/***************************************************************************** Copyright (c) 1994, 2019, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2012, Facebook Inc. Copyright (c) 2015, 2021, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file btr/btr0cur.cc The index tree cursor All changes that row operations make to a B-tree or the records there must go through this module! Undo log records are written here of every modify or insert of a clustered index record. NOTE!!! To make sure we do not run out of disk space during a pessimistic insert or update, we have to reserve 2 x the height of the index tree many pages in the tablespace before we start the operation, because if leaf splitting has been started, it is difficult to undo, except by crashing the database and doing a roll-forward. Created 10/16/1994 Heikki Tuuri *******************************************************/ #include "btr0cur.h" #include "row0upd.h" #include "mtr0log.h" #include "page0page.h" #include "page0zip.h" #include "rem0rec.h" #include "rem0cmp.h" #include "buf0lru.h" #include "btr0btr.h" #include "btr0sea.h" #include "row0log.h" #include "row0purge.h" #include "row0upd.h" #include "trx0rec.h" #include "trx0roll.h" #include "que0que.h" #include "row0row.h" #include "srv0srv.h" #include "ibuf0ibuf.h" #include "lock0lock.h" #include "zlib.h" #include "srv0start.h" #include "mysql_com.h" #include "dict0stats.h" #ifdef WITH_WSREP #include "mysql/service_wsrep.h" #endif /* WITH_WSREP */ /** Buffered B-tree operation types, introduced as part of delete buffering. */ enum btr_op_t { BTR_NO_OP = 0, /*!< Not buffered */ BTR_INSERT_OP, /*!< Insert, do not ignore UNIQUE */ BTR_INSERT_IGNORE_UNIQUE_OP, /*!< Insert, ignoring UNIQUE */ BTR_DELETE_OP, /*!< Purge a delete-marked record */ BTR_DELMARK_OP /*!< Mark a record for deletion */ }; /** Modification types for the B-tree operation. Note that the order must be DELETE, BOTH, INSERT !! */ enum btr_intention_t { BTR_INTENTION_DELETE, BTR_INTENTION_BOTH, BTR_INTENTION_INSERT }; /** For the index->lock scalability improvement, only possibility of clear performance regression observed was caused by grown huge history list length. That is because the exclusive use of index->lock also worked as reserving free blocks and read IO bandwidth with priority. To avoid huge glowing history list as same level with previous implementation, prioritizes pessimistic tree operations by purge as the previous, when it seems to be growing huge. Experimentally, the history list length starts to affect to performance throughput clearly from about 100000. */ #define BTR_CUR_FINE_HISTORY_LENGTH 100000 /** Number of searches down the B-tree in btr_cur_search_to_nth_level(). */ Atomic_counter btr_cur_n_non_sea; /** Old value of btr_cur_n_non_sea. Copied by srv_refresh_innodb_monitor_stats(). Referenced by srv_printf_innodb_monitor(). */ ulint btr_cur_n_non_sea_old; #ifdef BTR_CUR_HASH_ADAPT /** Number of successful adaptive hash index lookups in btr_cur_search_to_nth_level(). */ ulint btr_cur_n_sea; /** Old value of btr_cur_n_sea. Copied by srv_refresh_innodb_monitor_stats(). Referenced by srv_printf_innodb_monitor(). */ ulint btr_cur_n_sea_old; #endif /* BTR_CUR_HASH_ADAPT */ #ifdef UNIV_DEBUG /* Flag to limit optimistic insert records */ uint btr_cur_limit_optimistic_insert_debug; #endif /* UNIV_DEBUG */ /** In the optimistic insert, if the insert does not fit, but this much space can be released by page reorganize, then it is reorganized */ #define BTR_CUR_PAGE_REORGANIZE_LIMIT (srv_page_size / 32) /** The structure of a BLOB part header */ /* @{ */ /*--------------------------------------*/ #define BTR_BLOB_HDR_PART_LEN 0 /*!< BLOB part len on this page */ #define BTR_BLOB_HDR_NEXT_PAGE_NO 4 /*!< next BLOB part page no, FIL_NULL if none */ /*--------------------------------------*/ #define BTR_BLOB_HDR_SIZE 8 /*!< Size of a BLOB part header, in bytes */ /** Estimated table level stats from sampled value. @param value sampled stats @param index index being sampled @param sample number of sampled rows @param ext_size external stored data size @param not_empty table not empty @return estimated table wide stats from sampled value */ #define BTR_TABLE_STATS_FROM_SAMPLE(value, index, sample, ext_size, not_empty) \ (((value) * static_cast(index->stat_n_leaf_pages) \ + (sample) - 1 + (ext_size) + (not_empty)) / ((sample) + (ext_size))) /* @} */ /*******************************************************************//** Marks all extern fields in a record as owned by the record. This function should be called if the delete mark of a record is removed: a not delete marked record always owns all its extern fields. */ static void btr_cur_unmark_extern_fields( /*=========================*/ buf_block_t* block, /*!< in/out: index page */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */ mtr_t* mtr); /*!< in: mtr, or NULL if not logged */ /*******************************************************************//** Adds path information to the cursor for the current page, for which the binary search has been performed. */ static void btr_cur_add_path_info( /*==================*/ btr_cur_t* cursor, /*!< in: cursor positioned on a page */ ulint height, /*!< in: height of the page in tree; 0 means leaf node */ ulint root_height); /*!< in: root node height in tree */ /***********************************************************//** Frees the externally stored fields for a record, if the field is mentioned in the update vector. */ static void btr_rec_free_updated_extern_fields( /*===============================*/ dict_index_t* index, /*!< in: index of rec; the index tree MUST be X-latched */ rec_t* rec, /*!< in: record */ buf_block_t* block, /*!< in: index page of rec */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update, /*!< in: update vector */ bool rollback,/*!< in: performing rollback? */ mtr_t* mtr); /*!< in: mini-transaction handle which contains an X-latch to record page and to the tree */ /***********************************************************//** Frees the externally stored fields for a record. */ static void btr_rec_free_externally_stored_fields( /*==================================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched */ rec_t* rec, /*!< in: record */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ buf_block_t* block, /*!< in: index page of rec */ bool rollback,/*!< in: performing rollback? */ mtr_t* mtr); /*!< in: mini-transaction handle which contains an X-latch to record page and to the index tree */ /*==================== B-TREE SEARCH =========================*/ /** Latches the leaf page or pages requested. @param[in] block leaf page where the search converged @param[in] latch_mode BTR_SEARCH_LEAF, ... @param[in] cursor cursor @param[in] mtr mini-transaction @return blocks and savepoints which actually latched. */ btr_latch_leaves_t btr_cur_latch_leaves( buf_block_t* block, ulint latch_mode, btr_cur_t* cursor, mtr_t* mtr) { rw_lock_type_t mode; uint32_t left_page_no; uint32_t right_page_no; buf_block_t* get_block; bool spatial; btr_latch_leaves_t latch_leaves = {{NULL, NULL, NULL}, {0, 0, 0}}; compile_time_assert(int(MTR_MEMO_PAGE_S_FIX) == int(RW_S_LATCH)); compile_time_assert(int(MTR_MEMO_PAGE_X_FIX) == int(RW_X_LATCH)); compile_time_assert(int(MTR_MEMO_PAGE_SX_FIX) == int(RW_SX_LATCH)); ut_ad(block->page.id().space() == cursor->index->table->space->id); spatial = dict_index_is_spatial(cursor->index) && cursor->rtr_info; ut_ad(block->page.in_file()); switch (latch_mode) { case BTR_SEARCH_LEAF: case BTR_MODIFY_LEAF: case BTR_SEARCH_TREE: if (spatial) { cursor->rtr_info->tree_savepoints[RTR_MAX_LEVELS] = mtr_set_savepoint(mtr); } mode = latch_mode == BTR_MODIFY_LEAF ? RW_X_LATCH : RW_S_LATCH; latch_leaves.savepoints[1] = mtr_set_savepoint(mtr); get_block = btr_block_get(*cursor->index, block->page.id().page_no(), mode, true, mtr); latch_leaves.blocks[1] = get_block; #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(block->frame)); #endif /* UNIV_BTR_DEBUG */ if (spatial) { cursor->rtr_info->tree_blocks[RTR_MAX_LEVELS] = get_block; } return(latch_leaves); case BTR_MODIFY_TREE: /* It is exclusive for other operations which calls btr_page_set_prev() */ ut_ad(mtr->memo_contains_flagged(&cursor->index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); /* x-latch also siblings from left to right */ left_page_no = btr_page_get_prev(block->frame); if (left_page_no != FIL_NULL) { if (spatial) { cursor->rtr_info->tree_savepoints[ RTR_MAX_LEVELS] = mtr_set_savepoint(mtr); } latch_leaves.savepoints[0] = mtr_set_savepoint(mtr); get_block = btr_block_get( *cursor->index, left_page_no, RW_X_LATCH, true, mtr); latch_leaves.blocks[0] = get_block; if (spatial) { cursor->rtr_info->tree_blocks[RTR_MAX_LEVELS] = get_block; } } if (spatial) { cursor->rtr_info->tree_savepoints[RTR_MAX_LEVELS + 1] = mtr_set_savepoint(mtr); } latch_leaves.savepoints[1] = mtr_set_savepoint(mtr); get_block = btr_block_get( *cursor->index, block->page.id().page_no(), RW_X_LATCH, true, mtr); latch_leaves.blocks[1] = get_block; #ifdef UNIV_BTR_DEBUG /* Sanity check only after both the blocks are latched. */ if (latch_leaves.blocks[0] != NULL) { ut_a(page_is_comp(latch_leaves.blocks[0]->frame) == page_is_comp(block->frame)); ut_a(btr_page_get_next(latch_leaves.blocks[0]->frame) == block->page.id().page_no()); } ut_a(page_is_comp(get_block->frame) == page_is_comp(block->frame)); #endif /* UNIV_BTR_DEBUG */ if (spatial) { cursor->rtr_info->tree_blocks[RTR_MAX_LEVELS + 1] = get_block; } right_page_no = btr_page_get_next(block->frame); if (right_page_no != FIL_NULL) { if (spatial) { cursor->rtr_info->tree_savepoints[ RTR_MAX_LEVELS + 2] = mtr_set_savepoint( mtr); } latch_leaves.savepoints[2] = mtr_set_savepoint(mtr); get_block = btr_block_get(*cursor->index, right_page_no, RW_X_LATCH, true, mtr); latch_leaves.blocks[2] = get_block; #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(block->frame)); ut_a(btr_page_get_prev(get_block->frame) == block->page.id().page_no()); #endif /* UNIV_BTR_DEBUG */ if (spatial) { cursor->rtr_info->tree_blocks[ RTR_MAX_LEVELS + 2] = get_block; } } return(latch_leaves); case BTR_SEARCH_PREV: case BTR_MODIFY_PREV: mode = latch_mode == BTR_SEARCH_PREV ? RW_S_LATCH : RW_X_LATCH; /* latch also left sibling */ rw_lock_s_lock(&block->lock); left_page_no = btr_page_get_prev(block->frame); rw_lock_s_unlock(&block->lock); if (left_page_no != FIL_NULL) { latch_leaves.savepoints[0] = mtr_set_savepoint(mtr); get_block = btr_block_get( *cursor->index, left_page_no, mode, true, mtr); latch_leaves.blocks[0] = get_block; cursor->left_block = get_block; #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(block->frame)); ut_a(btr_page_get_next(get_block->frame) == block->page.id().page_no()); #endif /* UNIV_BTR_DEBUG */ } latch_leaves.savepoints[1] = mtr_set_savepoint(mtr); get_block = btr_block_get(*cursor->index, block->page.id().page_no(), mode, true, mtr); latch_leaves.blocks[1] = get_block; #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(block->frame)); #endif /* UNIV_BTR_DEBUG */ return(latch_leaves); case BTR_CONT_MODIFY_TREE: ut_ad(dict_index_is_spatial(cursor->index)); return(latch_leaves); } ut_error; return(latch_leaves); } /** Load the instant ALTER TABLE metadata from the clustered index when loading a table definition. @param[in,out] index clustered index definition @param[in,out] mtr mini-transaction @return error code @retval DB_SUCCESS if no error occurred @retval DB_CORRUPTION if any corruption was noticed */ static dberr_t btr_cur_instant_init_low(dict_index_t* index, mtr_t* mtr) { ut_ad(index->is_primary()); ut_ad(index->n_core_null_bytes == dict_index_t::NO_CORE_NULL_BYTES); ut_ad(index->table->supports_instant()); ut_ad(index->table->is_readable()); const fil_space_t* space = index->table->space; if (!space) { unreadable: ib::error() << "Table " << index->table->name << " has an unreadable root page"; index->table->corrupted = true; return DB_CORRUPTION; } page_t* root = btr_root_get(index, mtr); if (!root || btr_cur_instant_root_init(index, root)) { goto unreadable; } ut_ad(index->n_core_null_bytes != dict_index_t::NO_CORE_NULL_BYTES); if (fil_page_get_type(root) == FIL_PAGE_INDEX) { ut_ad(!index->is_instant()); return DB_SUCCESS; } btr_cur_t cur; /* Relax the assertion in rec_init_offsets(). */ ut_ad(!index->in_instant_init); ut_d(index->in_instant_init = true); dberr_t err = btr_cur_open_at_index_side(true, index, BTR_SEARCH_LEAF, &cur, 0, mtr); ut_d(index->in_instant_init = false); if (err != DB_SUCCESS) { index->table->corrupted = true; return err; } ut_ad(page_cur_is_before_first(&cur.page_cur)); ut_ad(page_is_leaf(cur.page_cur.block->frame)); page_cur_move_to_next(&cur.page_cur); const rec_t* rec = cur.page_cur.rec; const ulint comp = dict_table_is_comp(index->table); const ulint info_bits = rec_get_info_bits(rec, comp); if (page_rec_is_supremum(rec) || !(info_bits & REC_INFO_MIN_REC_FLAG)) { if (!index->is_instant()) { /* The FIL_PAGE_TYPE_INSTANT and PAGE_INSTANT may be assigned even if instant ADD COLUMN was not committed. Changes to these page header fields are not undo-logged, but changes to the hidden metadata record are. If the server is killed and restarted, the page header fields could remain set even though no metadata record is present. */ return DB_SUCCESS; } ib::error() << "Table " << index->table->name << " is missing instant ALTER metadata"; index->table->corrupted = true; return DB_CORRUPTION; } if ((info_bits & ~REC_INFO_DELETED_FLAG) != REC_INFO_MIN_REC_FLAG || (comp && rec_get_status(rec) != REC_STATUS_INSTANT)) { incompatible: ib::error() << "Table " << index->table->name << " contains unrecognizable instant ALTER metadata"; index->table->corrupted = true; return DB_CORRUPTION; } /* Read the metadata. We can get here on server restart or when the table was evicted from the data dictionary cache and is now being accessed again. Here, READ COMMITTED and REPEATABLE READ should be equivalent. Committing the ADD COLUMN operation would acquire MDL_EXCLUSIVE and LOCK_X|LOCK_TABLE, which would prevent any concurrent operations on the table, including table eviction from the cache. */ if (info_bits & REC_INFO_DELETED_FLAG) { /* This metadata record includes a BLOB that identifies any dropped or reordered columns. */ ulint trx_id_offset = index->trx_id_offset; /* If !index->trx_id_offset, the PRIMARY KEY contains variable-length columns. For the metadata record, variable-length columns should be written with zero length. However, before MDEV-21088 was fixed, for variable-length encoded PRIMARY KEY column of type CHAR, we wrote more than zero bytes. That is why we must determine the actual length of each PRIMARY KEY column. The DB_TRX_ID will start right after any PRIMARY KEY columns. */ ut_ad(index->n_uniq); /* We cannot invoke rec_get_offsets() before index->table->deserialise_columns(). Therefore, we must duplicate some logic here. */ if (trx_id_offset) { } else if (index->table->not_redundant()) { /* The PRIMARY KEY contains variable-length columns. For the metadata record, variable-length columns are always written with zero length. The DB_TRX_ID will start right after any fixed-length columns. */ /* OK, before MDEV-21088 was fixed, for variable-length encoded PRIMARY KEY column of type CHAR, we wrote more than zero bytes. In order to allow affected tables to be accessed, it would be nice to determine the actual length of each PRIMARY KEY column. However, to be able to do that, we should determine the size of the null-bit bitmap in the metadata record. And we cannot know that before reading the metadata BLOB, whose starting point we are trying to find here. (Although the PRIMARY KEY columns cannot be NULL, we would have to know where the lengths of variable-length PRIMARY KEY columns start.) So, unfortunately we cannot help users who were affected by MDEV-21088 on a ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC table. */ for (uint i = index->n_uniq; i--; ) { trx_id_offset += index->fields[i].fixed_len; } } else if (rec_get_1byte_offs_flag(rec)) { trx_id_offset = rec_1_get_field_end_info( rec, index->n_uniq - 1); ut_ad(!(trx_id_offset & REC_1BYTE_SQL_NULL_MASK)); trx_id_offset &= ~REC_1BYTE_SQL_NULL_MASK; } else { trx_id_offset = rec_2_get_field_end_info( rec, index->n_uniq - 1); ut_ad(!(trx_id_offset & REC_2BYTE_SQL_NULL_MASK)); trx_id_offset &= ~REC_2BYTE_SQL_NULL_MASK; } const byte* ptr = rec + trx_id_offset + (DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN); if (mach_read_from_4(ptr + BTR_EXTERN_LEN)) { goto incompatible; } uint len = mach_read_from_4(ptr + BTR_EXTERN_LEN + 4); if (!len || mach_read_from_4(ptr + BTR_EXTERN_OFFSET) != FIL_PAGE_DATA || mach_read_from_4(ptr + BTR_EXTERN_SPACE_ID) != space->id) { goto incompatible; } buf_block_t* block = buf_page_get( page_id_t(space->id, mach_read_from_4(ptr + BTR_EXTERN_PAGE_NO)), 0, RW_S_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_EXTERN_STORAGE); if (fil_page_get_type(block->frame) != FIL_PAGE_TYPE_BLOB || mach_read_from_4(&block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO]) != FIL_NULL || mach_read_from_4(&block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_PART_LEN]) != len) { goto incompatible; } /* The unused part of the BLOB page should be zero-filled. */ for (const byte* b = block->frame + (FIL_PAGE_DATA + BTR_BLOB_HDR_SIZE) + len, * const end = block->frame + srv_page_size - BTR_EXTERN_LEN; b < end; ) { if (*b++) { goto incompatible; } } if (index->table->deserialise_columns( &block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_SIZE], len)) { goto incompatible; } /* Proceed to initialize the default values of any instantly added columns. */ } mem_heap_t* heap = NULL; rec_offs* offsets = rec_get_offsets(rec, index, NULL, index->n_core_fields, ULINT_UNDEFINED, &heap); if (rec_offs_any_default(offsets)) { inconsistent: mem_heap_free(heap); goto incompatible; } /* In fact, because we only ever append fields to the metadata record, it is also OK to perform READ UNCOMMITTED and then ignore any extra fields, provided that trx_sys.is_registered(DB_TRX_ID). */ if (rec_offs_n_fields(offsets) > ulint(index->n_fields) + !!index->table->instant && !trx_sys.is_registered(current_trx(), row_get_rec_trx_id(rec, index, offsets))) { goto inconsistent; } for (unsigned i = index->n_core_fields; i < index->n_fields; i++) { dict_col_t* col = index->fields[i].col; const unsigned o = i + !!index->table->instant; ulint len; const byte* data = rec_get_nth_field(rec, offsets, o, &len); ut_ad(!col->is_added()); ut_ad(!col->def_val.data); col->def_val.len = len; switch (len) { case UNIV_SQL_NULL: continue; case 0: col->def_val.data = field_ref_zero; continue; } ut_ad(len != UNIV_SQL_DEFAULT); if (!rec_offs_nth_extern(offsets, o)) { col->def_val.data = mem_heap_dup( index->table->heap, data, len); } else if (len < BTR_EXTERN_FIELD_REF_SIZE || !memcmp(data + len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)) { col->def_val.len = UNIV_SQL_DEFAULT; goto inconsistent; } else { col->def_val.data = btr_copy_externally_stored_field( &col->def_val.len, data, cur.page_cur.block->zip_size(), len, index->table->heap); } } mem_heap_free(heap); return DB_SUCCESS; } /** Load the instant ALTER TABLE metadata from the clustered index when loading a table definition. @param[in,out] table table definition from the data dictionary @return error code @retval DB_SUCCESS if no error occurred */ dberr_t btr_cur_instant_init(dict_table_t* table) { mtr_t mtr; dict_index_t* index = dict_table_get_first_index(table); mtr.start(); dberr_t err = index ? btr_cur_instant_init_low(index, &mtr) : DB_CORRUPTION; mtr.commit(); return(err); } /** Initialize the n_core_null_bytes on first access to a clustered index root page. @param[in] index clustered index that is on its first access @param[in] page clustered index root page @return whether the page is corrupted */ bool btr_cur_instant_root_init(dict_index_t* index, const page_t* page) { ut_ad(!index->is_dummy); ut_ad(fil_page_index_page_check(page)); ut_ad(!page_has_siblings(page)); ut_ad(page_get_space_id(page) == index->table->space_id); ut_ad(page_get_page_no(page) == index->page); ut_ad(!page_is_comp(page) == !dict_table_is_comp(index->table)); ut_ad(index->is_primary()); ut_ad(!index->is_instant()); ut_ad(index->table->supports_instant()); /* This is normally executed as part of btr_cur_instant_init() when dict_load_table_one() is loading a table definition. Other threads should not access or modify the n_core_null_bytes, n_core_fields before dict_load_table_one() returns. This can also be executed during IMPORT TABLESPACE, where the table definition is exclusively locked. */ switch (fil_page_get_type(page)) { default: ut_ad("wrong page type" == 0); return true; case FIL_PAGE_INDEX: /* The field PAGE_INSTANT is guaranteed 0 on clustered index root pages of ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC when instant ADD COLUMN is not used. */ ut_ad(!page_is_comp(page) || !page_get_instant(page)); index->n_core_null_bytes = static_cast( UT_BITS_IN_BYTES(unsigned(index->n_nullable))); return false; case FIL_PAGE_TYPE_INSTANT: break; } const uint16_t n = page_get_instant(page); if (n < index->n_uniq + DATA_ROLL_PTR) { /* The PRIMARY KEY (or hidden DB_ROW_ID) and DB_TRX_ID,DB_ROLL_PTR columns must always be present as 'core' fields. */ return true; } if (n > REC_MAX_N_FIELDS) { return true; } index->n_core_fields = n & dict_index_t::MAX_N_FIELDS; const rec_t* infimum = page_get_infimum_rec(page); const rec_t* supremum = page_get_supremum_rec(page); if (!memcmp(infimum, "infimum", 8) && !memcmp(supremum, "supremum", 8)) { if (n > index->n_fields) { /* All fields, including those for instantly added columns, must be present in the data dictionary. */ return true; } ut_ad(!index->is_dummy); ut_d(index->is_dummy = true); index->n_core_null_bytes = static_cast( UT_BITS_IN_BYTES(index->get_n_nullable(n))); ut_d(index->is_dummy = false); return false; } if (memcmp(infimum, field_ref_zero, 8) || memcmp(supremum, field_ref_zero, 7)) { /* The infimum and supremum records must either contain the original strings, or they must be filled with zero bytes, except for the bytes that we have repurposed. */ return true; } index->n_core_null_bytes = supremum[7]; return index->n_core_null_bytes > 128; } /** Optimistically latches the leaf page or pages requested. @param[in] block guessed buffer block @param[in] modify_clock modify clock value @param[in,out] latch_mode BTR_SEARCH_LEAF, ... @param[in,out] cursor cursor @param[in] file file name @param[in] line line where called @param[in] mtr mini-transaction @return true if success */ bool btr_cur_optimistic_latch_leaves( buf_block_t* block, ib_uint64_t modify_clock, ulint* latch_mode, btr_cur_t* cursor, const char* file, unsigned line, mtr_t* mtr) { ut_ad(block->page.buf_fix_count()); ut_ad(block->page.state() == BUF_BLOCK_FILE_PAGE); switch (*latch_mode) { default: ut_error; return(false); case BTR_SEARCH_LEAF: case BTR_MODIFY_LEAF: return(buf_page_optimistic_get(*latch_mode, block, modify_clock, file, line, mtr)); case BTR_SEARCH_PREV: case BTR_MODIFY_PREV: rw_lock_s_lock(&block->lock); if (block->modify_clock != modify_clock) { rw_lock_s_unlock(&block->lock); return false; } const uint32_t curr_page_no = block->page.id().page_no(); const uint32_t left_page_no = btr_page_get_prev(block->frame); rw_lock_s_unlock(&block->lock); const rw_lock_type_t mode = *latch_mode == BTR_SEARCH_PREV ? RW_S_LATCH : RW_X_LATCH; if (left_page_no != FIL_NULL) { dberr_t err = DB_SUCCESS; cursor->left_block = buf_page_get_gen( page_id_t(cursor->index->table->space_id, left_page_no), cursor->index->table->space->zip_size(), mode, nullptr, BUF_GET_POSSIBLY_FREED, __FILE__, __LINE__, mtr, &err); if (!cursor->left_block) { cursor->index->table->file_unreadable = true; } if (cursor->left_block->page.status == buf_page_t::FREED || btr_page_get_next(cursor->left_block->frame) != curr_page_no) { /* release the left block */ btr_leaf_page_release( cursor->left_block, mode, mtr); return false; } } else { cursor->left_block = NULL; } if (buf_page_optimistic_get(mode, block, modify_clock, file, line, mtr)) { if (btr_page_get_prev(block->frame) == left_page_no) { /* block was already buffer-fixed while entering the function and buf_page_optimistic_get() buffer-fixes it again. */ ut_ad(2 <= block->page.buf_fix_count()); *latch_mode = mode; return(true); } else { /* release the block and decrement of buf_fix_count which was incremented in buf_page_optimistic_get() */ btr_leaf_page_release(block, mode, mtr); } } ut_ad(block->page.buf_fix_count()); /* release the left block */ if (cursor->left_block != NULL) { btr_leaf_page_release(cursor->left_block, mode, mtr); } } return false; } /** Gets intention in btr_intention_t from latch_mode, and cleares the intention at the latch_mode. @param latch_mode in/out: pointer to latch_mode @return intention for latching tree */ static btr_intention_t btr_cur_get_and_clear_intention( ulint *latch_mode) { btr_intention_t intention; switch (*latch_mode & (BTR_LATCH_FOR_INSERT | BTR_LATCH_FOR_DELETE)) { case BTR_LATCH_FOR_INSERT: intention = BTR_INTENTION_INSERT; break; case BTR_LATCH_FOR_DELETE: intention = BTR_INTENTION_DELETE; break; default: /* both or unknown */ intention = BTR_INTENTION_BOTH; } *latch_mode &= ulint(~(BTR_LATCH_FOR_INSERT | BTR_LATCH_FOR_DELETE)); return(intention); } /** Gets the desired latch type for the root leaf (root page is root leaf) at the latch mode. @param latch_mode in: BTR_SEARCH_LEAF, ... @return latch type */ static rw_lock_type_t btr_cur_latch_for_root_leaf( ulint latch_mode) { switch (latch_mode) { case BTR_SEARCH_LEAF: case BTR_SEARCH_TREE: case BTR_SEARCH_PREV: return(RW_S_LATCH); case BTR_MODIFY_LEAF: case BTR_MODIFY_TREE: case BTR_MODIFY_PREV: return(RW_X_LATCH); case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: /* A root page should be latched already, and don't need to be latched here. fall through (RW_NO_LATCH) */ case BTR_NO_LATCHES: return(RW_NO_LATCH); } ut_error; return(RW_NO_LATCH); /* avoid compiler warnings */ } /** Detects whether the modifying record might need a modifying tree structure. @param[in] index index @param[in] page page @param[in] lock_intention lock intention for the tree operation @param[in] rec record (current node_ptr) @param[in] rec_size size of the record or max size of node_ptr @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] mtr mtr @return true if tree modification is needed */ static bool btr_cur_will_modify_tree( dict_index_t* index, const page_t* page, btr_intention_t lock_intention, const rec_t* rec, ulint rec_size, ulint zip_size, mtr_t* mtr) { ut_ad(!page_is_leaf(page)); ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); /* Pessimistic delete of the first record causes delete & insert of node_ptr at upper level. And a subsequent page shrink is possible. It causes delete of node_ptr at the upper level. So we should pay attention also to 2nd record not only first record and last record. Because if the "delete & insert" are done for the different page, the 2nd record become first record and following compress might delete the record and causes the uppper level node_ptr modification. */ const ulint n_recs = page_get_n_recs(page); if (lock_intention <= BTR_INTENTION_BOTH) { compile_time_assert(BTR_INTENTION_DELETE < BTR_INTENTION_BOTH); compile_time_assert(BTR_INTENTION_BOTH < BTR_INTENTION_INSERT); if (!page_has_siblings(page)) { return true; } ulint margin = rec_size; if (lock_intention == BTR_INTENTION_BOTH) { ulint level = btr_page_get_level(page); /* This value is the worst expectation for the node_ptr records to be deleted from this page. It is used to expect whether the cursor position can be the left_most record in this page or not. */ ulint max_nodes_deleted = 0; /* By modifying tree operations from the under of this level, logically (2 ^ (level - 1)) opportunities to deleting records in maximum even unreally rare case. */ if (level > 7) { /* TODO: adjust this practical limit. */ max_nodes_deleted = 64; } else if (level > 0) { max_nodes_deleted = (ulint)1 << (level - 1); } /* check delete will cause. (BTR_INTENTION_BOTH or BTR_INTENTION_DELETE) */ if (n_recs <= max_nodes_deleted * 2 || page_rec_is_first(rec, page)) { /* The cursor record can be the left most record in this page. */ return true; } if (page_has_prev(page) && page_rec_distance_is_at_most( page_get_infimum_rec(page), rec, max_nodes_deleted)) { return true; } if (page_has_next(page) && page_rec_distance_is_at_most( rec, page_get_supremum_rec(page), max_nodes_deleted)) { return true; } /* Delete at leftmost record in a page causes delete & insert at its parent page. After that, the delete might cause btr_compress() and delete record at its parent page. Thus we should consider max deletes. */ margin *= max_nodes_deleted; } /* Safe because we already have SX latch of the index tree */ if (page_get_data_size(page) < margin + BTR_CUR_PAGE_COMPRESS_LIMIT(index)) { return(true); } } if (lock_intention >= BTR_INTENTION_BOTH) { /* check insert will cause. BTR_INTENTION_BOTH or BTR_INTENTION_INSERT*/ /* Once we invoke the btr_cur_limit_optimistic_insert_debug, we should check it here in advance, since the max allowable records in a page is limited. */ LIMIT_OPTIMISTIC_INSERT_DEBUG(n_recs, return true); /* needs 2 records' space for the case the single split and insert cannot fit. page_get_max_insert_size_after_reorganize() includes space for page directory already */ ulint max_size = page_get_max_insert_size_after_reorganize(page, 2); if (max_size < BTR_CUR_PAGE_REORGANIZE_LIMIT + rec_size || max_size < rec_size * 2) { return(true); } /* TODO: optimize this condition for ROW_FORMAT=COMPRESSED. This is based on the worst case, and we could invoke page_zip_available() on the block->page.zip. */ /* needs 2 records' space also for worst compress rate. */ if (zip_size && page_zip_empty_size(index->n_fields, zip_size) <= rec_size * 2 + page_get_data_size(page) + page_dir_calc_reserved_space(n_recs + 2)) { return(true); } } return(false); } /** Detects whether the modifying record might need a opposite modification to the intention. @param[in] page page @param[in] lock_intention lock intention for the tree operation @param[in] rec record (current node_ptr) @return true if tree modification is needed */ static bool btr_cur_need_opposite_intention( const page_t* page, btr_intention_t lock_intention, const rec_t* rec) { switch (lock_intention) { case BTR_INTENTION_DELETE: return (page_has_prev(page) && page_rec_is_first(rec, page)) || (page_has_next(page) && page_rec_is_last(rec, page)); case BTR_INTENTION_INSERT: return page_has_next(page) && page_rec_is_last(rec, page); case BTR_INTENTION_BOTH: return(false); } ut_error; return(false); } /** @param[in] index b-tree @return maximum size of a node pointer record in bytes */ static ulint btr_node_ptr_max_size(const dict_index_t* index) { if (dict_index_is_ibuf(index)) { /* cannot estimate accurately */ /* This is universal index for change buffer. The max size of the entry is about max key length * 2. (index key + primary key to be inserted to the index) (The max key length is UNIV_PAGE_SIZE / 16 * 3 at ha_innobase::max_supported_key_length(), considering MAX_KEY_LENGTH = 3072 at MySQL imposes the 3500 historical InnoDB value for 16K page size case.) For the universal index, node_ptr contains most of the entry. And 512 is enough to contain ibuf columns and meta-data */ return srv_page_size / 8 * 3 + 512; } /* Each record has page_no, length of page_no and header. */ ulint comp = dict_table_is_comp(index->table); ulint rec_max_size = comp ? REC_NODE_PTR_SIZE + 1 + REC_N_NEW_EXTRA_BYTES + UT_BITS_IN_BYTES(index->n_nullable) : REC_NODE_PTR_SIZE + 2 + REC_N_OLD_EXTRA_BYTES + 2 * index->n_fields; /* Compute the maximum possible record size. */ for (ulint i = 0; i < dict_index_get_n_unique_in_tree(index); i++) { const dict_field_t* field = dict_index_get_nth_field(index, i); const dict_col_t* col = dict_field_get_col(field); ulint field_max_size; ulint field_ext_max_size; /* Determine the maximum length of the index field. */ field_max_size = dict_col_get_fixed_size(col, comp); if (field_max_size) { /* dict_index_add_col() should guarantee this */ ut_ad(!field->prefix_len || field->fixed_len == field->prefix_len); /* Fixed lengths are not encoded in ROW_FORMAT=COMPACT. */ rec_max_size += field_max_size; continue; } field_max_size = dict_col_get_max_size(col); if (UNIV_UNLIKELY(!field_max_size)) { switch (col->mtype) { case DATA_VARCHAR: if (!comp && (!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table->name.m_name, "SYS_FOREIGN_COLS"))) { break; } /* fall through */ case DATA_VARMYSQL: case DATA_CHAR: case DATA_MYSQL: /* CHAR(0) and VARCHAR(0) are possible data type definitions in MariaDB. The InnoDB internal SQL parser maps CHAR to DATA_VARCHAR, so DATA_CHAR (or DATA_MYSQL) is only coming from the MariaDB SQL layer. */ if (comp) { /* Add a length byte, because fixed-length empty field are encoded as variable-length. For ROW_FORMAT=REDUNDANT, these bytes were added to rec_max_size before this loop. */ rec_max_size++; } continue; } /* SYS_FOREIGN.ID is defined as CHAR in the InnoDB internal SQL parser, which translates into the incorrect VARCHAR(0). InnoDB does not enforce maximum lengths of columns, so that is why any data can be inserted in the first place. Likewise, SYS_FOREIGN.FOR_NAME, SYS_FOREIGN.REF_NAME, SYS_FOREIGN_COLS.ID, are defined as CHAR, and also they are part of a key. */ ut_ad(!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table->name.m_name, "SYS_FOREIGN_COLS")); ut_ad(!comp); ut_ad(col->mtype == DATA_VARCHAR); rec_max_size += (srv_page_size == UNIV_PAGE_SIZE_MAX) ? REDUNDANT_REC_MAX_DATA_SIZE : page_get_free_space_of_empty(FALSE) / 2; } else if (field_max_size == NAME_LEN && i == 1 && (!strcmp(index->table->name.m_name, TABLE_STATS_NAME) || !strcmp(index->table->name.m_name, INDEX_STATS_NAME))) { /* Interpret "table_name" as VARCHAR(199) even if it was incorrectly defined as VARCHAR(64). While the caller of ha_innobase enforces the maximum length on any data written, the InnoDB internal SQL parser will happily write as much data as is provided. The purpose of this hack is to avoid InnoDB hangs after persistent statistics on partitioned tables are deleted. */ field_max_size = 199 * SYSTEM_CHARSET_MBMAXLEN; } field_ext_max_size = field_max_size < 256 ? 1 : 2; if (field->prefix_len && field->prefix_len < field_max_size) { field_max_size = field->prefix_len; } if (comp) { /* Add the extra size for ROW_FORMAT=COMPACT. For ROW_FORMAT=REDUNDANT, these bytes were added to rec_max_size before this loop. */ rec_max_size += field_ext_max_size; } rec_max_size += field_max_size; } return rec_max_size; } /********************************************************************//** Searches an index tree and positions a tree cursor on a given level. NOTE: n_fields_cmp in tuple must be set so that it cannot be compared to node pointer page number fields on the upper levels of the tree! Note that if mode is PAGE_CUR_LE, which is used in inserts, then cursor->up_match and cursor->low_match both will have sensible values. If mode is PAGE_CUR_GE, then up_match will a have a sensible value. If mode is PAGE_CUR_LE , cursor is left at the place where an insert of the search tuple should be performed in the B-tree. InnoDB does an insert immediately after the cursor. Thus, the cursor may end up on a user record, or on a page infimum record. */ dberr_t btr_cur_search_to_nth_level_func( dict_index_t* index, /*!< in: index */ ulint level, /*!< in: the tree level of search */ const dtuple_t* tuple, /*!< in: data tuple; NOTE: n_fields_cmp in tuple must be set so that it cannot get compared to the node ptr page number field! */ page_cur_mode_t mode, /*!< in: PAGE_CUR_L, ...; Inserts should always be made using PAGE_CUR_LE to search the position! */ ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ..., ORed with at most one of BTR_INSERT, BTR_DELETE_MARK, BTR_DELETE, or BTR_ESTIMATE; cursor->left_block is used to store a pointer to the left neighbor page, in the cases BTR_SEARCH_PREV and BTR_MODIFY_PREV; NOTE that if ahi_latch, we might not have a cursor page latch, we assume that ahi_latch protects the record! */ btr_cur_t* cursor, /*!< in/out: tree cursor; the cursor page is s- or x-latched, but see also above! */ #ifdef BTR_CUR_HASH_ADAPT rw_lock_t* ahi_latch, /*!< in: currently held btr_search_latch (in RW_S_LATCH mode), or NULL */ #endif /* BTR_CUR_HASH_ADAPT */ const char* file, /*!< in: file name */ unsigned line, /*!< in: line where called */ mtr_t* mtr, /*!< in: mtr */ ib_uint64_t autoinc)/*!< in: PAGE_ROOT_AUTO_INC to be written (0 if none) */ { page_t* page = NULL; /* remove warning */ buf_block_t* block; buf_block_t* guess; ulint height; ulint up_match; ulint up_bytes; ulint low_match; ulint low_bytes; ulint rw_latch; page_cur_mode_t page_mode; page_cur_mode_t search_mode = PAGE_CUR_UNSUPP; ulint buf_mode; ulint estimate; ulint node_ptr_max_size = srv_page_size / 2; page_cur_t* page_cursor; btr_op_t btr_op; ulint root_height = 0; /* remove warning */ dberr_t err = DB_SUCCESS; btr_intention_t lock_intention; bool modify_external; buf_block_t* tree_blocks[BTR_MAX_LEVELS]; ulint tree_savepoints[BTR_MAX_LEVELS]; ulint n_blocks = 0; ulint n_releases = 0; bool detected_same_key_root = false; bool retrying_for_search_prev = false; ulint leftmost_from_level = 0; buf_block_t** prev_tree_blocks = NULL; ulint* prev_tree_savepoints = NULL; ulint prev_n_blocks = 0; ulint prev_n_releases = 0; bool need_path = true; bool rtree_parent_modified = false; bool mbr_adj = false; bool found = false; DBUG_ENTER("btr_cur_search_to_nth_level"); #ifdef BTR_CUR_ADAPT btr_search_t* info; #endif /* BTR_CUR_ADAPT */ mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs offsets2_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets2 = offsets2_; rec_offs_init(offsets_); rec_offs_init(offsets2_); /* Currently, PAGE_CUR_LE is the only search mode used for searches ending to upper levels */ ut_ad(level == 0 || mode == PAGE_CUR_LE || RTREE_SEARCH_MODE(mode)); ut_ad(dict_index_check_search_tuple(index, tuple)); ut_ad(!dict_index_is_ibuf(index) || ibuf_inside(mtr)); ut_ad(dtuple_check_typed(tuple)); ut_ad(!(index->type & DICT_FTS)); ut_ad(index->page != FIL_NULL); MEM_UNDEFINED(&cursor->up_match, sizeof cursor->up_match); MEM_UNDEFINED(&cursor->up_bytes, sizeof cursor->up_bytes); MEM_UNDEFINED(&cursor->low_match, sizeof cursor->low_match); MEM_UNDEFINED(&cursor->low_bytes, sizeof cursor->low_bytes); #ifdef UNIV_DEBUG cursor->up_match = ULINT_UNDEFINED; cursor->low_match = ULINT_UNDEFINED; #endif /* UNIV_DEBUG */ ibool s_latch_by_caller; s_latch_by_caller = latch_mode & BTR_ALREADY_S_LATCHED; ut_ad(!s_latch_by_caller || srv_read_only_mode || mtr->memo_contains_flagged(&index->lock, MTR_MEMO_S_LOCK | MTR_MEMO_SX_LOCK)); /* These flags are mutually exclusive, they are lumped together with the latch mode for historical reasons. It's possible for none of the flags to be set. */ switch (UNIV_EXPECT(latch_mode & (BTR_INSERT | BTR_DELETE | BTR_DELETE_MARK), 0)) { case 0: btr_op = BTR_NO_OP; break; case BTR_INSERT: btr_op = (latch_mode & BTR_IGNORE_SEC_UNIQUE) ? BTR_INSERT_IGNORE_UNIQUE_OP : BTR_INSERT_OP; break; case BTR_DELETE: btr_op = BTR_DELETE_OP; ut_a(cursor->purge_node); break; case BTR_DELETE_MARK: btr_op = BTR_DELMARK_OP; break; default: /* only one of BTR_INSERT, BTR_DELETE, BTR_DELETE_MARK should be specified at a time */ ut_error; } /* Operations on the insert buffer tree cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !dict_index_is_ibuf(index)); /* Operations on the clustered index cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !dict_index_is_clust(index)); /* Operations on the temporary table(indexes) cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !index->table->is_temporary()); /* Operation on the spatial index cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !dict_index_is_spatial(index)); estimate = latch_mode & BTR_ESTIMATE; lock_intention = btr_cur_get_and_clear_intention(&latch_mode); modify_external = latch_mode & BTR_MODIFY_EXTERNAL; /* Turn the flags unrelated to the latch mode off. */ latch_mode = BTR_LATCH_MODE_WITHOUT_FLAGS(latch_mode); ut_ad(!modify_external || latch_mode == BTR_MODIFY_LEAF); ut_ad(!s_latch_by_caller || latch_mode == BTR_SEARCH_LEAF || latch_mode == BTR_SEARCH_TREE || latch_mode == BTR_MODIFY_LEAF); ut_ad(autoinc == 0 || dict_index_is_clust(index)); ut_ad(autoinc == 0 || latch_mode == BTR_MODIFY_TREE || latch_mode == BTR_MODIFY_LEAF); ut_ad(autoinc == 0 || level == 0); cursor->flag = BTR_CUR_BINARY; cursor->index = index; #ifndef BTR_CUR_ADAPT guess = NULL; #else info = btr_search_get_info(index); guess = info->root_guess; #ifdef BTR_CUR_HASH_ADAPT # ifdef UNIV_SEARCH_PERF_STAT info->n_searches++; # endif if (autoinc == 0 && latch_mode <= BTR_MODIFY_LEAF && info->last_hash_succ # ifdef MYSQL_INDEX_DISABLE_AHI && !index->disable_ahi # endif && !estimate # ifdef PAGE_CUR_LE_OR_EXTENDS && mode != PAGE_CUR_LE_OR_EXTENDS # endif /* PAGE_CUR_LE_OR_EXTENDS */ && !dict_index_is_spatial(index) /* If !ahi_latch, we do a dirty read of btr_search_enabled below, and btr_search_guess_on_hash() will have to check it again. */ && btr_search_enabled && !modify_external && !(tuple->info_bits & REC_INFO_MIN_REC_FLAG) && btr_search_guess_on_hash(index, info, tuple, mode, latch_mode, cursor, ahi_latch, mtr)) { /* Search using the hash index succeeded */ ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_GE); ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); ut_ad(cursor->low_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); btr_cur_n_sea++; DBUG_RETURN(err); } # endif /* BTR_CUR_HASH_ADAPT */ #endif /* BTR_CUR_ADAPT */ btr_cur_n_non_sea++; /* If the hash search did not succeed, do binary search down the tree */ #ifdef BTR_CUR_HASH_ADAPT if (ahi_latch) { /* Release possible search latch to obey latching order */ rw_lock_s_unlock(ahi_latch); } #endif /* BTR_CUR_HASH_ADAPT */ /* Store the position of the tree latch we push to mtr so that we know how to release it when we have latched leaf node(s) */ ulint savepoint = mtr_set_savepoint(mtr); rw_lock_type_t upper_rw_latch; switch (latch_mode) { case BTR_MODIFY_TREE: /* Most of delete-intended operations are purging. Free blocks and read IO bandwidth should be prior for them, when the history list is glowing huge. */ if (lock_intention == BTR_INTENTION_DELETE && trx_sys.rseg_history_len > BTR_CUR_FINE_HISTORY_LENGTH && buf_pool.n_pend_reads) { x_latch_index: mtr_x_lock_index(index, mtr); } else if (index->is_spatial() && lock_intention <= BTR_INTENTION_BOTH) { /* X lock the if there is possibility of pessimistic delete on spatial index. As we could lock upward for the tree */ goto x_latch_index; } else { mtr_sx_lock_index(index, mtr); } upper_rw_latch = RW_X_LATCH; break; case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: /* Do nothing */ ut_ad(srv_read_only_mode || mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); if (dict_index_is_spatial(index) && latch_mode == BTR_CONT_MODIFY_TREE) { /* If we are about to locating parent page for split and/or merge operation for R-Tree index, X latch the parent */ upper_rw_latch = RW_X_LATCH; } else { upper_rw_latch = RW_NO_LATCH; } break; default: if (!srv_read_only_mode) { if (s_latch_by_caller) { ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_S)); } else if (!modify_external) { /* BTR_SEARCH_TREE is intended to be used with BTR_ALREADY_S_LATCHED */ ut_ad(latch_mode != BTR_SEARCH_TREE); mtr_s_lock_index(index, mtr); } else { /* BTR_MODIFY_EXTERNAL needs to be excluded */ mtr_sx_lock_index(index, mtr); } upper_rw_latch = RW_S_LATCH; } else { upper_rw_latch = RW_NO_LATCH; } } const rw_lock_type_t root_leaf_rw_latch = btr_cur_latch_for_root_leaf( latch_mode); page_cursor = btr_cur_get_page_cur(cursor); const ulint zip_size = index->table->space->zip_size(); /* Start with the root page. */ page_id_t page_id(index->table->space_id, index->page); if (root_leaf_rw_latch == RW_X_LATCH) { node_ptr_max_size = btr_node_ptr_max_size(index); } up_match = 0; up_bytes = 0; low_match = 0; low_bytes = 0; height = ULINT_UNDEFINED; /* We use these modified search modes on non-leaf levels of the B-tree. These let us end up in the right B-tree leaf. In that leaf we use the original search mode. */ switch (mode) { case PAGE_CUR_GE: page_mode = PAGE_CUR_L; break; case PAGE_CUR_G: page_mode = PAGE_CUR_LE; break; default: #ifdef PAGE_CUR_LE_OR_EXTENDS ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE || RTREE_SEARCH_MODE(mode) || mode == PAGE_CUR_LE_OR_EXTENDS); #else /* PAGE_CUR_LE_OR_EXTENDS */ ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE || RTREE_SEARCH_MODE(mode)); #endif /* PAGE_CUR_LE_OR_EXTENDS */ page_mode = mode; break; } /* Loop and search until we arrive at the desired level */ btr_latch_leaves_t latch_leaves = {{NULL, NULL, NULL}, {0, 0, 0}}; search_loop: buf_mode = BUF_GET; rw_latch = RW_NO_LATCH; rtree_parent_modified = false; if (height != 0) { /* We are about to fetch the root or a non-leaf page. */ if ((latch_mode != BTR_MODIFY_TREE || height == level) && !retrying_for_search_prev) { /* If doesn't have SX or X latch of index, each pages should be latched before reading. */ if (height == ULINT_UNDEFINED && upper_rw_latch == RW_S_LATCH && (modify_external || autoinc)) { /* needs sx-latch of root page for fseg operation or for writing PAGE_ROOT_AUTO_INC */ rw_latch = RW_SX_LATCH; } else { rw_latch = upper_rw_latch; } } } else if (latch_mode <= BTR_MODIFY_LEAF) { rw_latch = latch_mode; if (btr_op != BTR_NO_OP && ibuf_should_try(index, btr_op != BTR_INSERT_OP)) { /* Try to buffer the operation if the leaf page is not in the buffer pool. */ buf_mode = btr_op == BTR_DELETE_OP ? BUF_GET_IF_IN_POOL_OR_WATCH : BUF_GET_IF_IN_POOL; } } retry_page_get: ut_ad(n_blocks < BTR_MAX_LEVELS); tree_savepoints[n_blocks] = mtr_set_savepoint(mtr); block = buf_page_get_gen(page_id, zip_size, rw_latch, guess, buf_mode, file, line, mtr, &err, height == 0 && !index->is_clust()); tree_blocks[n_blocks] = block; /* Note that block==NULL signifies either an error or change buffering. */ if (err != DB_SUCCESS) { ut_ad(block == NULL); if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } goto func_exit; } if (block == NULL) { /* This must be a search to perform an insert/delete mark/ delete; try using the insert/delete buffer */ ut_ad(height == 0); ut_ad(cursor->thr); switch (btr_op) { case BTR_INSERT_OP: case BTR_INSERT_IGNORE_UNIQUE_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL); ut_ad(!dict_index_is_spatial(index)); if (ibuf_insert(IBUF_OP_INSERT, tuple, index, page_id, zip_size, cursor->thr)) { cursor->flag = BTR_CUR_INSERT_TO_IBUF; goto func_exit; } break; case BTR_DELMARK_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL); ut_ad(!dict_index_is_spatial(index)); if (ibuf_insert(IBUF_OP_DELETE_MARK, tuple, index, page_id, zip_size, cursor->thr)) { cursor->flag = BTR_CUR_DEL_MARK_IBUF; goto func_exit; } break; case BTR_DELETE_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL_OR_WATCH); ut_ad(!dict_index_is_spatial(index)); if (!row_purge_poss_sec(cursor->purge_node, index, tuple)) { /* The record cannot be purged yet. */ cursor->flag = BTR_CUR_DELETE_REF; } else if (ibuf_insert(IBUF_OP_DELETE, tuple, index, page_id, zip_size, cursor->thr)) { /* The purge was buffered. */ cursor->flag = BTR_CUR_DELETE_IBUF; } else { /* The purge could not be buffered. */ buf_pool.watch_unset(page_id); break; } buf_pool.watch_unset(page_id); goto func_exit; default: ut_error; } /* Insert to the insert/delete buffer did not succeed, we must read the page from disk. */ buf_mode = BUF_GET; goto retry_page_get; } if (retrying_for_search_prev && height != 0) { /* also latch left sibling */ uint32_t left_page_no; buf_block_t* get_block; ut_ad(rw_latch == RW_NO_LATCH); rw_latch = upper_rw_latch; rw_lock_s_lock(&block->lock); left_page_no = btr_page_get_prev(buf_block_get_frame(block)); rw_lock_s_unlock(&block->lock); if (left_page_no != FIL_NULL) { ut_ad(prev_n_blocks < leftmost_from_level); prev_tree_savepoints[prev_n_blocks] = mtr_set_savepoint(mtr); get_block = buf_page_get_gen( page_id_t(page_id.space(), left_page_no), zip_size, rw_latch, NULL, buf_mode, file, line, mtr, &err); prev_tree_blocks[prev_n_blocks] = get_block; prev_n_blocks++; if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } goto func_exit; } /* BTR_MODIFY_TREE doesn't update prev/next_page_no, without their parent page's lock. So, not needed to retry here, because we have the parent page's lock. */ } /* release RW_NO_LATCH page and lock with RW_S_LATCH */ mtr_release_block_at_savepoint( mtr, tree_savepoints[n_blocks], tree_blocks[n_blocks]); tree_savepoints[n_blocks] = mtr_set_savepoint(mtr); block = buf_page_get_gen(page_id, zip_size, rw_latch, NULL, buf_mode, file, line, mtr, &err); tree_blocks[n_blocks] = block; if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } goto func_exit; } } page = buf_block_get_frame(block); if (height == ULINT_UNDEFINED && page_is_leaf(page) && rw_latch != RW_NO_LATCH && rw_latch != root_leaf_rw_latch) { /* The root page is also a leaf page (root_leaf). We should reacquire the page, because the root page is latched differently from leaf pages. */ ut_ad(root_leaf_rw_latch != RW_NO_LATCH); ut_ad(rw_latch == RW_S_LATCH || rw_latch == RW_SX_LATCH); ut_ad(rw_latch == RW_S_LATCH || modify_external || autoinc); ut_ad(!autoinc || root_leaf_rw_latch == RW_X_LATCH); ut_ad(n_blocks == 0); mtr_release_block_at_savepoint( mtr, tree_savepoints[n_blocks], tree_blocks[n_blocks]); upper_rw_latch = root_leaf_rw_latch; goto search_loop; } if (rw_latch != RW_NO_LATCH) { #ifdef UNIV_ZIP_DEBUG const page_zip_des_t* page_zip = buf_block_get_page_zip(block); ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ buf_block_dbg_add_level( block, dict_index_is_ibuf(index) ? SYNC_IBUF_TREE_NODE : SYNC_TREE_NODE); } ut_ad(fil_page_index_page_check(page)); ut_ad(index->id == btr_page_get_index_id(page)); if (height == ULINT_UNDEFINED) { /* We are in the root node */ height = btr_page_get_level(page); root_height = height; cursor->tree_height = root_height + 1; if (dict_index_is_spatial(index)) { ut_ad(cursor->rtr_info); /* If SSN in memory is not initialized, fetch it from root page */ if (!rtr_get_current_ssn_id(index)) { /* FIXME: do this in dict_load_table_one() */ index->set_ssn(page_get_ssn_id(page) + 1); } /* Save the MBR */ cursor->rtr_info->thr = cursor->thr; rtr_get_mbr_from_tuple(tuple, &cursor->rtr_info->mbr); } #ifdef BTR_CUR_ADAPT info->root_guess = block; #endif } if (height == 0) { if (rw_latch == RW_NO_LATCH) { latch_leaves = btr_cur_latch_leaves( block, latch_mode, cursor, mtr); } switch (latch_mode) { case BTR_MODIFY_TREE: case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: break; default: if (!s_latch_by_caller && !srv_read_only_mode && !modify_external) { /* Release the tree s-latch */ /* NOTE: BTR_MODIFY_EXTERNAL needs to keep tree sx-latch */ mtr_release_s_latch_at_savepoint( mtr, savepoint, dict_index_get_lock(index)); } /* release upper blocks */ if (retrying_for_search_prev) { ut_ad(!autoinc); for (; prev_n_releases < prev_n_blocks; prev_n_releases++) { mtr_release_block_at_savepoint( mtr, prev_tree_savepoints[ prev_n_releases], prev_tree_blocks[ prev_n_releases]); } } for (; n_releases < n_blocks; n_releases++) { if (n_releases == 0 && (modify_external || autoinc)) { /* keep the root page latch */ ut_ad(mtr->memo_contains_flagged( tree_blocks[n_releases], MTR_MEMO_PAGE_SX_FIX | MTR_MEMO_PAGE_X_FIX)); continue; } mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } page_mode = mode; } if (dict_index_is_spatial(index)) { /* Remember the page search mode */ search_mode = page_mode; /* Some adjustment on search mode, when the page search mode is PAGE_CUR_RTREE_LOCATE or PAGE_CUR_RTREE_INSERT, as we are searching with MBRs. When it is not the target level, we should search all sub-trees that "CONTAIN" the search range/MBR. When it is at the target level, the search becomes PAGE_CUR_LE */ if (page_mode == PAGE_CUR_RTREE_LOCATE && level == height) { if (level == 0) { page_mode = PAGE_CUR_LE; } else { page_mode = PAGE_CUR_RTREE_GET_FATHER; } } if (page_mode == PAGE_CUR_RTREE_INSERT) { page_mode = (level == height) ? PAGE_CUR_LE : PAGE_CUR_RTREE_INSERT; ut_ad(!page_is_leaf(page) || page_mode == PAGE_CUR_LE); } /* "need_path" indicates if we need to tracking the parent pages, if it is not spatial comparison, then no need to track it */ if (page_mode < PAGE_CUR_CONTAIN) { need_path = false; } up_match = 0; low_match = 0; if (latch_mode == BTR_MODIFY_TREE || latch_mode == BTR_CONT_MODIFY_TREE || latch_mode == BTR_CONT_SEARCH_TREE) { /* Tree are locked, no need for Page Lock to protect the "path" */ cursor->rtr_info->need_page_lock = false; } } if (dict_index_is_spatial(index) && page_mode >= PAGE_CUR_CONTAIN) { ut_ad(need_path); found = rtr_cur_search_with_match( block, index, tuple, page_mode, page_cursor, cursor->rtr_info); /* Need to use BTR_MODIFY_TREE to do the MBR adjustment */ if (search_mode == PAGE_CUR_RTREE_INSERT && cursor->rtr_info->mbr_adj) { if (latch_mode & BTR_MODIFY_LEAF) { /* Parent MBR needs updated, should retry with BTR_MODIFY_TREE */ goto func_exit; } else if (latch_mode & BTR_MODIFY_TREE) { rtree_parent_modified = true; cursor->rtr_info->mbr_adj = false; mbr_adj = true; } else { ut_ad(0); } } if (found && page_mode == PAGE_CUR_RTREE_GET_FATHER) { cursor->low_match = DICT_INDEX_SPATIAL_NODEPTR_SIZE + 1; } #ifdef BTR_CUR_HASH_ADAPT } else if (height == 0 && btr_search_enabled && !(tuple->info_bits & REC_INFO_MIN_REC_FLAG) && !dict_index_is_spatial(index)) { /* The adaptive hash index is only used when searching for leaf pages (height==0), but not in r-trees. We only need the byte prefix comparison for the purpose of updating the adaptive hash index. */ page_cur_search_with_match_bytes( block, index, tuple, page_mode, &up_match, &up_bytes, &low_match, &low_bytes, page_cursor); #endif /* BTR_CUR_HASH_ADAPT */ } else { /* Search for complete index fields. */ up_bytes = low_bytes = 0; page_cur_search_with_match( block, index, tuple, page_mode, &up_match, &low_match, page_cursor, need_path ? cursor->rtr_info : NULL); } if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } /* If this is the desired level, leave the loop */ ut_ad(height == btr_page_get_level(page_cur_get_page(page_cursor))); /* Add Predicate lock if it is serializable isolation and only if it is in the search case */ if (dict_index_is_spatial(index) && cursor->rtr_info->need_prdt_lock && mode != PAGE_CUR_RTREE_INSERT && mode != PAGE_CUR_RTREE_LOCATE && mode >= PAGE_CUR_CONTAIN) { trx_t* trx = thr_get_trx(cursor->thr); lock_prdt_t prdt; lock_mutex_enter(); lock_init_prdt_from_mbr( &prdt, &cursor->rtr_info->mbr, mode, trx->lock.lock_heap); lock_mutex_exit(); if (rw_latch == RW_NO_LATCH && height != 0) { rw_lock_s_lock(&(block->lock)); } lock_prdt_lock(block, &prdt, index, LOCK_S, LOCK_PREDICATE, cursor->thr); if (rw_latch == RW_NO_LATCH && height != 0) { rw_lock_s_unlock(&(block->lock)); } } if (level != height) { const rec_t* node_ptr; ut_ad(height > 0); height--; guess = NULL; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets(node_ptr, index, offsets, 0, ULINT_UNDEFINED, &heap); /* If the rec is the first or last in the page for pessimistic delete intention, it might cause node_ptr insert for the upper level. We should change the intention and retry. */ if (latch_mode == BTR_MODIFY_TREE && btr_cur_need_opposite_intention( page, lock_intention, node_ptr)) { need_opposite_intention: ut_ad(upper_rw_latch == RW_X_LATCH); if (n_releases > 0) { /* release root block */ mtr_release_block_at_savepoint( mtr, tree_savepoints[0], tree_blocks[0]); } /* release all blocks */ for (; n_releases <= n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } lock_intention = BTR_INTENTION_BOTH; page_id.set_page_no(index->page); up_match = 0; low_match = 0; height = ULINT_UNDEFINED; n_blocks = 0; n_releases = 0; goto search_loop; } if (dict_index_is_spatial(index)) { if (page_rec_is_supremum(node_ptr)) { cursor->low_match = 0; cursor->up_match = 0; goto func_exit; } /* If we are doing insertion or record locating, remember the tree nodes we visited */ if (page_mode == PAGE_CUR_RTREE_INSERT || (search_mode == PAGE_CUR_RTREE_LOCATE && (latch_mode != BTR_MODIFY_LEAF))) { bool add_latch = false; if (latch_mode == BTR_MODIFY_TREE && rw_latch == RW_NO_LATCH) { ut_ad(mtr->memo_contains_flagged( &index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); rw_lock_s_lock(&block->lock); add_latch = true; } /* Store the parent cursor location */ #ifdef UNIV_DEBUG ulint num_stored = rtr_store_parent_path( block, cursor, latch_mode, height + 1, mtr); #else rtr_store_parent_path( block, cursor, latch_mode, height + 1, mtr); #endif if (page_mode == PAGE_CUR_RTREE_INSERT) { btr_pcur_t* r_cursor = rtr_get_parent_cursor( cursor, height + 1, true); /* If it is insertion, there should be only one parent for each level traverse */ #ifdef UNIV_DEBUG ut_ad(num_stored == 1); #endif node_ptr = btr_pcur_get_rec(r_cursor); } if (add_latch) { rw_lock_s_unlock(&block->lock); } ut_ad(!page_rec_is_supremum(node_ptr)); } ut_ad(page_mode == search_mode || (page_mode == PAGE_CUR_WITHIN && search_mode == PAGE_CUR_RTREE_LOCATE)); page_mode = search_mode; } /* If the first or the last record of the page or the same key value to the first record or last record, the another page might be chosen when BTR_CONT_MODIFY_TREE. So, the parent page should not released to avoiding deadlock with blocking the another search with the same key value. */ if (!detected_same_key_root && lock_intention == BTR_INTENTION_BOTH && !dict_index_is_unique(index) && latch_mode == BTR_MODIFY_TREE && (up_match >= rec_offs_n_fields(offsets) - 1 || low_match >= rec_offs_n_fields(offsets) - 1)) { const rec_t* first_rec = page_rec_get_next_const( page_get_infimum_rec(page)); ulint matched_fields; ut_ad(upper_rw_latch == RW_X_LATCH); if (node_ptr == first_rec || page_rec_is_last(node_ptr, page)) { detected_same_key_root = true; } else { matched_fields = 0; offsets2 = rec_get_offsets( first_rec, index, offsets2, 0, ULINT_UNDEFINED, &heap); cmp_rec_rec(node_ptr, first_rec, offsets, offsets2, index, false, &matched_fields); if (matched_fields >= rec_offs_n_fields(offsets) - 1) { detected_same_key_root = true; } else { const rec_t* last_rec; last_rec = page_rec_get_prev_const( page_get_supremum_rec(page)); matched_fields = 0; offsets2 = rec_get_offsets( last_rec, index, offsets2, 0, ULINT_UNDEFINED, &heap); cmp_rec_rec( node_ptr, last_rec, offsets, offsets2, index, false, &matched_fields); if (matched_fields >= rec_offs_n_fields(offsets) - 1) { detected_same_key_root = true; } } } } /* If the page might cause modify_tree, we should not release the parent page's lock. */ if (!detected_same_key_root && latch_mode == BTR_MODIFY_TREE && !btr_cur_will_modify_tree( index, page, lock_intention, node_ptr, node_ptr_max_size, zip_size, mtr) && !rtree_parent_modified) { ut_ad(upper_rw_latch == RW_X_LATCH); ut_ad(n_releases <= n_blocks); /* we can release upper blocks */ for (; n_releases < n_blocks; n_releases++) { if (n_releases == 0) { /* we should not release root page to pin to same block. */ continue; } /* release unused blocks to unpin */ mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } if (height == level && latch_mode == BTR_MODIFY_TREE) { ut_ad(upper_rw_latch == RW_X_LATCH); /* we should sx-latch root page, if released already. It contains seg_header. */ if (n_releases > 0) { mtr_block_sx_latch_at_savepoint( mtr, tree_savepoints[0], tree_blocks[0]); } /* x-latch the branch blocks not released yet. */ for (ulint i = n_releases; i <= n_blocks; i++) { mtr_block_x_latch_at_savepoint( mtr, tree_savepoints[i], tree_blocks[i]); } } /* We should consider prev_page of parent page, if the node_ptr is the leftmost of the page. because BTR_SEARCH_PREV and BTR_MODIFY_PREV latches prev_page of the leaf page. */ if ((latch_mode == BTR_SEARCH_PREV || latch_mode == BTR_MODIFY_PREV) && !retrying_for_search_prev) { /* block should be latched for consistent btr_page_get_prev() */ ut_ad(mtr->memo_contains_flagged( block, MTR_MEMO_PAGE_S_FIX | MTR_MEMO_PAGE_X_FIX)); if (page_has_prev(page) && page_rec_is_first(node_ptr, page)) { if (leftmost_from_level == 0) { leftmost_from_level = height + 1; } } else { leftmost_from_level = 0; } if (height == 0 && leftmost_from_level > 0) { /* should retry to get also prev_page from level==leftmost_from_level. */ retrying_for_search_prev = true; prev_tree_blocks = static_cast( ut_malloc_nokey(sizeof(buf_block_t*) * leftmost_from_level)); prev_tree_savepoints = static_cast( ut_malloc_nokey(sizeof(ulint) * leftmost_from_level)); /* back to the level (leftmost_from_level+1) */ ulint idx = n_blocks - (leftmost_from_level - 1); page_id.set_page_no( tree_blocks[idx]->page.id().page_no()); for (ulint i = n_blocks - (leftmost_from_level - 1); i <= n_blocks; i++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[i], tree_blocks[i]); } n_blocks -= (leftmost_from_level - 1); height = leftmost_from_level; ut_ad(n_releases == 0); /* replay up_match, low_match */ up_match = 0; low_match = 0; rtr_info_t* rtr_info = need_path ? cursor->rtr_info : NULL; for (ulint i = 0; i < n_blocks; i++) { page_cur_search_with_match( tree_blocks[i], index, tuple, page_mode, &up_match, &low_match, page_cursor, rtr_info); } goto search_loop; } } /* Go to the child node */ page_id.set_page_no( btr_node_ptr_get_child_page_no(node_ptr, offsets)); n_blocks++; if (UNIV_UNLIKELY(height == 0 && dict_index_is_ibuf(index))) { /* We're doing a search on an ibuf tree and we're one level above the leaf page. */ ut_ad(level == 0); buf_mode = BUF_GET; rw_latch = RW_NO_LATCH; goto retry_page_get; } if (dict_index_is_spatial(index) && page_mode >= PAGE_CUR_CONTAIN && page_mode != PAGE_CUR_RTREE_INSERT) { ut_ad(need_path); rtr_node_path_t* path = cursor->rtr_info->path; if (!path->empty() && found) { ut_ad(path->back().page_no == page_id.page_no()); path->pop_back(); #ifdef UNIV_DEBUG if (page_mode == PAGE_CUR_RTREE_LOCATE && (latch_mode != BTR_MODIFY_LEAF)) { btr_pcur_t* cur = cursor->rtr_info->parent_path->back( ).cursor; rec_t* my_node_ptr = btr_pcur_get_rec(cur); offsets = rec_get_offsets( my_node_ptr, index, offsets, 0, ULINT_UNDEFINED, &heap); ulint my_page_no = btr_node_ptr_get_child_page_no( my_node_ptr, offsets); ut_ad(page_id.page_no() == my_page_no); } #endif } } goto search_loop; } else if (!dict_index_is_spatial(index) && latch_mode == BTR_MODIFY_TREE && lock_intention == BTR_INTENTION_INSERT && page_has_next(page) && page_rec_is_last(page_cur_get_rec(page_cursor), page)) { /* btr_insert_into_right_sibling() might cause deleting node_ptr at upper level */ guess = NULL; if (height == 0) { /* release the leaf pages if latched */ for (uint i = 0; i < 3; i++) { if (latch_leaves.blocks[i] != NULL) { mtr_release_block_at_savepoint( mtr, latch_leaves.savepoints[i], latch_leaves.blocks[i]); latch_leaves.blocks[i] = NULL; } } } goto need_opposite_intention; } if (level != 0) { ut_ad(!autoinc); if (upper_rw_latch == RW_NO_LATCH) { ut_ad(latch_mode == BTR_CONT_MODIFY_TREE || latch_mode == BTR_CONT_SEARCH_TREE); buf_block_t* child_block = btr_block_get( *index, page_id.page_no(), latch_mode == BTR_CONT_MODIFY_TREE ? RW_X_LATCH : RW_SX_LATCH, false, mtr); btr_assert_not_corrupted(child_block, index); } else { ut_ad(mtr->memo_contains_flagged(block, upper_rw_latch)); btr_assert_not_corrupted(block, index); if (s_latch_by_caller) { ut_ad(latch_mode == BTR_SEARCH_TREE); /* to exclude modifying tree operations should sx-latch the index. */ ut_ad(mtr->memo_contains(index->lock, MTR_MEMO_SX_LOCK)); /* because has sx-latch of index, can release upper blocks. */ for (; n_releases < n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } } if (page_mode <= PAGE_CUR_LE) { cursor->low_match = low_match; cursor->up_match = up_match; } } else { cursor->low_match = low_match; cursor->low_bytes = low_bytes; cursor->up_match = up_match; cursor->up_bytes = up_bytes; if (autoinc) { page_set_autoinc(tree_blocks[0], autoinc, mtr, false); } #ifdef BTR_CUR_HASH_ADAPT /* We do a dirty read of btr_search_enabled here. We will properly check btr_search_enabled again in btr_search_build_page_hash_index() before building a page hash index, while holding search latch. */ if (!btr_search_enabled) { # ifdef MYSQL_INDEX_DISABLE_AHI } else if (index->disable_ahi) { # endif } else if (tuple->info_bits & REC_INFO_MIN_REC_FLAG) { ut_ad(index->is_instant()); /* This may be a search tuple for btr_pcur_restore_position(). */ ut_ad(tuple->is_metadata() || (tuple->is_metadata(tuple->info_bits ^ REC_STATUS_INSTANT))); } else if (rec_is_metadata(btr_cur_get_rec(cursor), *index)) { /* Only user records belong in the adaptive hash index. */ } else { btr_search_info_update(index, cursor); } #endif /* BTR_CUR_HASH_ADAPT */ ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_GE); ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); ut_ad(cursor->low_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); } /* For spatial index, remember what blocks are still latched */ if (dict_index_is_spatial(index) && (latch_mode == BTR_MODIFY_TREE || latch_mode == BTR_MODIFY_LEAF)) { for (ulint i = 0; i < n_releases; i++) { cursor->rtr_info->tree_blocks[i] = NULL; cursor->rtr_info->tree_savepoints[i] = 0; } for (ulint i = n_releases; i <= n_blocks; i++) { cursor->rtr_info->tree_blocks[i] = tree_blocks[i]; cursor->rtr_info->tree_savepoints[i] = tree_savepoints[i]; } } func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } if (retrying_for_search_prev) { ut_free(prev_tree_blocks); ut_free(prev_tree_savepoints); } if (mbr_adj) { /* remember that we will need to adjust parent MBR */ cursor->rtr_info->mbr_adj = true; } #ifdef BTR_CUR_HASH_ADAPT if (ahi_latch) { rw_lock_s_lock(ahi_latch); } #endif /* BTR_CUR_HASH_ADAPT */ DBUG_RETURN(err); } /*****************************************************************//** Opens a cursor at either end of an index. */ dberr_t btr_cur_open_at_index_side_func( /*============================*/ bool from_left, /*!< in: true if open to the low end, false if to the high end */ dict_index_t* index, /*!< in: index */ ulint latch_mode, /*!< in: latch mode */ btr_cur_t* cursor, /*!< in/out: cursor */ ulint level, /*!< in: level to search for (0=leaf). */ const char* file, /*!< in: file name */ unsigned line, /*!< in: line where called */ mtr_t* mtr) /*!< in/out: mini-transaction */ { page_cur_t* page_cursor; ulint node_ptr_max_size = srv_page_size / 2; ulint height; ulint root_height = 0; /* remove warning */ rec_t* node_ptr; ulint estimate; btr_intention_t lock_intention; buf_block_t* tree_blocks[BTR_MAX_LEVELS]; ulint tree_savepoints[BTR_MAX_LEVELS]; ulint n_blocks = 0; ulint n_releases = 0; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; dberr_t err = DB_SUCCESS; rec_offs_init(offsets_); estimate = latch_mode & BTR_ESTIMATE; latch_mode &= ulint(~BTR_ESTIMATE); ut_ad(level != ULINT_UNDEFINED); bool s_latch_by_caller; s_latch_by_caller = latch_mode & BTR_ALREADY_S_LATCHED; latch_mode &= ulint(~BTR_ALREADY_S_LATCHED); lock_intention = btr_cur_get_and_clear_intention(&latch_mode); ut_ad(!(latch_mode & BTR_MODIFY_EXTERNAL)); /* This function doesn't need to lock left page of the leaf page */ if (latch_mode == BTR_SEARCH_PREV) { latch_mode = BTR_SEARCH_LEAF; } else if (latch_mode == BTR_MODIFY_PREV) { latch_mode = BTR_MODIFY_LEAF; } /* Store the position of the tree latch we push to mtr so that we know how to release it when we have latched the leaf node */ ulint savepoint = mtr_set_savepoint(mtr); rw_lock_type_t upper_rw_latch; switch (latch_mode) { case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: upper_rw_latch = RW_NO_LATCH; break; case BTR_MODIFY_TREE: /* Most of delete-intended operations are purging. Free blocks and read IO bandwidth should be prior for them, when the history list is glowing huge. */ if (lock_intention == BTR_INTENTION_DELETE && trx_sys.rseg_history_len > BTR_CUR_FINE_HISTORY_LENGTH && buf_pool.n_pend_reads) { mtr_x_lock_index(index, mtr); } else { mtr_sx_lock_index(index, mtr); } upper_rw_latch = RW_X_LATCH; break; default: ut_ad(!s_latch_by_caller || mtr->memo_contains_flagged(&index->lock, MTR_MEMO_SX_LOCK | MTR_MEMO_S_LOCK)); if (!srv_read_only_mode) { if (!s_latch_by_caller) { /* BTR_SEARCH_TREE is intended to be used with BTR_ALREADY_S_LATCHED */ ut_ad(latch_mode != BTR_SEARCH_TREE); mtr_s_lock_index(index, mtr); } upper_rw_latch = RW_S_LATCH; } else { upper_rw_latch = RW_NO_LATCH; } } const rw_lock_type_t root_leaf_rw_latch = btr_cur_latch_for_root_leaf( latch_mode); page_cursor = btr_cur_get_page_cur(cursor); cursor->index = index; page_id_t page_id(index->table->space_id, index->page); const ulint zip_size = index->table->space->zip_size(); if (root_leaf_rw_latch == RW_X_LATCH) { node_ptr_max_size = btr_node_ptr_max_size(index); } height = ULINT_UNDEFINED; for (;;) { ut_ad(n_blocks < BTR_MAX_LEVELS); tree_savepoints[n_blocks] = mtr_set_savepoint(mtr); const ulint rw_latch = height && (latch_mode != BTR_MODIFY_TREE || height == level) ? upper_rw_latch : RW_NO_LATCH; buf_block_t* block = buf_page_get_gen(page_id, zip_size, rw_latch, NULL, BUF_GET, file, line, mtr, &err, height == 0 && !index->is_clust()); ut_ad((block != NULL) == (err == DB_SUCCESS)); tree_blocks[n_blocks] = block; if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } goto exit_loop; } const page_t* page = buf_block_get_frame(block); if (height == ULINT_UNDEFINED && page_is_leaf(page) && rw_latch != RW_NO_LATCH && rw_latch != root_leaf_rw_latch) { /* We should retry to get the page, because the root page is latched with different level as a leaf page. */ ut_ad(root_leaf_rw_latch != RW_NO_LATCH); ut_ad(rw_latch == RW_S_LATCH); ut_ad(n_blocks == 0); mtr_release_block_at_savepoint( mtr, tree_savepoints[n_blocks], tree_blocks[n_blocks]); upper_rw_latch = root_leaf_rw_latch; continue; } ut_ad(fil_page_index_page_check(page)); ut_ad(index->id == btr_page_get_index_id(page)); if (height == ULINT_UNDEFINED) { /* We are in the root node */ height = btr_page_get_level(page); root_height = height; ut_a(height >= level); } else { /* TODO: flag the index corrupted if this fails */ ut_ad(height == btr_page_get_level(page)); } if (height == 0) { if (rw_latch == RW_NO_LATCH) { btr_cur_latch_leaves(block, latch_mode, cursor, mtr); } /* In versions <= 3.23.52 we had forgotten to release the tree latch here. If in an index scan we had to scan far to find a record visible to the current transaction, that could starve others waiting for the tree latch. */ switch (latch_mode) { case BTR_MODIFY_TREE: case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: break; default: if (UNIV_UNLIKELY(srv_read_only_mode)) { break; } if (!s_latch_by_caller) { /* Release the tree s-latch */ mtr_release_s_latch_at_savepoint( mtr, savepoint, &index->lock); } /* release upper blocks */ for (; n_releases < n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } } else if (height == level /* height != 0 */ && UNIV_LIKELY(!srv_read_only_mode)) { /* We already have the block latched. */ ut_ad(latch_mode == BTR_SEARCH_TREE); ut_ad(s_latch_by_caller); ut_ad(upper_rw_latch == RW_S_LATCH); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_S_FIX)); if (s_latch_by_caller) { /* to exclude modifying tree operations should sx-latch the index. */ ut_ad(mtr->memo_contains(index->lock, MTR_MEMO_SX_LOCK)); /* because has sx-latch of index, can release upper blocks. */ for (; n_releases < n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } } if (from_left) { page_cur_set_before_first(block, page_cursor); } else { page_cur_set_after_last(block, page_cursor); } if (height == level) { if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } break; } ut_ad(height > 0); if (from_left) { page_cur_move_to_next(page_cursor); } else { page_cur_move_to_prev(page_cursor); } if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } height--; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets(node_ptr, cursor->index, offsets, 0, ULINT_UNDEFINED, &heap); /* If the rec is the first or last in the page for pessimistic delete intention, it might cause node_ptr insert for the upper level. We should change the intention and retry. */ if (latch_mode == BTR_MODIFY_TREE && btr_cur_need_opposite_intention( page, lock_intention, node_ptr)) { ut_ad(upper_rw_latch == RW_X_LATCH); /* release all blocks */ for (; n_releases <= n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } lock_intention = BTR_INTENTION_BOTH; page_id.set_page_no(dict_index_get_page(index)); height = ULINT_UNDEFINED; n_blocks = 0; n_releases = 0; continue; } if (latch_mode == BTR_MODIFY_TREE && !btr_cur_will_modify_tree( cursor->index, page, lock_intention, node_ptr, node_ptr_max_size, zip_size, mtr)) { ut_ad(upper_rw_latch == RW_X_LATCH); ut_ad(n_releases <= n_blocks); /* we can release upper blocks */ for (; n_releases < n_blocks; n_releases++) { if (n_releases == 0) { /* we should not release root page to pin to same block. */ continue; } /* release unused blocks to unpin */ mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } if (height == level && latch_mode == BTR_MODIFY_TREE) { ut_ad(upper_rw_latch == RW_X_LATCH); /* we should sx-latch root page, if released already. It contains seg_header. */ if (n_releases > 0) { mtr_block_sx_latch_at_savepoint( mtr, tree_savepoints[0], tree_blocks[0]); } /* x-latch the branch blocks not released yet. */ for (ulint i = n_releases; i <= n_blocks; i++) { mtr_block_x_latch_at_savepoint( mtr, tree_savepoints[i], tree_blocks[i]); } } /* Go to the child node */ page_id.set_page_no( btr_node_ptr_get_child_page_no(node_ptr, offsets)); n_blocks++; } exit_loop: if (heap) { mem_heap_free(heap); } return err; } /**********************************************************************//** Positions a cursor at a randomly chosen position within a B-tree. @return true if the index is available and we have put the cursor, false if the index is unavailable */ bool btr_cur_open_at_rnd_pos_func( /*=========================*/ dict_index_t* index, /*!< in: index */ ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ... */ btr_cur_t* cursor, /*!< in/out: B-tree cursor */ const char* file, /*!< in: file name */ unsigned line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t* page_cursor; ulint node_ptr_max_size = srv_page_size / 2; ulint height; rec_t* node_ptr; btr_intention_t lock_intention; buf_block_t* tree_blocks[BTR_MAX_LEVELS]; ulint tree_savepoints[BTR_MAX_LEVELS]; ulint n_blocks = 0; ulint n_releases = 0; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); ut_ad(!index->is_spatial()); lock_intention = btr_cur_get_and_clear_intention(&latch_mode); ut_ad(!(latch_mode & BTR_MODIFY_EXTERNAL)); ulint savepoint = mtr_set_savepoint(mtr); rw_lock_type_t upper_rw_latch; switch (latch_mode) { case BTR_MODIFY_TREE: /* Most of delete-intended operations are purging. Free blocks and read IO bandwidth should be prior for them, when the history list is glowing huge. */ if (lock_intention == BTR_INTENTION_DELETE && trx_sys.rseg_history_len > BTR_CUR_FINE_HISTORY_LENGTH && buf_pool.n_pend_reads) { mtr_x_lock_index(index, mtr); } else { mtr_sx_lock_index(index, mtr); } upper_rw_latch = RW_X_LATCH; break; case BTR_SEARCH_PREV: case BTR_MODIFY_PREV: /* This function doesn't support left uncle page lock for left leaf page lock, when needed. */ case BTR_SEARCH_TREE: case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: ut_ad(0); /* fall through */ default: if (!srv_read_only_mode) { mtr_s_lock_index(index, mtr); upper_rw_latch = RW_S_LATCH; } else { upper_rw_latch = RW_NO_LATCH; } } DBUG_EXECUTE_IF("test_index_is_unavailable", return(false);); if (index->page == FIL_NULL) { /* Since we don't hold index lock until just now, the index could be modified by others, for example, if this is a statistics updater for referenced table, it could be marked as unavailable by 'DROP TABLE' in the mean time, since we don't hold lock for statistics updater */ return(false); } const rw_lock_type_t root_leaf_rw_latch = btr_cur_latch_for_root_leaf( latch_mode); page_cursor = btr_cur_get_page_cur(cursor); cursor->index = index; page_id_t page_id(index->table->space_id, index->page); const ulint zip_size = index->table->space->zip_size(); dberr_t err = DB_SUCCESS; if (root_leaf_rw_latch == RW_X_LATCH) { node_ptr_max_size = btr_node_ptr_max_size(index); } height = ULINT_UNDEFINED; for (;;) { page_t* page; ut_ad(n_blocks < BTR_MAX_LEVELS); tree_savepoints[n_blocks] = mtr_set_savepoint(mtr); const rw_lock_type_t rw_latch = height && latch_mode != BTR_MODIFY_TREE ? upper_rw_latch : RW_NO_LATCH; buf_block_t* block = buf_page_get_gen(page_id, zip_size, rw_latch, NULL, BUF_GET, file, line, mtr, &err, height == 0 && !index->is_clust()); tree_blocks[n_blocks] = block; ut_ad((block != NULL) == (err == DB_SUCCESS)); if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } break; } page = buf_block_get_frame(block); if (height == ULINT_UNDEFINED && page_is_leaf(page) && rw_latch != RW_NO_LATCH && rw_latch != root_leaf_rw_latch) { /* We should retry to get the page, because the root page is latched with different level as a leaf page. */ ut_ad(root_leaf_rw_latch != RW_NO_LATCH); ut_ad(rw_latch == RW_S_LATCH); ut_ad(n_blocks == 0); mtr_release_block_at_savepoint( mtr, tree_savepoints[n_blocks], tree_blocks[n_blocks]); upper_rw_latch = root_leaf_rw_latch; continue; } ut_ad(fil_page_index_page_check(page)); ut_ad(index->id == btr_page_get_index_id(page)); if (height == ULINT_UNDEFINED) { /* We are in the root node */ height = btr_page_get_level(page); } if (height == 0) { if (rw_latch == RW_NO_LATCH || srv_read_only_mode) { btr_cur_latch_leaves(block, latch_mode, cursor, mtr); } /* btr_cur_open_at_index_side_func() and btr_cur_search_to_nth_level() release tree s-latch here.*/ switch (latch_mode) { case BTR_MODIFY_TREE: case BTR_CONT_MODIFY_TREE: case BTR_CONT_SEARCH_TREE: break; default: /* Release the tree s-latch */ if (!srv_read_only_mode) { mtr_release_s_latch_at_savepoint( mtr, savepoint, dict_index_get_lock(index)); } /* release upper blocks */ for (; n_releases < n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } } page_cur_open_on_rnd_user_rec(block, page_cursor); if (height == 0) { break; } ut_ad(height > 0); height--; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets(node_ptr, cursor->index, offsets, 0, ULINT_UNDEFINED, &heap); /* If the rec is the first or last in the page for pessimistic delete intention, it might cause node_ptr insert for the upper level. We should change the intention and retry. */ if (latch_mode == BTR_MODIFY_TREE && btr_cur_need_opposite_intention( page, lock_intention, node_ptr)) { ut_ad(upper_rw_latch == RW_X_LATCH); /* release all blocks */ for (; n_releases <= n_blocks; n_releases++) { mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } lock_intention = BTR_INTENTION_BOTH; page_id.set_page_no(dict_index_get_page(index)); height = ULINT_UNDEFINED; n_blocks = 0; n_releases = 0; continue; } if (latch_mode == BTR_MODIFY_TREE && !btr_cur_will_modify_tree( cursor->index, page, lock_intention, node_ptr, node_ptr_max_size, zip_size, mtr)) { ut_ad(upper_rw_latch == RW_X_LATCH); ut_ad(n_releases <= n_blocks); /* we can release upper blocks */ for (; n_releases < n_blocks; n_releases++) { if (n_releases == 0) { /* we should not release root page to pin to same block. */ continue; } /* release unused blocks to unpin */ mtr_release_block_at_savepoint( mtr, tree_savepoints[n_releases], tree_blocks[n_releases]); } } if (height == 0 && latch_mode == BTR_MODIFY_TREE) { ut_ad(upper_rw_latch == RW_X_LATCH); /* we should sx-latch root page, if released already. It contains seg_header. */ if (n_releases > 0) { mtr_block_sx_latch_at_savepoint( mtr, tree_savepoints[0], tree_blocks[0]); } /* x-latch the branch blocks not released yet. */ for (ulint i = n_releases; i <= n_blocks; i++) { mtr_block_x_latch_at_savepoint( mtr, tree_savepoints[i], tree_blocks[i]); } } /* Go to the child node */ page_id.set_page_no( btr_node_ptr_get_child_page_no(node_ptr, offsets)); n_blocks++; } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return err == DB_SUCCESS; } /*==================== B-TREE INSERT =========================*/ /*************************************************************//** Inserts a record if there is enough space, or if enough space can be freed by reorganizing. Differs from btr_cur_optimistic_insert because no heuristics is applied to whether it pays to use CPU time for reorganizing the page or not. IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). @return pointer to inserted record if succeed, else NULL */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) rec_t* btr_cur_insert_if_possible( /*=======================*/ btr_cur_t* cursor, /*!< in: cursor on page after which to insert; cursor stays valid */ const dtuple_t* tuple, /*!< in: tuple to insert; the size info need not have been stored to tuple */ rec_offs** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ ulint n_ext, /*!< in: number of externally stored columns */ mtr_t* mtr) /*!< in/out: mini-transaction */ { page_cur_t* page_cursor; rec_t* rec; ut_ad(dtuple_check_typed(tuple)); ut_ad(mtr->memo_contains_flagged(btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); page_cursor = btr_cur_get_page_cur(cursor); /* Now, try the insert */ rec = page_cur_tuple_insert(page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); /* If the record did not fit, reorganize. For compressed pages, page_cur_tuple_insert() attempted this already. */ if (!rec && !page_cur_get_page_zip(page_cursor) && btr_page_reorganize(page_cursor, cursor->index, mtr)) { rec = page_cur_tuple_insert( page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); } ut_ad(!rec || rec_offs_validate(rec, cursor->index, *offsets)); return(rec); } /*************************************************************//** For an insert, checks the locks and does the undo logging if desired. @return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */ UNIV_INLINE MY_ATTRIBUTE((warn_unused_result, nonnull(2,3,5,6))) dberr_t btr_cur_ins_lock_and_undo( /*======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameters index and thr should be specified */ btr_cur_t* cursor, /*!< in: cursor on page after which to insert */ dtuple_t* entry, /*!< in/out: entry to insert */ que_thr_t* thr, /*!< in: query thread or NULL */ mtr_t* mtr, /*!< in/out: mini-transaction */ bool* inherit)/*!< out: true if the inserted new record maybe should inherit LOCK_GAP type locks from the successor record */ { dict_index_t* index; dberr_t err = DB_SUCCESS; rec_t* rec; roll_ptr_t roll_ptr; /* Check if we have to wait for a lock: enqueue an explicit lock request if yes */ rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); ut_ad(mtr->is_named_space(index->table->space)); /* Check if there is predicate or GAP lock preventing the insertion */ if (!(flags & BTR_NO_LOCKING_FLAG)) { const unsigned type = index->type; if (UNIV_UNLIKELY(type & DICT_SPATIAL)) { lock_prdt_t prdt; rtr_mbr_t mbr; rtr_get_mbr_from_tuple(entry, &mbr); /* Use on stack MBR variable to test if a lock is needed. If so, the predicate (MBR) will be allocated from lock heap in lock_prdt_insert_check_and_lock() */ lock_init_prdt_from_mbr( &prdt, &mbr, 0, NULL); err = lock_prdt_insert_check_and_lock( flags, rec, btr_cur_get_block(cursor), index, thr, mtr, &prdt); *inherit = false; } else { #ifdef WITH_WSREP trx_t* trx= thr_get_trx(thr); /* If transaction scanning an unique secondary key is wsrep high priority thread (brute force) this scanning may involve GAP-locking in the index. As this locking happens also when applying replication events in high priority applier threads, there is a probability for lock conflicts between two wsrep high priority threads. To avoid this GAP-locking we mark that this transaction is using unique key scan here. */ if ((type & (DICT_CLUSTERED | DICT_UNIQUE)) == DICT_UNIQUE && trx->is_wsrep() && wsrep_thd_is_BF(trx->mysql_thd, false)) { trx->wsrep_UK_scan= true; } #endif /* WITH_WSREP */ err = lock_rec_insert_check_and_lock( flags, rec, btr_cur_get_block(cursor), index, thr, mtr, inherit); #ifdef WITH_WSREP trx->wsrep_UK_scan= false; #endif /* WITH_WSREP */ } } if (err != DB_SUCCESS || !(~flags | (BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG)) || !dict_index_is_clust(index) || dict_index_is_ibuf(index)) { return(err); } if (flags & BTR_NO_UNDO_LOG_FLAG) { roll_ptr = roll_ptr_t(1) << ROLL_PTR_INSERT_FLAG_POS; if (!(flags & BTR_KEEP_SYS_FLAG)) { upd_sys: dfield_t* r = dtuple_get_nth_field( entry, index->db_roll_ptr()); ut_ad(r->len == DATA_ROLL_PTR_LEN); trx_write_roll_ptr(static_cast(r->data), roll_ptr); } } else { err = trx_undo_report_row_operation(thr, index, entry, NULL, 0, NULL, NULL, &roll_ptr); if (err == DB_SUCCESS) { goto upd_sys; } } return(err); } /** Prefetch siblings of the leaf for the pessimistic operation. @param block leaf page @param index index of the page */ static void btr_cur_prefetch_siblings(const buf_block_t *block, const dict_index_t *index) { ut_ad(page_is_leaf(block->frame)); if (index->is_ibuf()) return; const page_t *page= block->frame; uint32_t prev= mach_read_from_4(my_assume_aligned<4>(page + FIL_PAGE_PREV)); uint32_t next= mach_read_from_4(my_assume_aligned<4>(page + FIL_PAGE_NEXT)); if (prev == FIL_NULL); else if (index->table->space->acquire()) buf_read_page_background(index->table->space, page_id_t(block->page.id().space(), prev), block->zip_size(), false); if (next == FIL_NULL); else if (index->table->space->acquire()) buf_read_page_background(index->table->space, page_id_t(block->page.id().space(), next), block->zip_size(), false); } /*************************************************************//** Tries to perform an insert to a page in an index tree, next to cursor. It is assumed that mtr holds an x-latch on the page. The operation does not succeed if there is too little space on the page. If there is just one record on the page, the insert will always succeed; this is to prevent trying to split a page with just one record. @return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */ dberr_t btr_cur_optimistic_insert( /*======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameters index and thr should be specified */ btr_cur_t* cursor, /*!< in: cursor on page after which to insert; cursor stays valid */ rec_offs** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap */ dtuple_t* entry, /*!< in/out: entry to insert */ rec_t** rec, /*!< out: pointer to inserted record if succeed */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller */ ulint n_ext, /*!< in: number of externally stored columns */ que_thr_t* thr, /*!< in/out: query thread; can be NULL if !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG)) */ mtr_t* mtr) /*!< in/out: mini-transaction; if this function returns DB_SUCCESS on a leaf page of a secondary index in a compressed tablespace, the caller must mtr_commit(mtr) before latching any further pages */ { big_rec_t* big_rec_vec = NULL; dict_index_t* index; page_cur_t* page_cursor; buf_block_t* block; page_t* page; rec_t* dummy; bool leaf; bool reorg __attribute__((unused)); bool inherit = true; ulint rec_size; dberr_t err; ut_ad(thr || !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG))); *big_rec = NULL; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); index = cursor->index; ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); ut_ad(dtuple_check_typed(entry)); #ifdef HAVE_valgrind if (block->page.zip.data) { MEM_CHECK_DEFINED(page, srv_page_size); MEM_CHECK_DEFINED(block->page.zip.data, block->zip_size()); } #endif /* HAVE_valgrind */ leaf = page_is_leaf(page); if (UNIV_UNLIKELY(entry->is_alter_metadata())) { ut_ad(leaf); goto convert_big_rec; } /* Calculate the record size when entry is converted to a record */ rec_size = rec_get_converted_size(index, entry, n_ext); if (page_zip_rec_needs_ext(rec_size, page_is_comp(page), dtuple_get_n_fields(entry), block->zip_size())) { convert_big_rec: /* The record is so big that we have to store some fields externally on separate database pages */ big_rec_vec = dtuple_convert_big_rec(index, 0, entry, &n_ext); if (UNIV_UNLIKELY(big_rec_vec == NULL)) { return(DB_TOO_BIG_RECORD); } rec_size = rec_get_converted_size(index, entry, n_ext); } if (block->page.zip.data && page_zip_is_too_big(index, entry)) { if (big_rec_vec != NULL) { dtuple_convert_back_big_rec(index, entry, big_rec_vec); } return(DB_TOO_BIG_RECORD); } LIMIT_OPTIMISTIC_INSERT_DEBUG(page_get_n_recs(page), goto fail); if (block->page.zip.data && leaf && (page_get_data_size(page) + rec_size >= dict_index_zip_pad_optimal_page_size(index))) { /* If compression padding tells us that insertion will result in too packed up page i.e.: which is likely to cause compression failure then don't do an optimistic insertion. */ fail: err = DB_FAIL; /* prefetch siblings of the leaf for the pessimistic operation, if the page is leaf. */ if (page_is_leaf(page)) { btr_cur_prefetch_siblings(block, index); } fail_err: if (big_rec_vec) { dtuple_convert_back_big_rec(index, entry, big_rec_vec); } return(err); } ulint max_size = page_get_max_insert_size_after_reorganize(page, 1); if (max_size < rec_size) { goto fail; } const ulint n_recs = page_get_n_recs(page); if (UNIV_UNLIKELY(n_recs >= 8189)) { ut_ad(srv_page_size == 65536); goto fail; } if (page_has_garbage(page)) { if (max_size < BTR_CUR_PAGE_REORGANIZE_LIMIT && n_recs > 1 && page_get_max_insert_size(page, 1) < rec_size) { goto fail; } } /* If there have been many consecutive inserts to the clustered index leaf page of an uncompressed table, check if we have to split the page to reserve enough free space for future updates of records. */ if (leaf && !block->page.zip.data && dict_index_is_clust(index) && page_get_n_recs(page) >= 2 && dict_index_get_space_reserve() + rec_size > max_size && (btr_page_get_split_rec_to_right(cursor, &dummy) || btr_page_get_split_rec_to_left(cursor))) { goto fail; } page_cursor = btr_cur_get_page_cur(cursor); DBUG_LOG("ib_cur", "insert " << index->name << " (" << index->id << ") by " << ib::hex(thr ? thr->graph->trx->id : 0) << ' ' << rec_printer(entry).str()); DBUG_EXECUTE_IF("do_page_reorganize", btr_page_reorganize(page_cursor, index, mtr);); /* Now, try the insert */ { const rec_t* page_cursor_rec = page_cur_get_rec(page_cursor); /* Check locks and write to the undo log, if specified */ err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, mtr, &inherit); if (err != DB_SUCCESS) { goto fail_err; } #ifdef UNIV_DEBUG if (!(flags & BTR_CREATE_FLAG) && index->is_primary() && page_is_leaf(page)) { const dfield_t* trx_id = dtuple_get_nth_field( entry, dict_col_get_clust_pos( dict_table_get_sys_col(index->table, DATA_TRX_ID), index)); ut_ad(trx_id->len == DATA_TRX_ID_LEN); ut_ad(trx_id[1].len == DATA_ROLL_PTR_LEN); ut_ad(*static_cast (trx_id[1].data) & 0x80); if (flags & BTR_NO_UNDO_LOG_FLAG) { ut_ad(!memcmp(trx_id->data, reset_trx_id, DATA_TRX_ID_LEN)); } else { ut_ad(thr->graph->trx->id); ut_ad(thr->graph->trx->id == trx_read_trx_id( static_cast( trx_id->data)) || index->table->is_temporary()); } } #endif *rec = page_cur_tuple_insert( page_cursor, entry, index, offsets, heap, n_ext, mtr); reorg = page_cursor_rec != page_cur_get_rec(page_cursor); } if (*rec) { } else if (block->page.zip.data) { ut_ad(!index->table->is_temporary()); /* Reset the IBUF_BITMAP_FREE bits, because page_cur_tuple_insert() will have attempted page reorganize before failing. */ if (leaf && !dict_index_is_clust(index)) { ibuf_reset_free_bits(block); } goto fail; } else { ut_ad(!reorg); /* If the record did not fit, reorganize */ if (!btr_page_reorganize(page_cursor, index, mtr)) { ut_ad(0); goto fail; } ut_ad(page_get_max_insert_size(page, 1) == max_size); reorg = TRUE; *rec = page_cur_tuple_insert(page_cursor, entry, index, offsets, heap, n_ext, mtr); if (UNIV_UNLIKELY(!*rec)) { ib::fatal() << "Cannot insert tuple " << *entry << "into index " << index->name << " of table " << index->table->name << ". Max size: " << max_size; } } #ifdef BTR_CUR_HASH_ADAPT if (!leaf) { # ifdef MYSQL_INDEX_DISABLE_AHI } else if (index->disable_ahi) { # endif } else if (entry->info_bits & REC_INFO_MIN_REC_FLAG) { ut_ad(entry->is_metadata()); ut_ad(index->is_instant()); ut_ad(flags == BTR_NO_LOCKING_FLAG); } else { rw_lock_t* ahi_latch = btr_search_sys.get_latch(*index); if (!reorg && cursor->flag == BTR_CUR_HASH) { btr_search_update_hash_node_on_insert( cursor, ahi_latch); } else { btr_search_update_hash_on_insert(cursor, ahi_latch); } } #endif /* BTR_CUR_HASH_ADAPT */ if (!(flags & BTR_NO_LOCKING_FLAG) && inherit) { lock_update_insert(block, *rec); } if (leaf && !dict_index_is_clust(index) && !index->table->is_temporary()) { /* Update the free bits of the B-tree page in the insert buffer bitmap. */ /* The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to decrement or reset the bits in the bitmap in a mini-transaction that is committed before the mini-transaction that affects the free space. */ /* It is unsafe to increment the bits in a separately committed mini-transaction, because in crash recovery, the free bits could momentarily be set too high. */ if (block->page.zip.data) { /* Update the bits in the same mini-transaction. */ ibuf_update_free_bits_zip(block, mtr); } else { /* Decrement the bits in a separate mini-transaction. */ ibuf_update_free_bits_if_full( block, max_size, rec_size + PAGE_DIR_SLOT_SIZE); } } *big_rec = big_rec_vec; return(DB_SUCCESS); } /*************************************************************//** Performs an insert on a page of an index tree. It is assumed that mtr holds an x-latch on the tree and on the cursor page. If the insert is made on the leaf level, to avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. @return DB_SUCCESS or error number */ dberr_t btr_cur_pessimistic_insert( /*=======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameter thr should be specified; if no undo logging is specified, then the caller must have reserved enough free extents in the file space so that the insertion will certainly succeed */ btr_cur_t* cursor, /*!< in: cursor after which to insert; cursor stays valid */ rec_offs** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap that can be emptied */ dtuple_t* entry, /*!< in/out: entry to insert */ rec_t** rec, /*!< out: pointer to inserted record if succeed */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller */ ulint n_ext, /*!< in: number of externally stored columns */ que_thr_t* thr, /*!< in/out: query thread; can be NULL if !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG)) */ mtr_t* mtr) /*!< in/out: mini-transaction */ { dict_index_t* index = cursor->index; big_rec_t* big_rec_vec = NULL; dberr_t err; bool inherit = false; bool success; uint32_t n_reserved = 0; ut_ad(dtuple_check_typed(entry)); ut_ad(thr || !(~flags & (BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG))); *big_rec = NULL; ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(mtr->memo_contains_flagged(btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); cursor->flag = BTR_CUR_BINARY; /* Check locks and write to undo log, if specified */ err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, mtr, &inherit); if (err != DB_SUCCESS) { return(err); } if (!(flags & BTR_NO_UNDO_LOG_FLAG)) { /* First reserve enough free space for the file segments of the index tree, so that the insert will not fail because of lack of space */ uint32_t n_extents = uint32_t(cursor->tree_height / 16 + 3); success = fsp_reserve_free_extents(&n_reserved, index->table->space, n_extents, FSP_NORMAL, mtr); if (!success) { return(DB_OUT_OF_FILE_SPACE); } } if (page_zip_rec_needs_ext(rec_get_converted_size(index, entry, n_ext), index->table->not_redundant(), dtuple_get_n_fields(entry), btr_cur_get_block(cursor)->zip_size()) || UNIV_UNLIKELY(entry->is_alter_metadata() && !dfield_is_ext( dtuple_get_nth_field( entry, index->first_user_field())))) { /* The record is so big that we have to store some fields externally on separate database pages */ if (UNIV_LIKELY_NULL(big_rec_vec)) { /* This should never happen, but we handle the situation in a robust manner. */ ut_ad(0); dtuple_convert_back_big_rec(index, entry, big_rec_vec); } big_rec_vec = dtuple_convert_big_rec(index, 0, entry, &n_ext); if (big_rec_vec == NULL) { index->table->space->release_free_extents(n_reserved); return(DB_TOO_BIG_RECORD); } } if (dict_index_get_page(index) == btr_cur_get_block(cursor)->page.id().page_no()) { /* The page is the root page */ *rec = btr_root_raise_and_insert( flags, cursor, offsets, heap, entry, n_ext, mtr); } else { *rec = btr_page_split_and_insert( flags, cursor, offsets, heap, entry, n_ext, mtr); } if (*rec == NULL && os_has_said_disk_full) { return(DB_OUT_OF_FILE_SPACE); } ut_ad(page_rec_get_next(btr_cur_get_rec(cursor)) == *rec || dict_index_is_spatial(index)); if (!(flags & BTR_NO_LOCKING_FLAG)) { ut_ad(!index->table->is_temporary()); if (dict_index_is_spatial(index)) { /* Do nothing */ } else { /* The cursor might be moved to the other page and the max trx id field should be updated after the cursor was fixed. */ if (!dict_index_is_clust(index)) { page_update_max_trx_id( btr_cur_get_block(cursor), btr_cur_get_page_zip(cursor), thr_get_trx(thr)->id, mtr); } if (!page_rec_is_infimum(btr_cur_get_rec(cursor)) || !page_has_prev(btr_cur_get_page(cursor))) { /* split and inserted need to call lock_update_insert() always. */ inherit = true; } } } if (!page_is_leaf(btr_cur_get_page(cursor))) { ut_ad(!big_rec_vec); } else { #ifdef BTR_CUR_HASH_ADAPT # ifdef MYSQL_INDEX_DISABLE_AHI if (index->disable_ahi); else # endif if (entry->info_bits & REC_INFO_MIN_REC_FLAG) { ut_ad(entry->is_metadata()); ut_ad(index->is_instant()); ut_ad(flags & BTR_NO_LOCKING_FLAG); ut_ad(!(flags & BTR_CREATE_FLAG)); } else { btr_search_update_hash_on_insert( cursor, btr_search_sys.get_latch(*index)); } #endif /* BTR_CUR_HASH_ADAPT */ if (inherit && !(flags & BTR_NO_LOCKING_FLAG)) { lock_update_insert(btr_cur_get_block(cursor), *rec); } } index->table->space->release_free_extents(n_reserved); *big_rec = big_rec_vec; return(DB_SUCCESS); } /*==================== B-TREE UPDATE =========================*/ /*************************************************************//** For an update, checks the locks and does the undo logging. @return DB_SUCCESS, DB_WAIT_LOCK, or error number */ UNIV_INLINE MY_ATTRIBUTE((warn_unused_result)) dberr_t btr_cur_upd_lock_and_undo( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on record to update */ const rec_offs* offsets,/*!< in: rec_get_offsets() on cursor */ const upd_t* update, /*!< in: update vector */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread (can be NULL if BTR_NO_LOCKING_FLAG) */ mtr_t* mtr, /*!< in/out: mini-transaction */ roll_ptr_t* roll_ptr)/*!< out: roll pointer */ { dict_index_t* index; const rec_t* rec; dberr_t err; ut_ad((thr != NULL) || (flags & BTR_NO_LOCKING_FLAG)); rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(mtr->is_named_space(index->table->space)); if (!dict_index_is_clust(index)) { ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG)); /* We do undo logging only when we update a clustered index record */ return(lock_sec_rec_modify_check_and_lock( flags, btr_cur_get_block(cursor), rec, index, thr, mtr)); } /* Check if we have to wait for a lock: enqueue an explicit lock request if yes */ if (!(flags & BTR_NO_LOCKING_FLAG)) { err = lock_clust_rec_modify_check_and_lock( flags, btr_cur_get_block(cursor), rec, index, offsets, thr); if (err != DB_SUCCESS) { return(err); } } /* Append the info about the update in the undo log */ return((flags & BTR_NO_UNDO_LOG_FLAG) ? DB_SUCCESS : trx_undo_report_row_operation( thr, index, NULL, update, cmpl_info, rec, offsets, roll_ptr)); } /** Write DB_TRX_ID,DB_ROLL_PTR to a clustered index entry. @param[in,out] entry clustered index entry @param[in] index clustered index @param[in] trx_id DB_TRX_ID @param[in] roll_ptr DB_ROLL_PTR */ static void btr_cur_write_sys( dtuple_t* entry, const dict_index_t* index, trx_id_t trx_id, roll_ptr_t roll_ptr) { dfield_t* t = dtuple_get_nth_field(entry, index->db_trx_id()); ut_ad(t->len == DATA_TRX_ID_LEN); trx_write_trx_id(static_cast(t->data), trx_id); dfield_t* r = dtuple_get_nth_field(entry, index->db_roll_ptr()); ut_ad(r->len == DATA_ROLL_PTR_LEN); trx_write_roll_ptr(static_cast(r->data), roll_ptr); } /** Update DB_TRX_ID, DB_ROLL_PTR in a clustered index record. @param[in,out] block clustered index leaf page @param[in,out] rec clustered index record @param[in] index clustered index @param[in] offsets rec_get_offsets(rec, index) @param[in] trx transaction @param[in] roll_ptr DB_ROLL_PTR value @param[in,out] mtr mini-transaction */ static void btr_cur_upd_rec_sys(buf_block_t *block, rec_t *rec, dict_index_t *index, const rec_offs *offsets, const trx_t *trx, roll_ptr_t roll_ptr, mtr_t *mtr) { ut_ad(index->is_primary()); ut_ad(rec_offs_validate(rec, index, offsets)); if (UNIV_LIKELY_NULL(block->page.zip.data)) { page_zip_write_trx_id_and_roll_ptr(block, rec, offsets, index->db_trx_id(), trx->id, roll_ptr, mtr); return; } ulint offset= index->trx_id_offset; if (!offset) offset= row_get_trx_id_offset(index, offsets); compile_time_assert(DATA_TRX_ID + 1 == DATA_ROLL_PTR); /* During IMPORT the trx id in the record can be in the future, if the .ibd file is being imported from another instance. During IMPORT roll_ptr will be 0. */ ut_ad(roll_ptr == 0 || lock_check_trx_id_sanity(trx_read_trx_id(rec + offset), rec, index, offsets)); byte sys[DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN]; trx_write_trx_id(sys, trx->id); trx_write_roll_ptr(sys + DATA_TRX_ID_LEN, roll_ptr); ulint d= 0; const byte *src= nullptr; byte *dest= rec + offset; ulint len= DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN; if (UNIV_LIKELY(index->trx_id_offset)) { const rec_t *prev= page_rec_get_prev_const(rec); if (UNIV_UNLIKELY(prev == rec)) ut_ad(0); else if (page_rec_is_infimum(prev)); else for (src= prev + offset; d < DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN; d++) if (src[d] != sys[d]) break; if (d > 6 && memcmp(dest, sys, d)) { /* We save space by replacing a single record WRITE,page_offset(dest),byte[13] with two records: MEMMOVE,page_offset(dest),d(1 byte),offset(1..3 bytes), WRITE|0x80,0,byte[13-d] The single WRITE record would be x+13 bytes long, with x>2. The MEMMOVE record would be up to x+1+3 = x+4 bytes, and the second WRITE would be 1+1+13-d = 15-d bytes. The total size is: x+13 versus x+4+15-d = x+19-d bytes. To save space, we must have d>6, that is, the complete DB_TRX_ID and the first byte(s) of DB_ROLL_PTR must match the previous record. */ memcpy(dest, src, d); mtr->memmove(*block, page_offset(dest), page_offset(src), d); dest+= d; len-= d; /* DB_TRX_ID,DB_ROLL_PTR must be unique in each record when DB_TRX_ID refers to an active transaction. */ ut_ad(len); } else d= 0; } if (UNIV_LIKELY(len)) /* extra safety, to avoid corrupting the log */ mtr->memcpy(*block, dest, sys + d, len); } /*************************************************************//** See if there is enough place in the page modification log to log an update-in-place. @retval false if out of space; IBUF_BITMAP_FREE will be reset outside mtr if the page was recompressed @retval true if enough place; IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a secondary index leaf page. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(mtr). */ bool btr_cur_update_alloc_zip_func( /*==========================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page */ page_cur_t* cursor, /*!< in/out: B-tree page cursor */ dict_index_t* index, /*!< in: the index corresponding to cursor */ #ifdef UNIV_DEBUG rec_offs* offsets,/*!< in/out: offsets of the cursor record */ #endif /* UNIV_DEBUG */ ulint length, /*!< in: size needed */ bool create, /*!< in: true=delete-and-insert, false=update-in-place */ mtr_t* mtr) /*!< in/out: mini-transaction */ { /* Have a local copy of the variables as these can change dynamically. */ const page_t* page = page_cur_get_page(cursor); ut_ad(page_zip == page_cur_get_page_zip(cursor)); ut_ad(!dict_index_is_ibuf(index)); ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets)); if (page_zip_available(page_zip, dict_index_is_clust(index), length, create)) { return(true); } if (!page_zip->m_nonempty && !page_has_garbage(page)) { /* The page has been freshly compressed, so reorganizing it will not help. */ return(false); } if (create && page_is_leaf(page) && (length + page_get_data_size(page) >= dict_index_zip_pad_optimal_page_size(index))) { return(false); } if (!btr_page_reorganize(cursor, index, mtr)) { goto out_of_space; } rec_offs_make_valid(page_cur_get_rec(cursor), index, page_is_leaf(page), offsets); /* After recompressing a page, we must make sure that the free bits in the insert buffer bitmap will not exceed the free space on the page. Because this function will not attempt recompression unless page_zip_available() fails above, it is safe to reset the free bits if page_zip_available() fails again, below. The free bits can safely be reset in a separate mini-transaction. If page_zip_available() succeeds below, we can be sure that the btr_page_reorganize() above did not reduce the free space available on the page. */ if (page_zip_available(page_zip, dict_index_is_clust(index), length, create)) { return(true); } out_of_space: ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets)); /* Out of space: reset the free bits. */ if (!dict_index_is_clust(index) && !index->table->is_temporary() && page_is_leaf(page)) { ibuf_reset_free_bits(page_cur_get_block(cursor)); } return(false); } /** Apply an update vector to a record. No field size changes are allowed. This is usually invoked on a clustered index. The only use case for a secondary index is row_ins_sec_index_entry_by_modify() or its counterpart in ibuf_insert_to_index_page(). @param[in,out] rec index record @param[in] index the index of the record @param[in] offsets rec_get_offsets(rec, index) @param[in] update update vector @param[in,out] block index page @param[in,out] mtr mini-transaction */ void btr_cur_upd_rec_in_place(rec_t *rec, const dict_index_t *index, const rec_offs *offsets, const upd_t *update, buf_block_t *block, mtr_t *mtr) { ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!index->table->skip_alter_undo); ut_ad(!block->page.zip.data || index->table->not_redundant()); #ifdef UNIV_DEBUG if (rec_offs_comp(offsets)) { switch (rec_get_status(rec)) { case REC_STATUS_ORDINARY: break; case REC_STATUS_INSTANT: ut_ad(index->is_instant()); break; case REC_STATUS_NODE_PTR: case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: ut_ad("wrong record status in update" == 0); } } #endif /* UNIV_DEBUG */ static_assert(REC_INFO_BITS_SHIFT == 0, "compatibility"); if (UNIV_LIKELY_NULL(block->page.zip.data)) { ut_ad(rec_offs_comp(offsets)); byte* info_bits = &rec[-REC_NEW_INFO_BITS]; const bool flip_del_mark = (*info_bits ^ update->info_bits) & REC_INFO_DELETED_FLAG; *info_bits &= byte(~REC_INFO_BITS_MASK); *info_bits |= update->info_bits; if (flip_del_mark) { page_zip_rec_set_deleted(block, rec, update->info_bits & REC_INFO_DELETED_FLAG, mtr); } } else { byte* info_bits = &rec[rec_offs_comp(offsets) ? -REC_NEW_INFO_BITS : -REC_OLD_INFO_BITS]; mtr->write<1,mtr_t::MAYBE_NOP>(*block, info_bits, (*info_bits & ~REC_INFO_BITS_MASK) | update->info_bits); } for (ulint i = 0; i < update->n_fields; i++) { const upd_field_t* uf = upd_get_nth_field(update, i); if (upd_fld_is_virtual_col(uf) && !index->has_virtual()) { continue; } const ulint n = uf->field_no; ut_ad(!dfield_is_ext(&uf->new_val) == !rec_offs_nth_extern(offsets, n)); ut_ad(!rec_offs_nth_default(offsets, n)); if (UNIV_UNLIKELY(dfield_is_null(&uf->new_val))) { if (rec_offs_nth_sql_null(offsets, n)) { ut_ad(index->table->is_instant()); ut_ad(n >= index->n_core_fields); continue; } ut_ad(!index->table->not_redundant()); switch (ulint size = rec_get_nth_field_size(rec, n)) { case 0: break; case 1: mtr->write<1,mtr_t::MAYBE_NOP>( *block, rec_get_field_start_offs(rec, n) + rec, 0U); break; default: mtr->memset( block, page_offset(rec_get_field_start_offs( rec, n) + rec), size, 0); } ulint l = rec_get_1byte_offs_flag(rec) ? (n + 1) : (n + 1) * 2; byte* b = rec - REC_N_OLD_EXTRA_BYTES - l; compile_time_assert(REC_1BYTE_SQL_NULL_MASK << 8 == REC_2BYTE_SQL_NULL_MASK); mtr->write<1>(*block, b, byte(*b | REC_1BYTE_SQL_NULL_MASK)); continue; } ulint len; byte* data = rec_get_nth_field(rec, offsets, n, &len); if (UNIV_LIKELY_NULL(block->page.zip.data)) { ut_ad(len == uf->new_val.len); memcpy(data, uf->new_val.data, len); continue; } if (UNIV_UNLIKELY(len != uf->new_val.len)) { ut_ad(len == UNIV_SQL_NULL); ut_ad(!rec_offs_comp(offsets)); len = uf->new_val.len; ut_ad(len == rec_get_nth_field_size(rec, n)); ulint l = rec_get_1byte_offs_flag(rec) ? (n + 1) : (n + 1) * 2; byte* b = rec - REC_N_OLD_EXTRA_BYTES - l; compile_time_assert(REC_1BYTE_SQL_NULL_MASK << 8 == REC_2BYTE_SQL_NULL_MASK); mtr->write<1>(*block, b, byte(*b & ~REC_1BYTE_SQL_NULL_MASK)); } if (len) { mtr->memcpy(*block, data, uf->new_val.data, len); } } if (UNIV_LIKELY_NULL(block->page.zip.data)) { page_zip_write_rec(block, rec, index, offsets, 0, mtr); } } /*************************************************************//** Updates a record when the update causes no size changes in its fields. We assume here that the ordering fields of the record do not change. @return locking or undo log related error code, or @retval DB_SUCCESS on success @retval DB_ZIP_OVERFLOW if there is not enough space left on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */ dberr_t btr_cur_update_in_place( /*====================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on the record to update; cursor stays valid and positioned on the same record */ rec_offs* offsets,/*!< in/out: offsets on cursor->page_cur.rec */ const upd_t* update, /*!< in: update vector */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; if this is a secondary index, the caller must mtr_commit(mtr) before latching any further pages */ { dict_index_t* index; dberr_t err; rec_t* rec; roll_ptr_t roll_ptr = 0; ulint was_delete_marked; ut_ad(page_is_leaf(cursor->page_cur.block->frame)); rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); ut_ad(trx_id > 0 || (flags & BTR_KEEP_SYS_FLAG) || index->table->is_temporary()); /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ulint(~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP))) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); ut_ad(fil_page_index_page_check(btr_cur_get_page(cursor))); ut_ad(btr_page_get_index_id(btr_cur_get_page(cursor)) == index->id); ut_ad(!(update->info_bits & REC_INFO_MIN_REC_FLAG)); DBUG_LOG("ib_cur", "update-in-place " << index->name << " (" << index->id << ") by " << ib::hex(trx_id) << ": " << rec_printer(rec, offsets).str()); buf_block_t* block = btr_cur_get_block(cursor); page_zip_des_t* page_zip = buf_block_get_page_zip(block); /* Check that enough space is available on the compressed page. */ if (UNIV_LIKELY_NULL(page_zip)) { ut_ad(!index->table->is_temporary()); if (!btr_cur_update_alloc_zip( page_zip, btr_cur_get_page_cur(cursor), index, offsets, rec_offs_size(offsets), false, mtr)) { return(DB_ZIP_OVERFLOW); } rec = btr_cur_get_rec(cursor); } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ goto func_exit; } if (!(flags & BTR_KEEP_SYS_FLAG)) { btr_cur_upd_rec_sys(block, rec, index, offsets, thr_get_trx(thr), roll_ptr, mtr); } was_delete_marked = rec_get_deleted_flag( rec, page_is_comp(buf_block_get_frame(block))); /* In delete-marked records, DB_TRX_ID must always refer to an existing undo log record. */ ut_ad(!was_delete_marked || !dict_index_is_clust(index) || row_get_rec_trx_id(rec, index, offsets)); #ifdef BTR_CUR_HASH_ADAPT { rw_lock_t* ahi_latch = block->index ? btr_search_sys.get_latch(*index) : NULL; if (ahi_latch) { /* TO DO: Can we skip this if none of the fields index->search_info->curr_n_fields are being updated? */ /* The function row_upd_changes_ord_field_binary does not work on a secondary index. */ if (!dict_index_is_clust(index) || row_upd_changes_ord_field_binary( index, update, thr, NULL, NULL)) { ut_ad(!(update->info_bits & REC_INFO_MIN_REC_FLAG)); /* Remove possible hash index pointer to this record */ btr_search_update_hash_on_delete(cursor); } rw_lock_x_lock(ahi_latch); } assert_block_ahi_valid(block); #endif /* BTR_CUR_HASH_ADAPT */ btr_cur_upd_rec_in_place(rec, index, offsets, update, block, mtr); #ifdef BTR_CUR_HASH_ADAPT if (ahi_latch) { rw_lock_x_unlock(ahi_latch); } } #endif /* BTR_CUR_HASH_ADAPT */ if (was_delete_marked && !rec_get_deleted_flag( rec, page_is_comp(buf_block_get_frame(block)))) { /* The new updated record owns its possible externally stored fields */ btr_cur_unmark_extern_fields(block, rec, index, offsets, mtr); } ut_ad(err == DB_SUCCESS); func_exit: if (page_zip && !(flags & BTR_KEEP_IBUF_BITMAP) && !dict_index_is_clust(index) && page_is_leaf(buf_block_get_frame(block))) { /* Update the free bits in the insert buffer. */ ut_ad(!index->table->is_temporary()); ibuf_update_free_bits_zip(block, mtr); } return(err); } /** Trim a metadata record during the rollback of instant ALTER TABLE. @param[in] entry metadata tuple @param[in] index primary key @param[in] update update vector for the rollback */ ATTRIBUTE_COLD static void btr_cur_trim_alter_metadata(dtuple_t* entry, const dict_index_t* index, const upd_t* update) { ut_ad(index->is_instant()); ut_ad(update->is_alter_metadata()); ut_ad(entry->is_alter_metadata()); ut_ad(update->fields[0].field_no == index->first_user_field()); ut_ad(update->fields[0].new_val.ext); ut_ad(update->fields[0].new_val.len == FIELD_REF_SIZE); ut_ad(entry->n_fields - 1 == index->n_fields); const byte* ptr = static_cast( update->fields[0].new_val.data); ut_ad(!mach_read_from_4(ptr + BTR_EXTERN_LEN)); ut_ad(mach_read_from_4(ptr + BTR_EXTERN_LEN + 4) > 4); ut_ad(mach_read_from_4(ptr + BTR_EXTERN_OFFSET) == FIL_PAGE_DATA); ut_ad(mach_read_from_4(ptr + BTR_EXTERN_SPACE_ID) == index->table->space->id); ulint n_fields = update->fields[1].field_no; ut_ad(n_fields <= index->n_fields); if (n_fields != index->n_uniq) { ut_ad(n_fields >= index->n_core_fields); entry->n_fields = n_fields; return; } /* This is based on dict_table_t::deserialise_columns() and btr_cur_instant_init_low(). */ mtr_t mtr; mtr.start(); buf_block_t* block = buf_page_get( page_id_t(index->table->space->id, mach_read_from_4(ptr + BTR_EXTERN_PAGE_NO)), 0, RW_S_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_EXTERN_STORAGE); ut_ad(fil_page_get_type(block->frame) == FIL_PAGE_TYPE_BLOB); ut_ad(mach_read_from_4(&block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO]) == FIL_NULL); ut_ad(mach_read_from_4(&block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_PART_LEN]) == mach_read_from_4(ptr + BTR_EXTERN_LEN + 4)); n_fields = mach_read_from_4( &block->frame[FIL_PAGE_DATA + BTR_BLOB_HDR_SIZE]) + index->first_user_field(); /* Rollback should not increase the number of fields. */ ut_ad(n_fields <= index->n_fields); ut_ad(n_fields + 1 <= entry->n_fields); /* dict_index_t::clear_instant_alter() cannot be invoked while rollback of an instant ALTER TABLE transaction is in progress for an is_alter_metadata() record. */ ut_ad(n_fields >= index->n_core_fields); mtr.commit(); entry->n_fields = n_fields + 1; } /** Trim an update tuple due to instant ADD COLUMN, if needed. For normal records, the trailing instantly added fields that match the initial default values are omitted. For the special metadata record on a table on which instant ADD COLUMN has already been executed, both ADD COLUMN and the rollback of ADD COLUMN need to be handled specially. @param[in,out] entry index entry @param[in] index index @param[in] update update vector @param[in] thr execution thread */ static inline void btr_cur_trim( dtuple_t* entry, const dict_index_t* index, const upd_t* update, const que_thr_t* thr) { if (!index->is_instant()) { } else if (UNIV_UNLIKELY(update->is_metadata())) { /* We are either updating a metadata record (instant ALTER TABLE on a table where instant ALTER was already executed) or rolling back such an operation. */ ut_ad(!upd_get_nth_field(update, 0)->orig_len); ut_ad(entry->is_metadata()); if (thr->graph->trx->in_rollback) { /* This rollback can occur either as part of ha_innobase::commit_inplace_alter_table() rolling back after a failed innobase_add_instant_try(), or as part of crash recovery. Either way, the table will be in the data dictionary cache, with the instantly added columns going to be removed later in the rollback. */ ut_ad(index->table->cached); /* The DB_TRX_ID,DB_ROLL_PTR are always last, and there should be some change to roll back. The first field in the update vector is the first instantly added column logged by innobase_add_instant_try(). */ ut_ad(update->n_fields > 2); if (update->is_alter_metadata()) { btr_cur_trim_alter_metadata( entry, index, update); return; } ut_ad(!entry->is_alter_metadata()); ulint n_fields = upd_get_nth_field(update, 0) ->field_no; ut_ad(n_fields + 1 >= entry->n_fields); entry->n_fields = n_fields; } } else { entry->trim(*index); } } /*************************************************************//** Tries to update a record on a page in an index tree. It is assumed that mtr holds an x-latch on the page. The operation does not succeed if there is too little space on the page or if the update would result in too empty a page, so that tree compression is recommended. We assume here that the ordering fields of the record do not change. @return error code, including @retval DB_SUCCESS on success @retval DB_OVERFLOW if the updated record does not fit @retval DB_UNDERFLOW if the page would become too empty @retval DB_ZIP_OVERFLOW if there is not enough space left on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */ dberr_t btr_cur_optimistic_update( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on the record to update; cursor stays valid and positioned on the same record */ rec_offs** offsets,/*!< out: offsets on cursor->page_cur.rec */ mem_heap_t** heap, /*!< in/out: pointer to NULL or memory heap */ const upd_t* update, /*!< in: update vector; this must also contain trx id and roll ptr fields */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; if this is a secondary index, the caller must mtr_commit(mtr) before latching any further pages */ { dict_index_t* index; page_cur_t* page_cursor; dberr_t err; buf_block_t* block; page_t* page; page_zip_des_t* page_zip; rec_t* rec; ulint max_size; ulint new_rec_size; ulint old_rec_size; ulint max_ins_size = 0; dtuple_t* new_entry; roll_ptr_t roll_ptr; ulint i; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(trx_id > 0 || (flags & BTR_KEEP_SYS_FLAG) || index->table->is_temporary()); ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); /* This is intended only for leaf page updates */ ut_ad(page_is_leaf(page)); /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ulint(~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP))) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); ut_ad(fil_page_index_page_check(page)); ut_ad(btr_page_get_index_id(page) == index->id); *offsets = rec_get_offsets(rec, index, *offsets, index->n_core_fields, ULINT_UNDEFINED, heap); #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG ut_a(!rec_offs_any_null_extern(rec, *offsets) || thr_get_trx(thr) == trx_roll_crash_recv_trx); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ if (UNIV_LIKELY(!update->is_metadata()) && !row_upd_changes_field_size_or_external(index, *offsets, update)) { /* The simplest and the most common case: the update does not change the size of any field and none of the updated fields is externally stored in rec or update, and there is enough space on the compressed page to log the update. */ return(btr_cur_update_in_place( flags, cursor, *offsets, update, cmpl_info, thr, trx_id, mtr)); } if (rec_offs_any_extern(*offsets)) { any_extern: ut_ad(!index->is_ibuf()); /* Externally stored fields are treated in pessimistic update */ /* prefetch siblings of the leaf for the pessimistic operation. */ btr_cur_prefetch_siblings(block, index); return(DB_OVERFLOW); } if (rec_is_metadata(rec, *index) && index->table->instant) { goto any_extern; } for (i = 0; i < upd_get_n_fields(update); i++) { if (dfield_is_ext(&upd_get_nth_field(update, i)->new_val)) { goto any_extern; } } DBUG_LOG("ib_cur", "update " << index->name << " (" << index->id << ") by " << ib::hex(trx_id) << ": " << rec_printer(rec, *offsets).str()); page_cursor = btr_cur_get_page_cur(cursor); if (!*heap) { *heap = mem_heap_create( rec_offs_size(*offsets) + DTUPLE_EST_ALLOC(rec_offs_n_fields(*offsets))); } new_entry = row_rec_to_index_entry(rec, index, *offsets, *heap); ut_ad(!dtuple_get_n_ext(new_entry)); /* The page containing the clustered index record corresponding to new_entry is latched in mtr. Thus the following call is safe. */ row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update, *heap); btr_cur_trim(new_entry, index, update, thr); old_rec_size = rec_offs_size(*offsets); new_rec_size = rec_get_converted_size(index, new_entry, 0); page_zip = buf_block_get_page_zip(block); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ if (page_zip) { ut_ad(!index->table->is_temporary()); if (page_zip_rec_needs_ext(new_rec_size, page_is_comp(page), dict_index_get_n_fields(index), block->zip_size())) { goto any_extern; } if (!btr_cur_update_alloc_zip( page_zip, page_cursor, index, *offsets, new_rec_size, true, mtr)) { return(DB_ZIP_OVERFLOW); } rec = page_cur_get_rec(page_cursor); } /* We limit max record size to 16k even for 64k page size. */ if (new_rec_size >= COMPRESSED_REC_MAX_DATA_SIZE || (!dict_table_is_comp(index->table) && new_rec_size >= REDUNDANT_REC_MAX_DATA_SIZE)) { err = DB_OVERFLOW; goto func_exit; } if (UNIV_UNLIKELY(new_rec_size >= (page_get_free_space_of_empty(page_is_comp(page)) / 2))) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ err = DB_OVERFLOW; goto func_exit; } if (UNIV_UNLIKELY(page_get_data_size(page) - old_rec_size + new_rec_size < BTR_CUR_PAGE_COMPRESS_LIMIT(index))) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ /* The page would become too empty */ err = DB_UNDERFLOW; goto func_exit; } /* We do not attempt to reorganize if the page is compressed. This is because the page may fail to compress after reorganization. */ max_size = page_zip ? page_get_max_insert_size(page, 1) : (old_rec_size + page_get_max_insert_size_after_reorganize(page, 1)); if (!page_zip) { max_ins_size = page_get_max_insert_size_after_reorganize( page, 1); } if (!(((max_size >= BTR_CUR_PAGE_REORGANIZE_LIMIT) && (max_size >= new_rec_size)) || (page_get_n_recs(page) <= 1))) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ /* There was not enough space, or it did not pay to reorganize: for simplicity, we decide what to do assuming a reorganization is needed, though it might not be necessary */ err = DB_OVERFLOW; goto func_exit; } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (err != DB_SUCCESS) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ goto func_exit; } /* Ok, we may do the replacement. Store on the page infimum the explicit locks on rec, before deleting rec (see the comment in btr_cur_pessimistic_update). */ if (!dict_table_is_locking_disabled(index->table)) { lock_rec_store_on_page_infimum(block, rec); } if (UNIV_UNLIKELY(update->is_metadata())) { ut_ad(new_entry->is_metadata()); ut_ad(index->is_instant()); /* This can be innobase_add_instant_try() performing a subsequent instant ADD COLUMN, or its rollback by row_undo_mod_clust_low(). */ ut_ad(flags & BTR_NO_LOCKING_FLAG); } else { btr_search_update_hash_on_delete(cursor); } page_cur_delete_rec(page_cursor, index, *offsets, mtr); page_cur_move_to_prev(page_cursor); if (!(flags & BTR_KEEP_SYS_FLAG)) { btr_cur_write_sys(new_entry, index, trx_id, roll_ptr); } /* There are no externally stored columns in new_entry */ rec = btr_cur_insert_if_possible( cursor, new_entry, offsets, heap, 0/*n_ext*/, mtr); ut_a(rec); /* <- We calculated above the insert would fit */ if (UNIV_UNLIKELY(update->is_metadata())) { /* We must empty the PAGE_FREE list, because if this was a rollback, the shortened metadata record would have too many fields, and we would be unable to know the size of the freed record. */ btr_page_reorganize(page_cursor, index, mtr); } else if (!dict_table_is_locking_disabled(index->table)) { /* Restore the old explicit lock state on the record */ lock_rec_restore_from_page_infimum(block, rec, block); } page_cur_move_to_next(page_cursor); ut_ad(err == DB_SUCCESS); func_exit: if (!(flags & BTR_KEEP_IBUF_BITMAP) && !dict_index_is_clust(index)) { /* Update the free bits in the insert buffer. */ if (page_zip) { ut_ad(!index->table->is_temporary()); ibuf_update_free_bits_zip(block, mtr); } else if (!index->table->is_temporary()) { ibuf_update_free_bits_low(block, max_ins_size, mtr); } } if (err != DB_SUCCESS) { /* prefetch siblings of the leaf for the pessimistic operation. */ btr_cur_prefetch_siblings(block, index); } return(err); } /*************************************************************//** If, in a split, a new supremum record was created as the predecessor of the updated record, the supremum record must inherit exactly the locks on the updated record. In the split it may have inherited locks from the successor of the updated record, which is not correct. This function restores the right locks for the new supremum. */ static void btr_cur_pess_upd_restore_supremum( /*==============================*/ buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: updated record */ mtr_t* mtr) /*!< in: mtr */ { page_t* page; buf_block_t* prev_block; page = buf_block_get_frame(block); if (page_rec_get_next(page_get_infimum_rec(page)) != rec) { /* Updated record is not the first user record on its page */ return; } const uint32_t prev_page_no = btr_page_get_prev(page); const page_id_t page_id(block->page.id().space(), prev_page_no); ut_ad(prev_page_no != FIL_NULL); prev_block = buf_page_get_with_no_latch(page_id, block->zip_size(), mtr); #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_next(prev_block->frame) == block->page.id().page_no()); #endif /* UNIV_BTR_DEBUG */ /* We must already have an x-latch on prev_block! */ ut_ad(mtr->memo_contains_flagged(prev_block, MTR_MEMO_PAGE_X_FIX)); lock_rec_reset_and_inherit_gap_locks(prev_block, block, PAGE_HEAP_NO_SUPREMUM, page_rec_get_heap_no(rec)); } /*************************************************************//** Performs an update of a record on a page of a tree. It is assumed that mtr holds an x-latch on the tree and on the cursor page. If the update is made on the leaf level, to avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. We assume here that the ordering fields of the record do not change. @return DB_SUCCESS or error code */ dberr_t btr_cur_pessimistic_update( /*=======================*/ ulint flags, /*!< in: undo logging, locking, and rollback flags */ btr_cur_t* cursor, /*!< in/out: cursor on the record to update; cursor may become invalid if *big_rec == NULL || !(flags & BTR_KEEP_POS_FLAG) */ rec_offs** offsets,/*!< out: offsets on cursor->page_cur.rec */ mem_heap_t** offsets_heap, /*!< in/out: pointer to memory heap that can be emptied */ mem_heap_t* entry_heap, /*!< in/out: memory heap for allocating big_rec and the index tuple */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller */ upd_t* update, /*!< in/out: update vector; this is allowed to also contain trx id and roll ptr fields. Non-updated columns that are moved offpage will be appended to this. */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; must be committed before latching any further pages */ { big_rec_t* big_rec_vec = NULL; big_rec_t* dummy_big_rec; dict_index_t* index; buf_block_t* block; page_zip_des_t* page_zip; rec_t* rec; page_cur_t* page_cursor; dberr_t err; dberr_t optim_err; roll_ptr_t roll_ptr; bool was_first; uint32_t n_reserved = 0; *offsets = NULL; *big_rec = NULL; block = btr_cur_get_block(cursor); page_zip = buf_block_get_page_zip(block); index = cursor->index; ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, block->frame, index)); #endif /* UNIV_ZIP_DEBUG */ ut_ad(!page_zip || !index->table->is_temporary()); /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(trx_id > 0 || (flags & BTR_KEEP_SYS_FLAG) || index->table->is_temporary()); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ulint(~BTR_KEEP_POS_FLAG)) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); err = optim_err = btr_cur_optimistic_update( flags | BTR_KEEP_IBUF_BITMAP, cursor, offsets, offsets_heap, update, cmpl_info, thr, trx_id, mtr); switch (err) { case DB_ZIP_OVERFLOW: case DB_UNDERFLOW: case DB_OVERFLOW: break; default: err_exit: /* We suppressed this with BTR_KEEP_IBUF_BITMAP. For DB_ZIP_OVERFLOW, the IBUF_BITMAP_FREE bits were already reset by btr_cur_update_alloc_zip() if the page was recompressed. */ if (page_zip && optim_err != DB_ZIP_OVERFLOW && !dict_index_is_clust(index) && page_is_leaf(block->frame)) { ut_ad(!index->table->is_temporary()); ibuf_update_free_bits_zip(block, mtr); } if (big_rec_vec != NULL) { dtuple_big_rec_free(big_rec_vec); } return(err); } rec = btr_cur_get_rec(cursor); ut_ad(rec_offs_validate(rec, index, *offsets)); dtuple_t* new_entry; const bool is_metadata = rec_is_metadata(rec, *index); if (UNIV_UNLIKELY(is_metadata)) { ut_ad(update->is_metadata()); ut_ad(flags & BTR_NO_LOCKING_FLAG); ut_ad(index->is_instant()); new_entry = row_metadata_to_tuple( rec, index, *offsets, entry_heap, update->info_bits, !thr_get_trx(thr)->in_rollback); ut_ad(new_entry->n_fields == ulint(index->n_fields) + update->is_alter_metadata()); } else { new_entry = row_rec_to_index_entry(rec, index, *offsets, entry_heap); } /* The page containing the clustered index record corresponding to new_entry is latched in mtr. If the clustered index record is delete-marked, then its externally stored fields cannot have been purged yet, because then the purge would also have removed the clustered index record itself. Thus the following call is safe. */ row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update, entry_heap); btr_cur_trim(new_entry, index, update, thr); /* We have to set appropriate extern storage bits in the new record to be inserted: we have to remember which fields were such */ ut_ad(!page_is_comp(block->frame) || !rec_get_node_ptr_flag(rec)); ut_ad(rec_offs_validate(rec, index, *offsets)); if ((flags & BTR_NO_UNDO_LOG_FLAG) && rec_offs_any_extern(*offsets)) { /* We are in a transaction rollback undoing a row update: we must free possible externally stored fields which got new values in the update, if they are not inherited values. They can be inherited if we have updated the primary key to another value, and then update it back again. */ ut_ad(big_rec_vec == NULL); ut_ad(dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->in_rollback); DEBUG_SYNC_C("blob_rollback_middle"); btr_rec_free_updated_extern_fields( index, rec, block, *offsets, update, true, mtr); } ulint n_ext = index->is_primary() ? dtuple_get_n_ext(new_entry) : 0; if (page_zip_rec_needs_ext( rec_get_converted_size(index, new_entry, n_ext), page_is_comp(block->frame), dict_index_get_n_fields(index), block->zip_size()) || (UNIV_UNLIKELY(update->is_alter_metadata()) && !dfield_is_ext(dtuple_get_nth_field( new_entry, index->first_user_field())))) { big_rec_vec = dtuple_convert_big_rec(index, update, new_entry, &n_ext); if (UNIV_UNLIKELY(big_rec_vec == NULL)) { /* We cannot goto return_after_reservations, because we may need to update the IBUF_BITMAP_FREE bits, which was suppressed by BTR_KEEP_IBUF_BITMAP. */ #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, block->frame, index)); #endif /* UNIV_ZIP_DEBUG */ index->table->space->release_free_extents(n_reserved); err = DB_TOO_BIG_RECORD; goto err_exit; } ut_ad(page_is_leaf(block->frame)); ut_ad(dict_index_is_clust(index)); ut_ad(flags & BTR_KEEP_POS_FLAG); } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (err != DB_SUCCESS) { goto err_exit; } if (optim_err == DB_OVERFLOW) { /* First reserve enough free space for the file segments of the index tree, so that the update will not fail because of lack of space */ uint32_t n_extents = uint32_t(cursor->tree_height / 16 + 3); if (!fsp_reserve_free_extents( &n_reserved, index->table->space, n_extents, flags & BTR_NO_UNDO_LOG_FLAG ? FSP_CLEANING : FSP_NORMAL, mtr)) { err = DB_OUT_OF_FILE_SPACE; goto err_exit; } } if (!(flags & BTR_KEEP_SYS_FLAG)) { btr_cur_write_sys(new_entry, index, trx_id, roll_ptr); } const ulint max_ins_size = page_zip ? 0 : page_get_max_insert_size_after_reorganize(block->frame, 1); if (UNIV_UNLIKELY(is_metadata)) { ut_ad(new_entry->is_metadata()); ut_ad(index->is_instant()); /* This can be innobase_add_instant_try() performing a subsequent instant ALTER TABLE, or its rollback by row_undo_mod_clust_low(). */ ut_ad(flags & BTR_NO_LOCKING_FLAG); } else { btr_search_update_hash_on_delete(cursor); /* Store state of explicit locks on rec on the page infimum record, before deleting rec. The page infimum acts as a dummy carrier of the locks, taking care also of lock releases, before we can move the locks back on the actual record. There is a special case: if we are inserting on the root page and the insert causes a call of btr_root_raise_and_insert. Therefore we cannot in the lock system delete the lock structs set on the root page even if the root page carries just node pointers. */ if (!dict_table_is_locking_disabled(index->table)) { lock_rec_store_on_page_infimum(block, rec); } } #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, block->frame, index)); #endif /* UNIV_ZIP_DEBUG */ page_cursor = btr_cur_get_page_cur(cursor); page_cur_delete_rec(page_cursor, index, *offsets, mtr); page_cur_move_to_prev(page_cursor); rec = btr_cur_insert_if_possible(cursor, new_entry, offsets, offsets_heap, n_ext, mtr); if (rec) { page_cursor->rec = rec; if (UNIV_UNLIKELY(is_metadata)) { /* We must empty the PAGE_FREE list, because if this was a rollback, the shortened metadata record would have too many fields, and we would be unable to know the size of the freed record. */ btr_page_reorganize(page_cursor, index, mtr); rec = page_cursor->rec; rec_offs_make_valid(rec, index, true, *offsets); if (page_cursor->block->page.id().page_no() == index->page) { btr_set_instant(page_cursor->block, *index, mtr); } } else if (!dict_table_is_locking_disabled(index->table)) { lock_rec_restore_from_page_infimum( btr_cur_get_block(cursor), rec, block); } if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets)) || rec_is_alter_metadata(rec, *index)) { /* The new inserted record owns its possible externally stored fields */ btr_cur_unmark_extern_fields(btr_cur_get_block(cursor), rec, index, *offsets, mtr); } else { /* In delete-marked records, DB_TRX_ID must always refer to an existing undo log record. */ ut_ad(row_get_rec_trx_id(rec, index, *offsets)); } bool adjust = big_rec_vec && (flags & BTR_KEEP_POS_FLAG); ut_ad(!adjust || page_is_leaf(block->frame)); if (btr_cur_compress_if_useful(cursor, adjust, mtr)) { if (adjust) { rec_offs_make_valid(page_cursor->rec, index, true, *offsets); } } else if (!dict_index_is_clust(index) && page_is_leaf(block->frame)) { /* Update the free bits in the insert buffer. This is the same block which was skipped by BTR_KEEP_IBUF_BITMAP. */ if (page_zip) { ut_ad(!index->table->is_temporary()); ibuf_update_free_bits_zip(block, mtr); } else if (!index->table->is_temporary()) { ibuf_update_free_bits_low(block, max_ins_size, mtr); } } if (!srv_read_only_mode && !big_rec_vec && page_is_leaf(block->frame) && !dict_index_is_online_ddl(index)) { mtr_memo_release(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK); /* NOTE: We cannot release root block latch here, because it has segment header and already modified in most of cases.*/ } err = DB_SUCCESS; goto return_after_reservations; } else { /* If the page is compressed and it initially compresses very well, and there is a subsequent insert of a badly-compressing record, it is possible for btr_cur_optimistic_update() to return DB_UNDERFLOW and btr_cur_insert_if_possible() to return FALSE. */ ut_a(page_zip || optim_err != DB_UNDERFLOW); /* Out of space: reset the free bits. This is the same block which was skipped by BTR_KEEP_IBUF_BITMAP. */ if (!dict_index_is_clust(index) && !index->table->is_temporary() && page_is_leaf(block->frame)) { ibuf_reset_free_bits(block); } } if (big_rec_vec != NULL) { ut_ad(page_is_leaf(block->frame)); ut_ad(dict_index_is_clust(index)); ut_ad(flags & BTR_KEEP_POS_FLAG); /* btr_page_split_and_insert() in btr_cur_pessimistic_insert() invokes mtr_memo_release(mtr, index->lock, MTR_MEMO_SX_LOCK). We must keep the index->lock when we created a big_rec, so that row_upd_clust_rec() can store the big_rec in the same mini-transaction. */ ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); mtr_sx_lock_index(index, mtr); } /* Was the record to be updated positioned as the first user record on its page? */ was_first = page_cur_is_before_first(page_cursor); /* Lock checks and undo logging were already performed by btr_cur_upd_lock_and_undo(). We do not try btr_cur_optimistic_insert() because btr_cur_insert_if_possible() already failed above. */ err = btr_cur_pessimistic_insert(BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG, cursor, offsets, offsets_heap, new_entry, &rec, &dummy_big_rec, n_ext, NULL, mtr); ut_a(rec); ut_a(err == DB_SUCCESS); ut_a(dummy_big_rec == NULL); ut_ad(rec_offs_validate(rec, cursor->index, *offsets)); page_cursor->rec = rec; /* Multiple transactions cannot simultaneously operate on the same temp-table in parallel. max_trx_id is ignored for temp tables because it not required for MVCC. */ if (dict_index_is_sec_or_ibuf(index) && !index->table->is_temporary()) { /* Update PAGE_MAX_TRX_ID in the index page header. It was not updated by btr_cur_pessimistic_insert() because of BTR_NO_LOCKING_FLAG. */ page_update_max_trx_id(btr_cur_get_block(cursor), btr_cur_get_page_zip(cursor), trx_id, mtr); } if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) { /* The new inserted record owns its possible externally stored fields */ #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, block->frame, index)); #endif /* UNIV_ZIP_DEBUG */ btr_cur_unmark_extern_fields(btr_cur_get_block(cursor), rec, index, *offsets, mtr); } else { /* In delete-marked records, DB_TRX_ID must always refer to an existing undo log record. */ ut_ad(row_get_rec_trx_id(rec, index, *offsets)); } if (UNIV_UNLIKELY(is_metadata)) { /* We must empty the PAGE_FREE list, because if this was a rollback, the shortened metadata record would have too many fields, and we would be unable to know the size of the freed record. */ btr_page_reorganize(page_cursor, index, mtr); rec = page_cursor->rec; } else if (!dict_table_is_locking_disabled(index->table)) { lock_rec_restore_from_page_infimum( btr_cur_get_block(cursor), rec, block); } /* If necessary, restore also the correct lock state for a new, preceding supremum record created in a page split. While the old record was nonexistent, the supremum might have inherited its locks from a wrong record. */ if (!was_first && !dict_table_is_locking_disabled(index->table)) { btr_cur_pess_upd_restore_supremum(btr_cur_get_block(cursor), rec, mtr); } return_after_reservations: #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(btr_cur_get_page_zip(cursor), btr_cur_get_page(cursor), index)); #endif /* UNIV_ZIP_DEBUG */ index->table->space->release_free_extents(n_reserved); *big_rec = big_rec_vec; return(err); } /*==================== B-TREE DELETE MARK AND UNMARK ===============*/ /** Modify the delete-mark flag of a record. @tparam flag the value of the delete-mark flag @param[in,out] block buffer block @param[in,out] rec record on a physical index page @param[in,out] mtr mini-transaction */ template void btr_rec_set_deleted(buf_block_t *block, rec_t *rec, mtr_t *mtr) { if (page_rec_is_comp(rec)) { byte *b= &rec[-REC_NEW_INFO_BITS]; const byte v= flag ? (*b | REC_INFO_DELETED_FLAG) : (*b & byte(~REC_INFO_DELETED_FLAG)); if (*b == v); else if (UNIV_LIKELY_NULL(block->page.zip.data)) { *b= v; page_zip_rec_set_deleted(block, rec, flag, mtr); } else mtr->write<1>(*block, b, v); } else { ut_ad(!block->page.zip.data); byte *b= &rec[-REC_OLD_INFO_BITS]; const byte v = flag ? (*b | REC_INFO_DELETED_FLAG) : (*b & byte(~REC_INFO_DELETED_FLAG)); mtr->write<1,mtr_t::MAYBE_NOP>(*block, b, v); } } template void btr_rec_set_deleted(buf_block_t *, rec_t *, mtr_t *); template void btr_rec_set_deleted(buf_block_t *, rec_t *, mtr_t *); /***********************************************************//** Marks a clustered index record deleted. Writes an undo log record to undo log on this delete marking. Writes in the trx id field the id of the deleting transaction, and in the roll ptr field pointer to the undo log record created. @return DB_SUCCESS, DB_LOCK_WAIT, or error number */ dberr_t btr_cur_del_mark_set_clust_rec( /*===========================*/ buf_block_t* block, /*!< in/out: buffer block of the record */ rec_t* rec, /*!< in/out: record */ dict_index_t* index, /*!< in: clustered index of the record */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec) */ que_thr_t* thr, /*!< in: query thread */ const dtuple_t* entry, /*!< in: dtuple for the deleting record, also contains the virtual cols if there are any */ mtr_t* mtr) /*!< in/out: mini-transaction */ { roll_ptr_t roll_ptr; dberr_t err; trx_t* trx; ut_ad(dict_index_is_clust(index)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); ut_ad(buf_block_get_frame(block) == page_align(rec)); ut_ad(page_rec_is_leaf(rec)); ut_ad(mtr->is_named_space(index->table->space)); if (rec_get_deleted_flag(rec, rec_offs_comp(offsets))) { /* We may already have delete-marked this record when executing an ON DELETE CASCADE operation. */ ut_ad(row_get_rec_trx_id(rec, index, offsets) == thr_get_trx(thr)->id); return(DB_SUCCESS); } err = lock_clust_rec_modify_check_and_lock(BTR_NO_LOCKING_FLAG, block, rec, index, offsets, thr); if (err != DB_SUCCESS) { return(err); } err = trx_undo_report_row_operation(thr, index, entry, NULL, 0, rec, offsets, &roll_ptr); if (err != DB_SUCCESS) { return(err); } /* The search latch is not needed here, because the adaptive hash index does not depend on the delete-mark and the delete-mark is being updated in place. */ btr_rec_set_deleted(block, rec, mtr); trx = thr_get_trx(thr); DBUG_LOG("ib_cur", "delete-mark clust " << index->table->name << " (" << index->id << ") by " << ib::hex(trx_get_id_for_print(trx)) << ": " << rec_printer(rec, offsets).str()); if (dict_index_is_online_ddl(index)) { row_log_table_delete(rec, index, offsets, NULL); } btr_cur_upd_rec_sys(block, rec, index, offsets, trx, roll_ptr, mtr); return(err); } /*==================== B-TREE RECORD REMOVE =========================*/ /*************************************************************//** Tries to compress a page of the tree if it seems useful. It is assumed that mtr holds an x-latch on the tree and on the cursor page. To avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. NOTE: it is assumed that the caller has reserved enough free extents so that the compression will always succeed if done! @return TRUE if compression occurred */ ibool btr_cur_compress_if_useful( /*=======================*/ btr_cur_t* cursor, /*!< in/out: cursor on the page to compress; cursor does not stay valid if !adjust and compression occurs */ ibool adjust, /*!< in: TRUE if should adjust the cursor position even if compression occurs */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(mtr->memo_contains_flagged(&cursor->index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(mtr->memo_contains_flagged(btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); if (cursor->index->is_spatial()) { const trx_t* trx = cursor->rtr_info->thr ? thr_get_trx(cursor->rtr_info->thr) : NULL; const buf_block_t* block = btr_cur_get_block(cursor); /* Check whether page lock prevents the compression */ if (!lock_test_prdt_page_lock(trx, block->page.id())) { return(false); } } return(btr_cur_compress_recommendation(cursor, mtr) && btr_compress(cursor, adjust, mtr)); } /*******************************************************//** Removes the record on which the tree cursor is positioned on a leaf page. It is assumed that the mtr has an x-latch on the page where the cursor is positioned, but no latch on the whole tree. @return TRUE if success, i.e., the page did not become too empty */ ibool btr_cur_optimistic_delete_func( /*===========================*/ btr_cur_t* cursor, /*!< in: cursor on leaf page, on the record to delete; cursor stays valid: if deletion succeeds, on function exit it points to the successor of the deleted record */ #ifdef UNIV_DEBUG ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */ #endif /* UNIV_DEBUG */ mtr_t* mtr) /*!< in: mtr; if this function returns TRUE on a leaf page of a secondary index, the mtr must be committed before latching any further pages */ { buf_block_t* block; rec_t* rec; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); ut_ad(flags == 0 || flags == BTR_CREATE_FLAG); ut_ad(mtr->memo_contains_flagged(btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); ut_ad(mtr->is_named_space(cursor->index->table->space)); ut_ad(!cursor->index->is_dummy); /* This is intended only for leaf page deletions */ block = btr_cur_get_block(cursor); ut_ad(block->page.id().space() == cursor->index->table->space->id); ut_ad(page_is_leaf(buf_block_get_frame(block))); ut_ad(!dict_index_is_online_ddl(cursor->index) || dict_index_is_clust(cursor->index) || (flags & BTR_CREATE_FLAG)); rec = btr_cur_get_rec(cursor); offsets = rec_get_offsets(rec, cursor->index, offsets, cursor->index->n_core_fields, ULINT_UNDEFINED, &heap); const ibool no_compress_needed = !rec_offs_any_extern(offsets) && btr_cur_can_delete_without_compress( cursor, rec_offs_size(offsets), mtr); if (!no_compress_needed) { /* prefetch siblings of the leaf for the pessimistic operation. */ btr_cur_prefetch_siblings(block, cursor->index); goto func_exit; } if (UNIV_UNLIKELY(block->page.id().page_no() == cursor->index->page && page_get_n_recs(block->frame) == 1 + (cursor->index->is_instant() && !rec_is_metadata(rec, *cursor->index)) && !cursor->index->must_avoid_clear_instant_add())) { /* The whole index (and table) becomes logically empty. Empty the whole page. That is, if we are deleting the only user record, also delete the metadata record if one exists for instant ADD COLUMN (not generic ALTER TABLE). If we are deleting the metadata record and the table becomes empty, clean up the whole page. */ dict_index_t* index = cursor->index; const rec_t* first_rec = page_rec_get_next_const( page_get_infimum_rec(block->frame)); ut_ad(!index->is_instant() || rec_is_metadata(first_rec, *index)); const bool is_metadata = rec_is_metadata(rec, *index); /* We can remove the metadata when rolling back an instant ALTER TABLE operation, or when deleting the last user record on the page such that only metadata for instant ADD COLUMN (not generic ALTER TABLE) remains. */ const bool empty_table = is_metadata || !index->is_instant() || (first_rec != rec && rec_is_add_metadata(first_rec, *index)); if (UNIV_LIKELY(empty_table)) { if (UNIV_LIKELY(!is_metadata)) { lock_update_delete(block, rec); } btr_page_empty(block, buf_block_get_page_zip(block), index, 0, mtr); if (index->is_instant()) { /* MDEV-17383: free metadata BLOBs! */ index->clear_instant_alter(); } page_cur_set_after_last(block, btr_cur_get_page_cur(cursor)); goto func_exit; } } { page_t* page = buf_block_get_frame(block); page_zip_des_t* page_zip= buf_block_get_page_zip(block); if (UNIV_UNLIKELY(rec_get_info_bits(rec, page_rec_is_comp(rec)) & REC_INFO_MIN_REC_FLAG)) { /* This should be rolling back instant ADD COLUMN. If this is a recovered transaction, then index->is_instant() will hold until the insert into SYS_COLUMNS is rolled back. */ ut_ad(cursor->index->table->supports_instant()); ut_ad(cursor->index->is_primary()); ut_ad(!page_zip); page_cur_delete_rec(btr_cur_get_page_cur(cursor), cursor->index, offsets, mtr); /* We must empty the PAGE_FREE list, because after rollback, this deleted metadata record would have too many fields, and we would be unable to know the size of the freed record. */ btr_page_reorganize(btr_cur_get_page_cur(cursor), cursor->index, mtr); goto func_exit; } else { lock_update_delete(block, rec); btr_search_update_hash_on_delete(cursor); } if (page_zip) { #ifdef UNIV_ZIP_DEBUG ut_a(page_zip_validate(page_zip, page, cursor->index)); #endif /* UNIV_ZIP_DEBUG */ page_cur_delete_rec(btr_cur_get_page_cur(cursor), cursor->index, offsets, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(page_zip_validate(page_zip, page, cursor->index)); #endif /* UNIV_ZIP_DEBUG */ /* On compressed pages, the IBUF_BITMAP_FREE space is not affected by deleting (purging) records, because it is defined as the minimum of space available *without* reorganize, and space available in the modification log. */ } else { const ulint max_ins = page_get_max_insert_size_after_reorganize( page, 1); page_cur_delete_rec(btr_cur_get_page_cur(cursor), cursor->index, offsets, mtr); /* The change buffer does not handle inserts into non-leaf pages, into clustered indexes, or into the change buffer. */ if (!dict_index_is_clust(cursor->index) && !cursor->index->table->is_temporary() && !dict_index_is_ibuf(cursor->index)) { ibuf_update_free_bits_low(block, max_ins, mtr); } } } func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(no_compress_needed); } /*************************************************************//** Removes the record on which the tree cursor is positioned. Tries to compress the page if its fillfactor drops below a threshold or if it is the only page on the level. It is assumed that mtr holds an x-latch on the tree and on the cursor page. To avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. @return TRUE if compression occurred and FALSE if not or something wrong. */ ibool btr_cur_pessimistic_delete( /*=======================*/ dberr_t* err, /*!< out: DB_SUCCESS or DB_OUT_OF_FILE_SPACE; the latter may occur because we may have to update node pointers on upper levels, and in the case of variable length keys these may actually grow in size */ ibool has_reserved_extents, /*!< in: TRUE if the caller has already reserved enough free extents so that he knows that the operation will succeed */ btr_cur_t* cursor, /*!< in: cursor on the record to delete; if compression does not occur, the cursor stays valid: it points to successor of deleted record on function exit */ ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */ bool rollback,/*!< in: performing rollback? */ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; page_t* page; page_zip_des_t* page_zip; dict_index_t* index; rec_t* rec; uint32_t n_reserved = 0; bool success; ibool ret = FALSE; mem_heap_t* heap; rec_offs* offsets; #ifdef UNIV_DEBUG bool parent_latched = false; #endif /* UNIV_DEBUG */ block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); index = btr_cur_get_index(cursor); ut_ad(flags == 0 || flags == BTR_CREATE_FLAG); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); ut_ad(mtr->is_named_space(index->table->space)); ut_ad(!index->is_dummy); ut_ad(block->page.id().space() == index->table->space->id); if (!has_reserved_extents) { /* First reserve enough free space for the file segments of the index tree, so that the node pointer updates will not fail because of lack of space */ uint32_t n_extents = uint32_t(cursor->tree_height / 32 + 1); success = fsp_reserve_free_extents(&n_reserved, index->table->space, n_extents, FSP_CLEANING, mtr); if (!success) { *err = DB_OUT_OF_FILE_SPACE; return(FALSE); } } heap = mem_heap_create(1024); rec = btr_cur_get_rec(cursor); page_zip = buf_block_get_page_zip(block); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ offsets = rec_get_offsets(rec, index, NULL, page_is_leaf(page) ? index->n_core_fields : 0, ULINT_UNDEFINED, &heap); if (rec_offs_any_extern(offsets)) { btr_rec_free_externally_stored_fields(index, rec, offsets, block, rollback, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ } rec_t* next_rec = NULL; bool min_mark_next_rec = false; if (page_is_leaf(page)) { const bool is_metadata = rec_is_metadata( rec, page_rec_is_comp(rec)); if (UNIV_UNLIKELY(is_metadata)) { /* This should be rolling back instant ALTER TABLE. If this is a recovered transaction, then index->is_instant() will hold until the insert into SYS_COLUMNS is rolled back. */ ut_ad(rollback); ut_ad(index->table->supports_instant()); ut_ad(index->is_primary()); } else if (flags == 0) { lock_update_delete(block, rec); } if (block->page.id().page_no() != index->page) { if (page_get_n_recs(page) < 2) { goto discard_page; } } else if (page_get_n_recs(page) == 1 + (index->is_instant() && !is_metadata) && !index->must_avoid_clear_instant_add()) { /* The whole index (and table) becomes logically empty. Empty the whole page. That is, if we are deleting the only user record, also delete the metadata record if one exists for instant ADD COLUMN (not generic ALTER TABLE). If we are deleting the metadata record (in the rollback of instant ALTER TABLE) and the table becomes empty, clean up the whole page. */ const rec_t* first_rec = page_rec_get_next_const( page_get_infimum_rec(page)); ut_ad(!index->is_instant() || rec_is_metadata(first_rec, *index)); if (is_metadata || !index->is_instant() || (first_rec != rec && rec_is_add_metadata(first_rec, *index))) { btr_page_empty(block, page_zip, index, 0, mtr); if (index->is_instant()) { /* MDEV-17383: free metadata BLOBs! */ index->clear_instant_alter(); } page_cur_set_after_last( block, btr_cur_get_page_cur(cursor)); ret = TRUE; goto return_after_reservations; } } if (UNIV_LIKELY(!is_metadata)) { btr_search_update_hash_on_delete(cursor); } else { page_cur_delete_rec(btr_cur_get_page_cur(cursor), index, offsets, mtr); /* We must empty the PAGE_FREE list, because after rollback, this deleted metadata record would carry too many fields, and we would be unable to know the size of the freed record. */ btr_page_reorganize(btr_cur_get_page_cur(cursor), index, mtr); ut_ad(!ret); goto return_after_reservations; } } else if (UNIV_UNLIKELY(page_rec_is_first(rec, page))) { if (page_rec_is_last(rec, page)) { discard_page: ut_ad(page_get_n_recs(page) == 1); /* If there is only one record, drop the whole page. */ btr_discard_page(cursor, mtr); ret = TRUE; goto return_after_reservations; } next_rec = page_rec_get_next(rec); if (!page_has_prev(page)) { /* If we delete the leftmost node pointer on a non-leaf level, we must mark the new leftmost node pointer as the predefined minimum record */ min_mark_next_rec = true; } else if (index->is_spatial()) { /* For rtree, if delete the leftmost node pointer, we need to update parent page. */ rtr_mbr_t father_mbr; rec_t* father_rec; btr_cur_t father_cursor; rec_offs* offsets; bool upd_ret; ulint len; rtr_page_get_father_block(NULL, heap, index, block, mtr, NULL, &father_cursor); offsets = rec_get_offsets( btr_cur_get_rec(&father_cursor), index, NULL, 0, ULINT_UNDEFINED, &heap); father_rec = btr_cur_get_rec(&father_cursor); rtr_read_mbr(rec_get_nth_field( father_rec, offsets, 0, &len), &father_mbr); upd_ret = rtr_update_mbr_field(&father_cursor, offsets, NULL, page, &father_mbr, next_rec, mtr); if (!upd_ret) { *err = DB_ERROR; mem_heap_free(heap); return(FALSE); } ut_d(parent_latched = true); } else { /* Otherwise, if we delete the leftmost node pointer on a page, we have to change the parent node pointer so that it is equal to the new leftmost node pointer on the page */ btr_cur_t cursor; btr_page_get_father(index, block, mtr, &cursor); btr_cur_node_ptr_delete(&cursor, mtr); const ulint level = btr_page_get_level(page); // FIXME: reuse the node_ptr from above dtuple_t* node_ptr = dict_index_build_node_ptr( index, next_rec, block->page.id().page_no(), heap, level); btr_insert_on_non_leaf_level( flags, index, level + 1, node_ptr, mtr); ut_d(parent_latched = true); } } /* SPATIAL INDEX never use SX locks; we can allow page merges while holding X lock on the spatial index tree. Do not allow merges of non-leaf B-tree pages unless it is safe to do so. */ { const bool allow_merge = page_is_leaf(page) || dict_index_is_spatial(index) || btr_cur_will_modify_tree( index, page, BTR_INTENTION_DELETE, rec, btr_node_ptr_max_size(index), block->zip_size(), mtr); page_cur_delete_rec(btr_cur_get_page_cur(cursor), index, offsets, mtr); if (min_mark_next_rec) { btr_set_min_rec_mark(next_rec, *block, mtr); } #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ ut_ad(!parent_latched || btr_check_node_ptr(index, block, mtr)); if (!ret && btr_cur_compress_recommendation(cursor, mtr)) { if (UNIV_LIKELY(allow_merge)) { ret = btr_cur_compress_if_useful( cursor, FALSE, mtr); } else { ib::warn() << "Not merging page " << block->page.id() << " in index " << index->name << " of " << index->table->name; ut_ad("MDEV-14637" == 0); } } } return_after_reservations: *err = DB_SUCCESS; mem_heap_free(heap); if (!srv_read_only_mode && page_is_leaf(page) && !dict_index_is_online_ddl(index)) { mtr_memo_release(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK); /* NOTE: We cannot release root block latch here, because it has segment header and already modified in most of cases.*/ } index->table->space->release_free_extents(n_reserved); return(ret); } /** Delete the node pointer in a parent page. @param[in,out] parent cursor pointing to parent record @param[in,out] mtr mini-transaction */ void btr_cur_node_ptr_delete(btr_cur_t* parent, mtr_t* mtr) { ut_ad(mtr->memo_contains_flagged(btr_cur_get_block(parent), MTR_MEMO_PAGE_X_FIX)); dberr_t err; ibool compressed = btr_cur_pessimistic_delete(&err, TRUE, parent, BTR_CREATE_FLAG, false, mtr); ut_a(err == DB_SUCCESS); if (!compressed) { btr_cur_compress_if_useful(parent, FALSE, mtr); } } /*******************************************************************//** Adds path information to the cursor for the current page, for which the binary search has been performed. */ static void btr_cur_add_path_info( /*==================*/ btr_cur_t* cursor, /*!< in: cursor positioned on a page */ ulint height, /*!< in: height of the page in tree; 0 means leaf node */ ulint root_height) /*!< in: root node height in tree */ { btr_path_t* slot; ut_a(cursor->path_arr); if (root_height >= BTR_PATH_ARRAY_N_SLOTS - 1) { /* Do nothing; return empty path */ slot = cursor->path_arr; slot->nth_rec = ULINT_UNDEFINED; return; } if (height == 0) { /* Mark end of slots for path */ slot = cursor->path_arr + root_height + 1; slot->nth_rec = ULINT_UNDEFINED; } slot = cursor->path_arr + (root_height - height); const buf_block_t* block = btr_cur_get_block(cursor); slot->nth_rec = page_rec_get_n_recs_before(btr_cur_get_rec(cursor)); slot->n_recs = page_get_n_recs(block->frame); slot->page_no = block->page.id().page_no(); slot->page_level = btr_page_get_level(block->frame); } /*******************************************************************//** Estimate the number of rows between slot1 and slot2 for any level on a B-tree. This function starts from slot1->page and reads a few pages to the right, counting their records. If we reach slot2->page quickly then we know exactly how many records there are between slot1 and slot2 and we set is_n_rows_exact to TRUE. If we cannot reach slot2->page quickly then we calculate the average number of records in the pages scanned so far and assume that all pages that we did not scan up to slot2->page contain the same number of records, then we multiply that average to the number of pages between slot1->page and slot2->page (which is n_rows_on_prev_level). In this case we set is_n_rows_exact to FALSE. @return number of rows, not including the borders (exact or estimated) */ static ha_rows btr_estimate_n_rows_in_range_on_level( /*==================================*/ dict_index_t* index, /*!< in: index */ btr_path_t* slot1, /*!< in: left border */ btr_path_t* slot2, /*!< in: right border */ ha_rows n_rows_on_prev_level, /*!< in: number of rows on the previous level for the same descend paths; used to determine the number of pages on this level */ bool* is_n_rows_exact) /*!< out: TRUE if the returned value is exact i.e. not an estimation */ { ha_rows n_rows = 0; uint n_pages_read = 0; ulint level; /* Assume by default that we will scan all pages between slot1->page_no and slot2->page_no. */ *is_n_rows_exact = true; /* Add records from slot1->page_no which are to the right of the record which serves as a left border of the range, if any (we don't include the record itself in this count). */ if (slot1->nth_rec <= slot1->n_recs) { n_rows += slot1->n_recs - slot1->nth_rec; } /* Add records from slot2->page_no which are to the left of the record which servers as a right border of the range, if any (we don't include the record itself in this count). */ if (slot2->nth_rec > 1) { n_rows += slot2->nth_rec - 1; } /* Count the records in the pages between slot1->page_no and slot2->page_no (non inclusive), if any. */ /* Do not read more than this number of pages in order not to hurt performance with this code which is just an estimation. If we read this many pages before reaching slot2->page_no then we estimate the average from the pages scanned so far. */ # define N_PAGES_READ_LIMIT 10 const fil_space_t* space = index->table->space; page_id_t page_id(space->id, slot1->page_no); const ulint zip_size = space->zip_size(); level = slot1->page_level; do { mtr_t mtr; page_t* page; buf_block_t* block; dberr_t err=DB_SUCCESS; mtr_start(&mtr); /* Fetch the page. Because we are not holding the index->lock, the tree may have changed and we may be attempting to read a page that is no longer part of the B-tree. We pass BUF_GET_POSSIBLY_FREED in order to silence a debug assertion about this. */ block = buf_page_get_gen(page_id, zip_size, RW_S_LATCH, NULL, BUF_GET_POSSIBLY_FREED, __FILE__, __LINE__, &mtr, &err); ut_ad((block != NULL) == (err == DB_SUCCESS)); if (!block) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name.m_name); index->table->file_unreadable = true; } mtr_commit(&mtr); goto inexact; } page = buf_block_get_frame(block); /* It is possible that the tree has been reorganized in the meantime and this is a different page. If this happens the calculated estimate will be bogus, which is not fatal as this is only an estimate. We are sure that a page with page_no exists because InnoDB never frees pages, only reuses them. */ if (!fil_page_index_page_check(page) || btr_page_get_index_id(page) != index->id || btr_page_get_level(page) != level) { /* The page got reused for something else */ mtr_commit(&mtr); goto inexact; } /* It is possible but highly unlikely that the page was originally written by an old version of InnoDB that did not initialize FIL_PAGE_TYPE on other than B-tree pages. For example, this could be an almost-empty BLOB page that happens to contain the magic values in the fields that we checked above. */ n_pages_read++; if (page_id.page_no() != slot1->page_no) { /* Do not count the records on slot1->page_no, we already counted them before this loop. */ n_rows += page_get_n_recs(page); } page_id.set_page_no(btr_page_get_next(page)); mtr_commit(&mtr); if (n_pages_read == N_PAGES_READ_LIMIT || page_id.page_no() == FIL_NULL) { /* Either we read too many pages or we reached the end of the level without passing through slot2->page_no, the tree must have changed in the meantime */ goto inexact; } } while (page_id.page_no() != slot2->page_no); return(n_rows); inexact: *is_n_rows_exact = false; /* We did interrupt before reaching slot2->page */ if (n_pages_read > 0) { /* The number of pages on this level is n_rows_on_prev_level, multiply it by the average number of recs per page so far */ n_rows = n_rows_on_prev_level * n_rows / n_pages_read; } else { /* The tree changed before we could even start with slot1->page_no */ n_rows = 10; } return(n_rows); } /** If the tree gets changed too much between the two dives for the left and right boundary then btr_estimate_n_rows_in_range_low() will retry that many times before giving up and returning the value stored in rows_in_range_arbitrary_ret_val. */ static const unsigned rows_in_range_max_retries = 4; /** We pretend that a range has that many records if the tree keeps changing for rows_in_range_max_retries retries while we try to estimate the records in a given range. */ static const ha_rows rows_in_range_arbitrary_ret_val = 10; /** Estimates the number of rows in a given index range. @param[in] index index @param[in] tuple1 range start @param[in] tuple2 range end @param[in] nth_attempt if the tree gets modified too much while we are trying to analyze it, then we will retry (this function will call itself, incrementing this parameter) @return estimated number of rows; if after rows_in_range_max_retries retries the tree keeps changing, then we will just return rows_in_range_arbitrary_ret_val as a result (if nth_attempt >= rows_in_range_max_retries and the tree is modified between the two dives). */ static ha_rows btr_estimate_n_rows_in_range_low( dict_index_t* index, btr_pos_t* tuple1, btr_pos_t* tuple2, unsigned nth_attempt) { btr_path_t path1[BTR_PATH_ARRAY_N_SLOTS]; btr_path_t path2[BTR_PATH_ARRAY_N_SLOTS]; btr_cur_t cursor; btr_path_t* slot1; btr_path_t* slot2; bool diverged; bool diverged_lot; ulint divergence_level; ha_rows n_rows; bool is_n_rows_exact; ulint i; mtr_t mtr; ha_rows table_n_rows; page_cur_mode_t mode2= tuple2->mode; table_n_rows = dict_table_get_n_rows(index->table); /* Below we dive to the two records specified by tuple1 and tuple2 and we remember the entire dive paths from the tree root. The place where the tuple1 path ends on the leaf level we call "left border" of our interval and the place where the tuple2 path ends on the leaf level - "right border". We take care to either include or exclude the interval boundaries depending on whether <, <=, > or >= was specified. For example if "5 < x AND x <= 10" then we should not include the left boundary, but should include the right one. */ mtr_start(&mtr); cursor.path_arr = path1; bool should_count_the_left_border; if (dtuple_get_n_fields(tuple1->tuple) > 0) { btr_cur_search_to_nth_level(index, 0, tuple1->tuple, tuple1->mode, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, __FILE__, __LINE__, &mtr); ut_ad(!page_rec_is_infimum(btr_cur_get_rec(&cursor))); /* We should count the border if there are any records to match the criteria, i.e. if the maximum record on the tree is 5 and x > 3 is specified then the cursor will be positioned at 5 and we should count the border, but if x > 7 is specified, then the cursor will be positioned at 'sup' on the rightmost leaf page in the tree and we should not count the border. */ should_count_the_left_border = !page_rec_is_supremum(btr_cur_get_rec(&cursor)); } else { dberr_t err = DB_SUCCESS; err = btr_cur_open_at_index_side(true, index, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, &mtr); if (err != DB_SUCCESS) { ib::warn() << " Error code: " << err << " btr_estimate_n_rows_in_range_low " << " called from file: " << __FILE__ << " line: " << __LINE__ << " table: " << index->table->name << " index: " << index->name; } ut_ad(page_rec_is_infimum(btr_cur_get_rec(&cursor))); /* The range specified is wihout a left border, just 'x < 123' or 'x <= 123' and btr_cur_open_at_index_side() positioned the cursor on the infimum record on the leftmost page, which must not be counted. */ should_count_the_left_border = false; } tuple1->page_id= cursor.page_cur.block->page.id(); mtr_commit(&mtr); if (!index->is_readable()) { return 0; } mtr_start(&mtr); cursor.path_arr = path2; bool should_count_the_right_border; if (dtuple_get_n_fields(tuple2->tuple) > 0) { btr_cur_search_to_nth_level(index, 0, tuple2->tuple, mode2, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, __FILE__, __LINE__, &mtr); const rec_t* rec = btr_cur_get_rec(&cursor); ut_ad(!(mode2 == PAGE_CUR_L && page_rec_is_supremum(rec))); should_count_the_right_border = (mode2 == PAGE_CUR_LE /* if the range is '<=' */ /* and the record was found */ && cursor.low_match >= dtuple_get_n_fields(tuple2->tuple)) || (mode2 == PAGE_CUR_L /* or if the range is '<' */ /* and there are any records to match the criteria, i.e. if the minimum record on the tree is 5 and x < 7 is specified then the cursor will be positioned at 5 and we should count the border, but if x < 2 is specified, then the cursor will be positioned at 'inf' and we should not count the border */ && !page_rec_is_infimum(rec)); /* Notice that for "WHERE col <= 'foo'" MySQL passes to ha_innobase::records_in_range(): min_key=NULL (left-unbounded) which is expected max_key='foo' flag=HA_READ_AFTER_KEY (PAGE_CUR_G), which is unexpected - one would expect flag=HA_READ_KEY_OR_PREV (PAGE_CUR_LE). In this case the cursor will be positioned on the first record to the right of the requested one (can also be positioned on the 'sup') and we should not count the right border. */ } else { dberr_t err = DB_SUCCESS; err = btr_cur_open_at_index_side(false, index, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, &mtr); if (err != DB_SUCCESS) { ib::warn() << " Error code: " << err << " btr_estimate_n_rows_in_range_low " << " called from file: " << __FILE__ << " line: " << __LINE__ << " table: " << index->table->name << " index: " << index->name; } ut_ad(page_rec_is_supremum(btr_cur_get_rec(&cursor))); /* The range specified is wihout a right border, just 'x > 123' or 'x >= 123' and btr_cur_open_at_index_side() positioned the cursor on the supremum record on the rightmost page, which must not be counted. */ should_count_the_right_border = false; } tuple2->page_id= cursor.page_cur.block->page.id(); mtr_commit(&mtr); /* We have the path information for the range in path1 and path2 */ n_rows = 0; is_n_rows_exact = true; /* This becomes true when the two paths do not pass through the same pages anymore. */ diverged = false; /* This becomes true when the paths are not the same or adjacent any more. This means that they pass through the same or neighboring-on-the-same-level pages only. */ diverged_lot = false; /* This is the level where paths diverged a lot. */ divergence_level = 1000000; for (i = 0; ; i++) { ut_ad(i < BTR_PATH_ARRAY_N_SLOTS); slot1 = path1 + i; slot2 = path2 + i; if (slot1->nth_rec == ULINT_UNDEFINED || slot2->nth_rec == ULINT_UNDEFINED) { /* Here none of the borders were counted. For example, if on the leaf level we descended to: (inf, a, b, c, d, e, f, sup) ^ ^ path1 path2 then n_rows will be 2 (c and d). */ if (is_n_rows_exact) { /* Only fiddle to adjust this off-by-one if the number is exact, otherwise we do much grosser adjustments below. */ btr_path_t* last1 = &path1[i - 1]; btr_path_t* last2 = &path2[i - 1]; /* If both paths end up on the same record on the leaf level. */ if (last1->page_no == last2->page_no && last1->nth_rec == last2->nth_rec) { /* n_rows can be > 0 here if the paths were first different and then converged to the same record on the leaf level. For example: SELECT ... LIKE 'wait/synch/rwlock%' mode1=PAGE_CUR_GE, tuple1="wait/synch/rwlock" path1[0]={nth_rec=58, n_recs=58, page_no=3, page_level=1} path1[1]={nth_rec=56, n_recs=55, page_no=119, page_level=0} mode2=PAGE_CUR_G tuple2="wait/synch/rwlock" path2[0]={nth_rec=57, n_recs=57, page_no=3, page_level=1} path2[1]={nth_rec=56, n_recs=55, page_no=119, page_level=0} */ /* If the range is such that we should count both borders, then avoid counting that record twice - once as a left border and once as a right border. */ if (should_count_the_left_border && should_count_the_right_border) { n_rows = 1; } else { /* Some of the borders should not be counted, e.g. [3,3). */ n_rows = 0; } } else { if (should_count_the_left_border) { n_rows++; } if (should_count_the_right_border) { n_rows++; } } } if (i > divergence_level + 1 && !is_n_rows_exact) { /* In trees whose height is > 1 our algorithm tends to underestimate: multiply the estimate by 2: */ n_rows = n_rows * 2; } DBUG_EXECUTE_IF("bug14007649", return(n_rows);); /* Do not estimate the number of rows in the range to over 1 / 2 of the estimated rows in the whole table */ if (n_rows > table_n_rows / 2 && !is_n_rows_exact) { n_rows = table_n_rows / 2; /* If there are just 0 or 1 rows in the table, then we estimate all rows are in the range */ if (n_rows == 0) { n_rows = table_n_rows; } } return(n_rows); } if (!diverged && slot1->nth_rec != slot2->nth_rec) { /* If both slots do not point to the same page, this means that the tree must have changed between the dive for slot1 and the dive for slot2 at the beginning of this function. */ if (slot1->page_no != slot2->page_no || slot1->page_level != slot2->page_level) { /* If the tree keeps changing even after a few attempts, then just return some arbitrary number. */ if (nth_attempt >= rows_in_range_max_retries) { return(rows_in_range_arbitrary_ret_val); } return btr_estimate_n_rows_in_range_low( index, tuple1, tuple2, nth_attempt + 1); } diverged = true; if (slot1->nth_rec < slot2->nth_rec) { /* We do not count the borders (nor the left nor the right one), thus "- 1". */ n_rows = slot2->nth_rec - slot1->nth_rec - 1; if (n_rows > 0) { /* There is at least one row between the two borders pointed to by slot1 and slot2, so on the level below the slots will point to non-adjacent pages. */ diverged_lot = true; divergence_level = i; } } else { /* It is possible that slot1->nth_rec >= slot2->nth_rec if, for example, we have a single page tree which contains (inf, 5, 6, supr) and we select where x > 20 and x < 30; in this case slot1->nth_rec will point to the supr record and slot2->nth_rec will point to 6. */ n_rows = 0; should_count_the_left_border = false; should_count_the_right_border = false; } } else if (diverged && !diverged_lot) { if (slot1->nth_rec < slot1->n_recs || slot2->nth_rec > 1) { diverged_lot = true; divergence_level = i; n_rows = 0; if (slot1->nth_rec < slot1->n_recs) { n_rows += slot1->n_recs - slot1->nth_rec; } if (slot2->nth_rec > 1) { n_rows += slot2->nth_rec - 1; } } } else if (diverged_lot) { n_rows = btr_estimate_n_rows_in_range_on_level( index, slot1, slot2, n_rows, &is_n_rows_exact); } } } /** Estimates the number of rows in a given index range. @param[in] index index @param[in] tuple1 range start, may also be empty tuple @param[in] mode1 search mode for range start @param[in] tuple2 range end, may also be empty tuple @param[in] mode2 search mode for range end @return estimated number of rows */ ha_rows btr_estimate_n_rows_in_range( dict_index_t* index, btr_pos_t *tuple1, btr_pos_t *tuple2) { return btr_estimate_n_rows_in_range_low( index, tuple1, tuple2, 1); } /*******************************************************************//** Record the number of non_null key values in a given index for each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index). The estimates are eventually stored in the array: index->stat_n_non_null_key_vals[], which is indexed from 0 to n-1. */ static void btr_record_not_null_field_in_rec( /*=============================*/ ulint n_unique, /*!< in: dict_index_get_n_unique(index), number of columns uniquely determine an index entry */ const rec_offs* offsets, /*!< in: rec_get_offsets(rec, index), its size could be for all fields or that of "n_unique" */ ib_uint64_t* n_not_null) /*!< in/out: array to record number of not null rows for n-column prefix */ { ulint i; ut_ad(rec_offs_n_fields(offsets) >= n_unique); if (n_not_null == NULL) { return; } for (i = 0; i < n_unique; i++) { if (rec_offs_nth_sql_null(offsets, i)) { break; } n_not_null[i]++; } } /** Estimates the number of different key values in a given index, for each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index). The estimates are stored in the array index->stat_n_diff_key_vals[] (indexed 0..n_uniq-1) and the number of pages that were sampled is saved in result.n_sample_sizes[]. If innodb_stats_method is nulls_ignored, we also record the number of non-null values for each prefix and stored the estimates in array result.n_non_null_key_vals. @param[in] index index @return vector with statistics information empty vector if the index is unavailable. */ std::vector btr_estimate_number_of_different_key_vals(dict_index_t* index) { btr_cur_t cursor; page_t* page; rec_t* rec; ulint n_cols; ib_uint64_t* n_diff; ib_uint64_t* n_not_null; ibool stats_null_not_equal; uintmax_t n_sample_pages=1; /* number of pages to sample */ ulint not_empty_flag = 0; ulint total_external_size = 0; ulint i; ulint j; uintmax_t add_on; mtr_t mtr; mem_heap_t* heap = NULL; rec_offs* offsets_rec = NULL; rec_offs* offsets_next_rec = NULL; std::vector result; /* For spatial index, there is no such stats can be fetched. */ ut_ad(!dict_index_is_spatial(index)); n_cols = dict_index_get_n_unique(index); heap = mem_heap_create((sizeof *n_diff + sizeof *n_not_null) * n_cols + dict_index_get_n_fields(index) * (sizeof *offsets_rec + sizeof *offsets_next_rec)); n_diff = (ib_uint64_t*) mem_heap_zalloc( heap, n_cols * sizeof(n_diff[0])); n_not_null = NULL; /* Check srv_innodb_stats_method setting, and decide whether we need to record non-null value and also decide if NULL is considered equal (by setting stats_null_not_equal value) */ switch (srv_innodb_stats_method) { case SRV_STATS_NULLS_IGNORED: n_not_null = (ib_uint64_t*) mem_heap_zalloc( heap, n_cols * sizeof *n_not_null); /* fall through */ case SRV_STATS_NULLS_UNEQUAL: /* for both SRV_STATS_NULLS_IGNORED and SRV_STATS_NULLS_UNEQUAL case, we will treat NULLs as unequal value */ stats_null_not_equal = TRUE; break; case SRV_STATS_NULLS_EQUAL: stats_null_not_equal = FALSE; break; default: ut_error; } if (srv_stats_sample_traditional) { /* It makes no sense to test more pages than are contained in the index, thus we lower the number if it is too high */ if (srv_stats_transient_sample_pages > index->stat_index_size) { if (index->stat_index_size > 0) { n_sample_pages = index->stat_index_size; } } else { n_sample_pages = srv_stats_transient_sample_pages; } } else { /* New logaritmic number of pages that are estimated. Number of pages estimated should be between 1 and index->stat_index_size. If we have only 0 or 1 index pages then we can only take 1 sample. We have already initialized n_sample_pages to 1. So taking index size as I and sample as S and log(I)*S as L requirement 1) we want the out limit of the expression to not exceed I; requirement 2) we want the ideal pages to be at least S; so the current expression is min(I, max( min(S,I), L) looking for simplifications: case 1: assume S < I min(I, max( min(S,I), L) -> min(I , max( S, L)) but since L=LOG2(I)*S and log2(I) >=1 L>S always so max(S,L) = L. so we have: min(I , L) case 2: assume I < S min(I, max( min(S,I), L) -> min(I, max( I, L)) case 2a: L > I min(I, max( I, L)) -> min(I, L) -> I case 2b: when L < I min(I, max( I, L)) -> min(I, I ) -> I so taking all case2 paths is I, our expression is: n_pages = S < I? min(I,L) : I */ if (index->stat_index_size > 1) { n_sample_pages = (srv_stats_transient_sample_pages < index->stat_index_size) ? ut_min(index->stat_index_size, static_cast( log2(double(index->stat_index_size)) * double(srv_stats_transient_sample_pages))) : index->stat_index_size; } } /* Sanity check */ ut_ad(n_sample_pages > 0 && n_sample_pages <= (index->stat_index_size <= 1 ? 1 : index->stat_index_size)); /* We sample some pages in the index to get an estimate */ for (i = 0; i < n_sample_pages; i++) { mtr_start(&mtr); bool available; available = btr_cur_open_at_rnd_pos(index, BTR_SEARCH_LEAF, &cursor, &mtr); if (!available) { mtr_commit(&mtr); mem_heap_free(heap); return result; } /* Count the number of different key values for each prefix of the key on this index page. If the prefix does not determine the index record uniquely in the B-tree, then we subtract one because otherwise our algorithm would give a wrong estimate for an index where there is just one key value. */ if (!index->is_readable()) { mtr_commit(&mtr); goto exit_loop; } page = btr_cur_get_page(&cursor); rec = page_rec_get_next(page_get_infimum_rec(page)); const ulint n_core = page_is_leaf(page) ? index->n_core_fields : 0; if (!page_rec_is_supremum(rec)) { not_empty_flag = 1; offsets_rec = rec_get_offsets(rec, index, offsets_rec, n_core, ULINT_UNDEFINED, &heap); if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_rec, n_not_null); } } while (!page_rec_is_supremum(rec)) { ulint matched_fields; rec_t* next_rec = page_rec_get_next(rec); if (page_rec_is_supremum(next_rec)) { total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); break; } offsets_next_rec = rec_get_offsets(next_rec, index, offsets_next_rec, n_core, ULINT_UNDEFINED, &heap); cmp_rec_rec(rec, next_rec, offsets_rec, offsets_next_rec, index, stats_null_not_equal, &matched_fields); for (j = matched_fields; j < n_cols; j++) { /* We add one if this index record has a different prefix from the previous */ n_diff[j]++; } if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_next_rec, n_not_null); } total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); rec = next_rec; /* Initialize offsets_rec for the next round and assign the old offsets_rec buffer to offsets_next_rec. */ { rec_offs* offsets_tmp = offsets_rec; offsets_rec = offsets_next_rec; offsets_next_rec = offsets_tmp; } } if (n_cols == dict_index_get_n_unique_in_tree(index) && page_has_siblings(page)) { /* If there is more than one leaf page in the tree, we add one because we know that the first record on the page certainly had a different prefix than the last record on the previous index page in the alphabetical order. Before this fix, if there was just one big record on each clustered index page, the algorithm grossly underestimated the number of rows in the table. */ n_diff[n_cols - 1]++; } mtr_commit(&mtr); } exit_loop: /* If we saw k borders between different key values on n_sample_pages leaf pages, we can estimate how many there will be in index->stat_n_leaf_pages */ /* We must take into account that our sample actually represents also the pages used for external storage of fields (those pages are included in index->stat_n_leaf_pages) */ result.reserve(n_cols); for (j = 0; j < n_cols; j++) { index_field_stats_t stat; stat.n_diff_key_vals = BTR_TABLE_STATS_FROM_SAMPLE( n_diff[j], index, n_sample_pages, total_external_size, not_empty_flag); /* If the tree is small, smaller than 10 * n_sample_pages + total_external_size, then the above estimate is ok. For bigger trees it is common that we do not see any borders between key values in the few pages we pick. But still there may be n_sample_pages different key values, or even more. Let us try to approximate that: */ add_on = index->stat_n_leaf_pages / (10 * (n_sample_pages + total_external_size)); if (add_on > n_sample_pages) { add_on = n_sample_pages; } stat.n_diff_key_vals += add_on; stat.n_sample_sizes = n_sample_pages; if (n_not_null != NULL) { stat.n_non_null_key_vals = BTR_TABLE_STATS_FROM_SAMPLE( n_not_null[j], index, n_sample_pages, total_external_size, not_empty_flag); } result.push_back(stat); } mem_heap_free(heap); return result; } /*================== EXTERNAL STORAGE OF BIG FIELDS ===================*/ /***********************************************************//** Gets the offset of the pointer to the externally stored part of a field. @return offset of the pointer to the externally stored part */ static ulint btr_rec_get_field_ref_offs( /*=======================*/ const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */ ulint n) /*!< in: index of the external field */ { ulint field_ref_offs; ulint local_len; ut_a(rec_offs_nth_extern(offsets, n)); field_ref_offs = rec_get_nth_field_offs(offsets, n, &local_len); ut_a(len_is_stored(local_len)); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); return(field_ref_offs + local_len - BTR_EXTERN_FIELD_REF_SIZE); } /** Gets a pointer to the externally stored part of a field. @param rec record @param offsets rec_get_offsets(rec) @param n index of the externally stored field @return pointer to the externally stored part */ #define btr_rec_get_field_ref(rec, offsets, n) \ ((rec) + btr_rec_get_field_ref_offs(offsets, n)) /** Gets the externally stored size of a record, in units of a database page. @param[in] rec record @param[in] offsets array returned by rec_get_offsets() @return externally stored part, in units of a database page */ ulint btr_rec_get_externally_stored_len( const rec_t* rec, const rec_offs* offsets) { ulint n_fields; ulint total_extern_len = 0; ulint i; ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); if (!rec_offs_any_extern(offsets)) { return(0); } n_fields = rec_offs_n_fields(offsets); for (i = 0; i < n_fields; i++) { if (rec_offs_nth_extern(offsets, i)) { ulint extern_len = mach_read_from_4( btr_rec_get_field_ref(rec, offsets, i) + BTR_EXTERN_LEN + 4); total_extern_len += ut_calc_align( extern_len, ulint(srv_page_size)); } } return total_extern_len >> srv_page_size_shift; } /*******************************************************************//** Sets the ownership bit of an externally stored field in a record. */ static void btr_cur_set_ownership_of_extern_field( /*==================================*/ buf_block_t* block, /*!< in/out: index page */ rec_t* rec, /*!< in/out: clustered index record */ dict_index_t* index, /*!< in: index of the page */ const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */ ulint i, /*!< in: field number */ bool val, /*!< in: value to set */ mtr_t* mtr) /*!< in: mtr, or NULL if not logged */ { byte* data; ulint local_len; ulint byte_val; data = rec_get_nth_field(rec, offsets, i, &local_len); ut_ad(rec_offs_nth_extern(offsets, i)); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; byte_val = mach_read_from_1(data + local_len + BTR_EXTERN_LEN); if (val) { byte_val &= ~BTR_EXTERN_OWNER_FLAG; } else { #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG ut_a(!(byte_val & BTR_EXTERN_OWNER_FLAG)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ byte_val |= BTR_EXTERN_OWNER_FLAG; } if (UNIV_LIKELY_NULL(block->page.zip.data)) { mach_write_to_1(data + local_len + BTR_EXTERN_LEN, byte_val); page_zip_write_blob_ptr(block, rec, index, offsets, i, mtr); } else { mtr->write<1,mtr_t::MAYBE_NOP>(*block, data + local_len + BTR_EXTERN_LEN, byte_val); } } /*******************************************************************//** Marks non-updated off-page fields as disowned by this record. The ownership must be transferred to the updated record which is inserted elsewhere in the index tree. In purge only the owner of externally stored field is allowed to free the field. */ void btr_cur_disown_inherited_fields( /*============================*/ buf_block_t* block, /*!< in/out: index page */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */ const upd_t* update, /*!< in: update vector */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); ut_ad(rec_offs_any_extern(offsets)); for (uint16_t i = 0; i < rec_offs_n_fields(offsets); i++) { if (rec_offs_nth_extern(offsets, i) && !upd_get_field_by_field_no(update, i, false)) { btr_cur_set_ownership_of_extern_field( block, rec, index, offsets, i, false, mtr); } } } /*******************************************************************//** Marks all extern fields in a record as owned by the record. This function should be called if the delete mark of a record is removed: a not delete marked record always owns all its extern fields. */ static void btr_cur_unmark_extern_fields( /*=========================*/ buf_block_t* block, /*!< in/out: index page */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const rec_offs* offsets,/*!< in: array returned by rec_get_offsets() */ mtr_t* mtr) /*!< in: mtr, or NULL if not logged */ { ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); if (!rec_offs_any_extern(offsets)) { return; } const ulint n = rec_offs_n_fields(offsets); for (ulint i = 0; i < n; i++) { if (rec_offs_nth_extern(offsets, i)) { btr_cur_set_ownership_of_extern_field( block, rec, index, offsets, i, true, mtr); } } } /*******************************************************************//** Returns the length of a BLOB part stored on the header page. @return part length */ static uint32_t btr_blob_get_part_len( /*==================*/ const byte* blob_header) /*!< in: blob header */ { return(mach_read_from_4(blob_header + BTR_BLOB_HDR_PART_LEN)); } /*******************************************************************//** Returns the page number where the next BLOB part is stored. @return page number or FIL_NULL if no more pages */ static uint32_t btr_blob_get_next_page_no( /*======================*/ const byte* blob_header) /*!< in: blob header */ { return(mach_read_from_4(blob_header + BTR_BLOB_HDR_NEXT_PAGE_NO)); } /** Deallocate a buffer block that was reserved for a BLOB part. @param block buffer block @param all flag whether to remove a ROW_FORMAT=COMPRESSED page @param mtr mini-transaction to commit */ static void btr_blob_free(buf_block_t *block, bool all, mtr_t *mtr) { const page_id_t page_id(block->page.id()); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); mtr->commit(); const ulint fold= page_id.fold(); mysql_mutex_lock(&buf_pool.mutex); if (buf_page_t *bpage= buf_pool.page_hash_get_low(page_id, fold)) if (!buf_LRU_free_page(bpage, all) && all && bpage->zip.data) /* Attempt to deallocate the redundant copy of the uncompressed page if the whole ROW_FORMAT=COMPRESSED block cannot be deallocted. */ buf_LRU_free_page(bpage, false); mysql_mutex_unlock(&buf_pool.mutex); } /** Helper class used while writing blob pages, during insert or update. */ struct btr_blob_log_check_t { /** Persistent cursor on a clusterex index record with blobs. */ btr_pcur_t* m_pcur; /** Mini transaction holding the latches for m_pcur */ mtr_t* m_mtr; /** rec_get_offsets(rec, index); offset of clust_rec */ const rec_offs* m_offsets; /** The block containing clustered record */ buf_block_t** m_block; /** The clustered record pointer */ rec_t** m_rec; /** The blob operation code */ enum blob_op m_op; /** Constructor @param[in] pcur persistent cursor on a clustered index record with blobs. @param[in] mtr mini-transaction holding latches for pcur. @param[in] offsets offsets of the clust_rec @param[in,out] block record block containing pcur record @param[in,out] rec the clustered record pointer @param[in] op the blob operation code */ btr_blob_log_check_t( btr_pcur_t* pcur, mtr_t* mtr, const rec_offs* offsets, buf_block_t** block, rec_t** rec, enum blob_op op) : m_pcur(pcur), m_mtr(mtr), m_offsets(offsets), m_block(block), m_rec(rec), m_op(op) { ut_ad(rec_offs_validate(*m_rec, m_pcur->index(), m_offsets)); ut_ad((*m_block)->frame == page_align(*m_rec)); ut_ad(*m_rec == btr_pcur_get_rec(m_pcur)); } /** Check if there is enough space in log file. Commit and re-start the mini transaction. */ void check() { dict_index_t* index = m_pcur->index(); ulint offs = 0; uint32_t page_no = FIL_NULL; if (UNIV_UNLIKELY(m_op == BTR_STORE_INSERT_BULK)) { offs = page_offset(*m_rec); page_no = (*m_block)->page.id().page_no(); buf_block_buf_fix_inc(*m_block, __FILE__, __LINE__); ut_ad(page_no != FIL_NULL); } else { btr_pcur_store_position(m_pcur, m_mtr); } m_mtr->commit(); DEBUG_SYNC_C("blob_write_middle"); log_free_check(); DEBUG_SYNC_C("blob_write_middle_after_check"); const mtr_log_t log_mode = m_mtr->get_log_mode(); m_mtr->start(); m_mtr->set_log_mode(log_mode); index->set_modified(*m_mtr); if (UNIV_UNLIKELY(page_no != FIL_NULL)) { m_pcur->btr_cur.page_cur.block = btr_block_get( *index, page_no, RW_X_LATCH, false, m_mtr); m_pcur->btr_cur.page_cur.rec = m_pcur->btr_cur.page_cur.block->frame + offs; buf_block_buf_fix_dec(m_pcur->btr_cur.page_cur.block); } else { ut_ad(m_pcur->rel_pos == BTR_PCUR_ON); bool ret = btr_pcur_restore_position( BTR_MODIFY_LEAF | BTR_MODIFY_EXTERNAL, m_pcur, m_mtr); ut_a(ret); } *m_block = btr_pcur_get_block(m_pcur); *m_rec = btr_pcur_get_rec(m_pcur); rec_offs_make_valid(*m_rec, index, true, const_cast(m_offsets)); ut_ad(m_mtr->memo_contains_page_flagged( *m_rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_SX_FIX)); ut_ad((m_op == BTR_STORE_INSERT_BULK) == !m_mtr->memo_contains_flagged(&index->lock, MTR_MEMO_SX_LOCK | MTR_MEMO_X_LOCK)); } }; /*******************************************************************//** Stores the fields in big_rec_vec to the tablespace and puts pointers to them in rec. The extern flags in rec will have to be set beforehand. The fields are stored on pages allocated from leaf node file segment of the index tree. TODO: If the allocation extends the tablespace, it will not be redo logged, in any mini-transaction. Tablespace extension should be redo-logged, so that recovery will not fail when the big_rec was written to the extended portion of the file, in case the file was somehow truncated in the crash. @return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */ dberr_t btr_store_big_rec_extern_fields( /*============================*/ btr_pcur_t* pcur, /*!< in/out: a persistent cursor. if btr_mtr is restarted, then this can be repositioned. */ rec_offs* offsets, /*!< in/out: rec_get_offsets() on pcur. the "external storage" flags in offsets will correctly correspond to rec when this function returns */ const big_rec_t*big_rec_vec, /*!< in: vector containing fields to be stored externally */ mtr_t* btr_mtr, /*!< in/out: mtr containing the latches to the clustered index. can be committed and restarted. */ enum blob_op op) /*! in: operation code */ { byte* field_ref; ulint extern_len; ulint store_len; ulint space_id; ulint i; mtr_t mtr; mem_heap_t* heap = NULL; page_zip_des_t* page_zip; z_stream c_stream; dberr_t error = DB_SUCCESS; dict_index_t* index = pcur->index(); buf_block_t* rec_block = btr_pcur_get_block(pcur); rec_t* rec = btr_pcur_get_rec(pcur); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_any_extern(offsets)); ut_ad(op == BTR_STORE_INSERT_BULK || btr_mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(btr_mtr->memo_contains_flagged(rec_block, MTR_MEMO_PAGE_X_FIX)); ut_ad(buf_block_get_frame(rec_block) == page_align(rec)); ut_a(dict_index_is_clust(index)); btr_blob_log_check_t redo_log(pcur, btr_mtr, offsets, &rec_block, &rec, op); page_zip = buf_block_get_page_zip(rec_block); space_id = rec_block->page.id().space(); ut_a(fil_page_index_page_check(page_align(rec)) || op == BTR_STORE_INSERT_BULK); if (page_zip) { int err; /* Zlib deflate needs 128 kilobytes for the default window size, plus 512 << memLevel, plus a few kilobytes for small objects. We use reduced memLevel to limit the memory consumption, and preallocate the heap, hoping to avoid memory fragmentation. */ heap = mem_heap_create(250000); page_zip_set_alloc(&c_stream, heap); err = deflateInit2(&c_stream, int(page_zip_level), Z_DEFLATED, 15, 7, Z_DEFAULT_STRATEGY); ut_a(err == Z_OK); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* All pointers to externally stored columns in the record must either be zero or they must be pointers to inherited columns, owned by this record or an earlier record version. */ for (i = 0; i < big_rec_vec->n_fields; i++) { field_ref = btr_rec_get_field_ref( rec, offsets, big_rec_vec->fields[i].field_no); ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); /* Either this must be an update in place, or the BLOB must be inherited, or the BLOB pointer must be zero (will be written in this function). */ ut_a(op == BTR_STORE_UPDATE || (field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_INHERITED_FLAG) || !memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); } #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ /* Space available in compressed page to carry blob data */ const ulint payload_size_zip = rec_block->physical_size() - FIL_PAGE_DATA; /* Space available in uncompressed page to carry blob data */ const ulint payload_size = payload_size_zip - (BTR_BLOB_HDR_SIZE + FIL_PAGE_DATA_END); /* We have to create a file segment to the tablespace for each field and put the pointer to the field in rec */ for (i = 0; i < big_rec_vec->n_fields; i++) { const ulint field_no = big_rec_vec->fields[i].field_no; field_ref = btr_rec_get_field_ref(rec, offsets, field_no); #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* A zero BLOB pointer should have been initially inserted. */ ut_a(!memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ extern_len = big_rec_vec->fields[i].len; MEM_CHECK_DEFINED(big_rec_vec->fields[i].data, extern_len); ut_a(extern_len > 0); uint32_t prev_page_no = FIL_NULL; if (page_zip) { int err = deflateReset(&c_stream); ut_a(err == Z_OK); c_stream.next_in = (Bytef*) big_rec_vec->fields[i].data; c_stream.avail_in = static_cast(extern_len); } for (ulint blob_npages = 0;; ++blob_npages) { buf_block_t* block; const ulint commit_freq = 4; uint32_t r_extents; ut_ad(page_align(field_ref) == page_align(rec)); if (!(blob_npages % commit_freq)) { redo_log.check(); field_ref = btr_rec_get_field_ref( rec, offsets, field_no); page_zip = buf_block_get_page_zip(rec_block); } mtr.start(); index->set_modified(mtr); mtr.set_log_mode(btr_mtr->get_log_mode()); buf_page_get(rec_block->page.id(), rec_block->zip_size(), RW_X_LATCH, &mtr); uint32_t hint_prev = prev_page_no; if (hint_prev == FIL_NULL) { hint_prev = rec_block->page.id().page_no(); } if (!fsp_reserve_free_extents(&r_extents, index->table->space, 1, FSP_BLOB, &mtr, 1)) { mtr.commit(); error = DB_OUT_OF_FILE_SPACE; goto func_exit; } block = btr_page_alloc(index, hint_prev + 1, FSP_NO_DIR, 0, &mtr, &mtr); index->table->space->release_free_extents(r_extents); ut_a(block != NULL); const uint32_t page_no = block->page.id().page_no(); if (prev_page_no != FIL_NULL) { buf_block_t* prev_block; prev_block = buf_page_get( page_id_t(space_id, prev_page_no), rec_block->zip_size(), RW_X_LATCH, &mtr); buf_block_dbg_add_level(prev_block, SYNC_EXTERN_STORAGE); if (page_zip) { mtr.write<4>(*prev_block, prev_block->frame + FIL_PAGE_NEXT, page_no); memcpy_aligned<4>( buf_block_get_page_zip( prev_block) ->data + FIL_PAGE_NEXT, prev_block->frame + FIL_PAGE_NEXT, 4); } else { mtr.write<4>(*prev_block, BTR_BLOB_HDR_NEXT_PAGE_NO + FIL_PAGE_DATA + prev_block->frame, page_no); } } else if (dict_index_is_online_ddl(index)) { row_log_table_blob_alloc(index, page_no); } ut_ad(!page_has_siblings(block->frame)); ut_ad(!fil_page_get_type(block->frame)); if (page_zip) { int err; page_zip_des_t* blob_page_zip; mtr.write<1>(*block, FIL_PAGE_TYPE + 1 + block->frame, prev_page_no == FIL_NULL ? FIL_PAGE_TYPE_ZBLOB : FIL_PAGE_TYPE_ZBLOB2); block->page.zip.data[FIL_PAGE_TYPE + 1] = block->frame[FIL_PAGE_TYPE + 1]; c_stream.next_out = block->frame + FIL_PAGE_DATA; c_stream.avail_out = static_cast( payload_size_zip); err = deflate(&c_stream, Z_FINISH); ut_a(err == Z_OK || err == Z_STREAM_END); ut_a(err == Z_STREAM_END || c_stream.avail_out == 0); mtr.memcpy(*block, FIL_PAGE_DATA, page_zip_get_size(page_zip) - FIL_PAGE_DATA - c_stream.avail_out); /* Copy the page to compressed storage, because it will be flushed to disk from there. */ blob_page_zip = buf_block_get_page_zip(block); ut_ad(blob_page_zip); ut_ad(page_zip_get_size(blob_page_zip) == page_zip_get_size(page_zip)); memcpy(blob_page_zip->data, block->frame, page_zip_get_size(page_zip)); if (err == Z_OK && prev_page_no != FIL_NULL) { goto next_zip_page; } if (err == Z_STREAM_END) { mach_write_to_4(field_ref + BTR_EXTERN_LEN, 0); mach_write_to_4(field_ref + BTR_EXTERN_LEN + 4, c_stream.total_in); } else { memset(field_ref + BTR_EXTERN_LEN, 0, 8); } if (prev_page_no == FIL_NULL) { ut_ad(blob_npages == 0); mach_write_to_4(field_ref + BTR_EXTERN_SPACE_ID, space_id); mach_write_to_4(field_ref + BTR_EXTERN_PAGE_NO, page_no); mach_write_to_4(field_ref + BTR_EXTERN_OFFSET, FIL_PAGE_NEXT); } /* We compress a page when finish bulk insert.*/ if (UNIV_LIKELY(op != BTR_STORE_INSERT_BULK)) { page_zip_write_blob_ptr( rec_block, rec, index, offsets, field_no, &mtr); } next_zip_page: prev_page_no = page_no; /* Commit mtr and release the uncompressed page frame to save memory. */ btr_blob_free(block, FALSE, &mtr); if (err == Z_STREAM_END) { break; } } else { mtr.write<1>(*block, FIL_PAGE_TYPE + 1 + block->frame, FIL_PAGE_TYPE_BLOB); if (extern_len > payload_size) { store_len = payload_size; } else { store_len = extern_len; } mtr.memcpy( *block, FIL_PAGE_DATA + BTR_BLOB_HDR_SIZE + block->frame, static_cast (big_rec_vec->fields[i].data) + big_rec_vec->fields[i].len - extern_len, store_len); mtr.write<4>(*block, BTR_BLOB_HDR_PART_LEN + FIL_PAGE_DATA + block->frame, store_len); compile_time_assert(FIL_NULL == 0xffffffff); mtr.memset(block, BTR_BLOB_HDR_NEXT_PAGE_NO + FIL_PAGE_DATA, 4, 0xff); extern_len -= store_len; ut_ad(!mach_read_from_4(BTR_EXTERN_LEN + field_ref)); mtr.write<4>(*rec_block, BTR_EXTERN_LEN + 4 + field_ref, big_rec_vec->fields[i].len - extern_len); if (prev_page_no == FIL_NULL) { ut_ad(blob_npages == 0); mtr.write<4,mtr_t::MAYBE_NOP>( *rec_block, field_ref + BTR_EXTERN_SPACE_ID, space_id); mtr.write<4>(*rec_block, field_ref + BTR_EXTERN_PAGE_NO, page_no); mtr.write<4>(*rec_block, field_ref + BTR_EXTERN_OFFSET, FIL_PAGE_DATA); } prev_page_no = page_no; mtr.commit(); if (extern_len == 0) { break; } } } DBUG_EXECUTE_IF("btr_store_big_rec_extern", error = DB_OUT_OF_FILE_SPACE; goto func_exit;); rec_offs_make_nth_extern(offsets, field_no); } func_exit: if (page_zip) { deflateEnd(&c_stream); } if (heap != NULL) { mem_heap_free(heap); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* All pointers to externally stored columns in the record must be valid. */ for (i = 0; i < rec_offs_n_fields(offsets); i++) { if (!rec_offs_nth_extern(offsets, i)) { continue; } field_ref = btr_rec_get_field_ref(rec, offsets, i); /* The pointer must not be zero if the operation succeeded. */ ut_a(0 != memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE) || error != DB_SUCCESS); /* The column must not be disowned by this record. */ ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); } #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ return(error); } /** Check the FIL_PAGE_TYPE on an uncompressed BLOB page. @param[in] block uncompressed BLOB page @param[in] read true=read, false=purge */ static void btr_check_blob_fil_page_type(const buf_block_t& block, bool read) { uint16_t type= fil_page_get_type(block.frame); if (UNIV_LIKELY(type == FIL_PAGE_TYPE_BLOB)) return; /* FIXME: take the tablespace as a parameter */ if (fil_space_t *space= fil_space_t::get(block.page.id().space())) { /* Old versions of InnoDB did not initialize FIL_PAGE_TYPE on BLOB pages. Do not print anything about the type mismatch when reading a BLOB page that may be from old versions. */ if (space->full_crc32() || DICT_TF_HAS_ATOMIC_BLOBS(space->flags)) { ib::fatal() << "FIL_PAGE_TYPE=" << type << (read ? " on BLOB read file " : " on BLOB purge file ") << space->chain.start->name << " page " << block.page.id().page_no(); } space->release(); } } /*******************************************************************//** Frees the space in an externally stored field to the file space management if the field in data is owned by the externally stored field, in a rollback we may have the additional condition that the field must not be inherited. */ void btr_free_externally_stored_field( /*=============================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched; if the tree height is 1, then also the root page must be X-latched! (this is relevant in the case this function is called from purge where 'data' is located on an undo log page, not an index page) */ byte* field_ref, /*!< in/out: field reference */ const rec_t* rec, /*!< in: record containing field_ref, for page_zip_write_blob_ptr(), or NULL */ const rec_offs* offsets, /*!< in: rec_get_offsets(rec, index), or NULL */ buf_block_t* block, /*!< in/out: page of field_ref */ ulint i, /*!< in: field number of field_ref; ignored if rec == NULL */ bool rollback, /*!< in: performing rollback? */ mtr_t* local_mtr) /*!< in: mtr containing the latch to data an an X-latch to the index tree */ { page_t* page; const uint32_t space_id = mach_read_from_4( field_ref + BTR_EXTERN_SPACE_ID); const uint32_t start_page = mach_read_from_4( field_ref + BTR_EXTERN_PAGE_NO); uint32_t page_no; uint32_t next_page_no; mtr_t mtr; ut_ad(index->is_primary()); ut_ad(local_mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(local_mtr->memo_contains_page_flagged(field_ref, MTR_MEMO_PAGE_X_FIX)); ut_ad(!rec || rec_offs_validate(rec, index, offsets)); ut_ad(!rec || field_ref == btr_rec_get_field_ref(rec, offsets, i)); ut_ad(local_mtr->is_named_space( page_get_space_id(page_align(field_ref)))); if (UNIV_UNLIKELY(!memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) { /* In the rollback, we may encounter a clustered index record with some unwritten off-page columns. There is nothing to free then. */ ut_a(rollback); return; } ut_ad(!(mach_read_from_4(field_ref + BTR_EXTERN_LEN) & ~((BTR_EXTERN_OWNER_FLAG | BTR_EXTERN_INHERITED_FLAG) << 24))); ut_ad(space_id == index->table->space->id); ut_ad(space_id == index->table->space_id); const ulint ext_zip_size = index->table->space->zip_size(); const ulint rec_zip_size = rec ? ext_zip_size : 0; /* !rec holds in a call from purge when field_ref is in an undo page */ ut_ad(rec || !block->page.zip.data); for (;;) { #ifdef UNIV_DEBUG buf_block_t* rec_block; #endif /* UNIV_DEBUG */ buf_block_t* ext_block; mtr_start(&mtr); mtr.set_spaces(*local_mtr); mtr.set_log_mode(local_mtr->get_log_mode()); ut_ad(!index->table->is_temporary() || local_mtr->get_log_mode() == MTR_LOG_NO_REDO); const page_t* p = page_align(field_ref); const page_id_t page_id(page_get_space_id(p), page_get_page_no(p)); #ifdef UNIV_DEBUG rec_block = #endif /* UNIV_DEBUG */ buf_page_get(page_id, rec_zip_size, RW_X_LATCH, &mtr); buf_block_dbg_add_level(rec_block, SYNC_NO_ORDER_CHECK); page_no = mach_read_from_4(field_ref + BTR_EXTERN_PAGE_NO); if (/* There is no external storage data */ page_no == FIL_NULL /* This field does not own the externally stored field */ || (mach_read_from_1(field_ref + BTR_EXTERN_LEN) & BTR_EXTERN_OWNER_FLAG) /* Rollback and inherited field */ || (rollback && (mach_read_from_1(field_ref + BTR_EXTERN_LEN) & BTR_EXTERN_INHERITED_FLAG))) { /* Do not free */ mtr_commit(&mtr); return; } if (page_no == start_page && dict_index_is_online_ddl(index)) { row_log_table_blob_free(index, start_page); } ext_block = buf_page_get( page_id_t(space_id, page_no), ext_zip_size, RW_X_LATCH, &mtr); buf_block_dbg_add_level(ext_block, SYNC_EXTERN_STORAGE); page = buf_block_get_frame(ext_block); if (ext_zip_size) { /* Note that page_zip will be NULL in row_purge_upd_exist_or_extern(). */ switch (fil_page_get_type(page)) { case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: break; default: ut_error; } next_page_no = mach_read_from_4(page + FIL_PAGE_NEXT); btr_page_free(index, ext_block, &mtr, true); if (UNIV_LIKELY_NULL(block->page.zip.data)) { mach_write_to_4(field_ref + BTR_EXTERN_PAGE_NO, next_page_no); memset(field_ref + BTR_EXTERN_LEN + 4, 0, 4); page_zip_write_blob_ptr(block, rec, index, offsets, i, &mtr); } else { mtr.write<4>(*block, BTR_EXTERN_PAGE_NO + field_ref, next_page_no); mtr.write<4,mtr_t::MAYBE_NOP>(*block, BTR_EXTERN_LEN + 4 + field_ref, 0U); } } else { ut_ad(!block->page.zip.data); btr_check_blob_fil_page_type(*ext_block, false); next_page_no = mach_read_from_4( page + FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO); btr_page_free(index, ext_block, &mtr, true); mtr.write<4>(*block, BTR_EXTERN_PAGE_NO + field_ref, next_page_no); /* Zero out the BLOB length. If the server crashes during the execution of this function, trx_rollback_all_recovered() could dereference the half-deleted BLOB, fetching a wrong prefix for the BLOB. */ mtr.write<4,mtr_t::MAYBE_NOP>(*block, BTR_EXTERN_LEN + 4 + field_ref, 0U); } /* Commit mtr and release the BLOB block to save memory. */ btr_blob_free(ext_block, TRUE, &mtr); } } /***********************************************************//** Frees the externally stored fields for a record. */ static void btr_rec_free_externally_stored_fields( /*==================================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched */ rec_t* rec, /*!< in/out: record */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ buf_block_t* block, /*!< in: index page of rec */ bool rollback,/*!< in: performing rollback? */ mtr_t* mtr) /*!< in: mini-transaction handle which contains an X-latch to record page and to the index tree */ { ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(mtr->memo_contains_page_flagged(rec, MTR_MEMO_PAGE_X_FIX)); ut_ad(index->is_primary()); ut_ad(page_rec_is_leaf(rec)); /* Free possible externally stored fields in the record */ ut_ad(dict_table_is_comp(index->table) == !!rec_offs_comp(offsets)); n_fields = rec_offs_n_fields(offsets); for (i = 0; i < n_fields; i++) { if (rec_offs_nth_extern(offsets, i)) { btr_free_externally_stored_field( index, btr_rec_get_field_ref(rec, offsets, i), rec, offsets, block, i, rollback, mtr); } } } /***********************************************************//** Frees the externally stored fields for a record, if the field is mentioned in the update vector. */ static void btr_rec_free_updated_extern_fields( /*===============================*/ dict_index_t* index, /*!< in: index of rec; the index tree MUST be X-latched */ rec_t* rec, /*!< in/out: record */ buf_block_t* block, /*!< in: index page of rec */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update, /*!< in: update vector */ bool rollback,/*!< in: performing rollback? */ mtr_t* mtr) /*!< in: mini-transaction handle which contains an X-latch to record page and to the tree */ { ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(mtr->memo_contains_page_flagged(rec, MTR_MEMO_PAGE_X_FIX)); /* Free possible externally stored fields in the record */ n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { const upd_field_t* ufield = upd_get_nth_field(update, i); if (rec_offs_nth_extern(offsets, ufield->field_no)) { ulint len; byte* data = rec_get_nth_field( rec, offsets, ufield->field_no, &len); ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); btr_free_externally_stored_field( index, data + len - BTR_EXTERN_FIELD_REF_SIZE, rec, offsets, block, ufield->field_no, rollback, mtr); } } } /*******************************************************************//** Copies the prefix of an uncompressed BLOB. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @return number of bytes written to buf */ static ulint btr_copy_blob_prefix( /*=================*/ byte* buf, /*!< out: the externally stored part of the field, or a prefix of it */ uint32_t len, /*!< in: length of buf, in bytes */ page_id_t id, /*!< in: page identifier of the first BLOB page */ uint32_t offset) /*!< in: offset on the first BLOB page */ { ulint copied_len = 0; for (;;) { mtr_t mtr; buf_block_t* block; const page_t* page; const byte* blob_header; ulint part_len; ulint copy_len; mtr_start(&mtr); block = buf_page_get(id, 0, RW_S_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_EXTERN_STORAGE); page = buf_block_get_frame(block); btr_check_blob_fil_page_type(*block, true); blob_header = page + offset; part_len = btr_blob_get_part_len(blob_header); copy_len = ut_min(part_len, len - copied_len); memcpy(buf + copied_len, blob_header + BTR_BLOB_HDR_SIZE, copy_len); copied_len += copy_len; id.set_page_no(btr_blob_get_next_page_no(blob_header)); mtr_commit(&mtr); if (id.page_no() == FIL_NULL || copy_len != part_len) { MEM_CHECK_DEFINED(buf, copied_len); return(copied_len); } /* On other BLOB pages except the first the BLOB header always is at the page data start: */ offset = FIL_PAGE_DATA; ut_ad(copied_len <= len); } } /** Copies the prefix of a compressed BLOB. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @param[out] buf the externally stored part of the field, or a prefix of it @param[in] len length of buf, in bytes @param[in] zip_size ROW_FORMAT=COMPRESSED page size @param[in] id page identifier of the BLOB pages @return number of bytes written to buf */ static ulint btr_copy_zblob_prefix( byte* buf, uint32_t len, ulint zip_size, page_id_t id, uint32_t offset) { ulint page_type = FIL_PAGE_TYPE_ZBLOB; mem_heap_t* heap; int err; z_stream d_stream; d_stream.next_out = buf; d_stream.avail_out = static_cast(len); d_stream.next_in = Z_NULL; d_stream.avail_in = 0; /* Zlib inflate needs 32 kilobytes for the default window size, plus a few kilobytes for small objects. */ heap = mem_heap_create(40000); page_zip_set_alloc(&d_stream, heap); ut_ad(zip_size); ut_ad(ut_is_2pow(zip_size)); ut_ad(id.space()); err = inflateInit(&d_stream); ut_a(err == Z_OK); for (;;) { buf_page_t* bpage; uint32_t next_page_no; /* There is no latch on bpage directly. Instead, bpage is protected by the B-tree page latch that is being held on the clustered index record, or, in row_merge_copy_blobs(), by an exclusive table lock. */ bpage = buf_page_get_zip(id, zip_size); if (UNIV_UNLIKELY(!bpage)) { ib::error() << "Cannot load compressed BLOB " << id; goto func_exit; } if (UNIV_UNLIKELY (fil_page_get_type(bpage->zip.data) != page_type)) { ib::error() << "Unexpected type " << fil_page_get_type(bpage->zip.data) << " of compressed BLOB page " << id; ut_ad(0); goto end_of_blob; } next_page_no = mach_read_from_4(bpage->zip.data + offset); if (UNIV_LIKELY(offset == FIL_PAGE_NEXT)) { /* When the BLOB begins at page header, the compressed data payload does not immediately follow the next page pointer. */ offset = FIL_PAGE_DATA; } else { offset += 4; } d_stream.next_in = bpage->zip.data + offset; d_stream.avail_in = uInt(zip_size - offset); err = inflate(&d_stream, Z_NO_FLUSH); switch (err) { case Z_OK: if (!d_stream.avail_out) { goto end_of_blob; } break; case Z_STREAM_END: if (next_page_no == FIL_NULL) { goto end_of_blob; } /* fall through */ default: inflate_error: ib::error() << "inflate() of compressed BLOB page " << id << " returned " << err << " (" << d_stream.msg << ")"; case Z_BUF_ERROR: goto end_of_blob; } if (next_page_no == FIL_NULL) { if (!d_stream.avail_in) { ib::error() << "Unexpected end of compressed " << "BLOB page " << id; } else { err = inflate(&d_stream, Z_FINISH); switch (err) { case Z_STREAM_END: case Z_BUF_ERROR: break; default: goto inflate_error; } } end_of_blob: buf_page_release_zip(bpage); goto func_exit; } buf_page_release_zip(bpage); /* On other BLOB pages except the first the BLOB header always is at the page header: */ id.set_page_no(next_page_no); offset = FIL_PAGE_NEXT; page_type = FIL_PAGE_TYPE_ZBLOB2; } func_exit: inflateEnd(&d_stream); mem_heap_free(heap); MEM_CHECK_DEFINED(buf, d_stream.total_out); return(d_stream.total_out); } /** Copies the prefix of an externally stored field of a record. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @param[out] buf the externally stored part of the field, or a prefix of it @param[in] len length of buf, in bytes @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] id page identifier of the first BLOB page @param[in] offset offset on the first BLOB page @return number of bytes written to buf */ static ulint btr_copy_externally_stored_field_prefix_low( byte* buf, uint32_t len, ulint zip_size, page_id_t id, uint32_t offset) { if (len == 0) return 0; return zip_size ? btr_copy_zblob_prefix(buf, len, zip_size, id, offset) : btr_copy_blob_prefix(buf, len, id, offset); } /** Copies the prefix of an externally stored field of a record. The clustered index record must be protected by a lock or a page latch. @param[out] buf the field, or a prefix of it @param[in] len length of buf, in bytes @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] data 'internally' stored part of the field containing also the reference to the external part; must be protected by a lock or a page latch @param[in] local_len length of data, in bytes @return the length of the copied field, or 0 if the column was being or has been deleted */ ulint btr_copy_externally_stored_field_prefix( byte* buf, ulint len, ulint zip_size, const byte* data, ulint local_len) { ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; if (UNIV_UNLIKELY(local_len >= len)) { memcpy(buf, data, len); return(len); } memcpy(buf, data, local_len); data += local_len; ut_a(memcmp(data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); if (!mach_read_from_4(data + BTR_EXTERN_LEN + 4)) { /* The externally stored part of the column has been (partially) deleted. Signal the half-deleted BLOB to the caller. */ return(0); } uint32_t space_id = mach_read_from_4(data + BTR_EXTERN_SPACE_ID); uint32_t page_no = mach_read_from_4(data + BTR_EXTERN_PAGE_NO); uint32_t offset = mach_read_from_4(data + BTR_EXTERN_OFFSET); len -= local_len; return(local_len + btr_copy_externally_stored_field_prefix_low(buf + local_len, uint32_t(len), zip_size, page_id_t( space_id, page_no), offset)); } /** Copies an externally stored field of a record to mem heap. The clustered index record must be protected by a lock or a page latch. @param[out] len length of the whole field @param[in] data 'internally' stored part of the field containing also the reference to the external part; must be protected by a lock or a page latch @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] local_len length of data @param[in,out] heap mem heap @return the whole field copied to heap */ byte* btr_copy_externally_stored_field( ulint* len, const byte* data, ulint zip_size, ulint local_len, mem_heap_t* heap) { byte* buf; ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; uint32_t space_id = mach_read_from_4(data + local_len + BTR_EXTERN_SPACE_ID); uint32_t page_no = mach_read_from_4(data + local_len + BTR_EXTERN_PAGE_NO); uint32_t offset = mach_read_from_4(data + local_len + BTR_EXTERN_OFFSET); /* Currently a BLOB cannot be bigger than 4 GB; we leave the 4 upper bytes in the length field unused */ uint32_t extern_len = mach_read_from_4(data + local_len + BTR_EXTERN_LEN + 4); buf = (byte*) mem_heap_alloc(heap, local_len + extern_len); memcpy(buf, data, local_len); *len = local_len + btr_copy_externally_stored_field_prefix_low(buf + local_len, extern_len, zip_size, page_id_t( space_id, page_no), offset); return(buf); } /** Copies an externally stored field of a record to mem heap. @param[in] rec record in a clustered index; must be protected by a lock or a page latch @param[in] offset array returned by rec_get_offsets() @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] no field number @param[out] len length of the field @param[in,out] heap mem heap @return the field copied to heap, or NULL if the field is incomplete */ byte* btr_rec_copy_externally_stored_field( const rec_t* rec, const rec_offs* offsets, ulint zip_size, ulint no, ulint* len, mem_heap_t* heap) { ulint local_len; const byte* data; ut_a(rec_offs_nth_extern(offsets, no)); /* An externally stored field can contain some initial data from the field, and in the last 20 bytes it has the space id, page number, and offset where the rest of the field data is stored, and the data length in addition to the data stored locally. We may need to store some data locally to get the local record length above the 128 byte limit so that field offsets are stored in two bytes, and the extern bit is available in those two bytes. */ data = rec_get_nth_field(rec, offsets, no, &local_len); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); if (UNIV_UNLIKELY (!memcmp(data + local_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) { /* The externally stored field was not written yet. This record should only be seen by trx_rollback_recovered() or any TRX_ISO_READ_UNCOMMITTED transactions. */ return(NULL); } return(btr_copy_externally_stored_field(len, data, zip_size, local_len, heap)); }