/***************************************************************************** Copyright (c) 2014, 2015, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, 2020, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file ut/ut0new.h Instrumented memory allocator. Created May 26, 2014 Vasil Dimov *******************************************************/ /** Dynamic memory allocation within InnoDB guidelines. All dynamic (heap) memory allocations (malloc(3), strdup(3), etc, "new", various std:: containers that allocate memory internally), that are done within InnoDB are instrumented. This means that InnoDB uses a custom set of functions for allocating memory, rather than calling e.g. "new" directly. Here follows a cheat sheet on what InnoDB functions to use whenever a standard one would have been used. Creating new objects with "new": -------------------------------- Standard: new expression or new(std::nothrow) expression InnoDB, default instrumentation: UT_NEW_NOKEY(expression) InnoDB, custom instrumentation, preferred: UT_NEW(expression, key) Destroying objects, created with "new": --------------------------------------- Standard: delete ptr InnoDB: UT_DELETE(ptr) Creating new arrays with "new[]": --------------------------------- Standard: new type[num] or new(std::nothrow) type[num] InnoDB, default instrumentation: UT_NEW_ARRAY_NOKEY(type, num) InnoDB, custom instrumentation, preferred: UT_NEW_ARRAY(type, num, key) Destroying arrays, created with "new[]": ---------------------------------------- Standard: delete[] ptr InnoDB: UT_DELETE_ARRAY(ptr) Declaring a type with a std:: container, e.g. std::vector: ---------------------------------------------------------- Standard: std::vector InnoDB: std::vector > Declaring objects of some std:: type: ------------------------------------- Standard: std::vector v InnoDB, default instrumentation: std::vector > v InnoDB, custom instrumentation, preferred: std::vector > v(ut_allocator(key)) Raw block allocation (as usual in C++, consider whether using "new" would not be more appropriate): ------------------------------------------------------------------------- Standard: malloc(num) InnoDB, default instrumentation: ut_malloc_nokey(num) InnoDB, custom instrumentation, preferred: ut_malloc(num, key) Raw block resize: ----------------- Standard: realloc(ptr, new_size) InnoDB: ut_realloc(ptr, new_size) Raw block deallocation: ----------------------- Standard: free(ptr) InnoDB: ut_free(ptr) Note: the expression passed to UT_NEW() or UT_NEW_NOKEY() must always end with (), thus: Standard: new int InnoDB: UT_NEW_NOKEY(int()) */ #ifndef ut0new_h #define ut0new_h #include /* std::min() */ #include /* std::numeric_limits */ #include /* std::map */ #include #include /* malloc() */ #include /* strlen(), strrchr(), strncmp() */ #include /* my_large_free/malloc() */ #include "my_global.h" /* needed for headers from mysql/psi/ */ #include "mysql/psi/mysql_memory.h" /* PSI_MEMORY_CALL() */ #include "mysql/psi/psi_memory.h" /* PSI_memory_key, PSI_memory_info */ #include "os0thread.h" /* os_thread_sleep() */ #include "ut0ut.h" /* ut_strcmp_functor, ut_basename_noext() */ #define OUT_OF_MEMORY_MSG \ "Check if you should increase the swap file or ulimits of your" \ " operating system. Note that on most 32-bit computers the process" \ " memory space is limited to 2 GB or 4 GB." /** The total amount of memory currently allocated from the operating system with allocate_large() */ extern Atomic_counter os_total_large_mem_allocated; /** Maximum number of retries to allocate memory. */ extern const size_t alloc_max_retries; constexpr uint32_t INVALID_AUTOEVENT_IDX = 0xFFFFFFFFU; /** Keys for registering allocations with performance schema. Pointers to these variables are supplied to PFS code via the pfs_info[] array and the PFS code initializes them via PSI_MEMORY_CALL(register_memory)(). mem_key_other and mem_key_std are special in the following way (see also ut_allocator::get_mem_key()): * If the caller has not provided a key and the file name of the caller is unknown, then mem_key_std will be used. This happens only when called from within std::* containers. * If the caller has not provided a key and the file name of the caller is known, but is not amongst the predefined names (see ut_new_boot()) then mem_key_other will be used. Generally this should not happen and if it happens then that means that the list of predefined names must be extended. Keep this list alphabetically sorted. */ extern PSI_memory_key mem_key_ahi; extern PSI_memory_key mem_key_buf_buf_pool; extern PSI_memory_key mem_key_dict_stats_bg_recalc_pool_t; extern PSI_memory_key mem_key_dict_stats_index_map_t; extern PSI_memory_key mem_key_dict_stats_n_diff_on_level; extern PSI_memory_key mem_key_other; extern PSI_memory_key mem_key_row_log_buf; extern PSI_memory_key mem_key_row_merge_sort; extern PSI_memory_key mem_key_std; /** Setup the internal objects needed for UT_NEW() to operate. This must be called before the first call to UT_NEW(). */ void ut_new_boot(); #ifdef UNIV_PFS_MEMORY /** Retrieve a memory key (registered with PFS), given AUTOEVENT_IDX of the caller @param[in] autoevent_idx - AUTOEVENT_IDX value of the caller @return registered memory key or PSI_NOT_INSTRUMENTED */ PSI_memory_key ut_new_get_key_by_file(uint32_t autoevent_idx); #endif /* UNIV_PFS_MEMORY */ /** A structure that holds the necessary data for performance schema accounting. An object of this type is put in front of each allocated block of memory when allocation is done by ut_allocator::allocate(). This is because the data is needed even when freeing the memory. Users of ut_allocator::allocate_large() are responsible for maintaining this themselves. */ struct ut_new_pfx_t { #ifdef UNIV_PFS_MEMORY /** Performance schema key. Assigned to a name at startup via PSI_MEMORY_CALL(register_memory)() and later used for accounting allocations and deallocations with PSI_MEMORY_CALL(memory_alloc)(key, size, owner) and PSI_MEMORY_CALL(memory_free)(key, size, owner). */ PSI_memory_key m_key; /** Thread owner. Instrumented thread that owns the allocated memory. This state is used by the performance schema to maintain per thread statistics, when memory is given from thread A to thread B. */ struct PSI_thread *m_owner; #endif /* UNIV_PFS_MEMORY */ /** Size of the allocated block in bytes, including this prepended aux structure (for ut_allocator::allocate()). For example if InnoDB code requests to allocate 100 bytes, and sizeof(ut_new_pfx_t) is 16, then 116 bytes are allocated in total and m_size will be 116. ut_allocator::allocate_large() does not prepend this struct to the allocated block and its users are responsible for maintaining it and passing it later to ut_allocator::deallocate_large(). */ size_t m_size; #if SIZEOF_VOIDP == 4 /** Pad the header size to a multiple of 64 bits on 32-bit systems, so that the payload will be aligned to 64 bits. */ size_t pad; #endif }; #if defined(DBUG_OFF) && defined(HAVE_MADVISE) && defined(MADV_DODUMP) static inline void ut_dontdump(void *ptr, size_t m_size, bool dontdump) { ut_a(ptr != NULL); if (dontdump && madvise(ptr, m_size, MADV_DONTDUMP)) { ib::warn() << "Failed to set memory to " DONTDUMP_STR ": " << strerror(errno) << " ptr " << ptr << " size " << m_size; } } static inline void ut_dodump(void* ptr, size_t m_size) { if (ptr && madvise(ptr, m_size, MADV_DODUMP)) { ib::warn() << "Failed to set memory to " DODUMP_STR ": " << strerror(errno) << " ptr " << ptr << " size " << m_size; } } #else static inline void ut_dontdump(void *, size_t, bool) {} static inline void ut_dodump(void*, size_t) {} #endif /** Allocator class for allocating memory from inside std::* containers. @tparam T type of allocated object @tparam oom_fatal whether to commit suicide when running out of memory */ template class ut_allocator { public: typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; #ifdef UNIV_PFS_MEMORY /** Default constructor. */ explicit ut_allocator(PSI_memory_key key = PSI_NOT_INSTRUMENTED) : m_key(key) { } #else ut_allocator() {} ut_allocator(PSI_memory_key) {} #endif /* UNIV_PFS_MEMORY */ /** Constructor from allocator of another type. */ template ut_allocator(const ut_allocator& #ifdef UNIV_PFS_MEMORY other #endif ) { #ifdef UNIV_PFS_MEMORY const PSI_memory_key other_key = other.get_mem_key(); m_key = (other_key != mem_key_std) ? other_key : PSI_NOT_INSTRUMENTED; #endif /* UNIV_PFS_MEMORY */ } /** Return the maximum number of objects that can be allocated by this allocator. */ size_type max_size() const { const size_type s_max = std::numeric_limits::max(); #ifdef UNIV_PFS_MEMORY return((s_max - sizeof(ut_new_pfx_t)) / sizeof(T)); #else return(s_max / sizeof(T)); #endif /* UNIV_PFS_MEMORY */ } pointer allocate(size_type n) { return allocate(n, NULL, INVALID_AUTOEVENT_IDX); } /** Allocate a chunk of memory that can hold 'n_elements' objects of type 'T' and trace the allocation. If the allocation fails this method may throw an exception. This is mandated by the standard and if it returns NULL instead, then STL containers that use it (e.g. std::vector) may get confused. After successfull allocation the returned pointer must be passed to ut_allocator::deallocate() when no longer needed. @param[in] n_elements number of elements @param[in] set_to_zero if true, then the returned memory is initialized with 0x0 bytes. @param[in] throw_on_error if true, raize exception if too big @return pointer to the allocated memory */ pointer allocate( size_type n_elements, const_pointer, uint32_t #ifdef UNIV_PFS_MEMORY autoevent_idx /* AUTOEVENT_IDX of the caller */ #endif , bool set_to_zero = false, bool throw_on_error = true) { if (n_elements == 0) { return(NULL); } if (n_elements > max_size()) { if (throw_on_error) { throw(std::bad_alloc()); } else { return(NULL); } } void* ptr; size_t total_bytes = n_elements * sizeof(T); #ifdef UNIV_PFS_MEMORY /* The header size must not ruin the 64-bit alignment on 32-bit systems. Some allocated structures use 64-bit fields. */ ut_ad((sizeof(ut_new_pfx_t) & 7) == 0); total_bytes += sizeof(ut_new_pfx_t); #endif /* UNIV_PFS_MEMORY */ for (size_t retries = 1; ; retries++) { if (set_to_zero) { ptr = calloc(1, total_bytes); } else { ptr = malloc(total_bytes); } if (ptr != NULL || retries >= alloc_max_retries) { break; } os_thread_sleep(1000000 /* 1 second */); } if (ptr == NULL) { ib::fatal_or_error(oom_fatal) << "Cannot allocate " << total_bytes << " bytes of memory after " << alloc_max_retries << " retries over " << alloc_max_retries << " seconds. OS error: " << strerror(errno) << " (" << errno << "). " << OUT_OF_MEMORY_MSG; if (throw_on_error) { throw(std::bad_alloc()); } else { return(NULL); } } #ifdef UNIV_PFS_MEMORY ut_new_pfx_t* pfx = static_cast(ptr); allocate_trace(total_bytes, autoevent_idx, pfx); return(reinterpret_cast(pfx + 1)); #else return(reinterpret_cast(ptr)); #endif /* UNIV_PFS_MEMORY */ } /** Free a memory allocated by allocate() and trace the deallocation. @param[in,out] ptr pointer to memory to free */ void deallocate(pointer ptr, size_type n_elements = 0) { #ifdef UNIV_PFS_MEMORY if (ptr == NULL) { return; } ut_new_pfx_t* pfx = reinterpret_cast(ptr) - 1; deallocate_trace(pfx); free(pfx); #else free(ptr); #endif /* UNIV_PFS_MEMORY */ } /** Create an object of type 'T' using the value 'val' over the memory pointed by 'p'. */ void construct( pointer p, const T& val) { new(p) T(val); } /** Destroy an object pointed by 'p'. */ void destroy( pointer p) { p->~T(); } /** Return the address of an object. */ pointer address( reference x) const { return(&x); } /** Return the address of a const object. */ const_pointer address( const_reference x) const { return(&x); } template struct rebind { typedef ut_allocator other; }; /* The following are custom methods, not required by the standard. */ #ifdef UNIV_PFS_MEMORY /** realloc(3)-like method. The passed in ptr must have been returned by allocate() and the pointer returned by this method must be passed to deallocate() when no longer needed. @param[in,out] ptr old pointer to reallocate @param[in] n_elements new number of elements to allocate @param[in] file file name of the caller @return newly allocated memory */ pointer reallocate( void* ptr, size_type n_elements, uint32_t autoevent_idx) { if (n_elements == 0) { deallocate(static_cast(ptr)); return(NULL); } if (ptr == NULL) { return(allocate(n_elements, NULL, autoevent_idx, false, false)); } if (n_elements > max_size()) { return(NULL); } ut_new_pfx_t* pfx_old; ut_new_pfx_t* pfx_new; size_t total_bytes; pfx_old = reinterpret_cast(ptr) - 1; total_bytes = n_elements * sizeof(T) + sizeof(ut_new_pfx_t); for (size_t retries = 1; ; retries++) { pfx_new = static_cast( realloc(pfx_old, total_bytes)); if (pfx_new != NULL || retries >= alloc_max_retries) { break; } os_thread_sleep(1000000 /* 1 second */); } if (pfx_new == NULL) { ib::fatal_or_error(oom_fatal) << "Cannot reallocate " << total_bytes << " bytes of memory after " << alloc_max_retries << " retries over " << alloc_max_retries << " seconds. OS error: " << strerror(errno) << " (" << errno << "). " << OUT_OF_MEMORY_MSG; return(NULL); } /* pfx_new still contains the description of the old block that was presumably freed by realloc(). */ deallocate_trace(pfx_new); /* pfx_new is set here to describe the new block. */ allocate_trace(total_bytes, autoevent_idx, pfx_new); return(reinterpret_cast(pfx_new + 1)); } /** Allocate, trace the allocation and construct 'n_elements' objects of type 'T'. If the allocation fails or if some of the constructors throws an exception, then this method will return NULL. It does not throw exceptions. After successfull completion the returned pointer must be passed to delete_array() when no longer needed. @param[in] n_elements number of elements to allocate @param[in] file file name of the caller @return pointer to the first allocated object or NULL */ pointer new_array( size_type n_elements, uint32_t autoevent_idx ) { T* p = allocate(n_elements, NULL, autoevent_idx, false, false); if (p == NULL) { return(NULL); } T* first = p; size_type i; try { for (i = 0; i < n_elements; i++) { new(p) T; ++p; } } catch (...) { for (size_type j = 0; j < i; j++) { --p; p->~T(); } deallocate(first); throw; } return(first); } /** Destroy, deallocate and trace the deallocation of an array created by new_array(). @param[in,out] ptr pointer to the first object in the array */ void delete_array( T* ptr) { if (ptr == NULL) { return; } const size_type n_elements = n_elements_allocated(ptr); T* p = ptr + n_elements - 1; for (size_type i = 0; i < n_elements; i++) { p->~T(); --p; } deallocate(ptr); } #endif /* UNIV_PFS_MEMORY */ /** Allocate a large chunk of memory that can hold 'n_elements' objects of type 'T' and trace the allocation. @param[in] n_elements number of elements @param[in] dontdump if true, advise the OS is not to core dump this memory. @param[out] pfx storage for the description of the allocated memory. The caller must provide space for this one and keep it until the memory is no longer needed and then pass it to deallocate_large(). @return pointer to the allocated memory or NULL */ pointer allocate_large( size_type n_elements, ut_new_pfx_t* pfx, bool dontdump = false) { if (n_elements == 0 || n_elements > max_size()) { return(NULL); } ulint n_bytes = n_elements * sizeof(T); pointer ptr = reinterpret_cast( my_large_malloc(&n_bytes, MYF(0))); if (ptr == NULL) { return NULL; } ut_dontdump(ptr, n_bytes, dontdump); if (pfx != NULL) { #ifdef UNIV_PFS_MEMORY allocate_trace(n_bytes, 0, pfx); #endif /* UNIV_PFS_MEMORY */ pfx->m_size = n_bytes; } os_total_large_mem_allocated += n_bytes; return(ptr); } pointer allocate_large_dontdump( size_type n_elements, ut_new_pfx_t* pfx) { return allocate_large(n_elements, pfx, true); } /** Free a memory allocated by allocate_large() and trace the deallocation. @param[in,out] ptr pointer to memory to free @param[in] pfx descriptor of the memory, as returned by allocate_large(). */ void deallocate_large( pointer ptr, const ut_new_pfx_t* pfx) { size_t size = pfx->m_size; #ifdef UNIV_PFS_MEMORY if (pfx) { deallocate_trace(pfx); } #endif /* UNIV_PFS_MEMORY */ os_total_large_mem_allocated -= size; my_large_free(ptr, size); } void deallocate_large_dodump( pointer ptr, const ut_new_pfx_t* pfx) { ut_dodump(ptr, pfx->m_size); deallocate_large(ptr, pfx); } #ifdef UNIV_PFS_MEMORY /** Get the performance schema key to use for tracing allocations. @param[in] file file name of the caller or NULL if unknown @return performance schema key */ PSI_memory_key get_mem_key( uint32_t autoevent_idx = INVALID_AUTOEVENT_IDX) const { if (m_key != PSI_NOT_INSTRUMENTED) { return(m_key); } if (autoevent_idx == INVALID_AUTOEVENT_IDX) { return(mem_key_std); } const PSI_memory_key key = ut_new_get_key_by_file(autoevent_idx); if (key != PSI_NOT_INSTRUMENTED) { return(key); } return(mem_key_other); } private: /** Retrieve the size of a memory block allocated by new_array(). @param[in] ptr pointer returned by new_array(). @return size of memory block */ size_type n_elements_allocated( const_pointer ptr) { const ut_new_pfx_t* pfx = reinterpret_cast(ptr) - 1; const size_type user_bytes = pfx->m_size - sizeof(ut_new_pfx_t); ut_ad(user_bytes % sizeof(T) == 0); return(user_bytes / sizeof(T)); } /** Trace a memory allocation. After the accounting, the data needed for tracing the deallocation later is written into 'pfx'. The PFS event name is picked on the following criteria: 1. If key (!= PSI_NOT_INSTRUMENTED) has been specified when constructing this ut_allocator object, then the name associated with that key will be used (this is the recommended approach for new code) 2. Otherwise, if "file" is NULL, then the name associated with mem_key_std will be used 3. Otherwise, if an entry is found by ut_new_get_key_by_file(), that corresponds to "file", that will be used (see ut_new_boot()) 4. Otherwise, the name associated with mem_key_other will be used. @param[in] size number of bytes that were allocated @param[in] autoevent_idx autoevent_idx of the caller @param[out] pfx placeholder to store the info which will be needed when freeing the memory */ void allocate_trace( size_t size, const uint32_t autoevent_idx, ut_new_pfx_t* pfx) { const PSI_memory_key key = get_mem_key(autoevent_idx); pfx->m_key = PSI_MEMORY_CALL(memory_alloc)(key, size, & pfx->m_owner); pfx->m_size = size; } /** Trace a memory deallocation. @param[in] pfx info for the deallocation */ void deallocate_trace( const ut_new_pfx_t* pfx) { PSI_MEMORY_CALL(memory_free)(pfx->m_key, pfx->m_size, pfx->m_owner); } /** Performance schema key. */ PSI_memory_key m_key; #endif /* UNIV_PFS_MEMORY */ private: /** Assignment operator, not used, thus disabled (private). */ template void operator=( const ut_allocator&); }; /** Compare two allocators of the same type. As long as the type of A1 and A2 is the same, a memory allocated by A1 could be freed by A2 even if the pfs mem key is different. */ template inline bool operator==(const ut_allocator&, const ut_allocator&) { return(true); } /** Compare two allocators of the same type. */ template inline bool operator!=( const ut_allocator& lhs, const ut_allocator& rhs) { return(!(lhs == rhs)); } #ifdef UNIV_PFS_MEMORY /* constexpr trickery ahead. Compute AUTOEVENT_IDX at compile time. (index in the auto_event_names array, corresponding to basename of __FILE__) The tricks are necessary to reduce the cost of lookup the PSI_memory_key for auto event. */ static constexpr const char* cexpr_basename_helper(const char* s, const char* last_slash) { return *s == '\0' ? last_slash : *s == '/' || *s == '\\' ? cexpr_basename_helper(s + 1, s + 1) : cexpr_basename_helper(s + 1, last_slash); } static constexpr const char* cexpr_basename(const char* filename) { return cexpr_basename_helper(filename, filename); } static constexpr bool cexpr_strequal_ignore_dot(const char* a, const char* b) { return *a == 0 || *a == '.' ? (*b == 0 || *b == '.') : *a == *b ? cexpr_strequal_ignore_dot(a + 1, b + 1) : false; } constexpr const char* const auto_event_names[] = { "btr0btr", "btr0buf", "btr0bulk", "btr0cur", "btr0pcur", "btr0sea", "buf0buf", "buf0dblwr", "buf0dump", "dict0dict", "dict0mem", "dict0stats", "eval0eval", "fil0crypt", "fil0fil", "fsp0file", "fts0ast", "fts0blex", "fts0config", "fts0file", "fts0fts", "fts0opt", "fts0pars", "fts0que", "fts0sql", "fts0tlex", "gis0sea", "ha_innodb", "handler0alter", "hash0hash", "i_s", "lexyy", "lock0lock", "mem0mem", "os0event", "os0file", "pars0lex", "rem0rec", "row0ftsort", "row0import", "row0log", "row0merge", "row0mysql", "row0sel", "srv0start", "sync0arr", "sync0debug", "sync0rw", "sync0start", "sync0types", "trx0i_s", "trx0i_s", "trx0roll", "trx0rseg", "trx0seg", "trx0trx", "trx0undo", "ut0list", "ut0mem", "ut0new", "ut0pool", "ut0rbt", "ut0wqueue", "xtrabackup", nullptr }; constexpr uint32_t cexpr_lookup_auto_event_name(const char* name, uint32_t idx = 0) { return !auto_event_names[idx] ? INVALID_AUTOEVENT_IDX : cexpr_strequal_ignore_dot(name, auto_event_names[idx]) ? idx : cexpr_lookup_auto_event_name(name, idx + 1); } /* The AUTOEVENT_IDX macro. Note, that there is a static_assert that checks whether basename of the __FILE is not registered in the auto_event_names array. If you run into this assert, add the basename to the array. Weird looking lambda is used to force the evaluation at the compile time. */ #define AUTOEVENT_IDX []()\ {\ constexpr auto idx = cexpr_lookup_auto_event_name(cexpr_basename(__FILE__)); \ static_assert(idx != INVALID_AUTOEVENT_IDX, "auto_event_names contains no entry for " __FILE__);\ return idx; \ }() /** Allocate, trace the allocation and construct an object. Use this macro instead of 'new' within InnoDB. For example: instead of Foo* f = new Foo(args); use: Foo* f = UT_NEW(Foo(args), mem_key_some); Upon failure to allocate the memory, this macro may return NULL. It will not throw exceptions. After successfull allocation the returned pointer must be passed to UT_DELETE() when no longer needed. @param[in] expr any expression that could follow "new" @param[in] key performance schema memory tracing key @return pointer to the created object or NULL */ #define UT_NEW(expr, key) \ /* Placement new will return NULL and not attempt to construct an object if the passed in pointer is NULL, e.g. if allocate() has failed to allocate memory and has returned NULL. */ \ ::new(ut_allocator(key).allocate( \ sizeof expr, NULL, AUTOEVENT_IDX, false, false)) expr /** Allocate, trace the allocation and construct an object. Use this macro instead of 'new' within InnoDB and instead of UT_NEW() when creating a dedicated memory key is not feasible. For example: instead of Foo* f = new Foo(args); use: Foo* f = UT_NEW_NOKEY(Foo(args)); Upon failure to allocate the memory, this macro may return NULL. It will not throw exceptions. After successfull allocation the returned pointer must be passed to UT_DELETE() when no longer needed. @param[in] expr any expression that could follow "new" @return pointer to the created object or NULL */ #define UT_NEW_NOKEY(expr) UT_NEW(expr, PSI_NOT_INSTRUMENTED) /** Destroy, deallocate and trace the deallocation of an object created by UT_NEW() or UT_NEW_NOKEY(). We can't instantiate ut_allocator without having the type of the object, thus we redirect this to a templated function. */ #define UT_DELETE(ptr) ut_delete(ptr) /** Destroy and account object created by UT_NEW() or UT_NEW_NOKEY(). @param[in,out] ptr pointer to the object */ template inline void ut_delete( T* ptr) { if (ptr == NULL) { return; } ut_allocator allocator; allocator.destroy(ptr); allocator.deallocate(ptr); } /** Allocate and account 'n_elements' objects of type 'type'. Use this macro to allocate memory within InnoDB instead of 'new[]'. The returned pointer must be passed to UT_DELETE_ARRAY(). @param[in] type type of objects being created @param[in] n_elements number of objects to create @param[in] key performance schema memory tracing key @return pointer to the first allocated object or NULL */ #define UT_NEW_ARRAY(type, n_elements, key) \ ut_allocator(key).new_array(n_elements, AUTOEVENT_IDX) /** Allocate and account 'n_elements' objects of type 'type'. Use this macro to allocate memory within InnoDB instead of 'new[]' and instead of UT_NEW_ARRAY() when it is not feasible to create a dedicated key. @param[in] type type of objects being created @param[in] n_elements number of objects to create @return pointer to the first allocated object or NULL */ #define UT_NEW_ARRAY_NOKEY(type, n_elements) \ UT_NEW_ARRAY(type, n_elements, PSI_NOT_INSTRUMENTED) /** Destroy, deallocate and trace the deallocation of an array created by UT_NEW_ARRAY() or UT_NEW_ARRAY_NOKEY(). We can't instantiate ut_allocator without having the type of the object, thus we redirect this to a templated function. */ #define UT_DELETE_ARRAY(ptr) ut_delete_array(ptr) /** Destroy and account objects created by UT_NEW_ARRAY() or UT_NEW_ARRAY_NOKEY(). @param[in,out] ptr pointer to the first object in the array */ template inline void ut_delete_array( T* ptr) { ut_allocator().delete_array(ptr); } #define ut_malloc(n_bytes, key) static_cast( \ ut_allocator(key).allocate( \ n_bytes, NULL, AUTOEVENT_IDX, false, false)) #define ut_malloc_dontdump(n_bytes, key) static_cast( \ ut_allocator(key).allocate_large( \ n_bytes, NULL, true)) #define ut_zalloc(n_bytes, key) static_cast( \ ut_allocator(key).allocate( \ n_bytes, NULL, AUTOEVENT_IDX, true, false)) #define ut_malloc_nokey(n_bytes) static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED).allocate( \ n_bytes, NULL, AUTOEVENT_IDX, false, false)) #define ut_zalloc_nokey(n_bytes) static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED).allocate( \ n_bytes, NULL, AUTOEVENT_IDX, true, false)) #define ut_zalloc_nokey_nofatal(n_bytes) static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED).allocate( \ n_bytes, NULL, AUTOEVENT_IDX, true, false)) #define ut_realloc(ptr, n_bytes) static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED).reallocate( \ ptr, n_bytes, AUTOEVENT_IDX)) #define ut_free(ptr) ut_allocator(PSI_NOT_INSTRUMENTED).deallocate( \ reinterpret_cast(ptr)) #else /* UNIV_PFS_MEMORY */ /* Fallbacks when memory tracing is disabled at compile time. */ #define UT_NEW(expr, key) ::new(std::nothrow) expr #define UT_NEW_NOKEY(expr) ::new(std::nothrow) expr #define UT_DELETE(ptr) ::delete ptr #define UT_NEW_ARRAY(type, n_elements, key) \ ::new(std::nothrow) type[n_elements] #define UT_NEW_ARRAY_NOKEY(type, n_elements) \ ::new(std::nothrow) type[n_elements] #define UT_DELETE_ARRAY(ptr) ::delete[] ptr #define ut_malloc(n_bytes, key) ::malloc(n_bytes) #define ut_zalloc(n_bytes, key) ::calloc(1, n_bytes) #define ut_malloc_nokey(n_bytes) ::malloc(n_bytes) static inline void *ut_malloc_dontdump(size_t n_bytes, ...) { void *ptr = my_large_malloc(&n_bytes, MYF(0)); ut_dontdump(ptr, n_bytes, true); if (ptr) { os_total_large_mem_allocated += n_bytes; } return ptr; } #define ut_zalloc_nokey(n_bytes) ::calloc(1, n_bytes) #define ut_zalloc_nokey_nofatal(n_bytes) ::calloc(1, n_bytes) #define ut_realloc(ptr, n_bytes) ::realloc(ptr, n_bytes) #define ut_free(ptr) ::free(ptr) #endif /* UNIV_PFS_MEMORY */ static inline void ut_free_dodump(void *ptr, size_t size) { ut_dodump(ptr, size); os_total_large_mem_allocated -= size; my_large_free(ptr, size); } #endif /* ut0new_h */