARTITION_PART_KEY_MULTI_RANGE),
+ MYF(MY_WME | MY_ZEROFILL))))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+
+ m_part_mrr_range_current[i]->next= tmp_part_mrr_range;
+ m_part_mrr_range_current[i]= tmp_part_mrr_range;
+ }
+ else
+ {
+ m_part_mrr_range_current[i]= m_part_mrr_range_current[i]->next;
+ m_part_mrr_range_current[i]->partition_key_multi_range= NULL;
+ }
+ }
+ }
+
+ if (!m_mrr_range_current->next)
+ {
+ /* Add end of range sentinel */
+ PARTITION_KEY_MULTI_RANGE *tmp_mrr_range;
+ if (!(tmp_mrr_range= (PARTITION_KEY_MULTI_RANGE *)
+ my_malloc(PSI_INSTRUMENT_ME, sizeof(PARTITION_KEY_MULTI_RANGE), MYF(MY_WME))))
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+
+ tmp_mrr_range->id= m_mrr_range_current->id + 1;
+ tmp_mrr_range->key[0]= NULL;
+ tmp_mrr_range->key[1]= NULL;
+ tmp_mrr_range->next= NULL;
+ m_mrr_range_current->next= tmp_mrr_range;
+ }
+ m_mrr_range_current= m_mrr_range_current->next;
+ }
+
+ if (!m_mrr_range_length)
+ {
+ DBUG_PRINT("Warning",("No keys to use for mrr"));
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+
+ /* set start and end part */
+ m_part_spec.start_part= bitmap_get_first_set(&m_mrr_used_partitions);
+
+ for (i= m_tot_parts; i-- > 0;)
+ {
+ if (bitmap_is_set(&m_mrr_used_partitions, i))
+ {
+ m_part_spec.end_part= i;
+ break;
+ }
+ }
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ m_partition_part_key_multi_range_hld[i].partition= this;
+ m_partition_part_key_multi_range_hld[i].part_id= i;
+ m_partition_part_key_multi_range_hld[i].partition_part_key_multi_range=
+ m_part_mrr_range_first[i];
+ }
+ DBUG_PRINT("return",("OK"));
+ DBUG_RETURN(0);
+}
+
+
+static void partition_multi_range_key_get_key_info(void *init_params,
+ uint *length,
+ key_part_map *map)
+{
+ PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
+ (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params;
+ ha_partition *partition= hld->partition;
+ key_range *start_key= (&partition->m_mrr_range_first->
+ key_multi_range.start_key);
+ DBUG_ENTER("partition_multi_range_key_get_key_info");
+ *length= start_key->length;
+ *map= start_key->keypart_map;
+ DBUG_VOID_RETURN;
+}
+
+
+static range_seq_t partition_multi_range_key_init(void *init_params,
+ uint n_ranges,
+ uint flags)
+{
+ PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
+ (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params;
+ ha_partition *partition= hld->partition;
+ uint i= hld->part_id;
+ DBUG_ENTER("partition_multi_range_key_init");
+ // not used: partition->m_mrr_range_init_flags= flags;
+ hld->partition_part_key_multi_range= partition->m_part_mrr_range_first[i];
+ DBUG_RETURN(init_params);
+}
+
+
+static bool partition_multi_range_key_next(range_seq_t seq,
+ KEY_MULTI_RANGE *range)
+{
+ PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
+ (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
+ PARTITION_KEY_MULTI_RANGE *partition_key_multi_range=
+ hld->partition_part_key_multi_range->partition_key_multi_range;
+ DBUG_ENTER("partition_multi_range_key_next");
+ if (!partition_key_multi_range)
+ DBUG_RETURN(TRUE);
+ *range= partition_key_multi_range->key_multi_range;
+ hld->partition_part_key_multi_range=
+ hld->partition_part_key_multi_range->next;
+ DBUG_RETURN(FALSE);
+}
+
+
+static bool partition_multi_range_key_skip_record(range_seq_t seq,
+ range_id_t range_info,
+ uchar *rowid)
+{
+ PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
+ (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
+ PARTITION_KEY_MULTI_RANGE *pkmr= (PARTITION_KEY_MULTI_RANGE *)range_info;
+ DBUG_ENTER("partition_multi_range_key_skip_record");
+ DBUG_RETURN(hld->partition->m_seq_if->skip_record(hld->partition->m_seq,
+ pkmr->ptr, rowid));
+}
+
+
+static bool partition_multi_range_key_skip_index_tuple(range_seq_t seq,
+ range_id_t range_info)
+{
+ PARTITION_PART_KEY_MULTI_RANGE_HLD *hld=
+ (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq;
+ PARTITION_KEY_MULTI_RANGE *pkmr= (PARTITION_KEY_MULTI_RANGE *)range_info;
+ DBUG_ENTER("partition_multi_range_key_skip_index_tuple");
+ DBUG_RETURN(hld->partition->m_seq_if->skip_index_tuple(hld->partition->m_seq,
+ pkmr->ptr));
+}
+
+ha_rows ha_partition::multi_range_read_info_const(uint keyno,
+ RANGE_SEQ_IF *seq,
+ void *seq_init_param,
+ uint n_ranges, uint *bufsz,
+ uint *mrr_mode,
+ Cost_estimate *cost)
+{
+ int error;
+ uint i;
+ handler **file;
+ ha_rows rows= 0;
+ uint ret_mrr_mode= 0;
+ range_seq_t seq_it;
+ part_id_range save_part_spec;
+ Cost_estimate part_cost;
+ DBUG_ENTER("ha_partition::multi_range_read_info_const");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ m_mrr_new_full_buffer_size= 0;
+ save_part_spec= m_part_spec;
+
+ cost->reset();
+
+ seq_it= seq->init(seq_init_param, n_ranges, *mrr_mode);
+ if (unlikely((error= multi_range_key_create_key(seq, seq_it))))
+ {
+ if (likely(error == HA_ERR_END_OF_FILE)) // No keys in range
+ {
+ rows= 0;
+ goto end;
+ }
+ /*
+ This error means that we can't do multi_range_read for the moment
+ (probably running out of memory) and we need to fallback to
+ normal reads
+ */
+ m_part_spec= save_part_spec;
+ DBUG_RETURN(HA_POS_ERROR);
+ }
+ m_part_seq_if.get_key_info=
+ seq->get_key_info ? partition_multi_range_key_get_key_info : NULL;
+ m_part_seq_if.init= partition_multi_range_key_init;
+ m_part_seq_if.next= partition_multi_range_key_next;
+ m_part_seq_if.skip_record= (seq->skip_record ?
+ partition_multi_range_key_skip_record : NULL);
+ m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ?
+ partition_multi_range_key_skip_index_tuple :
+ NULL);
+ file= m_file;
+ do
+ {
+ i= (uint)(file - m_file);
+ DBUG_PRINT("info",("partition part_id: %u", i));
+ if (bitmap_is_set(&m_mrr_used_partitions, i))
+ {
+ ha_rows tmp_rows;
+ uint tmp_mrr_mode;
+ m_mrr_buffer_size[i]= 0;
+ part_cost.reset();
+ tmp_mrr_mode= *mrr_mode;
+ tmp_rows= (*file)->
+ multi_range_read_info_const(keyno, &m_part_seq_if,
+ &m_partition_part_key_multi_range_hld[i],
+ m_part_mrr_range_length[i],
+ &m_mrr_buffer_size[i],
+ &tmp_mrr_mode, &part_cost);
+ if (tmp_rows == HA_POS_ERROR)
+ {
+ m_part_spec= save_part_spec;
+ DBUG_RETURN(HA_POS_ERROR);
+ }
+ cost->add(&part_cost);
+ rows+= tmp_rows;
+ ret_mrr_mode|= tmp_mrr_mode;
+ m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i];
+ }
+ } while (*(++file));
+ *mrr_mode= ret_mrr_mode;
+
+end:
+ m_part_spec= save_part_spec;
+ DBUG_RETURN(rows);
+}
+
+
+ha_rows ha_partition::multi_range_read_info(uint keyno, uint n_ranges,
+ uint keys,
+ uint key_parts, uint *bufsz,
+ uint *mrr_mode,
+ Cost_estimate *cost)
+{
+ uint i;
+ handler **file;
+ ha_rows rows= 0;
+ Cost_estimate part_cost;
+ DBUG_ENTER("ha_partition::multi_range_read_info");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ cost->reset();
+
+ m_mrr_new_full_buffer_size= 0;
+ file= m_file;
+ do
+ {
+ i= (uint)(file - m_file);
+ if (bitmap_is_set(&(m_part_info->read_partitions), (i)))
+ {
+ ha_rows tmp_rows;
+ m_mrr_buffer_size[i]= 0;
+ part_cost.reset();
+ if ((tmp_rows= (*file)->multi_range_read_info(keyno, n_ranges, keys,
+ key_parts,
+ &m_mrr_buffer_size[i],
+ mrr_mode, &part_cost)))
+ DBUG_RETURN(rows);
+ cost->add(&part_cost);
+ rows+= tmp_rows;
+ m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i];
+ }
+ } while (*(++file));
+
+ DBUG_RETURN(0);
+}
+
+
+int ha_partition::multi_range_read_init(RANGE_SEQ_IF *seq,
+ void *seq_init_param,
+ uint n_ranges, uint mrr_mode,
+ HANDLER_BUFFER *buf)
+{
+ int error;
+ uint i;
+ handler **file;
+ uchar *tmp_buffer;
+ DBUG_ENTER("ha_partition::multi_range_read_init");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ eq_range= 0;
+ m_seq_if= seq;
+ m_seq= seq->init(seq_init_param, n_ranges, mrr_mode);
+ if (unlikely((error= multi_range_key_create_key(seq, m_seq))))
+ DBUG_RETURN(0);
+
+ m_part_seq_if.get_key_info= (seq->get_key_info ?
+ partition_multi_range_key_get_key_info :
+ NULL);
+ m_part_seq_if.init= partition_multi_range_key_init;
+ m_part_seq_if.next= partition_multi_range_key_next;
+ m_part_seq_if.skip_record= (seq->skip_record ?
+ partition_multi_range_key_skip_record :
+ NULL);
+ m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ?
+ partition_multi_range_key_skip_index_tuple :
+ NULL);
+
+ /* m_mrr_new_full_buffer_size was calculated in multi_range_read_info */
+ if (m_mrr_full_buffer_size < m_mrr_new_full_buffer_size)
+ {
+ if (m_mrr_full_buffer)
+ my_free(m_mrr_full_buffer);
+ if (!(m_mrr_full_buffer=
+ (uchar *) my_malloc(PSI_INSTRUMENT_ME, m_mrr_new_full_buffer_size, MYF(MY_WME))))
+ {
+ m_mrr_full_buffer_size= 0;
+ error= HA_ERR_OUT_OF_MEM;
+ goto error;
+ }
+ m_mrr_full_buffer_size= m_mrr_new_full_buffer_size;
+ }
+
+ tmp_buffer= m_mrr_full_buffer;
+ file= m_file;
+ do
+ {
+ i= (uint)(file - m_file);
+ DBUG_PRINT("info",("partition part_id: %u", i));
+ if (bitmap_is_set(&m_mrr_used_partitions, i))
+ {
+ if (m_mrr_new_full_buffer_size)
+ {
+ if (m_mrr_buffer_size[i])
+ {
+ m_mrr_buffer[i].buffer= tmp_buffer;
+ m_mrr_buffer[i].end_of_used_area= tmp_buffer;
+ tmp_buffer+= m_mrr_buffer_size[i];
+ m_mrr_buffer[i].buffer_end= tmp_buffer;
+ }
+ }
+ else
+ m_mrr_buffer[i]= *buf;
+
+ if (unlikely((error= (*file)->
+ multi_range_read_init(&m_part_seq_if,
+ &m_partition_part_key_multi_range_hld[i],
+ m_part_mrr_range_length[i],
+ mrr_mode,
+ &m_mrr_buffer[i]))))
+ goto error;
+ m_stock_range_seq[i]= 0;
+ }
+ } while (*(++file));
+
+ m_multi_range_read_first= TRUE;
+ m_mrr_range_current= m_mrr_range_first;
+ m_index_scan_type= partition_read_multi_range;
+ m_mrr_mode= mrr_mode;
+ m_mrr_n_ranges= n_ranges;
+ DBUG_RETURN(0);
+
+error:
+ DBUG_RETURN(error);
+}
+
+
+int ha_partition::multi_range_read_next(range_id_t *range_info)
+{
+ int error;
+ DBUG_ENTER("ha_partition::multi_range_read_next");
+ DBUG_PRINT("enter", ("partition this: %p partition m_mrr_mode: %u",
+ this, m_mrr_mode));
+
+ if ((m_mrr_mode & HA_MRR_SORTED))
+ {
+ if (m_multi_range_read_first)
+ {
+ if (unlikely((error= handle_ordered_index_scan(table->record[0],
+ FALSE))))
+ DBUG_RETURN(error);
+ if (!m_pre_calling)
+ m_multi_range_read_first= FALSE;
+ }
+ else if (unlikely((error= handle_ordered_next(table->record[0],
+ eq_range))))
+ DBUG_RETURN(error);
+ *range_info= m_mrr_range_current->ptr;
+ }
+ else
+ {
+ if (unlikely(m_multi_range_read_first))
+ {
+ if (unlikely((error=
+ handle_unordered_scan_next_partition(table->record[0]))))
+ DBUG_RETURN(error);
+ if (!m_pre_calling)
+ m_multi_range_read_first= FALSE;
+ }
+ else if (unlikely((error= handle_unordered_next(table->record[0], FALSE))))
+ DBUG_RETURN(error);
+
+ if (!(m_mrr_mode & HA_MRR_NO_ASSOCIATION))
+ {
+ *range_info=
+ ((PARTITION_KEY_MULTI_RANGE *) m_range_info[m_last_part])->ptr;
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+int ha_partition::multi_range_read_explain_info(uint mrr_mode, char *str,
+ size_t size)
+{
+ DBUG_ENTER("ha_partition::multi_range_read_explain_info");
+ DBUG_RETURN(get_open_file_sample()->
+ multi_range_read_explain_info(mrr_mode, str, size));
+}
+
+
+/**
+ Find and retrieve the Full Text Search relevance ranking for a search string
+ in a full text index.
+
+ @param handler Full Text Search handler
+ @param record Search string
+ @param length Length of the search string
+
+ @retval Relevance value
+*/
+
+float partition_ft_find_relevance(FT_INFO *handler,
+ uchar *record, uint length)
+{
+ st_partition_ft_info *info= (st_partition_ft_info *)handler;
+ uint m_last_part= ((ha_partition*) info->file)->last_part();
+ FT_INFO *m_handler= info->part_ft_info[m_last_part];
+ DBUG_ENTER("partition_ft_find_relevance");
+ if (!m_handler)
+ DBUG_RETURN((float)-1.0);
+ DBUG_RETURN(m_handler->please->find_relevance(m_handler, record, length));
+}
+
+
+/**
+ Retrieve the Full Text Search relevance ranking for the current
+ full text search.
+
+ @param handler Full Text Search handler
+
+ @retval Relevance value
+*/
+
+float partition_ft_get_relevance(FT_INFO *handler)
+{
+ st_partition_ft_info *info= (st_partition_ft_info *)handler;
+ uint m_last_part= ((ha_partition*) info->file)->last_part();
+ FT_INFO *m_handler= info->part_ft_info[m_last_part];
+ DBUG_ENTER("partition_ft_get_relevance");
+ if (!m_handler)
+ DBUG_RETURN((float)-1.0);
+ DBUG_RETURN(m_handler->please->get_relevance(m_handler));
+}
+
+
+/**
+ Free the memory for a full text search handler.
+
+ @param handler Full Text Search handler
+*/
+
+void partition_ft_close_search(FT_INFO *handler)
+{
+ st_partition_ft_info *info= (st_partition_ft_info *)handler;
+ info->file->ft_close_search(handler);
+}
+
+
+/**
+ Free the memory for a full text search handler.
+
+ @param handler Full Text Search handler
+*/
+
+void ha_partition::ft_close_search(FT_INFO *handler)
+{
+ uint i;
+ st_partition_ft_info *info= (st_partition_ft_info *)handler;
+ DBUG_ENTER("ha_partition::ft_close_search");
+
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ FT_INFO *m_handler= info->part_ft_info[i];
+ DBUG_ASSERT(!m_handler ||
+ (m_handler->please && m_handler->please->close_search));
+ if (m_handler &&
+ m_handler->please &&
+ m_handler->please->close_search)
+ m_handler->please->close_search(m_handler);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/* Partition Full Text search function table */
+_ft_vft partition_ft_vft =
+{
+ NULL, // partition_ft_read_next
+ partition_ft_find_relevance,
+ partition_ft_close_search,
+ partition_ft_get_relevance,
+ NULL // partition_ft_reinit_search
+};
+
+
+/**
+ Initialize a full text search.
+*/
+
+int ha_partition::ft_init()
+{
+ int error;
+ uint i= 0;
+ uint32 part_id;
+ DBUG_ENTER("ha_partition::ft_init");
+ DBUG_PRINT("info", ("partition this: %p", this));
+
+ /*
+ For operations that may need to change data, we may need to extend
+ read_set.
+ */
+ if (get_lock_type() == F_WRLCK)
+ {
+ /*
+ If write_set contains any of the fields used in partition and
+ subpartition expression, we need to set all bits in read_set because
+ the row may need to be inserted in a different [sub]partition. In
+ other words update_row() can be converted into write_row(), which
+ requires a complete record.
+ */
+ if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
+ table->write_set))
+ bitmap_set_all(table->read_set);
+ else
+ {
+ /*
+ Some handlers only read fields as specified by the bitmap for the
+ read set. For partitioned handlers we always require that the
+ fields of the partition functions are read such that we can
+ calculate the partition id to place updated and deleted records.
+ */
+ bitmap_union(table->read_set, &m_part_info->full_part_field_set);
+ }
+ }
+
+ /* Now we see what the index of our first important partition is */
+ DBUG_PRINT("info", ("m_part_info->read_partitions: %p",
+ (void *) m_part_info->read_partitions.bitmap));
+ part_id= bitmap_get_first_set(&(m_part_info->read_partitions));
+ DBUG_PRINT("info", ("m_part_spec.start_part %u", (uint) part_id));
+
+ if (part_id == MY_BIT_NONE)
+ {
+ error= 0;
+ goto err1;
+ }
+
+ DBUG_PRINT("info", ("ft_init on partition %u", (uint) part_id));
+ /*
+ ft_end() is needed for partitioning to reset internal data if scan
+ is already in use
+ */
+ if (m_pre_calling)
+ {
+ if (unlikely((error= pre_ft_end())))
+ goto err1;
+ }
+ else
+ ft_end();
+ m_index_scan_type= partition_ft_read;
+ for (i= part_id; i < m_tot_parts; i++)
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), i))
+ {
+ error= m_pre_calling ? m_file[i]->pre_ft_init() : m_file[i]->ft_init();
+ if (unlikely(error))
+ goto err2;
+ }
+ }
+ m_scan_value= 1;
+ m_part_spec.start_part= part_id;
+ m_part_spec.end_part= m_tot_parts - 1;
+ m_ft_init_and_first= TRUE;
+ DBUG_PRINT("info", ("m_scan_value: %u", m_scan_value));
+ DBUG_RETURN(0);
+
+err2:
+ late_extra_no_cache(part_id);
+ while ((int)--i >= (int)part_id)
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), i))
+ {
+ if (m_pre_calling)
+ m_file[i]->pre_ft_end();
+ else
+ m_file[i]->ft_end();
+ }
+ }
+err1:
+ m_scan_value= 2;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Initialize a full text search during a bulk access request.
+*/
+
+int ha_partition::pre_ft_init()
+{
+ bool save_m_pre_calling;
+ int error;
+ DBUG_ENTER("ha_partition::pre_ft_init");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ error= ft_init();
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Terminate a full text search.
+*/
+
+void ha_partition::ft_end()
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::ft_end");
+ DBUG_PRINT("info", ("partition this: %p", this));
+
+ switch (m_scan_value) {
+ case 2: // Error
+ break;
+ case 1: // Table scan
+ if (NO_CURRENT_PART_ID != m_part_spec.start_part)
+ late_extra_no_cache(m_part_spec.start_part);
+ file= m_file;
+ do
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
+ {
+ if (m_pre_calling)
+ (*file)->pre_ft_end();
+ else
+ (*file)->ft_end();
+ }
+ } while (*(++file));
+ break;
+ }
+ m_scan_value= 2;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ ft_current= 0;
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Terminate a full text search during a bulk access request.
+*/
+
+int ha_partition::pre_ft_end()
+{
+ bool save_m_pre_calling;
+ DBUG_ENTER("ha_partition::pre_ft_end");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ ft_end();
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Initialize a full text search using the extended API.
+
+ @param flags Search flags
+ @param inx Key number
+ @param key Key value
+
+ @return FT_INFO structure if successful
+ NULL otherwise
+*/
+
+FT_INFO *ha_partition::ft_init_ext(uint flags, uint inx, String *key)
+{
+ FT_INFO *ft_handler;
+ handler **file;
+ st_partition_ft_info *ft_target, **parent;
+ DBUG_ENTER("ha_partition::ft_init_ext");
+
+ if (ft_current)
+ parent= &ft_current->next;
+ else
+ parent= &ft_first;
+
+ if (!(ft_target= *parent))
+ {
+ FT_INFO **tmp_ft_info;
+ if (!(ft_target= (st_partition_ft_info *)
+ my_multi_malloc(PSI_INSTRUMENT_ME, MYF(MY_WME | MY_ZEROFILL),
+ &ft_target, sizeof(st_partition_ft_info),
+ &tmp_ft_info, sizeof(FT_INFO *) * m_tot_parts,
+ NullS)))
+ {
+ my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATAL));
+ DBUG_RETURN(NULL);
+ }
+ ft_target->part_ft_info= tmp_ft_info;
+ (*parent)= ft_target;
+ }
+
+ ft_current= ft_target;
+ file= m_file;
+ do
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
+ {
+ if ((ft_handler= (*file)->ft_init_ext(flags, inx, key)))
+ (*file)->ft_handler= ft_handler;
+ else
+ (*file)->ft_handler= NULL;
+ ft_target->part_ft_info[file - m_file]= ft_handler;
+ }
+ else
+ {
+ (*file)->ft_handler= NULL;
+ ft_target->part_ft_info[file - m_file]= NULL;
+ }
+ } while (*(++file));
+
+ ft_target->please= &partition_ft_vft;
+ ft_target->file= this;
+ DBUG_RETURN((FT_INFO*)ft_target);
+}
+
+
+/**
+ Return the next record from the FT result set during an ordered index
+ pre-scan
+
+ @param use_parallel Is it a parallel search
+
+ @return >0 Error code
+ 0 Success
+*/
+
+int ha_partition::pre_ft_read(bool use_parallel)
+{
+ bool save_m_pre_calling;
+ int error;
+ DBUG_ENTER("ha_partition::pre_ft_read");
+ DBUG_PRINT("info", ("partition this: %p", this));
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ m_pre_call_use_parallel= use_parallel;
+ error= ft_read(table->record[0]);
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Return the first or next record in a full text search.
+
+ @param buf Buffer where the record should be returned
+
+ @return >0 Error code
+ 0 Success
+*/
+
+int ha_partition::ft_read(uchar *buf)
+{
+ handler *file;
+ int result= HA_ERR_END_OF_FILE, error;
+ uint part_id= m_part_spec.start_part;
+ DBUG_ENTER("ha_partition::ft_read");
+ DBUG_PRINT("info", ("partition this: %p", this));
+ DBUG_PRINT("info", ("part_id: %u", part_id));
+
+ if (part_id == NO_CURRENT_PART_ID)
+ {
+ /*
+ The original set of partitions to scan was empty and thus we report
+ the result here.
+ */
+ DBUG_PRINT("info", ("NO_CURRENT_PART_ID"));
+ goto end;
+ }
+
+ DBUG_ASSERT(m_scan_value == 1);
+
+ if (m_ft_init_and_first) // First call to ft_read()
+ {
+ m_ft_init_and_first= FALSE;
+ if (!bulk_access_executing)
+ {
+ error= handle_pre_scan(FALSE, check_parallel_search());
+ if (m_pre_calling || error)
+ DBUG_RETURN(error);
+ }
+ late_extra_cache(part_id);
+ }
+
+ file= m_file[part_id];
+
+ while (TRUE)
+ {
+ if (!(result= file->ft_read(buf)))
+ {
+ /* Found row: remember position and return it. */
+ m_part_spec.start_part= m_last_part= part_id;
+ table->status= 0;
+ DBUG_RETURN(0);
+ }
+
+ /*
+ if we get here, then the current partition ft_next returned failure
+ */
+ if (result != HA_ERR_END_OF_FILE)
+ goto end_dont_reset_start_part; // Return error
+
+ /* End current partition */
+ late_extra_no_cache(part_id);
+ DBUG_PRINT("info", ("stopping using partition %u", (uint) part_id));
+
+ /* Shift to next partition */
+ while (++part_id < m_tot_parts &&
+ !bitmap_is_set(&(m_part_info->read_partitions), part_id))
+ ;
+ if (part_id >= m_tot_parts)
+ {
+ result= HA_ERR_END_OF_FILE;
+ break;
+ }
+ m_part_spec.start_part= m_last_part= part_id;
+ file= m_file[part_id];
+ DBUG_PRINT("info", ("now using partition %u", (uint) part_id));
+ late_extra_cache(part_id);
+ }
+
+end:
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+end_dont_reset_start_part:
+ table->status= STATUS_NOT_FOUND;
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Common routine to set up index scans
+
+ SYNOPSIS
+ ha_partition::partition_scan_set_up()
+ buf Buffer to later return record in (this function
+ needs it to calculcate partitioning function
+ values)
+
+ idx_read_flag TRUE <=> m_start_key has range start endpoint which
+ probably can be used to determine the set of partitions
+ to scan.
+ FALSE <=> there is no start endpoint.
+
+ DESCRIPTION
+ Find out which partitions we'll need to read when scanning the specified
+ range.
+
+ If we need to scan only one partition, set m_ordered_scan_ongoing=FALSE
+ as we will not need to do merge ordering.
+
+ RETURN VALUE
+ >0 Error code
+ 0 Success
+*/
+
+int ha_partition::partition_scan_set_up(uchar * buf, bool idx_read_flag)
+{
+ DBUG_ENTER("ha_partition::partition_scan_set_up");
+
+ if (idx_read_flag)
+ get_partition_set(table, buf, active_index, &m_start_key, &m_part_spec);
+ else
+ {
+ m_part_spec.start_part= 0;
+ m_part_spec.end_part= m_tot_parts - 1;
+ }
+ if (m_part_spec.start_part > m_part_spec.end_part)
+ {
+ /*
+ We discovered a partition set but the set was empty so we report
+ key not found.
+ */
+ DBUG_PRINT("info", ("scan with no partition to scan"));
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ if (m_part_spec.start_part == m_part_spec.end_part)
+ {
+ /*
+ We discovered a single partition to scan, this never needs to be
+ performed using the ordered index scan.
+ */
+ DBUG_PRINT("info", ("index scan using the single partition %u",
+ (uint) m_part_spec.start_part));
+ m_ordered_scan_ongoing= FALSE;
+ }
+ else
+ {
+ /*
+ Set m_ordered_scan_ongoing according how the scan should be done
+ Only exact partitions are discovered atm by get_partition_set.
+ Verify this, also bitmap must have at least one bit set otherwise
+ the result from this table is the empty set.
+ */
+ uint start_part= bitmap_get_first_set(&(m_part_info->read_partitions));
+ if (start_part == MY_BIT_NONE)
+ {
+ DBUG_PRINT("info", ("scan with no partition to scan"));
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ if (start_part > m_part_spec.start_part)
+ m_part_spec.start_part= start_part;
+ DBUG_ASSERT(m_part_spec.start_part < m_tot_parts);
+ m_ordered_scan_ongoing= m_ordered;
+ }
+ DBUG_ASSERT(m_part_spec.start_part < m_tot_parts);
+ DBUG_ASSERT(m_part_spec.end_part < m_tot_parts);
+ DBUG_RETURN(0);
+}
+
+/**
+ Check if we can search partitions in parallel
+
+ @retval TRUE yes
+ @retval FALSE no
+*/
+
+bool ha_partition::check_parallel_search()
+{
+ TABLE_LIST *table_list= table->pos_in_table_list;
+ st_select_lex *select_lex;
+ JOIN *join;
+ DBUG_ENTER("ha_partition::check_parallel_search");
+ if (!table_list)
+ goto not_parallel;
+
+ while (table_list->parent_l)
+ table_list= table_list->parent_l;
+
+ select_lex= table_list->select_lex;
+ DBUG_PRINT("info",("partition select_lex: %p", select_lex));
+ if (!select_lex)
+ goto not_parallel;
+ if (!select_lex->explicit_limit)
+ {
+ DBUG_PRINT("info",("partition not using explicit_limit"));
+ goto parallel;
+ }
+
+ join= select_lex->join;
+ DBUG_PRINT("info",("partition join: %p", join));
+ if (join && join->skip_sort_order)
+ {
+ DBUG_PRINT("info",("partition order_list.elements: %u",
+ select_lex->order_list.elements));
+ if (select_lex->order_list.elements)
+ {
+ Item *item= *select_lex->order_list.first->item;
+ DBUG_PRINT("info",("partition item: %p", item));
+ DBUG_PRINT("info",("partition item->type(): %u", item->type()));
+ DBUG_PRINT("info",("partition m_part_info->part_type: %u",
+ m_part_info->part_type));
+ DBUG_PRINT("info",("partition m_is_sub_partitioned: %s",
+ m_is_sub_partitioned ? "TRUE" : "FALSE"));
+ DBUG_PRINT("info",("partition m_part_info->part_expr: %p",
+ m_part_info->part_expr));
+ if (item->type() == Item::FIELD_ITEM &&
+ m_part_info->part_type == RANGE_PARTITION &&
+ !m_is_sub_partitioned &&
+ (!m_part_info->part_expr ||
+ m_part_info->part_expr->type() == Item::FIELD_ITEM))
+ {
+ Field *order_field= ((Item_field *)item)->field;
+ DBUG_PRINT("info",("partition order_field: %p", order_field));
+ if (order_field && order_field->table == table_list->table)
+ {
+ Field *part_field= m_part_info->full_part_field_array[0];
+ DBUG_PRINT("info",("partition order_field: %p", order_field));
+ DBUG_PRINT("info",("partition part_field: %p", part_field));
+ if (part_field == order_field)
+ {
+ /*
+ We are using ORDER BY partition_field LIMIT #
+ In this case, let's not do things in parallel as it's
+ likely that the query can be satisfied from the first
+ partition
+ */
+ DBUG_PRINT("info",("partition with ORDER on partition field"));
+ goto not_parallel;
+ }
+ }
+ }
+ DBUG_PRINT("info",("partition have order"));
+ goto parallel;
+ }
+
+ DBUG_PRINT("info",("partition group_list.elements: %u",
+ select_lex->group_list.elements));
+ if (select_lex->group_list.elements)
+ {
+ Item *item= *select_lex->group_list.first->item;
+ DBUG_PRINT("info",("partition item: %p", item));
+ DBUG_PRINT("info",("partition item->type(): %u", item->type()));
+ DBUG_PRINT("info",("partition m_part_info->part_type: %u",
+ m_part_info->part_type));
+ DBUG_PRINT("info",("partition m_is_sub_partitioned: %s",
+ m_is_sub_partitioned ? "TRUE" : "FALSE"));
+ DBUG_PRINT("info",("partition m_part_info->part_expr: %p",
+ m_part_info->part_expr));
+ if (item->type() == Item::FIELD_ITEM &&
+ m_part_info->part_type == RANGE_PARTITION &&
+ !m_is_sub_partitioned &&
+ (!m_part_info->part_expr ||
+ m_part_info->part_expr->type() == Item::FIELD_ITEM))
+ {
+ Field *group_field= ((Item_field *)item)->field;
+ DBUG_PRINT("info",("partition group_field: %p", group_field));
+ if (group_field && group_field->table == table_list->table)
+ {
+ Field *part_field= m_part_info->full_part_field_array[0];
+ DBUG_PRINT("info",("partition group_field: %p", group_field));
+ DBUG_PRINT("info",("partition part_field: %p", part_field));
+ if (part_field == group_field)
+ {
+ DBUG_PRINT("info",("partition with GROUP BY on partition field"));
+ goto not_parallel;
+ }
+ }
+ }
+ DBUG_PRINT("info",("partition with GROUP BY"));
+ goto parallel;
+ }
+ }
+ else if (select_lex->order_list.elements ||
+ select_lex->group_list.elements)
+ {
+ DBUG_PRINT("info",("partition is not skip_order"));
+ DBUG_PRINT("info",("partition order_list.elements: %u",
+ select_lex->order_list.elements));
+ DBUG_PRINT("info",("partition group_list.elements: %u",
+ select_lex->group_list.elements));
+ goto parallel;
+ }
+ DBUG_PRINT("info",("partition is not skip_order"));
+
+not_parallel:
+ DBUG_PRINT("return",("partition FALSE"));
+ DBUG_RETURN(FALSE);
+
+parallel:
+ DBUG_PRINT("return",("partition TRUE"));
+ DBUG_RETURN(TRUE);
+}
+
+
+int ha_partition::handle_pre_scan(bool reverse_order, bool use_parallel)
+{
+ uint i;
+ DBUG_ENTER("ha_partition::handle_pre_scan");
+ DBUG_PRINT("enter",
+ ("m_part_spec.start_part: %u m_part_spec.end_part: %u",
+ (uint) m_part_spec.start_part, (uint) m_part_spec.end_part));
+
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ if (!(bitmap_is_set(&(m_part_info->read_partitions), i)))
+ continue;
+ int error;
+ handler *file= m_file[i];
+
+ switch (m_index_scan_type) {
+ case partition_index_read:
+ error= file->pre_index_read_map(m_start_key.key,
+ m_start_key.keypart_map,
+ m_start_key.flag,
+ use_parallel);
+ break;
+ case partition_index_first:
+ error= file->pre_index_first(use_parallel);
+ break;
+ case partition_index_last:
+ error= file->pre_index_last(use_parallel);
+ break;
+ case partition_index_read_last:
+ error= file->pre_index_read_last_map(m_start_key.key,
+ m_start_key.keypart_map,
+ use_parallel);
+ break;
+ case partition_read_range:
+ error= file->pre_read_range_first(m_start_key.key? &m_start_key: NULL,
+ end_range, eq_range, TRUE, use_parallel);
+ break;
+ case partition_read_multi_range:
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ continue;
+ error= file->pre_multi_range_read_next(use_parallel);
+ break;
+ case partition_ft_read:
+ error= file->pre_ft_read(use_parallel);
+ break;
+ case partition_no_index_scan:
+ error= file->pre_rnd_next(use_parallel);
+ break;
+ default:
+ DBUG_ASSERT(FALSE);
+ DBUG_RETURN(0);
+ }
+ if (error == HA_ERR_END_OF_FILE)
+ error= 0;
+ if (unlikely(error))
+ DBUG_RETURN(error);
+ }
+ table->status= 0;
+ DBUG_RETURN(0);
+}
+
+
+/****************************************************************************
+ Unordered Index Scan Routines
+****************************************************************************/
+/*
+ Common routine to handle index_next with unordered results
+
+ SYNOPSIS
+ handle_unordered_next()
+ out:buf Read row in MySQL Row Format
+ next_same Called from index_next_same
+
+ RETURN VALUE
+ HA_ERR_END_OF_FILE End of scan
+ 0 Success
+ other Error code
+
+ DESCRIPTION
+ These routines are used to scan partitions without considering order.
+ This is performed in two situations.
+ 1) In read_multi_range this is the normal case
+ 2) When performing any type of index_read, index_first, index_last where
+ all fields in the partition function is bound. In this case the index
+ scan is performed on only one partition and thus it isn't necessary to
+ perform any sort.
+*/
+
+int ha_partition::handle_unordered_next(uchar *buf, bool is_next_same)
+{
+ handler *file;
+ int error;
+ DBUG_ENTER("ha_partition::handle_unordered_next");
+
+ if (m_part_spec.start_part >= m_tot_parts)
+ {
+ /* Should never happen! */
+ DBUG_ASSERT(0);
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ file= m_file[m_part_spec.start_part];
+
+ /*
+ We should consider if this should be split into three functions as
+ partition_read_range is_next_same are always local constants
+ */
+
+ if (m_index_scan_type == partition_read_multi_range)
+ {
+ if (likely(!(error= file->
+ multi_range_read_next(&m_range_info[m_part_spec.start_part]))))
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0);
+ }
+ }
+ else if (m_index_scan_type == partition_read_range)
+ {
+ if (likely(!(error= file->read_range_next())))
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0);
+ }
+ }
+ else if (is_next_same)
+ {
+ if (likely(!(error= file->ha_index_next_same(buf, m_start_key.key,
+ m_start_key.length))))
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0);
+ }
+ }
+ else
+ {
+ if (likely(!(error= file->ha_index_next(buf))))
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0); // Row was in range
+ }
+ }
+
+ if (unlikely(error == HA_ERR_END_OF_FILE))
+ {
+ m_part_spec.start_part++; // Start using next part
+ error= handle_unordered_scan_next_partition(buf);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Handle index_next when changing to new partition
+
+ SYNOPSIS
+ handle_unordered_scan_next_partition()
+ buf Read row in MariaDB Row Format
+
+ RETURN VALUE
+ HA_ERR_END_OF_FILE End of scan
+ 0 Success
+ other Error code
+
+ DESCRIPTION
+ This routine is used to start the index scan on the next partition.
+ Both initial start and after completing scan on one partition.
+*/
+
+int ha_partition::handle_unordered_scan_next_partition(uchar * buf)
+{
+ uint i= m_part_spec.start_part;
+ int saved_error= HA_ERR_END_OF_FILE;
+ DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition");
+
+ /* Read next partition that includes start_part */
+ if (i)
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i - 1);
+ else
+ i= bitmap_get_first_set(&m_part_info->read_partitions);
+
+ for (;
+ i <= m_part_spec.end_part;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ int error;
+ handler *file= m_file[i];
+ m_part_spec.start_part= i;
+
+ switch (m_index_scan_type) {
+ case partition_read_multi_range:
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ continue;
+ DBUG_PRINT("info", ("read_multi_range on partition %u", i));
+ error= file->multi_range_read_next(&m_range_info[i]);
+ break;
+ case partition_read_range:
+ DBUG_PRINT("info", ("read_range_first on partition %u", i));
+ error= file->read_range_first(m_start_key.key? &m_start_key: NULL,
+ end_range, eq_range, FALSE);
+ break;
+ case partition_index_read:
+ DBUG_PRINT("info", ("index_read on partition %u", i));
+ error= file->ha_index_read_map(buf, m_start_key.key,
+ m_start_key.keypart_map,
+ m_start_key.flag);
+ break;
+ case partition_index_first:
+ DBUG_PRINT("info", ("index_first on partition %u", i));
+ error= file->ha_index_first(buf);
+ break;
+ default:
+ DBUG_ASSERT(FALSE);
+ DBUG_RETURN(1);
+ }
+ if (likely(!error))
+ {
+ m_last_part= i;
+ DBUG_RETURN(0);
+ }
+ if (likely((error != HA_ERR_END_OF_FILE) &&
+ (error != HA_ERR_KEY_NOT_FOUND)))
+ DBUG_RETURN(error);
+
+ /*
+ If HA_ERR_KEY_NOT_FOUND, we must return that error instead of
+ HA_ERR_END_OF_FILE, to be able to continue search.
+ */
+ if (saved_error != HA_ERR_KEY_NOT_FOUND)
+ saved_error= error;
+ DBUG_PRINT("info", ("END_OF_FILE/KEY_NOT_FOUND on partition %u", i));
+ }
+ if (saved_error == HA_ERR_END_OF_FILE)
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ DBUG_RETURN(saved_error);
+}
+
+
+/**
+ Common routine to start index scan with ordered results.
+
+ @param[out] buf Read row in MariaDB Row Format
+
+ @return Operation status
+ @retval HA_ERR_END_OF_FILE End of scan
+ @retval HA_ERR_KEY_NOT_FOUNE End of scan
+ @retval 0 Success
+ @retval other Error code
+
+ @details
+ This part contains the logic to handle index scans that require ordered
+ output. This includes all except those started by read_range_first with
+ the flag ordered set to FALSE. Thus most direct index_read and all
+ index_first and index_last.
+
+ We implement ordering by keeping one record plus a key buffer for each
+ partition. Every time a new entry is requested we will fetch a new
+ entry from the partition that is currently not filled with an entry.
+ Then the entry is put into its proper sort position.
+
+ Returning a record is done by getting the top record, copying the
+ record to the request buffer and setting the partition as empty on
+ entries.
+*/
+
+int ha_partition::handle_ordered_index_scan(uchar *buf, bool reverse_order)
+{
+ int error;
+ uint i;
+ uint j= queue_first_element(&m_queue);
+ uint smallest_range_seq= 0;
+ bool found= FALSE;
+ uchar *part_rec_buf_ptr= m_ordered_rec_buffer;
+ int saved_error= HA_ERR_END_OF_FILE;
+ DBUG_ENTER("ha_partition::handle_ordered_index_scan");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ if (m_pre_calling)
+ error= handle_pre_scan(reverse_order, m_pre_call_use_parallel);
+ else
+ error= handle_pre_scan(reverse_order, check_parallel_search());
+ if (unlikely(error))
+ DBUG_RETURN(error);
+
+ if (m_key_not_found)
+ {
+ /* m_key_not_found was set in the previous call to this function */
+ m_key_not_found= false;
+ bitmap_clear_all(&m_key_not_found_partitions);
+ }
+ m_top_entry= NO_CURRENT_PART_ID;
+ DBUG_PRINT("info", ("partition queue_remove_all(1)"));
+ queue_remove_all(&m_queue);
+ DBUG_ASSERT(bitmap_is_set(&m_part_info->read_partitions,
+ m_part_spec.start_part));
+
+ /*
+ Position part_rec_buf_ptr to point to the first used partition >=
+ start_part. There may be partitions marked by used_partitions,
+ but is before start_part. These partitions has allocated record buffers
+ but is dynamically pruned, so those buffers must be skipped.
+ */
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_part_spec.start_part;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ part_rec_buf_ptr+= m_priority_queue_rec_len;
+ }
+ DBUG_PRINT("info", ("m_part_spec.start_part %u first_used_part %u",
+ m_part_spec.start_part, i));
+ for (/* continue from above */ ;
+ i <= m_part_spec.end_part ;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i),
+ part_rec_buf_ptr+= m_priority_queue_rec_len)
+ {
+ DBUG_PRINT("info", ("reading from part %u (scan_type: %u)",
+ i, m_index_scan_type));
+ DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr));
+ uchar *rec_buf_ptr= part_rec_buf_ptr + PARTITION_BYTES_IN_POS;
+ handler *file= m_file[i];
+
+ switch (m_index_scan_type) {
+ case partition_index_read:
+ error= file->ha_index_read_map(rec_buf_ptr,
+ m_start_key.key,
+ m_start_key.keypart_map,
+ m_start_key.flag);
+ /* Caller has specified reverse_order */
+ break;
+ case partition_index_first:
+ error= file->ha_index_first(rec_buf_ptr);
+ reverse_order= FALSE;
+ break;
+ case partition_index_last:
+ error= file->ha_index_last(rec_buf_ptr);
+ reverse_order= TRUE;
+ break;
+ case partition_read_range:
+ {
+ /*
+ This can only read record to table->record[0], as it was set when
+ the table was being opened. We have to memcpy data ourselves.
+ */
+ error= file->read_range_first(m_start_key.key? &m_start_key: NULL,
+ end_range, eq_range, TRUE);
+ if (likely(!error))
+ memcpy(rec_buf_ptr, table->record[0], m_rec_length);
+ reverse_order= FALSE;
+ break;
+ }
+ case partition_read_multi_range:
+ {
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ continue;
+ DBUG_PRINT("info", ("partition %u", i));
+ error= file->multi_range_read_next(&m_range_info[i]);
+ DBUG_PRINT("info", ("error: %d", error));
+ if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
+ {
+ bitmap_clear_bit(&m_mrr_used_partitions, i);
+ continue;
+ }
+ if (likely(!error))
+ {
+ memcpy(rec_buf_ptr, table->record[0], m_rec_length);
+ reverse_order= FALSE;
+ m_stock_range_seq[i]= (((PARTITION_KEY_MULTI_RANGE *)
+ m_range_info[i])->id);
+ /* Test if the key is in the first key range */
+ if (m_stock_range_seq[i] != m_mrr_range_current->id)
+ {
+ /*
+ smallest_range_seq contains the smallest key range we have seen
+ so far
+ */
+ if (!smallest_range_seq || smallest_range_seq > m_stock_range_seq[i])
+ smallest_range_seq= m_stock_range_seq[i];
+ continue;
+ }
+ }
+ break;
+ }
+ default:
+ DBUG_ASSERT(FALSE);
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ if (likely(!error))
+ {
+ found= TRUE;
+ if (!m_using_extended_keys)
+ {
+ file->position(rec_buf_ptr);
+ memcpy(rec_buf_ptr + m_rec_length, file->ref, file->ref_length);
+ }
+ /*
+ Initialize queue without order first, simply insert
+ */
+ queue_element(&m_queue, j++)= part_rec_buf_ptr;
+ }
+ else if (error == HA_ERR_KEY_NOT_FOUND)
+ {
+ DBUG_PRINT("info", ("HA_ERR_KEY_NOT_FOUND from partition %u", i));
+ bitmap_set_bit(&m_key_not_found_partitions, i);
+ m_key_not_found= true;
+ saved_error= error;
+ }
+ else if (error != HA_ERR_END_OF_FILE)
+ {
+ DBUG_RETURN(error);
+ }
+ }
+
+ if (!found && smallest_range_seq)
+ {
+ /* We know that there is an existing row based on code above */
+ found= TRUE;
+ part_rec_buf_ptr= m_ordered_rec_buffer;
+
+ /*
+ No key found in the first key range
+ Collect all partitions that has a key in smallest_range_seq
+ */
+ DBUG_PRINT("info", ("partition !found && smallest_range_seq"));
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i <= m_part_spec.end_part;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ DBUG_PRINT("info", ("partition current_part: %u", i));
+ if (i < m_part_spec.start_part)
+ {
+ part_rec_buf_ptr+= m_priority_queue_rec_len;
+ DBUG_PRINT("info", ("partition i < m_part_spec.start_part"));
+ continue;
+ }
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ {
+ part_rec_buf_ptr+= m_priority_queue_rec_len;
+ DBUG_PRINT("info", ("partition !bitmap_is_set(&m_mrr_used_partitions, i)"));
+ continue;
+ }
+ DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr));
+ if (smallest_range_seq == m_stock_range_seq[i])
+ {
+ m_stock_range_seq[i]= 0;
+ queue_element(&m_queue, j++)= (uchar *) part_rec_buf_ptr;
+ DBUG_PRINT("info", ("partition smallest_range_seq == m_stock_range_seq[i]"));
+ }
+ part_rec_buf_ptr+= m_priority_queue_rec_len;
+ }
+
+ /* Update global m_mrr_range_current to the current range */
+ while (m_mrr_range_current->id < smallest_range_seq)
+ m_mrr_range_current= m_mrr_range_current->next;
+ }
+ if (found)
+ {
+ /*
+ We found at least one partition with data, now sort all entries and
+ after that read the first entry and copy it to the buffer to return in.
+ */
+ queue_set_max_at_top(&m_queue, reverse_order);
+ queue_set_cmp_arg(&m_queue, (void*) this);
+ m_queue.elements= j - queue_first_element(&m_queue);
+ queue_fix(&m_queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(saved_error);
+}
+
+
+/*
+ Return the top record in sort order
+
+ SYNOPSIS
+ return_top_record()
+ out:buf Row returned in MySQL Row Format
+
+ RETURN VALUE
+ NONE
+*/
+
+void ha_partition::return_top_record(uchar *buf)
+{
+ uint part_id;
+ uchar *key_buffer= queue_top(&m_queue);
+ uchar *rec_buffer= key_buffer + PARTITION_BYTES_IN_POS;
+ DBUG_ENTER("ha_partition::return_top_record");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+
+ part_id= uint2korr(key_buffer);
+ memcpy(buf, rec_buffer, m_rec_length);
+ m_last_part= part_id;
+ DBUG_PRINT("info", ("partition m_last_part: %u", m_last_part));
+ m_top_entry= part_id;
+ table->status= 0; // Found an existing row
+ m_file[part_id]->return_record_by_parent();
+ DBUG_VOID_RETURN;
+}
+
+/*
+ This function is only used if the partitioned table has own partitions.
+ This can happen if the partitioned VP engine is used (part of spider).
+*/
+
+void ha_partition::return_record_by_parent()
+{
+ m_file[m_last_part]->return_record_by_parent();
+ DBUG_ASSERT(0);
+}
+
+
+/**
+ Add index_next/prev from partitions without exact match.
+
+ If there where any partitions that returned HA_ERR_KEY_NOT_FOUND when
+ ha_index_read_map was done, those partitions must be included in the
+ following index_next/prev call.
+*/
+
+int ha_partition::handle_ordered_index_scan_key_not_found()
+{
+ int error;
+ uint i, old_elements= m_queue.elements;
+ uchar *part_buf= m_ordered_rec_buffer;
+ uchar *curr_rec_buf= NULL;
+ DBUG_ENTER("ha_partition::handle_ordered_index_scan_key_not_found");
+ DBUG_PRINT("enter", ("partition this: %p", this));
+ DBUG_ASSERT(m_key_not_found);
+ /*
+ Loop over all used partitions to get the correct offset
+ into m_ordered_rec_buffer.
+ */
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ if (bitmap_is_set(&m_key_not_found_partitions, i))
+ {
+ /*
+ This partition is used and did return HA_ERR_KEY_NOT_FOUND
+ in index_read_map.
+ */
+ curr_rec_buf= part_buf + PARTITION_BYTES_IN_POS;
+ error= m_file[i]->ha_index_next(curr_rec_buf);
+ /* HA_ERR_KEY_NOT_FOUND is not allowed from index_next! */
+ DBUG_ASSERT(error != HA_ERR_KEY_NOT_FOUND);
+ if (likely(!error))
+ {
+ DBUG_PRINT("info", ("partition queue_insert(1)"));
+ queue_insert(&m_queue, part_buf);
+ }
+ else if (error != HA_ERR_END_OF_FILE && error != HA_ERR_KEY_NOT_FOUND)
+ DBUG_RETURN(error);
+ }
+ part_buf += m_priority_queue_rec_len;
+ }
+ DBUG_ASSERT(curr_rec_buf);
+ bitmap_clear_all(&m_key_not_found_partitions);
+ m_key_not_found= false;
+
+ if (m_queue.elements > old_elements)
+ {
+ /* Update m_top_entry, which may have changed. */
+ uchar *key_buffer= queue_top(&m_queue);
+ m_top_entry= uint2korr(key_buffer);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Common routine to handle index_next with ordered results
+
+ SYNOPSIS
+ handle_ordered_next()
+ out:buf Read row in MySQL Row Format
+ next_same Called from index_next_same
+
+ RETURN VALUE
+ HA_ERR_END_OF_FILE End of scan
+ 0 Success
+ other Error code
+*/
+
+int ha_partition::handle_ordered_next(uchar *buf, bool is_next_same)
+{
+ int error;
+ DBUG_ENTER("ha_partition::handle_ordered_next");
+
+ if (m_top_entry == NO_CURRENT_PART_ID)
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+
+ uint part_id= m_top_entry;
+ uchar *rec_buf= queue_top(&m_queue) + PARTITION_BYTES_IN_POS;
+ handler *file;
+
+ if (m_key_not_found)
+ {
+ if (is_next_same)
+ {
+ /* Only rows which match the key. */
+ m_key_not_found= false;
+ bitmap_clear_all(&m_key_not_found_partitions);
+ }
+ else
+ {
+ /* There are partitions not included in the index record queue. */
+ uint old_elements= m_queue.elements;
+ if (unlikely((error= handle_ordered_index_scan_key_not_found())))
+ DBUG_RETURN(error);
+ /*
+ If the queue top changed, i.e. one of the partitions that gave
+ HA_ERR_KEY_NOT_FOUND in index_read_map found the next record,
+ return it.
+ Otherwise replace the old with a call to index_next (fall through).
+ */
+ if (old_elements != m_queue.elements && part_id != m_top_entry)
+ {
+ return_top_record(buf);
+ DBUG_RETURN(0);
+ }
+ }
+ }
+ if (part_id >= m_tot_parts)
+ {
+ /* This should never happen! */
+ DBUG_ASSERT(0);
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+
+ file= m_file[part_id];
+
+ if (m_index_scan_type == partition_read_range)
+ {
+ error= file->read_range_next();
+ memcpy(rec_buf, table->record[0], m_rec_length);
+ }
+ else if (m_index_scan_type == partition_read_multi_range)
+ {
+ DBUG_PRINT("info", ("partition_read_multi_range route"));
+ DBUG_PRINT("info", ("part_id: %u", part_id));
+ bool get_next= FALSE;
+ error= file->multi_range_read_next(&m_range_info[part_id]);
+ DBUG_PRINT("info", ("error: %d", error));
+ if (unlikely(error == HA_ERR_KEY_NOT_FOUND))
+ error= HA_ERR_END_OF_FILE;
+ if (unlikely(error == HA_ERR_END_OF_FILE))
+ {
+ bitmap_clear_bit(&m_mrr_used_partitions, part_id);
+ DBUG_PRINT("info", ("partition m_queue.elements: %u", m_queue.elements));
+ if (m_queue.elements)
+ {
+ DBUG_PRINT("info", ("partition queue_remove_top(1)"));
+ queue_remove_top(&m_queue);
+ if (m_queue.elements)
+ {
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u (3)",
+ m_top_entry));
+ DBUG_RETURN(0);
+ }
+ }
+ get_next= TRUE;
+ }
+ else if (likely(!error))
+ {
+ DBUG_PRINT("info", ("m_range_info[%u])->id: %u", part_id,
+ ((PARTITION_KEY_MULTI_RANGE *)
+ m_range_info[part_id])->id));
+ DBUG_PRINT("info", ("m_mrr_range_current->id: %u",
+ m_mrr_range_current->id));
+ memcpy(rec_buf, table->record[0], m_rec_length);
+ if (((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id !=
+ m_mrr_range_current->id)
+ {
+ m_stock_range_seq[part_id]=
+ ((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id;
+ DBUG_PRINT("info", ("partition queue_remove_top(2)"));
+ queue_remove_top(&m_queue);
+ if (!m_queue.elements)
+ get_next= TRUE;
+ }
+ }
+ if (get_next)
+ {
+ DBUG_PRINT("info", ("get_next route"));
+ uint i, j= 0, smallest_range_seq= UINT_MAX32;
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ if (!(bitmap_is_set(&(m_part_info->read_partitions), i)))
+ continue;
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ continue;
+ if (smallest_range_seq > m_stock_range_seq[i])
+ smallest_range_seq= m_stock_range_seq[i];
+ }
+
+ DBUG_PRINT("info", ("smallest_range_seq: %u", smallest_range_seq));
+ if (smallest_range_seq != UINT_MAX32)
+ {
+ uchar *part_rec_buf_ptr= m_ordered_rec_buffer;
+ DBUG_PRINT("info", ("partition queue_remove_all(2)"));
+ queue_remove_all(&m_queue);
+ DBUG_PRINT("info", ("m_part_spec.start_part: %u",
+ m_part_spec.start_part));
+
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i <= m_part_spec.end_part;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i),
+ part_rec_buf_ptr+= m_priority_queue_rec_len)
+ {
+ DBUG_PRINT("info",("partition part_id: %u", i));
+ if (i < m_part_spec.start_part)
+ {
+ DBUG_PRINT("info",("partition i < m_part_spec.start_part"));
+ continue;
+ }
+ if (!bitmap_is_set(&m_mrr_used_partitions, i))
+ {
+ DBUG_PRINT("info",("partition !bitmap_is_set(&m_mrr_used_partitions, i)"));
+ continue;
+ }
+ DBUG_PRINT("info",("partition uint2korr: %u",
+ uint2korr(part_rec_buf_ptr)));
+ DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr));
+ DBUG_PRINT("info", ("partition m_stock_range_seq[%u]: %u",
+ i, m_stock_range_seq[i]));
+ if (smallest_range_seq == m_stock_range_seq[i])
+ {
+ m_stock_range_seq[i]= 0;
+ DBUG_PRINT("info", ("partition queue_insert(2)"));
+ queue_insert(&m_queue, part_rec_buf_ptr);
+ j++;
+ }
+ }
+ while (m_mrr_range_current->id < smallest_range_seq)
+ m_mrr_range_current= m_mrr_range_current->next;
+
+ DBUG_PRINT("info",("partition m_mrr_range_current: %p",
+ m_mrr_range_current));
+ DBUG_PRINT("info",("partition m_mrr_range_current->id: %u",
+ m_mrr_range_current ? m_mrr_range_current->id : 0));
+ queue_set_max_at_top(&m_queue, FALSE);
+ queue_set_cmp_arg(&m_queue, (void*) this);
+ m_queue.elements= j;
+ queue_fix(&m_queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u (4)",
+ m_top_entry));
+ DBUG_RETURN(0);
+ }
+ }
+ }
+ else if (!is_next_same)
+ error= file->ha_index_next(rec_buf);
+ else
+ error= file->ha_index_next_same(rec_buf, m_start_key.key,
+ m_start_key.length);
+
+ if (unlikely(error))
+ {
+ if (error == HA_ERR_END_OF_FILE && m_queue.elements)
+ {
+ /* Return next buffered row */
+ DBUG_PRINT("info", ("partition queue_remove_top(3)"));
+ queue_remove_top(&m_queue);
+ if (m_queue.elements)
+ {
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u (2)",
+ m_top_entry));
+ error= 0;
+ }
+ }
+ DBUG_RETURN(error);
+ }
+
+ if (!m_using_extended_keys)
+ {
+ file->position(rec_buf);
+ memcpy(rec_buf + m_rec_length, file->ref, file->ref_length);
+ }
+
+ queue_replace_top(&m_queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Common routine to handle index_prev with ordered results
+
+ SYNOPSIS
+ handle_ordered_prev()
+ out:buf Read row in MySQL Row Format
+
+ RETURN VALUE
+ HA_ERR_END_OF_FILE End of scan
+ 0 Success
+ other Error code
+*/
+
+int ha_partition::handle_ordered_prev(uchar *buf)
+{
+ int error;
+ DBUG_ENTER("ha_partition::handle_ordered_prev");
+ DBUG_PRINT("enter", ("partition: %p", this));
+
+ if (m_top_entry == NO_CURRENT_PART_ID)
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+
+ uint part_id= m_top_entry;
+ uchar *rec_buf= queue_top(&m_queue) + PARTITION_BYTES_IN_POS;
+ handler *file= m_file[part_id];
+
+ if (unlikely((error= file->ha_index_prev(rec_buf))))
+ {
+ if (error == HA_ERR_END_OF_FILE && m_queue.elements)
+ {
+ DBUG_PRINT("info", ("partition queue_remove_top(4)"));
+ queue_remove_top(&m_queue);
+ if (m_queue.elements)
+ {
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u (2)",
+ m_top_entry));
+ error= 0;
+ }
+ }
+ DBUG_RETURN(error);
+ }
+ queue_replace_top(&m_queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
+ DBUG_RETURN(0);
+}
+
+
+/****************************************************************************
+ MODULE information calls
+****************************************************************************/
+
+/*
+ These are all first approximations of the extra, info, scan_time
+ and read_time calls
+*/
+
+/**
+ Helper function for sorting according to number of rows in descending order.
+*/
+
+int ha_partition::compare_number_of_records(ha_partition *me,
+ const uint32 *a,
+ const uint32 *b)
+{
+ handler **file= me->m_file;
+ /* Note: sorting in descending order! */
+ if (file[*a]->stats.records > file[*b]->stats.records)
+ return -1;
+ if (file[*a]->stats.records < file[*b]->stats.records)
+ return 1;
+ return 0;
+}
+
+
+/*
+ General method to gather info from handler
+
+ SYNOPSIS
+ info()
+ flag Specifies what info is requested
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ ::info() is used to return information to the optimizer.
+ Currently this table handler doesn't implement most of the fields
+ really needed. SHOW also makes use of this data
+ Another note, if your handler doesn't provide exact record count,
+ you will probably want to have the following in your code:
+ if (records < 2)
+ records = 2;
+ The reason is that the server will optimize for cases of only a single
+ record. If in a table scan you don't know the number of records
+ it will probably be better to set records to two so you can return
+ as many records as you need.
+
+ Along with records a few more variables you may wish to set are:
+ records
+ deleted
+ data_file_length
+ index_file_length
+ delete_length
+ check_time
+ Take a look at the public variables in handler.h for more information.
+
+ Called in:
+ filesort.cc
+ ha_heap.cc
+ item_sum.cc
+ opt_sum.cc
+ sql_delete.cc
+ sql_delete.cc
+ sql_derived.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_show.cc
+ sql_show.cc
+ sql_show.cc
+ sql_show.cc
+ sql_table.cc
+ sql_union.cc
+ sql_update.cc
+
+ Some flags that are not implemented
+ HA_STATUS_POS:
+ This parameter is never used from the MySQL Server. It is checked in a
+ place in MyISAM so could potentially be used by MyISAM specific
+ programs.
+ HA_STATUS_NO_LOCK:
+ This is declared and often used. It's only used by MyISAM.
+ It means that MySQL doesn't need the absolute latest statistics
+ information. This may save the handler from doing internal locks while
+ retrieving statistics data.
+*/
+
+int ha_partition::info(uint flag)
+{
+ uint no_lock_flag= flag & HA_STATUS_NO_LOCK;
+ uint extra_var_flag= flag & HA_STATUS_VARIABLE_EXTRA;
+ DBUG_ENTER("ha_partition::info");
+
+#ifndef DBUG_OFF
+ if (bitmap_is_set_all(&(m_part_info->read_partitions)))
+ DBUG_PRINT("info", ("All partitions are used"));
+#endif /* DBUG_OFF */
+ if (flag & HA_STATUS_AUTO)
+ {
+ bool auto_inc_is_first_in_idx= (table_share->next_number_keypart == 0);
+ bool all_parts_opened= true;
+ DBUG_PRINT("info", ("HA_STATUS_AUTO"));
+ if (!table->found_next_number_field)
+ stats.auto_increment_value= 0;
+ else if (part_share->auto_inc_initialized)
+ {
+ lock_auto_increment();
+ stats.auto_increment_value= part_share->next_auto_inc_val;
+ unlock_auto_increment();
+ }
+ else
+ {
+ lock_auto_increment();
+ /* to avoid two concurrent initializations, check again when locked */
+ if (part_share->auto_inc_initialized)
+ stats.auto_increment_value= part_share->next_auto_inc_val;
+ else
+ {
+ /*
+ The auto-inc mutex in the table_share is locked, so we do not need
+ to have the handlers locked.
+ HA_STATUS_NO_LOCK is not checked, since we cannot skip locking
+ the mutex, because it is initialized.
+ */
+ handler *file, **file_array;
+ ulonglong auto_increment_value= 0;
+ file_array= m_file;
+ DBUG_PRINT("info",
+ ("checking all partitions for auto_increment_value"));
+ do
+ {
+ if (!bitmap_is_set(&m_opened_partitions, (uint)(file_array - m_file)))
+ {
+ /*
+ Some partitions aren't opened.
+ So we can't calculate the autoincrement.
+ */
+ all_parts_opened= false;
+ break;
+ }
+ file= *file_array;
+ file->info(HA_STATUS_AUTO | no_lock_flag);
+ set_if_bigger(auto_increment_value,
+ file->stats.auto_increment_value);
+ } while (*(++file_array));
+
+ DBUG_ASSERT(auto_increment_value);
+ stats.auto_increment_value= auto_increment_value;
+ if (all_parts_opened && auto_inc_is_first_in_idx)
+ {
+ set_if_bigger(part_share->next_auto_inc_val,
+ auto_increment_value);
+ if (can_use_for_auto_inc_init())
+ part_share->auto_inc_initialized= true;
+ DBUG_PRINT("info", ("initializing next_auto_inc_val to %lu",
+ (ulong) part_share->next_auto_inc_val));
+ }
+ }
+ unlock_auto_increment();
+ }
+ }
+ if (flag & HA_STATUS_VARIABLE)
+ {
+ uint i;
+ DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
+ /*
+ Calculates statistical variables
+ records: Estimate of number records in table
+ We report sum (always at least 2 if not empty)
+ deleted: Estimate of number holes in the table due to
+ deletes
+ We report sum
+ data_file_length: Length of data file, in principle bytes in table
+ We report sum
+ index_file_length: Length of index file, in principle bytes in
+ indexes in the table
+ We report sum
+ delete_length: Length of free space easily used by new records in table
+ We report sum
+ mean_record_length:Mean record length in the table
+ We calculate this
+ check_time: Time of last check (only applicable to MyISAM)
+ We report last time of all underlying handlers
+ */
+ handler *file;
+ stats.records= 0;
+ stats.deleted= 0;
+ stats.data_file_length= 0;
+ stats.index_file_length= 0;
+ stats.delete_length= 0;
+ stats.check_time= 0;
+ stats.checksum= 0;
+ stats.checksum_null= TRUE;
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ file= m_file[i];
+ file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag);
+ stats.records+= file->stats.records;
+ stats.deleted+= file->stats.deleted;
+ stats.data_file_length+= file->stats.data_file_length;
+ stats.index_file_length+= file->stats.index_file_length;
+ stats.delete_length+= file->stats.delete_length;
+ if (file->stats.check_time > stats.check_time)
+ stats.check_time= file->stats.check_time;
+ if (!file->stats.checksum_null)
+ {
+ stats.checksum+= file->stats.checksum;
+ stats.checksum_null= FALSE;
+ }
+ }
+ if (stats.records && stats.records < 2 &&
+ !(m_file[0]->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT))
+ stats.records= 2;
+ if (stats.records > 0)
+ stats.mean_rec_length= (ulong) (stats.data_file_length / stats.records);
+ else
+ stats.mean_rec_length= 0;
+ }
+ if (flag & HA_STATUS_CONST)
+ {
+ DBUG_PRINT("info", ("HA_STATUS_CONST"));
+ /*
+ Recalculate loads of constant variables. MyISAM also sets things
+ directly on the table share object.
+
+ Check whether this should be fixed since handlers should not
+ change things directly on the table object.
+
+ Monty comment: This should NOT be changed! It's the handlers
+ responsibility to correct table->s->keys_xxxx information if keys
+ have been disabled.
+
+ The most important parameters set here is records per key on
+ all indexes. block_size and primar key ref_length.
+
+ For each index there is an array of rec_per_key.
+ As an example if we have an index with three attributes a,b and c
+ we will have an array of 3 rec_per_key.
+ rec_per_key[0] is an estimate of number of records divided by
+ number of unique values of the field a.
+ rec_per_key[1] is an estimate of the number of records divided
+ by the number of unique combinations of the fields a and b.
+ rec_per_key[2] is an estimate of the number of records divided
+ by the number of unique combinations of the fields a,b and c.
+
+ Many handlers only set the value of rec_per_key when all fields
+ are bound (rec_per_key[2] in the example above).
+
+ If the handler doesn't support statistics, it should set all of the
+ above to 0.
+
+ We first scans through all partitions to get the one holding most rows.
+ We will then allow the handler with the most rows to set
+ the rec_per_key and use this as an estimate on the total table.
+
+ max_data_file_length: Maximum data file length
+ We ignore it, is only used in
+ SHOW TABLE STATUS
+ max_index_file_length: Maximum index file length
+ We ignore it since it is never used
+ block_size: Block size used
+ We set it to the value of the first handler
+ ref_length: We set this to the value calculated
+ and stored in local object
+ create_time: Creation time of table
+
+ So we calculate these constants by using the variables from the
+ handler with most rows.
+ */
+ handler *file, **file_array;
+ ulonglong max_records= 0;
+ uint32 i= 0;
+ uint32 handler_instance= 0;
+ bool handler_instance_set= 0;
+
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file)))
+ {
+ /* Get variables if not already done */
+ if (!(flag & HA_STATUS_VARIABLE) ||
+ !bitmap_is_set(&(m_part_info->read_partitions),
+ (uint) (file_array - m_file)))
+ file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag);
+ if (file->stats.records > max_records || !handler_instance_set)
+ {
+ handler_instance_set= 1;
+ max_records= file->stats.records;
+ handler_instance= i;
+ }
+ }
+ i++;
+ } while (*(++file_array));
+ /*
+ Sort the array of part_ids by number of records in
+ in descending order.
+ */
+ my_qsort2((void*) m_part_ids_sorted_by_num_of_records,
+ m_tot_parts,
+ sizeof(uint32),
+ (qsort2_cmp) compare_number_of_records,
+ this);
+
+ file= m_file[handler_instance];
+ file->info(HA_STATUS_CONST | no_lock_flag);
+ stats.block_size= file->stats.block_size;
+ stats.create_time= file->stats.create_time;
+ ref_length= m_ref_length;
+ }
+ if (flag & HA_STATUS_ERRKEY)
+ {
+ handler *file= m_file[m_last_part];
+ DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY"));
+ /*
+ This flag is used to get index number of the unique index that
+ reported duplicate key
+ We will report the errkey on the last handler used and ignore the rest
+ Note: all engines does not support HA_STATUS_ERRKEY, so set errkey.
+ */
+ file->errkey= errkey;
+ file->info(HA_STATUS_ERRKEY | no_lock_flag);
+ errkey= file->errkey;
+ }
+ if (flag & HA_STATUS_TIME)
+ {
+ handler *file, **file_array;
+ DBUG_PRINT("info", ("info: HA_STATUS_TIME"));
+ /*
+ This flag is used to set the latest update time of the table.
+ Used by SHOW commands
+ We will report the maximum of these times
+ */
+ stats.update_time= 0;
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ file->info(HA_STATUS_TIME | no_lock_flag);
+ if (file->stats.update_time > stats.update_time)
+ stats.update_time= file->stats.update_time;
+ } while (*(++file_array));
+ }
+ DBUG_RETURN(0);
+}
+
+
+void ha_partition::get_dynamic_partition_info(PARTITION_STATS *stat_info,
+ uint part_id)
+{
+ handler *file= m_file[part_id];
+ DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id));
+ file->info(HA_STATUS_TIME | HA_STATUS_VARIABLE |
+ HA_STATUS_VARIABLE_EXTRA | HA_STATUS_NO_LOCK);
+
+ stat_info->records= file->stats.records;
+ stat_info->mean_rec_length= file->stats.mean_rec_length;
+ stat_info->data_file_length= file->stats.data_file_length;
+ stat_info->max_data_file_length= file->stats.max_data_file_length;
+ stat_info->index_file_length= file->stats.index_file_length;
+ stat_info->max_index_file_length= file->stats.max_index_file_length;
+ stat_info->delete_length= file->stats.delete_length;
+ stat_info->create_time= file->stats.create_time;
+ stat_info->update_time= file->stats.update_time;
+ stat_info->check_time= file->stats.check_time;
+ stat_info->check_sum= file->stats.checksum;
+ stat_info->check_sum_null= file->stats.checksum_null;
+}
+
+
+void ha_partition::set_partitions_to_open(List<String> *partition_names)
+{
+ m_partitions_to_open= partition_names;
+}
+
+
+int ha_partition::open_read_partitions(char *name_buff, size_t name_buff_size)
+{
+ handler **file;
+ char *name_buffer_ptr;
+ int error= 0;
+
+ name_buffer_ptr= m_name_buffer_ptr;
+ file= m_file;
+ m_file_sample= NULL;
+ do
+ {
+ int n_file= (int)(file-m_file);
+ int is_open= bitmap_is_set(&m_opened_partitions, n_file);
+ int should_be_open= bitmap_is_set(&m_part_info->read_partitions, n_file);
+
+ /*
+ TODO: we can close some opened partitions if they're not
+ used in the query. It probably should be syncronized with the
+ table_open_cache value.
+
+ if (is_open && !should_be_open)
+ {
+ if (unlikely((error= (*file)->ha_close())))
+ goto err_handler;
+ bitmap_clear_bit(&m_opened_partitions, n_file);
+ }
+ else
+ */
+ if (!is_open && should_be_open)
+ {
+ LEX_CSTRING save_connect_string= table->s->connect_string;
+ if (unlikely((error=
+ create_partition_name(name_buff, name_buff_size,
+ table->s->normalized_path.str,
+ name_buffer_ptr, NORMAL_PART_NAME,
+ FALSE))))
+ goto err_handler;
+ if (!((*file)->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION))
+ table->s->connect_string= m_connect_string[(uint)(file-m_file)];
+ error= (*file)->ha_open(table, name_buff, m_mode,
+ m_open_test_lock | HA_OPEN_NO_PSI_CALL);
+ table->s->connect_string= save_connect_string;
+ if (error)
+ goto err_handler;
+ bitmap_set_bit(&m_opened_partitions, n_file);
+ m_last_part= n_file;
+ }
+ if (!m_file_sample && should_be_open)
+ m_file_sample= *file;
+ name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
+ } while (*(++file));
+
+err_handler:
+ return error;
+}
+
+
+int ha_partition::change_partitions_to_open(List<String> *partition_names)
+{
+ char name_buff[FN_REFLEN+1];
+ int error= 0;
+
+ if (m_is_clone_of)
+ return 0;
+
+ m_partitions_to_open= partition_names;
+ if (unlikely((error= m_part_info->set_partition_bitmaps(partition_names))))
+ goto err_handler;
+
+ if (m_lock_type != F_UNLCK)
+ {
+ /*
+ That happens after the LOCK TABLE statement.
+ Do nothing in this case.
+ */
+ return 0;
+ }
+
+ check_insert_autoincrement();
+ if (bitmap_cmp(&m_opened_partitions, &m_part_info->read_partitions) != 0)
+ return 0;
+
+ if (unlikely((error= read_par_file(table->s->normalized_path.str)) ||
+ (error= open_read_partitions(name_buff, sizeof(name_buff)))))
+ goto err_handler;
+
+ clear_handler_file();
+
+err_handler:
+ return error;
+}
+
+
+static int extra_cb(handler *h, void *operation)
+{
+ return h->extra(*(enum ha_extra_function*)operation);
+}
+
+
+static int start_keyread_cb(handler* h, void *p)
+{
+ return h->ha_start_keyread(*(uint*)p);
+}
+
+
+static int end_keyread_cb(handler* h, void *unused)
+{
+ return h->ha_end_keyread();
+}
+
+
+/**
+ General function to prepare handler for certain behavior.
+
+ @param[in] operation operation to execute
+
+ @return status
+ @retval 0 success
+ @retval >0 error code
+
+ @detail
+
+ extra() is called whenever the server wishes to send a hint to
+ the storage engine. The MyISAM engine implements the most hints.
+
+ We divide the parameters into the following categories:
+ 1) Operations used by most handlers
+ 2) Operations used by some non-MyISAM handlers
+ 3) Operations used only by MyISAM
+ 4) Operations only used by temporary tables for query processing
+ 5) Operations only used by MyISAM internally
+ 6) Operations not used at all
+ 7) Operations only used by federated tables for query processing
+ 8) Operations only used by NDB
+ 9) Operations only used by MERGE
+
+ The partition handler need to handle category 1), 2) and 3).
+
+ 1) Operations used by most handlers
+ -----------------------------------
+ HA_EXTRA_RESET:
+ This option is used by most handlers and it resets the handler state
+ to the same state as after an open call. This includes releasing
+ any READ CACHE or WRITE CACHE or other internal buffer used.
+
+ It is called from the reset method in the handler interface. There are
+ three instances where this is called.
+ 1) After completing a INSERT ... SELECT ... query the handler for the
+ table inserted into is reset
+ 2) It is called from close_thread_table which in turn is called from
+ close_thread_tables except in the case where the tables are locked
+ in which case ha_commit_stmt is called instead.
+ It is only called from here if refresh_version hasn't changed and the
+ table is not an old table when calling close_thread_table.
+ close_thread_tables is called from many places as a general clean up
+ function after completing a query.
+ 3) It is called when deleting the QUICK_RANGE_SELECT object if the
+ QUICK_RANGE_SELECT object had its own handler object. It is called
+ immediately before close of this local handler object.
+ HA_EXTRA_KEYREAD:
+ HA_EXTRA_NO_KEYREAD:
+ These parameters are used to provide an optimisation hint to the handler.
+ If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for
+ many handlers this means that the index-only scans can be used and it
+ is not necessary to use the real records to satisfy this part of the
+ query. Index-only scans is a very important optimisation for disk-based
+ indexes. For main-memory indexes most indexes contain a reference to the
+ record and thus KEYREAD only says that it is enough to read key fields.
+ HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET
+ will disable this option.
+ The handler will set HA_KEYREAD_ONLY in its table flags to indicate this
+ feature is supported.
+ HA_EXTRA_FLUSH:
+ Indication to flush tables to disk, is supposed to be used to
+ ensure disk based tables are flushed at end of query execution.
+ Currently is never used.
+
+ HA_EXTRA_FORCE_REOPEN:
+ Only used by MyISAM and Archive, called when altering table,
+ closing tables to enforce a reopen of the table files.
+
+ 2) Operations used by some non-MyISAM handlers
+ ----------------------------------------------
+ HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
+ This is a strictly InnoDB feature that is more or less undocumented.
+ When it is activated InnoDB copies field by field from its fetch
+ cache instead of all fields in one memcpy. Have no idea what the
+ purpose of this is.
+ Cut from include/my_base.h:
+ When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep
+ other fields intact. When this is off (by default) InnoDB will use memcpy
+ to overwrite entire row.
+ HA_EXTRA_IGNORE_DUP_KEY:
+ HA_EXTRA_NO_IGNORE_DUP_KEY:
+ Informs the handler to we will not stop the transaction if we get an
+ duplicate key errors during insert/update.
+ Always called in pair, triggered by INSERT IGNORE and other similar
+ SQL constructs.
+ Not used by MyISAM.
+
+ 3) Operations used only by MyISAM
+ ---------------------------------
+ HA_EXTRA_NORMAL:
+ Only used in MyISAM to reset quick mode, not implemented by any other
+ handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET.
+
+ It is called after completing a successful DELETE query if the QUICK
+ option is set.
+
+ HA_EXTRA_QUICK:
+ When the user does DELETE QUICK FROM table where-clause; this extra
+ option is called before the delete query is performed and
+ HA_EXTRA_NORMAL is called after the delete query is completed.
+ Temporary tables used internally in MySQL always set this option
+
+ The meaning of quick mode is that when deleting in a B-tree no merging
+ of leafs is performed. This is a common method and many large DBMS's
+ actually only support this quick mode since it is very difficult to
+ merge leaves in a tree used by many threads concurrently.
+
+ HA_EXTRA_CACHE:
+ This flag is usually set with extra_opt along with a cache size.
+ The size of this buffer is set by the user variable
+ record_buffer_size. The value of this cache size is the amount of
+ data read from disk in each fetch when performing a table scan.
+ This means that before scanning a table it is normal to call
+ extra with HA_EXTRA_CACHE and when the scan is completed to call
+ HA_EXTRA_NO_CACHE to release the cache memory.
+
+ Some special care is taken when using this extra parameter since there
+ could be a write ongoing on the table in the same statement. In this
+ one has to take special care since there might be a WRITE CACHE as
+ well. HA_EXTRA_CACHE specifies using a READ CACHE and using
+ READ CACHE and WRITE CACHE at the same time is not possible.
+
+ Only MyISAM currently use this option.
+
+ It is set when doing full table scans using rr_sequential and
+ reset when completing such a scan with end_read_record
+ (resetting means calling extra with HA_EXTRA_NO_CACHE).
+
+ It is set in filesort.cc for MyISAM internal tables and it is set in
+ a multi-update where HA_EXTRA_CACHE is called on a temporary result
+ table and after that ha_rnd_init(0) on table to be updated
+ and immediately after that HA_EXTRA_NO_CACHE on table to be updated.
+
+ Apart from that it is always used from init_read_record but not when
+ used from UPDATE statements. It is not used from DELETE statements
+ with ORDER BY and LIMIT but it is used in normal scan loop in DELETE
+ statements. The reason here is that DELETE's in MyISAM doesn't move
+ existings data rows.
+
+ It is also set in copy_data_between_tables when scanning the old table
+ to copy over to the new table.
+ And it is set in join_init_read_record where quick objects are used
+ to perform a scan on the table. In this case the full table scan can
+ even be performed multiple times as part of the nested loop join.
+
+ For purposes of the partition handler it is obviously necessary to have
+ special treatment of this extra call. If we would simply pass this
+ extra call down to each handler we would allocate
+ cache size * no of partitions amount of memory and this is not
+ necessary since we will only scan one partition at a time when doing
+ full table scans.
+
+ Thus we treat it by first checking whether we have MyISAM handlers in
+ the table, if not we simply ignore the call and if we have we will
+ record the call but will not call any underlying handler yet. Then
+ when performing the sequential scan we will check this recorded value
+ and call extra_opt whenever we start scanning a new partition.
+
+ HA_EXTRA_NO_CACHE:
+ When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the
+ flush method in the select_union class.
+ It is used to some extent when insert delayed inserts.
+ See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows().
+
+ It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers
+ if they are MyISAM handlers. Other handlers we can ignore the call
+ for. If no cache is in use they will quickly return after finding
+ this out. And we also ensure that all caches are disabled and no one
+ is left by mistake.
+ In the future this call will probably be deleted and we will instead call
+ ::reset();
+
+ HA_EXTRA_WRITE_CACHE:
+ See above, called from various places. It is mostly used when we
+ do INSERT ... SELECT
+ No special handling to save cache space is developed currently.
+
+ HA_EXTRA_PREPARE_FOR_UPDATE:
+ This is called as part of a multi-table update. When the table to be
+ updated is also scanned then this informs MyISAM handler to drop any
+ caches if dynamic records are used (fixed size records do not care
+ about this call). We pass this along to the first partition to scan, and
+ flag that it is to be called after HA_EXTRA_CACHE when moving to the next
+ partition to scan.
+
+ HA_EXTRA_PREPARE_FOR_DROP:
+ Only used by MyISAM, called in preparation for a DROP TABLE.
+ It's used mostly by Windows that cannot handle dropping an open file.
+ On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN.
+
+ HA_EXTRA_PREPARE_FOR_RENAME:
+ Informs the handler we are about to attempt a rename of the table.
+ For handlers that have share open files (MyISAM key-file and
+ Archive writer) they must close the files before rename is possible
+ on Windows.
+
+ HA_EXTRA_READCHECK:
+ HA_EXTRA_NO_READCHECK:
+ Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that
+ this is not needed in SQL. The reason for this call is that MyISAM sets
+ the READ_CHECK_USED in the open call so the call is needed for MyISAM
+ to reset this feature.
+ The idea with this parameter was to inform of doing/not doing a read
+ check before applying an update. Since SQL always performs a read before
+ applying the update No Read Check is needed in MyISAM as well.
+
+ This is a cut from Docs/myisam.txt
+ Sometimes you might want to force an update without checking whether
+ another user has changed the record since you last read it. This is
+ somewhat dangerous, so it should ideally not be used. That can be
+ accomplished by wrapping the mi_update() call in two calls to mi_extra(),
+ using these functions:
+ HA_EXTRA_NO_READCHECK=5 No readcheck on update
+ HA_EXTRA_READCHECK=6 Use readcheck (def)
+
+ HA_EXTRA_REMEMBER_POS:
+ HA_EXTRA_RESTORE_POS:
+ System versioning needs this for MyISAM and Aria tables.
+ On DELETE using PRIMARY KEY:
+ 1) handler::ha_index_read_map() saves rowid used for row delete/update
+ 2) handler::ha_update_row() can rewrite saved rowid
+ 3) handler::ha_delete_row()/handler::ha_update_row() expects saved but got
+ different rowid and operation fails
+ Using those flags prevents harmful side effect of 2)
+
+ 4) Operations only used by temporary tables for query processing
+ ----------------------------------------------------------------
+ HA_EXTRA_RESET_STATE:
+ Same as reset() except that buffers are not released. If there is
+ a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading
+ or to change type of cache between READ CACHE and WRITE CACHE.
+
+ This extra function is always called immediately before calling
+ delete_all_rows on the handler for temporary tables.
+ There are cases however when HA_EXTRA_RESET_STATE isn't called in
+ a similar case for a temporary table in sql_union.cc and in two other
+ cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE
+ called afterwards.
+ The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means
+ disable caching, delete all rows and enable WRITE CACHE. This is
+ used for temporary tables containing distinct sums and a
+ functional group.
+
+ The only case that delete_all_rows is called on non-temporary tables
+ is in sql_delete.cc when DELETE FROM table; is called by a user.
+ In this case no special extra calls are performed before or after this
+ call.
+
+ The partition handler should not need to bother about this one. It
+ should never be called.
+
+ HA_EXTRA_NO_ROWS:
+ Don't insert rows indication to HEAP and MyISAM, only used by temporary
+ tables used in query processing.
+ Not handled by partition handler.
+
+ 5) Operations only used by MyISAM internally
+ --------------------------------------------
+ HA_EXTRA_REINIT_CACHE:
+ This call reinitializes the READ CACHE described above if there is one
+ and otherwise the call is ignored.
+
+ We can thus safely call it on all underlying handlers if they are
+ MyISAM handlers. It is however never called so we don't handle it at all.
+ HA_EXTRA_FLUSH_CACHE:
+ Flush WRITE CACHE in MyISAM. It is only from one place in the code.
+ This is in sql_insert.cc where it is called if the table_flags doesn't
+ contain HA_DUPLICATE_POS. The only handler having the HA_DUPLICATE_POS
+ set is the MyISAM handler and so the only handler not receiving this
+ call is MyISAM.
+ Thus in effect this call is called but never used. Could be removed
+ from sql_insert.cc
+ HA_EXTRA_NO_USER_CHANGE:
+ Only used by MyISAM, never called.
+ Simulates lock_type as locked.
+ HA_EXTRA_WAIT_LOCK:
+ HA_EXTRA_WAIT_NOLOCK:
+ Only used by MyISAM, called from MyISAM handler but never from server
+ code on top of the handler.
+ Sets lock_wait on/off
+ HA_EXTRA_NO_KEYS:
+ Only used MyISAM, only used internally in MyISAM handler, never called
+ from server level.
+ HA_EXTRA_KEYREAD_CHANGE_POS:
+ HA_EXTRA_PRELOAD_BUFFER_SIZE:
+ HA_EXTRA_CHANGE_KEY_TO_DUP:
+ HA_EXTRA_CHANGE_KEY_TO_UNIQUE:
+ Only used by MyISAM, never called.
+
+ 6) Operations not used at all
+ -----------------------------
+ HA_EXTRA_KEY_CACHE:
+ HA_EXTRA_NO_KEY_CACHE:
+ This parameters are no longer used and could be removed.
+
+ 7) Operations only used by federated tables for query processing
+ ----------------------------------------------------------------
+ HA_EXTRA_INSERT_WITH_UPDATE:
+ Inform handler that an "INSERT...ON DUPLICATE KEY UPDATE" will be
+ executed. This condition is unset by HA_EXTRA_NO_IGNORE_DUP_KEY.
+
+ 8) Operations only used by NDB
+ ------------------------------
+ HA_EXTRA_DELETE_CANNOT_BATCH:
+ HA_EXTRA_UPDATE_CANNOT_BATCH:
+ Inform handler that delete_row()/update_row() cannot batch deletes/updates
+ and should perform them immediately. This may be needed when table has
+ AFTER DELETE/UPDATE triggers which access to subject table.
+ These flags are reset by the handler::extra(HA_EXTRA_RESET) call.
+
+ 9) Operations only used by MERGE
+ ------------------------------
+ HA_EXTRA_ADD_CHILDREN_LIST:
+ HA_EXTRA_ATTACH_CHILDREN:
+ HA_EXTRA_IS_ATTACHED_CHILDREN:
+ HA_EXTRA_DETACH_CHILDREN:
+ Special actions for MERGE tables. Ignore.
+*/
+
+int ha_partition::extra(enum ha_extra_function operation)
+{
+ DBUG_ENTER("ha_partition:extra");
+ DBUG_PRINT("enter", ("operation: %d", (int) operation));
+
+ switch (operation) {
+ /* Category 1), used by most handlers */
+ case HA_EXTRA_NO_KEYREAD:
+ DBUG_RETURN(loop_partitions(end_keyread_cb, NULL));
+ case HA_EXTRA_KEYREAD:
+ case HA_EXTRA_FLUSH:
+ case HA_EXTRA_PREPARE_FOR_FORCED_CLOSE:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ case HA_EXTRA_PREPARE_FOR_RENAME:
+ case HA_EXTRA_FORCE_REOPEN:
+ DBUG_RETURN(loop_extra_alter(operation));
+ break;
+
+ /* Category 2), used by non-MyISAM handlers */
+ case HA_EXTRA_IGNORE_DUP_KEY:
+ case HA_EXTRA_NO_IGNORE_DUP_KEY:
+ case HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
+ {
+ if (!m_myisam)
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ }
+ break;
+
+ /* Category 3), used by MyISAM handlers */
+ case HA_EXTRA_PREPARE_FOR_UPDATE:
+ /*
+ Needs to be run on the first partition in the range now, and
+ later in late_extra_cache, when switching to a new partition to scan.
+ */
+ m_extra_prepare_for_update= TRUE;
+ if (m_part_spec.start_part != NO_CURRENT_PART_ID)
+ {
+ if (!m_extra_cache)
+ m_extra_cache_part_id= m_part_spec.start_part;
+ DBUG_ASSERT(m_extra_cache_part_id == m_part_spec.start_part);
+ (void) m_file[m_part_spec.start_part]->extra(HA_EXTRA_PREPARE_FOR_UPDATE);
+ }
+ break;
+ case HA_EXTRA_NORMAL:
+ case HA_EXTRA_QUICK:
+ case HA_EXTRA_PREPARE_FOR_DROP:
+ case HA_EXTRA_FLUSH_CACHE:
+ case HA_EXTRA_PREPARE_FOR_ALTER_TABLE:
+ case HA_EXTRA_REMEMBER_POS:
+ case HA_EXTRA_RESTORE_POS:
+ {
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ }
+ case HA_EXTRA_NO_READCHECK:
+ {
+ /*
+ This is only done as a part of ha_open, which is also used in
+ ha_partition::open, so no need to do anything.
+ */
+ break;
+ }
+ case HA_EXTRA_CACHE:
+ {
+ prepare_extra_cache(0);
+ break;
+ }
+ case HA_EXTRA_NO_CACHE:
+ {
+ int ret= 0;
+ if (m_extra_cache_part_id != NO_CURRENT_PART_ID)
+ ret= m_file[m_extra_cache_part_id]->extra(HA_EXTRA_NO_CACHE);
+ m_extra_cache= FALSE;
+ m_extra_cache_size= 0;
+ m_extra_prepare_for_update= FALSE;
+ m_extra_cache_part_id= NO_CURRENT_PART_ID;
+ DBUG_RETURN(ret);
+ }
+ case HA_EXTRA_WRITE_CACHE:
+ {
+ m_extra_cache= FALSE;
+ m_extra_cache_size= 0;
+ m_extra_prepare_for_update= FALSE;
+ m_extra_cache_part_id= NO_CURRENT_PART_ID;
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ }
+ case HA_EXTRA_IGNORE_NO_KEY:
+ case HA_EXTRA_NO_IGNORE_NO_KEY:
+ {
+ /*
+ Ignore as these are specific to NDB for handling
+ idempotency
+ */
+ break;
+ }
+ case HA_EXTRA_WRITE_CAN_REPLACE:
+ case HA_EXTRA_WRITE_CANNOT_REPLACE:
+ {
+ /*
+ Informs handler that write_row() can replace rows which conflict
+ with row being inserted by PK/unique key without reporting error
+ to the SQL-layer.
+
+ At this time, this is safe by limitation of ha_partition
+ */
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ }
+ /* Category 7), used by federated handlers */
+ case HA_EXTRA_INSERT_WITH_UPDATE:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ /* Category 8) Operations only used by NDB */
+ case HA_EXTRA_DELETE_CANNOT_BATCH:
+ case HA_EXTRA_UPDATE_CANNOT_BATCH:
+ {
+ /* Currently only NDB use the *_CANNOT_BATCH */
+ break;
+ }
+ /* Category 9) Operations only used by MERGE */
+ case HA_EXTRA_ADD_CHILDREN_LIST:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ case HA_EXTRA_ATTACH_CHILDREN:
+ {
+ int result;
+ uint num_locks;
+ handler **file;
+ if ((result= loop_partitions(extra_cb, &operation)))
+ DBUG_RETURN(result);
+
+ /* Recalculate lock count as each child may have different set of locks */
+ num_locks= 0;
+ file= m_file;
+ do
+ {
+ num_locks+= (*file)->lock_count();
+ } while (*(++file));
+
+ m_num_locks= num_locks;
+ break;
+ }
+ case HA_EXTRA_IS_ATTACHED_CHILDREN:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ case HA_EXTRA_DETACH_CHILDREN:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ case HA_EXTRA_MARK_AS_LOG_TABLE:
+ /*
+ http://dev.mysql.com/doc/refman/5.1/en/partitioning-limitations.html
+ says we no longer support logging to partitioned tables, so we fail
+ here.
+ */
+ DBUG_RETURN(ER_UNSUPORTED_LOG_ENGINE);
+ case HA_EXTRA_STARTING_ORDERED_INDEX_SCAN:
+ case HA_EXTRA_BEGIN_ALTER_COPY:
+ case HA_EXTRA_END_ALTER_COPY:
+ DBUG_RETURN(loop_partitions(extra_cb, &operation));
+ default:
+ {
+ /* Temporary crash to discover what is wrong */
+ DBUG_ASSERT(0);
+ break;
+ }
+ }
+ DBUG_RETURN(1);
+}
+
+
+/**
+ Special extra call to reset extra parameters
+
+ @return Operation status.
+ @retval >0 Error code
+ @retval 0 Success
+
+ @note Called at end of each statement to reset buffers.
+ To avoid excessive calls, the m_partitions_to_reset bitmap keep records
+ of which partitions that have been used in extra(), external_lock() or
+ start_stmt() and is needed to be called.
+*/
+
+int ha_partition::reset(void)
+{
+ int result= 0;
+ int tmp;
+ uint i;
+ DBUG_ENTER("ha_partition::reset");
+
+ for (i= bitmap_get_first_set(&m_partitions_to_reset);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_partitions_to_reset, i))
+ {
+ if (bitmap_is_set(&m_opened_partitions, i) &&
+ (tmp= m_file[i]->ha_reset()))
+ result= tmp;
+ }
+ bitmap_clear_all(&m_partitions_to_reset);
+ m_extra_prepare_for_update= FALSE;
+ DBUG_RETURN(result);
+}
+
+/**
+ Special extra method with additional parameter
+ See @ref ha_partition::extra
+
+ @param[in] operation operation to execute
+ @param[in] arg extra argument
+
+ @return status
+ @retval 0 success
+ @retval >0 error code
+
+ @detail
+ Operations supported by extra_opt:
+ HA_EXTRA_KEYREAD:
+ arg is interpreted as key index
+ HA_EXTRA_CACHE:
+ arg is interpreted as size of cache in full table scan
+
+ For detailed description refer to @ref ha_partition::extra
+*/
+
+int ha_partition::extra_opt(enum ha_extra_function operation, ulong arg)
+{
+ DBUG_ENTER("ha_partition::extra_opt");
+
+ switch (operation)
+ {
+ case HA_EXTRA_KEYREAD:
+ DBUG_RETURN(loop_partitions(start_keyread_cb, &arg));
+ case HA_EXTRA_CACHE:
+ prepare_extra_cache(arg);
+ DBUG_RETURN(0);
+ default:
+ DBUG_ASSERT(0);
+ }
+ DBUG_RETURN(1);
+}
+
+
+/*
+ Call extra on handler with HA_EXTRA_CACHE and cachesize
+
+ SYNOPSIS
+ prepare_extra_cache()
+ cachesize Size of cache for full table scan
+
+ RETURN VALUE
+ NONE
+*/
+
+void ha_partition::prepare_extra_cache(uint cachesize)
+{
+ DBUG_ENTER("ha_partition::prepare_extra_cache");
+ DBUG_PRINT("enter", ("cachesize %u", cachesize));
+
+ m_extra_cache= TRUE;
+ m_extra_cache_size= cachesize;
+ if (m_part_spec.start_part != NO_CURRENT_PART_ID)
+ {
+ DBUG_ASSERT(bitmap_is_set(&m_partitions_to_reset,
+ m_part_spec.start_part));
+ bitmap_set_bit(&m_partitions_to_reset, m_part_spec.start_part);
+ late_extra_cache(m_part_spec.start_part);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Prepares our new and reorged handlers for rename or delete.
+
+ @param operation Operation to forward
+
+ @return Operation status
+ @retval 0 Success
+ @retval !0 Error
+*/
+
+int ha_partition::loop_extra_alter(enum ha_extra_function operation)
+{
+ int result= 0, tmp;
+ handler **file;
+ DBUG_ENTER("ha_partition::loop_extra_alter");
+ DBUG_ASSERT(operation == HA_EXTRA_PREPARE_FOR_RENAME ||
+ operation == HA_EXTRA_FORCE_REOPEN);
+
+ if (m_new_file != NULL)
+ {
+ for (file= m_new_file; *file; file++)
+ if ((tmp= (*file)->extra(operation)))
+ result= tmp;
+ }
+ if (m_reorged_file != NULL)
+ {
+ for (file= m_reorged_file; *file; file++)
+ if ((tmp= (*file)->extra(operation)))
+ result= tmp;
+ }
+ if ((tmp= loop_partitions(extra_cb, &operation)))
+ result= tmp;
+ DBUG_RETURN(result);
+}
+
+
+/**
+ Call callback(part, param) on all partitions
+
+ @param callback a callback to call for each partition
+ @param param a void*-parameter passed to callback
+
+ @return Operation status
+ @retval >0 Error code
+ @retval 0 Success
+*/
+
+int ha_partition::loop_partitions(handler_callback callback, void *param)
+{
+ int result= 0, tmp;
+ uint i;
+ DBUG_ENTER("ha_partition::loop_partitions");
+
+ for (i= bitmap_get_first_set(&m_part_info->lock_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
+ {
+ /*
+ This can be called after an error in ha_open.
+ In this case calling 'extra' can crash.
+ */
+ if (bitmap_is_set(&m_opened_partitions, i) &&
+ (tmp= callback(m_file[i], param)))
+ result= tmp;
+ }
+ /* Add all used partitions to be called in reset(). */
+ bitmap_union(&m_partitions_to_reset, &m_part_info->lock_partitions);
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Call extra(HA_EXTRA_CACHE) on next partition_id
+
+ SYNOPSIS
+ late_extra_cache()
+ partition_id Partition id to call extra on
+
+ RETURN VALUE
+ NONE
+*/
+
+void ha_partition::late_extra_cache(uint partition_id)
+{
+ handler *file;
+ DBUG_ENTER("ha_partition::late_extra_cache");
+ DBUG_PRINT("enter", ("extra_cache %u prepare %u partid %u size %u",
+ m_extra_cache, m_extra_prepare_for_update,
+ partition_id, m_extra_cache_size));
+
+ if (!m_extra_cache && !m_extra_prepare_for_update)
+ DBUG_VOID_RETURN;
+ file= m_file[partition_id];
+ if (m_extra_cache)
+ {
+ if (m_extra_cache_size == 0)
+ (void) file->extra(HA_EXTRA_CACHE);
+ else
+ (void) file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size);
+ }
+ if (m_extra_prepare_for_update)
+ {
+ (void) file->extra(HA_EXTRA_PREPARE_FOR_UPDATE);
+ }
+ m_extra_cache_part_id= partition_id;
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Call extra(HA_EXTRA_NO_CACHE) on next partition_id
+
+ SYNOPSIS
+ late_extra_no_cache()
+ partition_id Partition id to call extra on
+
+ RETURN VALUE
+ NONE
+*/
+
+void ha_partition::late_extra_no_cache(uint partition_id)
+{
+ handler *file;
+ DBUG_ENTER("ha_partition::late_extra_no_cache");
+
+ if (!m_extra_cache && !m_extra_prepare_for_update)
+ DBUG_VOID_RETURN;
+ file= m_file[partition_id];
+ (void) file->extra(HA_EXTRA_NO_CACHE);
+ DBUG_ASSERT(partition_id == m_extra_cache_part_id);
+ m_extra_cache_part_id= NO_CURRENT_PART_ID;
+ DBUG_VOID_RETURN;
+}
+
+
+/****************************************************************************
+ MODULE optimiser support
+****************************************************************************/
+
+/**
+ Get keys to use for scanning.
+
+ @return key_map of keys usable for scanning
+
+ @note No need to use read_partitions here, since it does not depend on
+ which partitions is used, only which storage engine used.
+*/
+
+const key_map *ha_partition::keys_to_use_for_scanning()
+{
+ DBUG_ENTER("ha_partition::keys_to_use_for_scanning");
+ DBUG_RETURN(get_open_file_sample()->keys_to_use_for_scanning());
+}
+
+
+/**
+ Minimum number of rows to base optimizer estimate on.
+*/
+
+ha_rows ha_partition::min_rows_for_estimate()
+{
+ uint i, max_used_partitions, tot_used_partitions;
+ DBUG_ENTER("ha_partition::min_rows_for_estimate");
+
+ tot_used_partitions= bitmap_bits_set(&m_part_info->read_partitions);
+
+ /*
+ All partitions might have been left as unused during partition pruning
+ due to, for example, an impossible WHERE condition. Nonetheless, the
+ optimizer might still attempt to perform (e.g. range) analysis where an
+ estimate of the the number of rows is calculated using records_in_range.
+ Hence, to handle this and other possible cases, use zero as the minimum
+ number of rows to base the estimate on if no partition is being used.
+ */
+ if (!tot_used_partitions)
+ DBUG_RETURN(0);
+
+ /*
+ Allow O(log2(tot_partitions)) increase in number of used partitions.
+ This gives O(tot_rows/log2(tot_partitions)) rows to base the estimate on.
+ I.e when the total number of partitions doubles, allow one more
+ partition to be checked.
+ */
+ i= 2;
+ max_used_partitions= 1;
+ while (i < m_tot_parts)
+ {
+ max_used_partitions++;
+ i= i << 1;
+ }
+ if (max_used_partitions > tot_used_partitions)
+ max_used_partitions= tot_used_partitions;
+
+ /* stats.records is already updated by the info(HA_STATUS_VARIABLE) call. */
+ DBUG_PRINT("info", ("max_used_partitions: %u tot_rows: %lu",
+ max_used_partitions,
+ (ulong) stats.records));
+ DBUG_PRINT("info", ("tot_used_partitions: %u min_rows_to_check: %lu",
+ tot_used_partitions,
+ (ulong) stats.records * max_used_partitions
+ / tot_used_partitions));
+ DBUG_RETURN(stats.records * max_used_partitions / tot_used_partitions);
+}
+
+
+/**
+ Get the biggest used partition.
+
+ Starting at the N:th biggest partition and skips all non used
+ partitions, returning the biggest used partition found
+
+ @param[in,out] part_index Skip the *part_index biggest partitions
+
+ @return The biggest used partition with index not lower than *part_index.
+ @retval NO_CURRENT_PART_ID No more partition used.
+ @retval != NO_CURRENT_PART_ID partition id of biggest used partition with
+ index >= *part_index supplied. Note that
+ *part_index will be updated to the next
+ partition index to use.
+*/
+
+uint ha_partition::get_biggest_used_partition(uint *part_index)
+{
+ uint part_id;
+ while ((*part_index) < m_tot_parts)
+ {
+ part_id= m_part_ids_sorted_by_num_of_records[(*part_index)++];
+ if (bitmap_is_set(&m_part_info->read_partitions, part_id))
+ return part_id;
+ }
+ return NO_CURRENT_PART_ID;
+}
+
+
+/*
+ Return time for a scan of the table
+
+ SYNOPSIS
+ scan_time()
+
+ RETURN VALUE
+ time for scan
+*/
+
+double ha_partition::scan_time()
+{
+ double scan_time= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::scan_time");
+
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ scan_time+= m_file[i]->scan_time();
+ DBUG_RETURN(scan_time);
+}
+
+
+/**
+ @brief
+ Caculate time to scan the given index (index only scan)
+
+ @param inx Index number to scan
+
+ @return time for scanning index inx
+*/
+
+double ha_partition::key_scan_time(uint inx)
+{
+ double scan_time= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::key_scan_time");
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ scan_time+= m_file[i]->key_scan_time(inx);
+ DBUG_RETURN(scan_time);
+}
+
+
+double ha_partition::keyread_time(uint inx, uint ranges, ha_rows rows)
+{
+ double read_time= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::keyread_time");
+ if (!ranges)
+ DBUG_RETURN(handler::keyread_time(inx, ranges, rows));
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ read_time+= m_file[i]->keyread_time(inx, ranges, rows);
+ DBUG_RETURN(read_time);
+}
+
+
+/**
+ Find number of records in a range.
+ @param inx Index number
+ @param min_key Start of range
+ @param max_key End of range
+
+ @return Number of rows in range.
+
+ Given a starting key, and an ending key estimate the number of rows that
+ will exist between the two. max_key may be empty which in case determine
+ if start_key matches any rows.
+*/
+
+ha_rows ha_partition::records_in_range(uint inx, const key_range *min_key,
+ const key_range *max_key,
+ page_range *pages)
+{
+ ha_rows min_rows_to_check, rows, estimated_rows=0, checked_rows= 0;
+ uint partition_index= 0, part_id;
+ page_range ignore_pages;
+ DBUG_ENTER("ha_partition::records_in_range");
+
+ /* Don't calculate pages of more than one active partition */
+ if (bitmap_bits_set(&m_part_info->read_partitions) != 1)
+ pages= &ignore_pages;
+
+ min_rows_to_check= min_rows_for_estimate();
+
+ while ((part_id= get_biggest_used_partition(&partition_index))
+ != NO_CURRENT_PART_ID)
+ {
+ rows= m_file[part_id]->records_in_range(inx, min_key, max_key, pages);
+
+ DBUG_PRINT("info", ("part %u match %lu rows of %lu", part_id, (ulong) rows,
+ (ulong) m_file[part_id]->stats.records));
+
+ if (rows == HA_POS_ERROR)
+ DBUG_RETURN(HA_POS_ERROR);
+ estimated_rows+= rows;
+ checked_rows+= m_file[part_id]->stats.records;
+ /*
+ Returning 0 means no rows can be found, so we must continue
+ this loop as long as we have estimated_rows == 0.
+ Also many engines return 1 to indicate that there may exist
+ a matching row, we do not normalize this by dividing by number of
+ used partitions, but leave it to be returned as a sum, which will
+ reflect that we will need to scan each partition's index.
+
+ Note that this statistics may not always be correct, so we must
+ continue even if the current partition has 0 rows, since we might have
+ deleted rows from the current partition, or inserted to the next
+ partition.
+ */
+ if (estimated_rows && checked_rows &&
+ checked_rows >= min_rows_to_check)
+ {
+ DBUG_PRINT("info",
+ ("records_in_range(inx %u): %lu (%lu * %lu / %lu)",
+ inx,
+ (ulong) (estimated_rows * stats.records / checked_rows),
+ (ulong) estimated_rows,
+ (ulong) stats.records,
+ (ulong) checked_rows));
+ DBUG_RETURN(estimated_rows * stats.records / checked_rows);
+ }
+ }
+ DBUG_PRINT("info", ("records_in_range(inx %u): %lu",
+ inx,
+ (ulong) estimated_rows));
+ DBUG_RETURN(estimated_rows);
+}
+
+
+/**
+ Estimate upper bound of number of rows.
+
+ @return Number of rows.
+*/
+
+ha_rows ha_partition::estimate_rows_upper_bound()
+{
+ ha_rows rows, tot_rows= 0;
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::estimate_rows_upper_bound");
+
+ do
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file)))
+ {
+ rows= (*file)->estimate_rows_upper_bound();
+ if (rows == HA_POS_ERROR)
+ DBUG_RETURN(HA_POS_ERROR);
+ tot_rows+= rows;
+ }
+ } while (*(++file));
+ DBUG_RETURN(tot_rows);
+}
+
+
+/*
+ Get time to read
+
+ SYNOPSIS
+ read_time()
+ index Index number used
+ ranges Number of ranges
+ rows Number of rows
+
+ RETURN VALUE
+ time for read
+
+ DESCRIPTION
+ This will be optimised later to include whether or not the index can
+ be used with partitioning. To achieve we need to add another parameter
+ that specifies how many of the index fields that are bound in the ranges.
+ Possibly added as a new call to handlers.
+*/
+
+double ha_partition::read_time(uint index, uint ranges, ha_rows rows)
+{
+ DBUG_ENTER("ha_partition::read_time");
+
+ DBUG_RETURN(get_open_file_sample()->read_time(index, ranges, rows));
+}
+
+
+/**
+ Number of rows in table. see handler.h
+
+ @return Number of records in the table (after pruning!)
+*/
+
+ha_rows ha_partition::records()
+{
+ ha_rows tot_rows= 0;
+ uint i;
+ DBUG_ENTER("ha_partition::records");
+
+ for (i= bitmap_get_first_set(&m_part_info->read_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->read_partitions, i))
+ {
+ if (unlikely(m_file[i]->pre_records()))
+ DBUG_RETURN(HA_POS_ERROR);
+ const ha_rows rows= m_file[i]->records();
+ if (unlikely(rows == HA_POS_ERROR))
+ DBUG_RETURN(HA_POS_ERROR);
+ tot_rows+= rows;
+ }
+ DBUG_PRINT("exit", ("records: %lld", (longlong) tot_rows));
+ DBUG_RETURN(tot_rows);
+}
+
+
+/*
+ Is it ok to switch to a new engine for this table
+
+ SYNOPSIS
+ can_switch_engine()
+
+ RETURN VALUE
+ TRUE Ok
+ FALSE Not ok
+
+ DESCRIPTION
+ Used to ensure that tables with foreign key constraints are not moved
+ to engines without foreign key support.
+*/
+
+bool ha_partition::can_switch_engines()
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::can_switch_engines");
+
+ file= m_file;
+ do
+ {
+ if (!(*file)->can_switch_engines())
+ DBUG_RETURN(FALSE);
+ } while (*(++file));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Is table cache supported
+
+ SYNOPSIS
+ table_cache_type()
+
+*/
+
+uint8 ha_partition::table_cache_type()
+{
+ DBUG_ENTER("ha_partition::table_cache_type");
+
+ DBUG_RETURN(get_open_file_sample()->table_cache_type());
+}
+
+
+/**
+ Calculate hash value for KEY partitioning using an array of fields.
+
+ @param field_array An array of the fields in KEY partitioning
+
+ @return hash_value calculated
+
+ @note Uses the hash function on the character set of the field.
+ Integer and floating point fields use the binary character set by default.
+*/
+
+uint32 ha_partition::calculate_key_hash_value(Field **field_array)
+{
+ ulong nr1= 1;
+ ulong nr2= 4;
+ bool use_51_hash;
+ use_51_hash= MY_TEST((*field_array)->table->part_info->key_algorithm ==
+ partition_info::KEY_ALGORITHM_51);
+
+ do
+ {
+ Field *field= *field_array;
+ if (use_51_hash)
+ {
+ switch (field->real_type()) {
+ case MYSQL_TYPE_TINY:
+ case MYSQL_TYPE_SHORT:
+ case MYSQL_TYPE_LONG:
+ case MYSQL_TYPE_FLOAT:
+ case MYSQL_TYPE_DOUBLE:
+ case MYSQL_TYPE_NEWDECIMAL:
+ case MYSQL_TYPE_TIMESTAMP:
+ case MYSQL_TYPE_LONGLONG:
+ case MYSQL_TYPE_INT24:
+ case MYSQL_TYPE_TIME:
+ case MYSQL_TYPE_DATETIME:
+ case MYSQL_TYPE_YEAR:
+ case MYSQL_TYPE_NEWDATE:
+ {
+ if (field->is_null())
+ {
+ nr1^= (nr1 << 1) | 1;
+ continue;
+ }
+ /* Force this to my_hash_sort_bin, which was used in 5.1! */
+ uint len= field->pack_length();
+ my_charset_bin.hash_sort(field->ptr, len, &nr1, &nr2);
+ /* Done with this field, continue with next one. */
+ continue;
+ }
+ case MYSQL_TYPE_STRING:
+ case MYSQL_TYPE_VARCHAR:
+ case MYSQL_TYPE_BIT:
+ /* Not affected, same in 5.1 and 5.5 */
+ break;
+ /*
+ ENUM/SET uses my_hash_sort_simple in 5.1 (i.e. my_charset_latin1)
+ and my_hash_sort_bin in 5.5!
+ */
+ case MYSQL_TYPE_ENUM:
+ case MYSQL_TYPE_SET:
+ {
+ if (field->is_null())
+ {
+ nr1^= (nr1 << 1) | 1;
+ continue;
+ }
+ /* Force this to my_hash_sort_bin, which was used in 5.1! */
+ uint len= field->pack_length();
+ my_charset_latin1.hash_sort(field->ptr, len, &nr1, &nr2);
+ continue;
+ }
+ /* New types in mysql-5.6. */
+ case MYSQL_TYPE_DATETIME2:
+ case MYSQL_TYPE_TIME2:
+ case MYSQL_TYPE_TIMESTAMP2:
+ /* Not affected, 5.6+ only! */
+ break;
+
+ /* These types should not be allowed for partitioning! */
+ case MYSQL_TYPE_NULL:
+ case MYSQL_TYPE_DECIMAL:
+ case MYSQL_TYPE_DATE:
+ case MYSQL_TYPE_TINY_BLOB:
+ case MYSQL_TYPE_MEDIUM_BLOB:
+ case MYSQL_TYPE_LONG_BLOB:
+ case MYSQL_TYPE_BLOB:
+ case MYSQL_TYPE_VAR_STRING:
+ case MYSQL_TYPE_GEOMETRY:
+ /* fall through */
+ default:
+ DBUG_ASSERT(0); // New type?
+ /* Fall through for default hashing (5.5). */
+ }
+ /* fall through, use collation based hashing. */
+ }
+ field->hash(&nr1, &nr2);
+ } while (*(++field_array));
+ return (uint32) nr1;
+}
+
+
+/****************************************************************************
+ MODULE print messages
+****************************************************************************/
+
+const char *ha_partition::index_type(uint inx)
+{
+ uint first_used_partition;
+ DBUG_ENTER("ha_partition::index_type");
+
+ first_used_partition= bitmap_get_first_set(&(m_part_info->read_partitions));
+
+ if (first_used_partition == MY_BIT_NONE)
+ {
+ DBUG_ASSERT(0); // How can this happen?
+ DBUG_RETURN(handler::index_type(inx));
+ }
+
+ DBUG_RETURN(m_file[first_used_partition]->index_type(inx));
+}
+
+
+enum row_type ha_partition::get_row_type() const
+{
+ uint i;
+ enum row_type type;
+ DBUG_ENTER("ha_partition::get_row_type");
+
+ i= bitmap_get_first_set(&m_part_info->read_partitions);
+ DBUG_ASSERT(i < m_tot_parts);
+ if (i >= m_tot_parts)
+ DBUG_RETURN(ROW_TYPE_NOT_USED);
+
+ type= m_file[i]->get_row_type();
+ DBUG_PRINT("info", ("partition %u, row_type: %d", i, type));
+
+ for (i= bitmap_get_next_set(&m_part_info->lock_partitions, i);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
+ {
+ enum row_type part_type= m_file[i]->get_row_type();
+ DBUG_PRINT("info", ("partition %u, row_type: %d", i, type));
+ if (part_type != type)
+ DBUG_RETURN(ROW_TYPE_NOT_USED);
+ }
+
+ DBUG_RETURN(type);
+}
+
+
+void ha_partition::append_row_to_str(String &str)
+{
+ const uchar *rec;
+ bool is_rec0= !m_err_rec || m_err_rec == table->record[0];
+ if (is_rec0)
+ rec= table->record[0];
+ else
+ rec= m_err_rec;
+ // If PK, use full PK instead of full part field array!
+ if (table->s->primary_key != MAX_KEY)
+ {
+ KEY *key= table->key_info + table->s->primary_key;
+ KEY_PART_INFO *key_part= key->key_part;
+ KEY_PART_INFO *key_part_end= key_part + key->user_defined_key_parts;
+ if (!is_rec0)
+ set_key_field_ptr(key, rec, table->record[0]);
+ for (; key_part != key_part_end; key_part++)
+ {
+ Field *field= key_part->field;
+ str.append(" ");
+ str.append(&field->field_name);
+ str.append(":");
+ field_unpack(&str, field, rec, 0, false);
+ }
+ if (!is_rec0)
+ set_key_field_ptr(key, table->record[0], rec);
+ }
+ else
+ {
+ Field **field_ptr;
+ if (!is_rec0)
+ table->move_fields(m_part_info->full_part_field_array, rec,
+ table->record[0]);
+ /* No primary key, use full partition field array. */
+ for (field_ptr= m_part_info->full_part_field_array;
+ *field_ptr;
+ field_ptr++)
+ {
+ Field *field= *field_ptr;
+ str.append(" ");
+ str.append(&field->field_name);
+ str.append(":");
+ field_unpack(&str, field, rec, 0, false);
+ }
+ if (!is_rec0)
+ table->move_fields(m_part_info->full_part_field_array, table->record[0],
+ rec);
+ }
+}
+
+
+void ha_partition::print_error(int error, myf errflag)
+{
+ THD *thd= ha_thd();
+ DBUG_ENTER("ha_partition::print_error");
+ DBUG_PRINT("enter", ("error: %d", error));
+
+ /* Should probably look for my own errors first */
+ if ((error == HA_ERR_NO_PARTITION_FOUND) &&
+ ! (thd->lex->alter_info.partition_flags & ALTER_PARTITION_TRUNCATE))
+ {
+ m_part_info->print_no_partition_found(table, errflag);
+ DBUG_VOID_RETURN;
+ }
+ else if (error == HA_ERR_ROW_IN_WRONG_PARTITION)
+ {
+ /* Should only happen on DELETE or UPDATE! */
+ DBUG_ASSERT(thd_sql_command(thd) == SQLCOM_DELETE ||
+ thd_sql_command(thd) == SQLCOM_DELETE_MULTI ||
+ thd_sql_command(thd) == SQLCOM_UPDATE ||
+ thd_sql_command(thd) == SQLCOM_UPDATE_MULTI);
+ DBUG_ASSERT(m_err_rec);
+ if (m_err_rec)
+ {
+ uint max_length;
+ char buf[MAX_KEY_LENGTH];
+ String str(buf,sizeof(buf),system_charset_info);
+ uint32 part_id;
+ str.length(0);
+ str.append("(");
+ str.append_ulonglong(m_last_part);
+ str.append(" != ");
+ if (get_part_for_buf(m_err_rec, m_rec0, m_part_info, &part_id))
+ str.append("?");
+ else
+ str.append_ulonglong(part_id);
+ str.append(")");
+ append_row_to_str(str);
+
+ /* Log this error, so the DBA can notice it and fix it! */
+ sql_print_error("Table '%-192s' corrupted: row in wrong partition: %s"
+ "Please REPAIR the table!",
+ table->s->table_name.str,
+ str.c_ptr_safe());
+
+ max_length= (MYSQL_ERRMSG_SIZE -
+ (uint) strlen(ER_THD(thd, ER_ROW_IN_WRONG_PARTITION)));
+ if (str.length() >= max_length)
+ {
+ str.length(max_length-4);
+ str.append(STRING_WITH_LEN("..."));
+ }
+ my_error(ER_ROW_IN_WRONG_PARTITION, MYF(0), str.c_ptr_safe());
+ m_err_rec= NULL;
+ DBUG_VOID_RETURN;
+ }
+ /* fall through to generic error handling. */
+ }
+
+ /*
+ We choose a main handler's print_error if:
+ * m_file has not been initialized, like in bug#42438
+ * lookup_errkey is set, which means that an error has occured in the
+ main handler, not in individual partitions
+ */
+ if (m_file && lookup_errkey == (uint)-1)
+ {
+ if (m_last_part >= m_tot_parts)
+ {
+ DBUG_ASSERT(0);
+ m_last_part= 0;
+ }
+ m_file[m_last_part]->print_error(error, errflag);
+ }
+ else
+ handler::print_error(error, errflag);
+ DBUG_VOID_RETURN;
+}
+
+
+bool ha_partition::get_error_message(int error, String *buf)
+{
+ DBUG_ENTER("ha_partition::get_error_message");
+
+ /* Should probably look for my own errors first */
+
+ /* In case m_file has not been initialized, like in bug#42438 */
+ if (m_file)
+ DBUG_RETURN(m_file[m_last_part]->get_error_message(error, buf));
+ DBUG_RETURN(handler::get_error_message(error, buf));
+
+}
+
+
+/****************************************************************************
+ MODULE in-place ALTER
+****************************************************************************/
+/**
+ Get table flags.
+*/
+
+handler::Table_flags ha_partition::table_flags() const
+{
+ uint first_used_partition= 0;
+ DBUG_ENTER("ha_partition::table_flags");
+ if (m_handler_status < handler_initialized ||
+ m_handler_status >= handler_closed)
+ DBUG_RETURN(PARTITION_ENABLED_TABLE_FLAGS);
+
+ if (get_lock_type() != F_UNLCK)
+ {
+ /*
+ The flags are cached after external_lock, and may depend on isolation
+ level. So we should use a locked partition to get the correct flags.
+ */
+ first_used_partition= bitmap_get_first_set(&m_part_info->lock_partitions);
+ if (first_used_partition == MY_BIT_NONE)
+ first_used_partition= 0;
+ }
+ DBUG_RETURN((m_file[first_used_partition]->ha_table_flags() &
+ ~(PARTITION_DISABLED_TABLE_FLAGS)) |
+ (PARTITION_ENABLED_TABLE_FLAGS));
+}
+
+
+/**
+ alter_table_flags must be on handler/table level, not on hton level
+ due to the ha_partition hton does not know what the underlying hton is.
+*/
+
+alter_table_operations ha_partition::alter_table_flags(alter_table_operations flags)
+{
+ alter_table_operations flags_to_return;
+ DBUG_ENTER("ha_partition::alter_table_flags");
+
+ flags_to_return= ht->alter_table_flags(flags);
+ flags_to_return|= m_file[0]->alter_table_flags(flags);
+
+ DBUG_RETURN(flags_to_return);
+}
+
+
+/**
+ check if copy of data is needed in alter table.
+*/
+bool ha_partition::check_if_incompatible_data(HA_CREATE_INFO *create_info,
+ uint table_changes)
+{
+ /*
+ The check for any partitioning related changes have already been done
+ in mysql_alter_table (by fix_partition_func), so it is only up to
+ the underlying handlers.
+ */
+ List_iterator<partition_element> part_it(m_part_info->partitions);
+ HA_CREATE_INFO dummy_info= *create_info;
+ uint i=0;
+ while (partition_element *part_elem= part_it++)
+ {
+ if (m_is_sub_partitioned)
+ {
+ List_iterator<partition_element> subpart_it(part_elem->subpartitions);
+ while (partition_element *sub_elem= subpart_it++)
+ {
+ dummy_info.data_file_name= sub_elem->data_file_name;
+ dummy_info.index_file_name= sub_elem->index_file_name;
+ if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes))
+ return COMPATIBLE_DATA_NO;
+ }
+ }
+ else
+ {
+ dummy_info.data_file_name= part_elem->data_file_name;
+ dummy_info.index_file_name= part_elem->index_file_name;
+ if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes))
+ return COMPATIBLE_DATA_NO;
+ }
+ }
+ return COMPATIBLE_DATA_YES;
+}
+
+
+/**
+ Support of in-place alter table.
+*/
+
+/**
+ Helper class for in-place alter, see handler.h
+*/
+
+class ha_partition_inplace_ctx : public inplace_alter_handler_ctx
+{
+public:
+ inplace_alter_handler_ctx **handler_ctx_array;
+private:
+ uint m_tot_parts;
+
+public:
+ ha_partition_inplace_ctx(THD *thd, uint tot_parts)
+ : inplace_alter_handler_ctx(),
+ handler_ctx_array(NULL),
+ m_tot_parts(tot_parts)
+ {}
+
+ ~ha_partition_inplace_ctx()
+ {
+ if (handler_ctx_array)
+ {
+ for (uint index= 0; index < m_tot_parts; index++)
+ delete handler_ctx_array[index];
+ }
+ }
+};
+
+
+enum_alter_inplace_result
+ha_partition::check_if_supported_inplace_alter(TABLE *altered_table,
+ Alter_inplace_info *ha_alter_info)
+{
+ uint index= 0;
+ enum_alter_inplace_result result;
+ alter_table_operations orig_ops;
+ ha_partition_inplace_ctx *part_inplace_ctx;
+ bool first_is_set= false;
+ THD *thd= ha_thd();
+
+ DBUG_ENTER("ha_partition::check_if_supported_inplace_alter");
+ /*
+ Support inplace change of KEY () -> KEY ALGORITHM = N ().
+ Any other change would set partition_changed in
+ prep_alter_part_table() in mysql_alter_table().
+ */
+ if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
+ {
+ DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
+ DBUG_RETURN(HA_ALTER_INPLACE_NO_LOCK);
+ }
+
+ part_inplace_ctx=
+ new (thd->mem_root) ha_partition_inplace_ctx(thd, m_tot_parts);
+ if (!part_inplace_ctx)
+ DBUG_RETURN(HA_ALTER_ERROR);
+
+ part_inplace_ctx->handler_ctx_array= (inplace_alter_handler_ctx **)
+ thd->alloc(sizeof(inplace_alter_handler_ctx *) * (m_tot_parts + 1));
+ if (!part_inplace_ctx->handler_ctx_array)
+ DBUG_RETURN(HA_ALTER_ERROR);
+
+ do {
+ result= HA_ALTER_INPLACE_NO_LOCK;
+ /* Set all to NULL, including the terminating one. */
+ for (index= 0; index <= m_tot_parts; index++)
+ part_inplace_ctx->handler_ctx_array[index]= NULL;
+
+ ha_alter_info->handler_flags |= ALTER_PARTITIONED;
+ orig_ops= ha_alter_info->handler_flags;
+ for (index= 0; index < m_tot_parts; index++)
+ {
+ enum_alter_inplace_result p_result=
+ m_file[index]->check_if_supported_inplace_alter(altered_table,
+ ha_alter_info);
+ part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;
+
+ if (index == 0)
+ first_is_set= (ha_alter_info->handler_ctx != NULL);
+ else if (first_is_set != (ha_alter_info->handler_ctx != NULL))
+ {
+ /* Either none or all partitions must set handler_ctx! */
+ DBUG_ASSERT(0);
+ DBUG_RETURN(HA_ALTER_ERROR);
+ }
+ if (p_result < result)
+ result= p_result;
+ if (result == HA_ALTER_ERROR)
+ break;
+ }
+ } while (orig_ops != ha_alter_info->handler_flags);
+
+ ha_alter_info->handler_ctx= part_inplace_ctx;
+ /*
+ To indicate for future inplace calls that there are several
+ partitions/handlers that need to be committed together,
+ we set group_commit_ctx to the NULL terminated array of
+ the partitions handlers.
+ */
+ ha_alter_info->group_commit_ctx= part_inplace_ctx->handler_ctx_array;
+
+ DBUG_RETURN(result);
+}
+
+
+bool ha_partition::prepare_inplace_alter_table(TABLE *altered_table,
+ Alter_inplace_info *ha_alter_info)
+{
+ uint index= 0;
+ bool error= false;
+ ha_partition_inplace_ctx *part_inplace_ctx;
+
+ DBUG_ENTER("ha_partition::prepare_inplace_alter_table");
+
+ /*
+ Changing to similar partitioning, only update metadata.
+ Non allowed changes would be caought in prep_alter_part_table().
+ */
+ if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
+ {
+ DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
+ DBUG_RETURN(false);
+ }
+
+ part_inplace_ctx=
+ static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);
+
+ for (index= 0; index < m_tot_parts && !error; index++)
+ {
+ ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index];
+ if (m_file[index]->ha_prepare_inplace_alter_table(altered_table,
+ ha_alter_info))
+ error= true;
+ part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;
+ }
+ ha_alter_info->handler_ctx= part_inplace_ctx;
+
+ DBUG_RETURN(error);
+}
+
+
+bool ha_partition::inplace_alter_table(TABLE *altered_table,
+ Alter_inplace_info *ha_alter_info)
+{
+ uint index= 0;
+ bool error= false;
+ ha_partition_inplace_ctx *part_inplace_ctx;
+
+ DBUG_ENTER("ha_partition::inplace_alter_table");
+
+ /*
+ Changing to similar partitioning, only update metadata.
+ Non allowed changes would be caught in prep_alter_part_table().
+ */
+ if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
+ {
+ DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
+ DBUG_RETURN(false);
+ }
+
+ part_inplace_ctx=
+ static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);
+
+ for (index= 0; index < m_tot_parts && !error; index++)
+ {
+ if ((ha_alter_info->handler_ctx=
+ part_inplace_ctx->handler_ctx_array[index]) != NULL
+ && index != 0)
+ ha_alter_info->handler_ctx->set_shared_data
+ (*part_inplace_ctx->handler_ctx_array[index - 1]);
+
+ if (m_file[index]->ha_inplace_alter_table(altered_table,
+ ha_alter_info))
+ error= true;
+ part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx;
+ }
+ ha_alter_info->handler_ctx= part_inplace_ctx;
+
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Note that this function will try rollback failed ADD INDEX by
+ executing DROP INDEX for the indexes that were committed (if any)
+ before the error occurred. This means that the underlying storage
+ engine must be able to drop index in-place with X-lock held.
+ (As X-lock will be held here if new indexes are to be committed)
+*/
+bool ha_partition::commit_inplace_alter_table(TABLE *altered_table,
+ Alter_inplace_info *ha_alter_info,
+ bool commit)
+{
+ ha_partition_inplace_ctx *part_inplace_ctx;
+ bool error= false;
+
+ DBUG_ENTER("ha_partition::commit_inplace_alter_table");
+
+ /*
+ Changing to similar partitioning, only update metadata.
+ Non allowed changes would be caught in prep_alter_part_table().
+ */
+ if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO)
+ {
+ DBUG_ASSERT(ha_alter_info->alter_info->flags == 0);
+ DBUG_RETURN(false);
+ }
+
+ part_inplace_ctx=
+ static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx);
+
+ if (commit)
+ {
+ DBUG_ASSERT(ha_alter_info->group_commit_ctx ==
+ part_inplace_ctx->handler_ctx_array);
+ ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[0];
+ error= m_file[0]->ha_commit_inplace_alter_table(altered_table,
+ ha_alter_info, commit);
+ if (unlikely(error))
+ goto end;
+ if (ha_alter_info->group_commit_ctx)
+ {
+ /*
+ If ha_alter_info->group_commit_ctx is not set to NULL,
+ then the engine did only commit the first partition!
+ The engine is probably new, since both innodb and the default
+ implementation of handler::commit_inplace_alter_table sets it to NULL
+ and simply return false, since it allows metadata changes only.
+ Loop over all other partitions as to follow the protocol!
+ */
+ uint i;
+ DBUG_ASSERT(0);
+ for (i= 1; i < m_tot_parts; i++)
+ {
+ ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i];
+ error|= m_file[i]->ha_commit_inplace_alter_table(altered_table,
+ ha_alter_info,
+ true);
+ }
+ }
+ }
+ else
+ {
+ uint i;
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ /* Rollback, commit == false, is done for each partition! */
+ ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i];
+ if (m_file[i]->ha_commit_inplace_alter_table(altered_table,
+ ha_alter_info, false))
+ error= true;
+ }
+ }
+end:
+ ha_alter_info->handler_ctx= part_inplace_ctx;
+
+ DBUG_RETURN(error);
+}
+
+
+uint ha_partition::min_of_the_max_uint(
+ uint (handler::*operator_func)(void) const) const
+{
+ handler **file;
+ uint min_of_the_max= ((*m_file)->*operator_func)();
+
+ for (file= m_file+1; *file; file++)
+ {
+ uint tmp= ((*file)->*operator_func)();
+ set_if_smaller(min_of_the_max, tmp);
+ }
+ return min_of_the_max;
+}
+
+
+uint ha_partition::max_supported_key_parts() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_parts);
+}
+
+
+uint ha_partition::max_supported_key_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_length);
+}
+
+
+uint ha_partition::max_supported_key_part_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_part_length);
+}
+
+
+uint ha_partition::max_supported_record_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_record_length);
+}
+
+
+uint ha_partition::max_supported_keys() const
+{
+ return min_of_the_max_uint(&handler::max_supported_keys);
+}
+
+
+uint ha_partition::min_record_length(uint options) const
+{
+ handler **file;
+ uint max= (*m_file)->min_record_length(options);
+
+ for (file= m_file, file++; *file; file++)
+ if (max < (*file)->min_record_length(options))
+ max= (*file)->min_record_length(options);
+ return max;
+}
+
+/****************************************************************************
+ MODULE compare records
+****************************************************************************/
+/*
+ Compare two positions
+
+ SYNOPSIS
+ cmp_ref()
+ ref1 First position
+ ref2 Second position
+
+ RETURN VALUE
+ <0 ref1 < ref2
+ 0 Equal
+ >0 ref1 > ref2
+
+ DESCRIPTION
+ We get two references and need to check if those records are the same.
+ If they belong to different partitions we decide that they are not
+ the same record. Otherwise we use the particular handler to decide if
+ they are the same. Sort in partition id order if not equal.
+
+ MariaDB note:
+ Please don't merge the code from MySQL that does this:
+
+ We get two references and need to check if those records are the same.
+ If they belong to different partitions we decide that they are not
+ the same record. Otherwise we use the particular handler to decide if
+ they are the same. Sort in partition id order if not equal.
+
+ It is incorrect, MariaDB has an alternative fix.
+*/
+
+int ha_partition::cmp_ref(const uchar *ref1, const uchar *ref2)
+{
+ int cmp;
+ uint32 diff1, diff2;
+ DBUG_ENTER("ha_partition::cmp_ref");
+
+ cmp= get_open_file_sample()->cmp_ref((ref1 + PARTITION_BYTES_IN_POS),
+ (ref2 + PARTITION_BYTES_IN_POS));
+ if (cmp)
+ DBUG_RETURN(cmp);
+
+ diff2= uint2korr(ref2);
+ diff1= uint2korr(ref1);
+
+ if (diff1 == diff2)
+ {
+ /* This means that the references are same and are in same partition.*/
+ DBUG_RETURN(0);
+ }
+
+ /*
+ In Innodb we compare with either primary key value or global DB_ROW_ID so
+ it is not possible that the two references are equal and are in different
+ partitions, but in myisam it is possible since we are comparing offsets.
+ Remove this assert if DB_ROW_ID is changed to be per partition.
+ */
+ DBUG_ASSERT(!m_innodb);
+ DBUG_RETURN(diff2 > diff1 ? -1 : 1);
+}
+
+
+/****************************************************************************
+ MODULE auto increment
+****************************************************************************/
+
+
+/**
+ Retreive new values for part_share->next_auto_inc_val if needed
+
+ This is needed if the value has not been initialized or if one of
+ the underlying partitions require that the value should be re-calculated
+*/
+
+void ha_partition::update_next_auto_inc_val()
+{
+ if (!part_share->auto_inc_initialized ||
+ need_info_for_auto_inc())
+ info(HA_STATUS_AUTO);
+}
+
+
+/**
+ Determine whether a partition needs auto-increment initialization.
+
+ @return
+ TRUE A partition needs auto-increment initialization
+ FALSE No partition needs auto-increment initialization
+
+ Resets part_share->auto_inc_initialized if next auto_increment needs to be
+ recalculated.
+*/
+
+bool ha_partition::need_info_for_auto_inc()
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::need_info_for_auto_inc");
+
+ do
+ {
+ if ((*file)->need_info_for_auto_inc())
+ {
+ /* We have to get new auto_increment values from handler */
+ part_share->auto_inc_initialized= FALSE;
+ DBUG_RETURN(TRUE);
+ }
+ } while (*(++file));
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Determine if all partitions can use the current auto-increment value for
+ auto-increment initialization.
+
+ @return
+ TRUE All partitions can use the current auto-increment
+ value for auto-increment initialization
+ FALSE All partitions cannot use the current
+ auto-increment value for auto-increment
+ initialization
+
+ Notes
+ This function is only called for ::info(HA_STATUS_AUTO) and is
+ mainly used by the Spider engine, which returns false
+ except in the case of DROP TABLE or ALTER TABLE when it returns TRUE.
+ Other engines always returns TRUE for this call.
+*/
+
+bool ha_partition::can_use_for_auto_inc_init()
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::can_use_for_auto_inc_init");
+
+ do
+ {
+ if (!(*file)->can_use_for_auto_inc_init())
+ DBUG_RETURN(FALSE);
+ } while (*(++file));
+ DBUG_RETURN(TRUE);
+}
+
+
+int ha_partition::reset_auto_increment(ulonglong value)
+{
+ handler **file= m_file;
+ int res;
+ DBUG_ENTER("ha_partition::reset_auto_increment");
+ lock_auto_increment();
+ part_share->auto_inc_initialized= false;
+ part_share->next_auto_inc_val= 0;
+ do
+ {
+ if ((res= (*file)->ha_reset_auto_increment(value)) != 0)
+ break;
+ } while (*(++file));
+ unlock_auto_increment();
+ DBUG_RETURN(res);
+}
+
+
+/**
+ This method is called by update_auto_increment which in turn is called
+ by the individual handlers as part of write_row. We use the
+ part_share->next_auto_inc_val, or search all
+ partitions for the highest auto_increment_value if not initialized or
+ if auto_increment field is a secondary part of a key, we must search
+ every partition when holding a mutex to be sure of correctness.
+*/
+
+void ha_partition::get_auto_increment(ulonglong offset, ulonglong increment,
+ ulonglong nb_desired_values,
+ ulonglong *first_value,
+ ulonglong *nb_reserved_values)
+{
+ DBUG_ENTER("ha_partition::get_auto_increment");
+ DBUG_PRINT("enter", ("offset: %lu inc: %lu desired_values: %lu "
+ "first_value: %lu", (ulong) offset, (ulong) increment,
+ (ulong) nb_desired_values, (ulong) *first_value));
+ DBUG_ASSERT(increment);
+ DBUG_ASSERT(nb_desired_values);
+ *first_value= 0;
+ if (table->s->next_number_keypart)
+ {
+ /*
+ next_number_keypart is != 0 if the auto_increment column is a secondary
+ column in the index (it is allowed in MyISAM)
+ */
+ DBUG_PRINT("info", ("next_number_keypart != 0"));
+ ulonglong nb_reserved_values_part;
+ ulonglong first_value_part, max_first_value;
+ handler **file= m_file;
+ first_value_part= max_first_value= *first_value;
+ /* Must find highest value among all partitions. */
+ do
+ {
+ /* Only nb_desired_values = 1 makes sense */
+ (*file)->get_auto_increment(offset, increment, 1,
+ &first_value_part, &nb_reserved_values_part);
+ if (unlikely(first_value_part == ULONGLONG_MAX)) // error in one partition
+ {
+ *first_value= first_value_part;
+ /* log that the error was between table/partition handler */
+ sql_print_error("Partition failed to reserve auto_increment value");
+ DBUG_VOID_RETURN;
+ }
+ DBUG_PRINT("info", ("first_value_part: %lu", (ulong) first_value_part));
+ set_if_bigger(max_first_value, first_value_part);
+ } while (*(++file));
+ *first_value= max_first_value;
+ *nb_reserved_values= 1;
+ }
+ else
+ {
+ THD *thd= ha_thd();
+ /*
+ This is initialized in the beginning of the first write_row call.
+ */
+ DBUG_ASSERT(part_share->auto_inc_initialized);
+ /*
+ Get a lock for handling the auto_increment in part_share
+ for avoiding two concurrent statements getting the same number.
+ */
+
+ lock_auto_increment();
+
+ /*
+ In a multi-row insert statement like INSERT SELECT and LOAD DATA
+ where the number of candidate rows to insert is not known in advance
+ we must hold a lock/mutex for the whole statement if we have statement
+ based replication. Because the statement-based binary log contains
+ only the first generated value used by the statement, and slaves assumes
+ all other generated values used by this statement were consecutive to
+ this first one, we must exclusively lock the generator until the
+ statement is done.
+ */
+ if (!auto_increment_safe_stmt_log_lock &&
+ thd->lex->sql_command != SQLCOM_INSERT &&
+ mysql_bin_log.is_open() &&
+ !thd->is_current_stmt_binlog_format_row() &&
+ (thd->variables.option_bits & OPTION_BIN_LOG))
+ {
+ DBUG_PRINT("info", ("locking auto_increment_safe_stmt_log_lock"));
+ auto_increment_safe_stmt_log_lock= TRUE;
+ }
+
+ /* this gets corrected (for offset/increment) in update_auto_increment */
+ *first_value= part_share->next_auto_inc_val;
+ part_share->next_auto_inc_val+= nb_desired_values * increment;
+
+ unlock_auto_increment();
+ DBUG_PRINT("info", ("*first_value: %lu", (ulong) *first_value));
+ *nb_reserved_values= nb_desired_values;
+ }
+ DBUG_VOID_RETURN;
+}
+
+void ha_partition::release_auto_increment()
+{
+ DBUG_ENTER("ha_partition::release_auto_increment");
+
+ if (table->s->next_number_keypart)
+ {
+ uint i;
+ for (i= bitmap_get_first_set(&m_part_info->lock_partitions);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_part_info->lock_partitions, i))
+ {
+ m_file[i]->ha_release_auto_increment();
+ }
+ }
+ else
+ {
+ lock_auto_increment();
+ if (next_insert_id)
+ {
+ ulonglong next_auto_inc_val= part_share->next_auto_inc_val;
+ /*
+ If the current auto_increment values is lower than the reserved
+ value, and the reserved value was reserved by this thread,
+ we can lower the reserved value.
+ */
+ if (next_insert_id < next_auto_inc_val &&
+ auto_inc_interval_for_cur_row.maximum() >= next_auto_inc_val)
+ {
+ THD *thd= ha_thd();
+ /*
+ Check that we do not lower the value because of a failed insert
+ with SET INSERT_ID, i.e. forced/non generated values.
+ */
+ if (thd->auto_inc_intervals_forced.maximum() < next_insert_id)
+ part_share->next_auto_inc_val= next_insert_id;
+ }
+ DBUG_PRINT("info", ("part_share->next_auto_inc_val: %lu",
+ (ulong) part_share->next_auto_inc_val));
+ }
+ /*
+ Unlock the multi-row statement lock taken in get_auto_increment.
+ These actions must be performed even if the next_insert_id field
+ contains zero, otherwise if the update_auto_increment fails then
+ an unnecessary lock will remain:
+ */
+ if (auto_increment_safe_stmt_log_lock)
+ {
+ auto_increment_safe_stmt_log_lock= FALSE;
+ DBUG_PRINT("info", ("unlocking auto_increment_safe_stmt_log_lock"));
+ }
+
+ unlock_auto_increment();
+ }
+ DBUG_VOID_RETURN;
+}
+
+/****************************************************************************
+ MODULE initialize handler for HANDLER call
+****************************************************************************/
+
+void ha_partition::init_table_handle_for_HANDLER()
+{
+ return;
+}
+
+
+/**
+ Calculate the checksum of the table (all partitions)
+*/
+
+int ha_partition::pre_calculate_checksum()
+{
+ int error;
+ DBUG_ENTER("ha_partition::pre_calculate_checksum");
+ m_pre_calling= TRUE;
+ if ((table_flags() & (HA_HAS_OLD_CHECKSUM | HA_HAS_NEW_CHECKSUM)))
+ {
+ handler **file= m_file;
+ do
+ {
+ if ((error= (*file)->pre_calculate_checksum()))
+ {
+ DBUG_RETURN(error);
+ }
+ } while (*(++file));
+ }
+ DBUG_RETURN(0);
+}
+
+
+int ha_partition::calculate_checksum()
+{
+ int error;
+ stats.checksum= 0;
+ stats.checksum_null= TRUE;
+
+ DBUG_ENTER("ha_partition::calculate_checksum");
+ if (!m_pre_calling)
+ {
+ if ((error= pre_calculate_checksum()))
+ {
+ m_pre_calling= FALSE;
+ DBUG_RETURN(error);
+ }
+ }
+ m_pre_calling= FALSE;
+
+ handler **file= m_file;
+ do
+ {
+ if ((error= (*file)->calculate_checksum()))
+ {
+ DBUG_RETURN(error);
+ }
+ if (!(*file)->stats.checksum_null)
+ {
+ stats.checksum+= (*file)->stats.checksum;
+ stats.checksum_null= FALSE;
+ }
+ } while (*(++file));
+ DBUG_RETURN(0);
+}
+
+
+/****************************************************************************
+ MODULE enable/disable indexes
+****************************************************************************/
+
+/*
+ Disable indexes for a while
+ SYNOPSIS
+ disable_indexes()
+ mode Mode
+ RETURN VALUES
+ 0 Success
+ != 0 Error
+*/
+
+int ha_partition::disable_indexes(uint mode)
+{
+ handler **file;
+ int error= 0;
+
+ DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
+ for (file= m_file; *file; file++)
+ {
+ if (unlikely((error= (*file)->ha_disable_indexes(mode))))
+ break;
+ }
+ return error;
+}
+
+
+/*
+ Enable indexes again
+ SYNOPSIS
+ enable_indexes()
+ mode Mode
+ RETURN VALUES
+ 0 Success
+ != 0 Error
+*/
+
+int ha_partition::enable_indexes(uint mode)
+{
+ handler **file;
+ int error= 0;
+
+ DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
+ for (file= m_file; *file; file++)
+ {
+ if (unlikely((error= (*file)->ha_enable_indexes(mode))))
+ break;
+ }
+ return error;
+}
+
+
+/*
+ Check if indexes are disabled
+ SYNOPSIS
+ indexes_are_disabled()
+
+ RETURN VALUES
+ 0 Indexes are enabled
+ != 0 Indexes are disabled
+*/
+
+int ha_partition::indexes_are_disabled(void)
+{
+ handler **file;
+ int error= 0;
+
+ DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions)));
+ for (file= m_file; *file; file++)
+ {
+ if (unlikely((error= (*file)->indexes_are_disabled())))
+ break;
+ }
+ return error;
+}
+
+
+/**
+ Check/fix misplaced rows.
+
+ @param read_part_id Partition to check/fix.
+ @param repair If true, move misplaced rows to correct partition.
+
+ @return Operation status.
+ @retval HA_ADMIN_OK Success
+ @retval != HA_ADMIN_OK Error
+*/
+
+int ha_partition::check_misplaced_rows(uint read_part_id, bool do_repair)
+{
+ int result= 0;
+ uint32 correct_part_id;
+ longlong func_value;
+ longlong num_misplaced_rows= 0;
+
+ DBUG_ENTER("ha_partition::check_misplaced_rows");
+
+ DBUG_ASSERT(m_file);
+
+ if (m_part_info->vers_info &&
+ read_part_id != m_part_info->vers_info->now_part->id &&
+ !m_part_info->vers_info->interval.is_set())
+ {
+ print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "note",
+ table_share->db.str, table->alias,
+ opt_op_name[CHECK_PARTS],
+ "Not supported for non-INTERVAL history partitions");
+ DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
+ }
+
+ if (do_repair)
+ {
+ /* We must read the full row, if we need to move it! */
+ bitmap_set_all(table->read_set);
+ bitmap_set_all(table->write_set);
+ }
+ else
+ {
+ /* Only need to read the partitioning fields. */
+ bitmap_union(table->read_set, &m_part_info->full_part_field_set);
+ }
+
+ if ((result= m_file[read_part_id]->ha_rnd_init(1)))
+ DBUG_RETURN(result);
+
+ while (true)
+ {
+ if ((result= m_file[read_part_id]->ha_rnd_next(m_rec0)))
+ {
+ if (result != HA_ERR_END_OF_FILE)
+ break;
+
+ if (num_misplaced_rows > 0)
+ {
+ print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "warning",
+ table_share->db.str, table->alias,
+ opt_op_name[REPAIR_PARTS],
+ "Moved %lld misplaced rows",
+ num_misplaced_rows);
+ }
+ /* End-of-file reached, all rows are now OK, reset result and break. */
+ result= 0;
+ break;
+ }
+
+ result= m_part_info->get_partition_id(m_part_info, &correct_part_id,
+ &func_value);
+ if (result)
+ break;
+
+ if (correct_part_id != read_part_id)
+ {
+ num_misplaced_rows++;
+ if (!do_repair)
+ {
+ /* Check. */
+ print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "error",
+ table_share->db.str, table->alias,
+ opt_op_name[CHECK_PARTS],
+ "Found a misplaced row");
+ /* Break on first misplaced row! */
+ result= HA_ADMIN_NEEDS_UPGRADE;
+ break;
+ }
+ else
+ {
+ DBUG_PRINT("info", ("Moving row from partition %u to %u",
+ (uint) read_part_id, (uint) correct_part_id));
+
+ /*
+ Insert row into correct partition. Notice that there are no commit
+ for every N row, so the repair will be one large transaction!
+ */
+ if ((result= m_file[correct_part_id]->ha_write_row(m_rec0)))
+ {
+ /*
+ We have failed to insert a row, it might have been a duplicate!
+ */
+ char buf[MAX_KEY_LENGTH];
+ String str(buf,sizeof(buf),system_charset_info);
+ str.length(0);
+ if (result == HA_ERR_FOUND_DUPP_KEY)
+ {
+ str.append("Duplicate key found, "
+ "please update or delete the record:\n");
+ result= HA_ADMIN_CORRUPT;
+ }
+ m_err_rec= NULL;
+ append_row_to_str(str);
+
+ /*
+ If the engine supports transactions, the failure will be
+ rolled back
+ */
+ if (!m_file[correct_part_id]->has_transactions_and_rollback())
+ {
+ /* Log this error, so the DBA can notice it and fix it! */
+ sql_print_error("Table '%-192s' failed to move/insert a row"
+ " from part %u into part %u:\n%s",
+ table->s->table_name.str,
+ (uint) read_part_id,
+ (uint) correct_part_id,
+ str.c_ptr_safe());
+ }
+ print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "error",
+ table_share->db.str, table->alias,
+ opt_op_name[REPAIR_PARTS],
+ "Failed to move/insert a row"
+ " from part %u into part %u:\n%s",
+ (uint) read_part_id,
+ (uint) correct_part_id,
+ str.c_ptr_safe());
+ break;
+ }
+
+ /* Delete row from wrong partition. */
+ if ((result= m_file[read_part_id]->ha_delete_row(m_rec0)))
+ {
+ if (m_file[correct_part_id]->has_transactions_and_rollback())
+ break;
+ /*
+ We have introduced a duplicate, since we failed to remove it
+ from the wrong partition.
+ */
+ char buf[MAX_KEY_LENGTH];
+ String str(buf,sizeof(buf),system_charset_info);
+ str.length(0);
+ m_err_rec= NULL;
+ append_row_to_str(str);
+
+ /* Log this error, so the DBA can notice it and fix it! */
+ sql_print_error("Table '%-192s': Delete from part %u failed with"
+ " error %d. But it was already inserted into"
+ " part %u, when moving the misplaced row!"
+ "\nPlease manually fix the duplicate row:\n%s",
+ table->s->table_name.str,
+ (uint) read_part_id,
+ result,
+ (uint) correct_part_id,
+ str.c_ptr_safe());
+ break;
+ }
+ }
+ }
+ }
+
+ int tmp_result= m_file[read_part_id]->ha_rnd_end();
+ DBUG_RETURN(result ? result : tmp_result);
+}
+
+
+#define KEY_PARTITIONING_CHANGED_STR \
+ "KEY () partitioning changed, please run:\n" \
+ "ALTER TABLE %s.%s ALGORITHM = INPLACE %s"
+
+int ha_partition::check_for_upgrade(HA_CHECK_OPT *check_opt)
+{
+ int error= HA_ADMIN_NEEDS_CHECK;
+ DBUG_ENTER("ha_partition::check_for_upgrade");
+
+ /*
+ This is called even without FOR UPGRADE,
+ if the .frm version is lower than the current version.
+ In that case return that it needs checking!
+ */
+ if (!(check_opt->sql_flags & TT_FOR_UPGRADE))
+ DBUG_RETURN(error);
+
+ /*
+ Partitions will be checked for during their ha_check!
+
+ Check if KEY (sub)partitioning was used and any field's hash calculation
+ differs from 5.1, see bug#14521864.
+ */
+ if (table->s->mysql_version < 50503 && // 5.1 table (<5.5.3)
+ ((m_part_info->part_type == HASH_PARTITION && // KEY partitioned
+ m_part_info->list_of_part_fields) ||
+ (m_is_sub_partitioned && // KEY subpartitioned
+ m_part_info->list_of_subpart_fields)))
+ {
+ Field **field;
+ if (m_is_sub_partitioned)
+ {
+ field= m_part_info->subpart_field_array;
+ }
+ else
+ {
+ field= m_part_info->part_field_array;
+ }
+ for (; *field; field++)
+ {
+ switch ((*field)->real_type()) {
+ case MYSQL_TYPE_TINY:
+ case MYSQL_TYPE_SHORT:
+ case MYSQL_TYPE_LONG:
+ case MYSQL_TYPE_FLOAT:
+ case MYSQL_TYPE_DOUBLE:
+ case MYSQL_TYPE_NEWDECIMAL:
+ case MYSQL_TYPE_TIMESTAMP:
+ case MYSQL_TYPE_LONGLONG:
+ case MYSQL_TYPE_INT24:
+ case MYSQL_TYPE_TIME:
+ case MYSQL_TYPE_DATETIME:
+ case MYSQL_TYPE_YEAR:
+ case MYSQL_TYPE_NEWDATE:
+ case MYSQL_TYPE_ENUM:
+ case MYSQL_TYPE_SET:
+ {
+ THD *thd= ha_thd();
+ char *part_buf;
+ String db_name, table_name;
+ uint part_buf_len;
+ bool skip_generation= false;
+ partition_info::enum_key_algorithm old_algorithm;
+ old_algorithm= m_part_info->key_algorithm;
+ error= HA_ADMIN_FAILED;
+ append_identifier(ha_thd(), &db_name, &table_share->db);
+ append_identifier(ha_thd(), &table_name, &table_share->table_name);
+ if (m_part_info->key_algorithm != partition_info::KEY_ALGORITHM_NONE)
+ {
+ /*
+ Only possible when someone tampered with .frm files,
+ like during tests :)
+ */
+ skip_generation= true;
+ }
+ m_part_info->key_algorithm= partition_info::KEY_ALGORITHM_51;
+ if (skip_generation ||
+ !(part_buf= generate_partition_syntax_for_frm(thd, m_part_info,
+ &part_buf_len,
+ NULL, NULL)) ||
+ print_admin_msg(thd, SQL_ADMIN_MSG_TEXT_SIZE + 1, "error",
+ table_share->db.str,
+ table->alias,
+ opt_op_name[CHECK_PARTS],
+ KEY_PARTITIONING_CHANGED_STR,
+ db_name.c_ptr_safe(),
+ table_name.c_ptr_safe(),
+ part_buf))
+ {
+ /* Error creating admin message (too long string?). */
+ print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error",
+ table_share->db.str, table->alias,
+ opt_op_name[CHECK_PARTS],
+ KEY_PARTITIONING_CHANGED_STR,
+ db_name.c_ptr_safe(), table_name.c_ptr_safe(),
+ "<old partition clause>, but add ALGORITHM = 1"
+ " between 'KEY' and '(' to change the metadata"
+ " without the need of a full table rebuild.");
+ }
+ m_part_info->key_algorithm= old_algorithm;
+ DBUG_RETURN(error);
+ }
+ default:
+ /* Not affected! */
+ ;
+ }
+ }
+ }
+
+ DBUG_RETURN(error);
+}
+
+
+TABLE_LIST *ha_partition::get_next_global_for_child()
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::get_next_global_for_child");
+ for (file= m_file; *file; file++)
+ {
+ TABLE_LIST *table_list;
+ if ((table_list= (*file)->get_next_global_for_child()))
+ DBUG_RETURN(table_list);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Push an engine condition to the condition stack of the storage engine
+ for each partition.
+
+ @param cond Pointer to the engine condition to be pushed.
+
+ @return NULL Underlying engine will not return rows that
+ do not match the passed condition.
+ <> NULL 'Remainder' condition that the caller must use
+ to filter out records.
+*/
+
+const COND *ha_partition::cond_push(const COND *cond)
+{
+ uint i;
+ COND *res_cond= NULL;
+ DBUG_ENTER("ha_partition::cond_push");
+
+ for (i= bitmap_get_first_set(&m_partitions_to_reset);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_partitions_to_reset, i))
+ {
+ if (bitmap_is_set(&m_opened_partitions, i))
+ {
+ if (m_file[i]->pushed_cond != cond)
+ {
+ if (m_file[i]->cond_push(cond))
+ res_cond= (COND *) cond;
+ else
+ m_file[i]->pushed_cond= cond;
+ }
+ }
+ }
+ DBUG_RETURN(res_cond);
+}
+
+
+/**
+ Pop the top condition from the condition stack of the storage engine
+ for each partition.
+*/
+
+void ha_partition::cond_pop()
+{
+ uint i;
+ DBUG_ENTER("ha_partition::cond_pop");
+
+ for (i= bitmap_get_first_set(&m_partitions_to_reset);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_partitions_to_reset, i))
+ {
+ if (bitmap_is_set(&m_opened_partitions, i))
+ {
+ m_file[i]->cond_pop();
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Perform bulk update preparation on each partition.
+
+ SYNOPSIS
+ start_bulk_update()
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Success
+*/
+
+bool ha_partition::start_bulk_update()
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::start_bulk_update");
+
+ if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
+ table->write_set))
+ DBUG_RETURN(TRUE);
+
+ do
+ {
+ bzero(&(*file)->copy_info, sizeof((*file)->copy_info));
+ if ((*file)->start_bulk_update())
+ DBUG_RETURN(TRUE);
+ } while (*(++file));
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Perform bulk update execution on each partition. A bulk update allows
+ a handler to batch the updated rows instead of performing the updates
+ one row at a time.
+
+ SYNOPSIS
+ exec_bulk_update()
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Success
+*/
+
+int ha_partition::exec_bulk_update(ha_rows *dup_key_found)
+{
+ int error;
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::exec_bulk_update");
+
+ do
+ {
+ if (unlikely((error= (*file)->exec_bulk_update(dup_key_found))))
+ DBUG_RETURN(error);
+ } while (*(++file));
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Perform bulk update cleanup on each partition.
+
+ SYNOPSIS
+ end_bulk_update()
+
+ RETURN VALUE
+ NONE
+*/
+
+int ha_partition::end_bulk_update()
+{
+ int error= 0;
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::end_bulk_update");
+
+ do
+ {
+ int tmp;
+ if ((tmp= (*file)->end_bulk_update()))
+ error= tmp;
+ } while (*(++file));
+ sum_copy_infos();
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Add the row to the bulk update on the partition on which the row is stored.
+ A bulk update allows a handler to batch the updated rows instead of
+ performing the updates one row at a time.
+
+ SYNOPSIS
+ bulk_update_row()
+ old_data Old record
+ new_data New record
+ dup_key_found Number of duplicate keys found
+
+ RETURN VALUE
+ >1 Error
+ 1 Bulk update not used, normal operation used
+ 0 Bulk update used by handler
+*/
+
+int ha_partition::bulk_update_row(const uchar *old_data, const uchar *new_data,
+ ha_rows *dup_key_found)
+{
+ int error= 0;
+ uint32 part_id;
+ longlong func_value;
+ DBUG_ENTER("ha_partition::bulk_update_row");
+
+ MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
+ error= m_part_info->get_partition_id(m_part_info, &part_id,
+ &func_value);
+ dbug_tmp_restore_column_map(&table->read_set, old_map);
+ if (unlikely(error))
+ {
+ m_part_info->err_value= func_value;
+ goto end;
+ }
+
+ error= m_file[part_id]->ha_bulk_update_row(old_data, new_data,
+ dup_key_found);
+
+end:
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Perform bulk delete preparation on each partition.
+
+ SYNOPSIS
+ start_bulk_delete()
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Success
+*/
+
+bool ha_partition::start_bulk_delete()
+{
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::start_bulk_delete");
+
+ do
+ {
+ if ((*file)->start_bulk_delete())
+ DBUG_RETURN(TRUE);
+ } while (*(++file));
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Perform bulk delete cleanup on each partition.
+
+ SYNOPSIS
+ end_bulk_delete()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::end_bulk_delete()
+{
+ int error= 0;
+ handler **file= m_file;
+ DBUG_ENTER("ha_partition::end_bulk_delete");
+
+ do
+ {
+ int tmp;
+ if ((tmp= (*file)->end_bulk_delete()))
+ error= tmp;
+ } while (*(++file));
+ sum_copy_infos();
+ DBUG_RETURN(error);
+}
+
+
+bool ha_partition::check_if_updates_are_ignored(const char *op) const
+{
+ return (handler::check_if_updates_are_ignored(op) ||
+ ha_check_if_updates_are_ignored(table->in_use, partition_ht(), op));
+}
+
+/**
+ Perform initialization for a direct update request.
+
+ SYNOPSIS
+ direct_update_rows_init()
+ update fields Pointer to the list of fields to update
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::direct_update_rows_init(List<Item> *update_fields)
+{
+ int error;
+ uint i, found;
+ handler *file;
+ DBUG_ENTER("ha_partition::direct_update_rows_init");
+
+ if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
+ table->write_set))
+ {
+ DBUG_PRINT("info", ("partition FALSE by updating part_key"));
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ }
+
+ m_part_spec.start_part= 0;
+ m_part_spec.end_part= m_tot_parts - 1;
+ m_direct_update_part_spec= m_part_spec;
+
+ found= 0;
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
+ bitmap_is_set(&(m_part_info->lock_partitions), i))
+ {
+ file= m_file[i];
+ if (unlikely((error= (m_pre_calling ?
+ file->pre_direct_update_rows_init(update_fields) :
+ file->direct_update_rows_init(update_fields)))))
+ {
+ DBUG_PRINT("info", ("partition FALSE by storage engine"));
+ DBUG_RETURN(error);
+ }
+ found++;
+ }
+ }
+
+ TABLE_LIST *table_list= table->pos_in_table_list;
+ if (found != 1 && table_list)
+ {
+ while (table_list->parent_l)
+ table_list= table_list->parent_l;
+ st_select_lex *select_lex= table_list->select_lex;
+ DBUG_PRINT("info", ("partition select_lex: %p", select_lex));
+ if (select_lex && select_lex->explicit_limit)
+ {
+ DBUG_PRINT("info", ("partition explicit_limit=TRUE"));
+ DBUG_PRINT("info", ("partition offset_limit: %p",
+ select_lex->offset_limit));
+ DBUG_PRINT("info", ("partition select_limit: %p",
+ select_lex->select_limit));
+ DBUG_PRINT("info", ("partition FALSE by select_lex"));
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ }
+ }
+ DBUG_PRINT("info", ("partition OK"));
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Do initialization for performing parallel direct update
+ for a handlersocket update request.
+
+ SYNOPSIS
+ pre_direct_update_rows_init()
+ update fields Pointer to the list of fields to update
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::pre_direct_update_rows_init(List<Item> *update_fields)
+{
+ bool save_m_pre_calling;
+ int error;
+ DBUG_ENTER("ha_partition::pre_direct_update_rows_init");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ error= direct_update_rows_init(update_fields);
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Execute a direct update request. A direct update request updates all
+ qualified rows in a single operation, rather than one row at a time.
+ The direct update operation is pushed down to each individual
+ partition.
+
+ SYNOPSIS
+ direct_update_rows()
+ update_rows Number of updated rows
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::direct_update_rows(ha_rows *update_rows_result,
+ ha_rows *found_rows_result)
+{
+ int error;
+ bool rnd_seq= FALSE;
+ ha_rows update_rows= 0;
+ ha_rows found_rows= 0;
+ uint32 i;
+ DBUG_ENTER("ha_partition::direct_update_rows");
+
+ /* If first call to direct_update_rows with RND scan */
+ if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1)
+ {
+ rnd_seq= TRUE;
+ m_scan_value= 2;
+ }
+
+ *update_rows_result= 0;
+ *found_rows_result= 0;
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ handler *file= m_file[i];
+ if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
+ bitmap_is_set(&(m_part_info->lock_partitions), i))
+ {
+ if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE)
+ {
+ if (unlikely((error= (m_pre_calling ?
+ file->ha_pre_rnd_init(TRUE) :
+ file->ha_rnd_init(TRUE)))))
+ DBUG_RETURN(error);
+ }
+ if (unlikely((error= (m_pre_calling ?
+ (file)->pre_direct_update_rows() :
+ (file)->ha_direct_update_rows(&update_rows,
+ &found_rows)))))
+ {
+ if (rnd_seq)
+ {
+ if (m_pre_calling)
+ file->ha_pre_rnd_end();
+ else
+ file->ha_rnd_end();
+ }
+ DBUG_RETURN(error);
+ }
+ *update_rows_result+= update_rows;
+ *found_rows_result+= found_rows;
+ }
+ if (rnd_seq)
+ {
+ if (unlikely((error= (m_pre_calling ?
+ file->ha_pre_index_or_rnd_end() :
+ file->ha_index_or_rnd_end()))))
+ DBUG_RETURN(error);
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Start parallel execution of a direct update for a handlersocket update
+ request. A direct update request updates all qualified rows in a single
+ operation, rather than one row at a time. The direct update operation
+ is pushed down to each individual partition.
+
+ SYNOPSIS
+ pre_direct_update_rows()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::pre_direct_update_rows()
+{
+ bool save_m_pre_calling;
+ int error;
+ ha_rows not_used= 0;
+ DBUG_ENTER("ha_partition::pre_direct_update_rows");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ error= direct_update_rows(&not_used, &not_used);
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Perform initialization for a direct delete request.
+
+ SYNOPSIS
+ direct_delete_rows_init()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::direct_delete_rows_init()
+{
+ int error;
+ uint i, found;
+ DBUG_ENTER("ha_partition::direct_delete_rows_init");
+
+ m_part_spec.start_part= 0;
+ m_part_spec.end_part= m_tot_parts - 1;
+ m_direct_update_part_spec= m_part_spec;
+
+ found= 0;
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
+ bitmap_is_set(&(m_part_info->lock_partitions), i))
+ {
+ handler *file= m_file[i];
+ if (unlikely((error= (m_pre_calling ?
+ file->pre_direct_delete_rows_init() :
+ file->direct_delete_rows_init()))))
+ {
+ DBUG_PRINT("exit", ("error in direct_delete_rows_init"));
+ DBUG_RETURN(error);
+ }
+ found++;
+ }
+ }
+
+ TABLE_LIST *table_list= table->pos_in_table_list;
+ if (found != 1 && table_list)
+ {
+ while (table_list->parent_l)
+ table_list= table_list->parent_l;
+ st_select_lex *select_lex= table_list->select_lex;
+ DBUG_PRINT("info", ("partition select_lex: %p", select_lex));
+ if (select_lex && select_lex->explicit_limit)
+ {
+ DBUG_PRINT("info", ("partition explicit_limit: TRUE"));
+ DBUG_PRINT("info", ("partition offset_limit: %p",
+ select_lex->offset_limit));
+ DBUG_PRINT("info", ("partition select_limit: %p",
+ select_lex->select_limit));
+ DBUG_PRINT("info", ("partition FALSE by select_lex"));
+ DBUG_RETURN(HA_ERR_WRONG_COMMAND);
+ }
+ }
+ DBUG_PRINT("exit", ("OK"));
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Do initialization for performing parallel direct delete
+ for a handlersocket delete request.
+
+ SYNOPSIS
+ pre_direct_delete_rows_init()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::pre_direct_delete_rows_init()
+{
+ bool save_m_pre_calling;
+ int error;
+ DBUG_ENTER("ha_partition::pre_direct_delete_rows_init");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ error= direct_delete_rows_init();
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+
+/**
+ Execute a direct delete request. A direct delete request deletes all
+ qualified rows in a single operation, rather than one row at a time.
+ The direct delete operation is pushed down to each individual
+ partition.
+
+ SYNOPSIS
+ direct_delete_rows()
+ delete_rows Number of deleted rows
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::direct_delete_rows(ha_rows *delete_rows_result)
+{
+ int error;
+ bool rnd_seq= FALSE;
+ ha_rows delete_rows= 0;
+ uint32 i;
+ handler *file;
+ DBUG_ENTER("ha_partition::direct_delete_rows");
+
+ if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1)
+ {
+ rnd_seq= TRUE;
+ m_scan_value= 2;
+ }
+
+ *delete_rows_result= 0;
+ m_part_spec= m_direct_update_part_spec;
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ file= m_file[i];
+ if (bitmap_is_set(&(m_part_info->read_partitions), i) &&
+ bitmap_is_set(&(m_part_info->lock_partitions), i))
+ {
+ if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE)
+ {
+ if (unlikely((error= (m_pre_calling ?
+ file->ha_pre_rnd_init(TRUE) :
+ file->ha_rnd_init(TRUE)))))
+ DBUG_RETURN(error);
+ }
+ if ((error= (m_pre_calling ?
+ file->pre_direct_delete_rows() :
+ file->ha_direct_delete_rows(&delete_rows))))
+ {
+ if (m_pre_calling)
+ file->ha_pre_rnd_end();
+ else
+ file->ha_rnd_end();
+ DBUG_RETURN(error);
+ }
+ delete_rows_result+= delete_rows;
+ }
+ if (rnd_seq)
+ {
+ if (unlikely((error= (m_pre_calling ?
+ file->ha_pre_index_or_rnd_end() :
+ file->ha_index_or_rnd_end()))))
+ DBUG_RETURN(error);
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Start parallel execution of a direct delete for a handlersocket delete
+ request. A direct delete request deletes all qualified rows in a single
+ operation, rather than one row at a time. The direct delete operation
+ is pushed down to each individual partition.
+
+ SYNOPSIS
+ pre_direct_delete_rows()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::pre_direct_delete_rows()
+{
+ bool save_m_pre_calling;
+ int error;
+ ha_rows not_used;
+ DBUG_ENTER("ha_partition::pre_direct_delete_rows");
+ save_m_pre_calling= m_pre_calling;
+ m_pre_calling= TRUE;
+ error= direct_delete_rows(&not_used);
+ m_pre_calling= save_m_pre_calling;
+ DBUG_RETURN(error);
+}
+
+/**
+ Push metadata for the current operation down to each partition.
+
+ SYNOPSIS
+ info_push()
+
+ RETURN VALUE
+ >0 Error
+ 0 Success
+*/
+
+int ha_partition::info_push(uint info_type, void *info)
+{
+ int error= 0, tmp;
+ uint i;
+ DBUG_ENTER("ha_partition::info_push");
+
+ for (i= bitmap_get_first_set(&m_partitions_to_reset);
+ i < m_tot_parts;
+ i= bitmap_get_next_set(&m_partitions_to_reset, i))
+ {
+ if (bitmap_is_set(&m_opened_partitions, i))
+ {
+ if ((tmp= m_file[i]->info_push(info_type, info)))
+ {
+ error= tmp;
+ }
+ }
+ }
+ DBUG_RETURN(error);
+}
+
+
+bool
+ha_partition::can_convert_string(const Field_string* field,
+ const Column_definition& new_type) const
+{
+ for (uint index= 0; index < m_tot_parts; index++)
+ {
+ if (!m_file[index]->can_convert_string(field, new_type))
+ return false;
+ }
+ return true;
+}
+
+bool
+ha_partition::can_convert_varstring(const Field_varstring* field,
+ const Column_definition& new_type) const{
+ for (uint index= 0; index < m_tot_parts; index++)
+ {
+ if (!m_file[index]->can_convert_varstring(field, new_type))
+ return false;
+ }
+ return true;
+}
+
+bool
+ha_partition::can_convert_blob(const Field_blob* field,
+ const Column_definition& new_type) const
+{
+ for (uint index= 0; index < m_tot_parts; index++)
+ {
+ if (!m_file[index]->can_convert_blob(field, new_type))
+ return false;
+ }
+ return true;
+}
+
+struct st_mysql_storage_engine partition_storage_engine=
+{ MYSQL_HANDLERTON_INTERFACE_VERSION };
+
+maria_declare_plugin(partition)
+{
+ MYSQL_STORAGE_ENGINE_PLUGIN,
+ &partition_storage_engine,
+ "partition",
+ "Mikael Ronstrom, MySQL AB",
+ "Partition Storage Engine Helper",
+ PLUGIN_LICENSE_GPL,
+ partition_initialize, /* Plugin Init */
+ NULL, /* Plugin Deinit */
+ 0x0100, /* 1.0 */
+ NULL, /* status variables */
+ NULL, /* system variables */
+ "1.0", /* string version */
+ MariaDB_PLUGIN_MATURITY_STABLE /* maturity */
+}
+maria_declare_plugin_end;
+
+#endif