/***************************************************************************** Copyright (c) 1995, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2013, 2020, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file sync/sync0arr.cc The wait array used in synchronization primitives Created 9/5/1995 Heikki Tuuri *******************************************************/ #include "sync0arr.h" #include #include #include #include #include #include #include #include "srv0srv.h" #include "srv0start.h" #include "i_s.h" #include #include #include "lock0lock.h" #include "sync0rw.h" /* WAIT ARRAY ========== The wait array consists of cells each of which has an an event object created for it. The threads waiting for a mutex, for example, can reserve a cell in the array and suspend themselves to wait for the event to become signaled. When using the wait array, remember to make sure that some thread holding the synchronization object will eventually know that there is a waiter in the array and signal the object, to prevent infinite wait. Why we chose to implement a wait array? First, to make mutexes fast, we had to code our own implementation of them, which only in usually uncommon cases resorts to using slow operating system primitives. Then we had the choice of assigning a unique OS event for each mutex, which would be simpler, or using a global wait array. In some operating systems, the global wait array solution is more efficient and flexible, because we can do with a very small number of OS events, say 200. In NT 3.51, allocating events seems to be a quadratic algorithm, because 10 000 events are created fast, but 100 000 events takes a couple of minutes to create. As of 5.0.30 the above mentioned design is changed. Since now OS can handle millions of wait events efficiently, we no longer have this concept of each cell of wait array having one event. Instead, now the event that a thread wants to wait on is embedded in the wait object (mutex or rw_lock). We still keep the global wait array for the sake of diagnostics and also to avoid infinite wait The error_monitor thread scans the global wait array to signal any waiting threads who have missed the signal. */ typedef TTASEventMutex WaitMutex; /** The latch types that use the sync array. */ union sync_object_t { /** RW lock instance */ rw_lock_t* lock; /** Mutex instance */ WaitMutex* mutex; }; /** A cell where an individual thread may wait suspended until a resource is released. The suspending is implemented using an operating system event semaphore. */ struct sync_cell_t { sync_object_t latch; /*!< pointer to the object the thread is waiting for; if NULL the cell is free for use */ ulint request_type; /*!< lock type requested on the object */ const char* file; /*!< in debug version file where requested */ ulint line; /*!< in debug version line where requested, or ULINT_UNDEFINED */ os_thread_id_t thread_id; /*!< thread id of this waiting thread */ bool waiting; /*!< TRUE if the thread has already called sync_array_event_wait on this cell */ int64_t signal_count; /*!< We capture the signal_count of the latch when we reset the event. This value is then passed on to os_event_wait and we wait only if the event has not been signalled in the period between the reset and wait call. */ /** time(NULL) when the wait cell was reserved. FIXME: sync_array_print_long_waits_low() may display bogus warnings when the system time is adjusted to the past! */ time_t reservation_time; }; /* NOTE: It is allowed for a thread to wait for an event allocated for the array without owning the protecting mutex (depending on the case: OS or database mutex), but all changes (set or reset) to the state of the event must be made while owning the mutex. */ /** Synchronization array */ struct sync_array_t { /** Constructor Creates a synchronization wait array. It is protected by a mutex which is automatically reserved when the functions operating on it are called. @param[in] num_cells Number of cells to create */ sync_array_t(ulint num_cells) UNIV_NOTHROW; /** Destructor */ ~sync_array_t() UNIV_NOTHROW; ulint n_reserved; /*!< number of currently reserved cells in the wait array */ ulint n_cells; /*!< number of cells in the wait array */ sync_cell_t* array; /*!< pointer to wait array */ SysMutex mutex; /*!< System mutex protecting the data structure. As this data structure is used in constructing the database mutex, to prevent infinite recursion in implementation, we fall back to an OS mutex. */ ulint res_count; /*!< count of cell reservations since creation of the array */ ulint next_free_slot; /*!< the next free cell in the array */ ulint first_free_slot;/*!< the last slot that was freed */ }; /** User configured sync array size */ ulong srv_sync_array_size = 1; /** Locally stored copy of srv_sync_array_size */ ulint sync_array_size; /** The global array of wait cells for implementation of the database's own mutexes and read-write locks */ sync_array_t** sync_wait_array; /** count of how many times an object has been signalled */ ulint sg_count; #define sync_array_exit(a) mutex_exit(&(a)->mutex) #define sync_array_enter(a) mutex_enter(&(a)->mutex) #ifdef UNIV_DEBUG /******************************************************************//** This function is called only in the debug version. Detects a deadlock of one or more threads because of waits of semaphores. @return TRUE if deadlock detected */ static bool sync_array_detect_deadlock( /*=======================*/ sync_array_t* arr, /*!< in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /*!< in: cell where recursive search started */ sync_cell_t* cell, /*!< in: cell to search */ ulint depth); /*!< in: recursion depth */ #endif /* UNIV_DEBUG */ /** Constructor Creates a synchronization wait array. It is protected by a mutex which is automatically reserved when the functions operating on it are called. @param[in] num_cells Number of cells to create */ sync_array_t::sync_array_t(ulint num_cells) UNIV_NOTHROW : n_reserved(), n_cells(num_cells), array(UT_NEW_ARRAY_NOKEY(sync_cell_t, num_cells)), mutex(), res_count(), next_free_slot(), first_free_slot(ULINT_UNDEFINED) { ut_a(num_cells > 0); memset(array, 0x0, sizeof(sync_cell_t) * n_cells); /* Then create the mutex to protect the wait array */ mutex_create(LATCH_ID_SYNC_ARRAY_MUTEX, &mutex); } /** Validate the integrity of the wait array. Check that the number of reserved cells equals the count variable. @param[in,out] arr sync wait array */ static void sync_array_validate(sync_array_t* arr) { ulint i; ulint count = 0; sync_array_enter(arr); for (i = 0; i < arr->n_cells; i++) { sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, i); if (cell->latch.mutex != NULL) { count++; } } ut_a(count == arr->n_reserved); sync_array_exit(arr); } /** Destructor */ sync_array_t::~sync_array_t() UNIV_NOTHROW { ut_a(n_reserved == 0); sync_array_validate(this); /* Release the mutex protecting the wait array */ mutex_free(&mutex); UT_DELETE_ARRAY(array); } /*****************************************************************//** Gets the nth cell in array. @return cell */ UNIV_INTERN sync_cell_t* sync_array_get_nth_cell( /*====================*/ sync_array_t* arr, /*!< in: sync array */ ulint n) /*!< in: index */ { ut_a(n < arr->n_cells); return(arr->array + n); } /******************************************************************//** Frees the resources in a wait array. */ static void sync_array_free( /*============*/ sync_array_t* arr) /*!< in, own: sync wait array */ { UT_DELETE(arr); } /*******************************************************************//** Returns the event that the thread owning the cell waits for. */ static os_event_t sync_cell_get_event( /*================*/ sync_cell_t* cell) /*!< in: non-empty sync array cell */ { switch(cell->request_type) { case SYNC_MUTEX: return(cell->latch.mutex->event()); case RW_LOCK_X_WAIT: return(cell->latch.lock->wait_ex_event); default: return(cell->latch.lock->event); } } /******************************************************************//** Reserves a wait array cell for waiting for an object. The event of the cell is reset to nonsignalled state. @return sync cell to wait on */ sync_cell_t* sync_array_reserve_cell( /*====================*/ sync_array_t* arr, /*!< in: wait array */ void* object, /*!< in: pointer to the object to wait for */ ulint type, /*!< in: lock request type */ const char* file, /*!< in: file where requested */ unsigned line) /*!< in: line where requested */ { sync_cell_t* cell; sync_array_enter(arr); if (arr->first_free_slot != ULINT_UNDEFINED) { /* Try and find a slot in the free list */ ut_ad(arr->first_free_slot < arr->next_free_slot); cell = sync_array_get_nth_cell(arr, arr->first_free_slot); arr->first_free_slot = cell->line; } else if (arr->next_free_slot < arr->n_cells) { /* Try and find a slot after the currently allocated slots */ cell = sync_array_get_nth_cell(arr, arr->next_free_slot); ++arr->next_free_slot; } else { sync_array_exit(arr); // We should return NULL and if there is more than // one sync array, try another sync array instance. return(NULL); } ++arr->res_count; ut_ad(arr->n_reserved < arr->n_cells); ut_ad(arr->next_free_slot <= arr->n_cells); ++arr->n_reserved; /* Reserve the cell. */ ut_ad(cell->latch.mutex == NULL); cell->request_type = type; if (cell->request_type == SYNC_MUTEX) { cell->latch.mutex = reinterpret_cast(object); } else { cell->latch.lock = reinterpret_cast(object); } cell->waiting = false; cell->file = file; cell->line = line; sync_array_exit(arr); cell->thread_id = os_thread_get_curr_id(); cell->reservation_time = time(NULL); /* Make sure the event is reset and also store the value of signal_count at which the event was reset. */ os_event_t event = sync_cell_get_event(cell); cell->signal_count = os_event_reset(event); return(cell); } /******************************************************************//** Frees the cell. NOTE! sync_array_wait_event frees the cell automatically! */ void sync_array_free_cell( /*=================*/ sync_array_t* arr, /*!< in: wait array */ sync_cell_t*& cell) /*!< in/out: the cell in the array */ { sync_array_enter(arr); ut_a(cell->latch.mutex != NULL); cell->waiting = false; cell->signal_count = 0; cell->latch.mutex = NULL; /* Setup the list of free slots in the array */ cell->line = arr->first_free_slot; arr->first_free_slot = cell - arr->array; ut_a(arr->n_reserved > 0); arr->n_reserved--; if (arr->next_free_slot > arr->n_cells / 2 && arr->n_reserved == 0) { #ifdef UNIV_DEBUG for (ulint i = 0; i < arr->next_free_slot; ++i) { cell = sync_array_get_nth_cell(arr, i); ut_ad(!cell->waiting); ut_ad(cell->latch.mutex == 0); ut_ad(cell->signal_count == 0); } #endif /* UNIV_DEBUG */ arr->next_free_slot = 0; arr->first_free_slot = ULINT_UNDEFINED; } sync_array_exit(arr); cell = 0; } /******************************************************************//** This function should be called when a thread starts to wait on a wait array cell. In the debug version this function checks if the wait for a semaphore will result in a deadlock, in which case prints info and asserts. */ void sync_array_wait_event( /*==================*/ sync_array_t* arr, /*!< in: wait array */ sync_cell_t*& cell) /*!< in: index of the reserved cell */ { sync_array_enter(arr); ut_ad(!cell->waiting); ut_ad(cell->latch.mutex); ut_ad(os_thread_get_curr_id() == cell->thread_id); cell->waiting = true; #ifdef UNIV_DEBUG /* We use simple enter to the mutex below, because if we cannot acquire it at once, mutex_enter would call recursively sync_array routines, leading to trouble. rw_lock_debug_mutex freezes the debug lists. */ rw_lock_debug_mutex_enter(); if (sync_array_detect_deadlock(arr, cell, cell, 0)) { ib::fatal() << "########################################" " Deadlock Detected!"; } rw_lock_debug_mutex_exit(); #endif /* UNIV_DEBUG */ sync_array_exit(arr); tpool::tpool_wait_begin(); os_event_wait_low(sync_cell_get_event(cell), cell->signal_count); tpool::tpool_wait_end(); sync_array_free_cell(arr, cell); cell = 0; } /******************************************************************//** Reports info of a wait array cell. */ static void sync_array_cell_print( /*==================*/ FILE* file, /*!< in: file where to print */ sync_cell_t* cell) /*!< in: sync cell */ { rw_lock_t* rwlock; ulint type; ulint writer; type = cell->request_type; fprintf(file, "--Thread " ULINTPF " has waited at %s line " ULINTPF " for %.2f seconds the semaphore:\n", ulint(cell->thread_id), innobase_basename(cell->file), cell->line, difftime(time(NULL), cell->reservation_time)); switch (type) { default: ut_error; case RW_LOCK_X: case RW_LOCK_X_WAIT: case RW_LOCK_SX: case RW_LOCK_S: fputs(type == RW_LOCK_X ? "X-lock on" : type == RW_LOCK_X_WAIT ? "X-lock (wait_ex) on" : type == RW_LOCK_SX ? "SX-lock on" : "S-lock on", file); rwlock = cell->latch.lock; if (rwlock) { fprintf(file, " RW-latch at %p created in file %s line %u\n", (void*) rwlock, innobase_basename(rwlock->cfile_name), rwlock->cline); writer = rw_lock_get_writer(rwlock); if (writer != RW_LOCK_NOT_LOCKED) { fprintf(file, "a writer (thread id " ULINTPF ") has" " reserved it in mode %s", ulint(rwlock->writer_thread), writer == RW_LOCK_X ? " exclusive\n" : writer == RW_LOCK_SX ? " SX\n" : " wait exclusive\n"); } fprintf(file, "number of readers " ULINTPF ", waiters flag %d, " "lock_word: %x\n" "Last time write locked in file %s line %u" #if 0 /* JAN: TODO: FIX LATER */ "\nHolder thread " ULINTPF " file %s line " ULINTPF #endif "\n", rw_lock_get_reader_count(rwlock), uint32_t{rwlock->waiters}, int32_t{rwlock->lock_word}, innobase_basename(rwlock->last_x_file_name), rwlock->last_x_line #if 0 /* JAN: TODO: FIX LATER */ , ulint(rwlock->thread_id), innobase_basename(rwlock->file_name), rwlock->line #endif ); } break; case SYNC_MUTEX: WaitMutex* mutex = cell->latch.mutex; const WaitMutex::MutexPolicy& policy = mutex->policy(); #ifdef UNIV_DEBUG const char* name = policy.context.get_enter_filename(); if (name == NULL) { /* The mutex might have been released. */ name = "NULL"; } #endif /* UNIV_DEBUG */ if (mutex) { fprintf(file, "Mutex at %p, %s, lock var %x\n" #ifdef UNIV_DEBUG "Last time reserved in file %s line %u" #endif /* UNIV_DEBUG */ "\n", (void*) mutex, policy.to_string().c_str(), mutex->state() #ifdef UNIV_DEBUG ,name, policy.context.get_enter_line() #endif /* UNIV_DEBUG */ ); } break; } if (!cell->waiting) { fputs("wait has ended\n", file); } } #ifdef UNIV_DEBUG /******************************************************************//** Looks for a cell with the given thread id. @return pointer to cell or NULL if not found */ static sync_cell_t* sync_array_find_thread( /*===================*/ sync_array_t* arr, /*!< in: wait array */ os_thread_id_t thread) /*!< in: thread id */ { ulint i; for (i = 0; i < arr->n_cells; i++) { sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, i); if (cell->latch.mutex != NULL && os_thread_eq(cell->thread_id, thread)) { return(cell); /* Found */ } } return(NULL); /* Not found */ } /******************************************************************//** Recursion step for deadlock detection. @return TRUE if deadlock detected */ static ibool sync_array_deadlock_step( /*=====================*/ sync_array_t* arr, /*!< in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /*!< in: cell where recursive search started */ os_thread_id_t thread, /*!< in: thread to look at */ ulint pass, /*!< in: pass value */ ulint depth) /*!< in: recursion depth */ { sync_cell_t* new_cell; if (pass != 0) { /* If pass != 0, then we do not know which threads are responsible of releasing the lock, and no deadlock can be detected. */ return(FALSE); } new_cell = sync_array_find_thread(arr, thread); if (new_cell == start) { /* Deadlock */ fputs("########################################\n" "DEADLOCK of threads detected!\n", stderr); return(TRUE); } else if (new_cell) { return(sync_array_detect_deadlock( arr, start, new_cell, depth + 1)); } return(FALSE); } /** Report an error to stderr. @param lock rw-lock instance @param debug rw-lock debug information @param cell thread context */ static void sync_array_report_error( rw_lock_t* lock, rw_lock_debug_t* debug, sync_cell_t* cell) { fprintf(stderr, "rw-lock %p ", (void*) lock); sync_array_cell_print(stderr, cell); rw_lock_debug_print(stderr, debug); } /******************************************************************//** This function is called only in the debug version. Detects a deadlock of one or more threads because of waits of semaphores. @return TRUE if deadlock detected */ static bool sync_array_detect_deadlock( /*=======================*/ sync_array_t* arr, /*!< in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /*!< in: cell where recursive search started */ sync_cell_t* cell, /*!< in: cell to search */ ulint depth) /*!< in: recursion depth */ { rw_lock_t* lock; os_thread_id_t thread; ibool ret; rw_lock_debug_t*debug; ut_a(arr); ut_a(start); ut_a(cell); ut_ad(cell->latch.mutex != 0); ut_ad(os_thread_get_curr_id() == start->thread_id); ut_ad(depth < 100); depth++; if (!cell->waiting) { /* No deadlock here */ return(false); } switch (cell->request_type) { case SYNC_MUTEX: { WaitMutex* mutex = cell->latch.mutex; const WaitMutex::MutexPolicy& policy = mutex->policy(); if (mutex->state() != MUTEX_STATE_UNLOCKED) { thread = policy.context.get_thread_id(); /* Note that mutex->thread_id above may be also OS_THREAD_ID_UNDEFINED, because the thread which held the mutex maybe has not yet updated the value, or it has already released the mutex: in this case no deadlock can occur, as the wait array cannot contain a thread with ID_UNDEFINED value. */ ret = sync_array_deadlock_step( arr, start, thread, 0, depth); if (ret) { const char* name; name = policy.context.get_enter_filename(); if (name == NULL) { /* The mutex might have been released. */ name = "NULL"; } ib::info() << "Mutex " << mutex << " owned by" " thread " << thread << " file " << name << " line " << policy.context.get_enter_line(); sync_array_cell_print(stderr, cell); return(true); } } /* No deadlock */ return(false); } case RW_LOCK_X: case RW_LOCK_X_WAIT: lock = cell->latch.lock; for (debug = UT_LIST_GET_FIRST(lock->debug_list); debug != NULL; debug = UT_LIST_GET_NEXT(list, debug)) { thread = debug->thread_id; switch (debug->lock_type) { case RW_LOCK_X: case RW_LOCK_SX: case RW_LOCK_X_WAIT: if (os_thread_eq(thread, cell->thread_id)) { break; } /* fall through */ case RW_LOCK_S: /* The (wait) x-lock request can block infinitely only if someone (can be also cell thread) is holding s-lock, or someone (cannot be cell thread) (wait) x-lock or sx-lock, and he is blocked by start thread */ ret = sync_array_deadlock_step( arr, start, thread, debug->pass, depth); if (ret) { sync_array_report_error( lock, debug, cell); rw_lock_debug_print(stderr, debug); return(TRUE); } } } return(false); case RW_LOCK_SX: lock = cell->latch.lock; for (debug = UT_LIST_GET_FIRST(lock->debug_list); debug != 0; debug = UT_LIST_GET_NEXT(list, debug)) { thread = debug->thread_id; switch (debug->lock_type) { case RW_LOCK_X: case RW_LOCK_SX: case RW_LOCK_X_WAIT: if (os_thread_eq(thread, cell->thread_id)) { break; } /* The sx-lock request can block infinitely only if someone (can be also cell thread) is holding (wait) x-lock or sx-lock, and he is blocked by start thread */ ret = sync_array_deadlock_step( arr, start, thread, debug->pass, depth); if (ret) { sync_array_report_error( lock, debug, cell); return(TRUE); } } } return(false); case RW_LOCK_S: lock = cell->latch.lock; for (debug = UT_LIST_GET_FIRST(lock->debug_list); debug != 0; debug = UT_LIST_GET_NEXT(list, debug)) { thread = debug->thread_id; if (debug->lock_type == RW_LOCK_X || debug->lock_type == RW_LOCK_X_WAIT) { /* The s-lock request can block infinitely only if someone (can also be cell thread) is holding (wait) x-lock, and he is blocked by start thread */ ret = sync_array_deadlock_step( arr, start, thread, debug->pass, depth); if (ret) { sync_array_report_error( lock, debug, cell); return(TRUE); } } } return(false); default: ut_error; } return(true); } #endif /* UNIV_DEBUG */ /**********************************************************************//** Prints warnings of long semaphore waits to stderr. @return TRUE if fatal semaphore wait threshold was exceeded */ static bool sync_array_print_long_waits_low( /*============================*/ sync_array_t* arr, /*!< in: sync array instance */ os_thread_id_t* waiter, /*!< out: longest waiting thread */ const void** sema, /*!< out: longest-waited-for semaphore */ ibool* noticed)/*!< out: TRUE if long wait noticed */ { double fatal_timeout = static_cast( srv_fatal_semaphore_wait_threshold); ibool fatal = FALSE; double longest_diff = 0; ulint i; /* For huge tables, skip the check during CHECK TABLE etc... */ if (btr_validate_index_running) { return(false); } #if defined HAVE_valgrind && !__has_feature(memory_sanitizer) /* Increase the timeouts if running under valgrind because it executes extremely slowly. HAVE_valgrind does not necessary mean that we are running under valgrind but we have no better way to tell. See Bug#58432 innodb.innodb_bug56143 fails under valgrind for an example */ # define SYNC_ARRAY_TIMEOUT 2400 fatal_timeout *= 10; #else # define SYNC_ARRAY_TIMEOUT 240 #endif const time_t now = time(NULL); for (ulint i = 0; i < arr->n_cells; i++) { sync_cell_t* cell; void* latch; cell = sync_array_get_nth_cell(arr, i); latch = cell->latch.mutex; if (latch == NULL || !cell->waiting) { continue; } double diff = difftime(now, cell->reservation_time); if (diff > SYNC_ARRAY_TIMEOUT) { ib::warn() << "A long semaphore wait:"; sync_array_cell_print(stderr, cell); *noticed = TRUE; } if (diff > fatal_timeout) { fatal = TRUE; } if (diff > longest_diff) { longest_diff = diff; *sema = latch; *waiter = cell->thread_id; } } /* We found a long semaphore wait, print all threads that are waiting for a semaphore. */ if (*noticed) { for (i = 0; i < arr->n_cells; i++) { void* wait_object; sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, i); wait_object = cell->latch.mutex; if (wait_object == NULL || !cell->waiting) { continue; } ib::info() << "A semaphore wait:"; sync_array_cell_print(stderr, cell); } } #undef SYNC_ARRAY_TIMEOUT return(fatal); } /**********************************************************************//** Prints warnings of long semaphore waits to stderr. @return TRUE if fatal semaphore wait threshold was exceeded */ ibool sync_array_print_long_waits( /*========================*/ os_thread_id_t* waiter, /*!< out: longest waiting thread */ const void** sema) /*!< out: longest-waited-for semaphore */ { ulint i; ibool fatal = FALSE; ibool noticed = FALSE; for (i = 0; i < sync_array_size; ++i) { sync_array_t* arr = sync_wait_array[i]; sync_array_enter(arr); if (sync_array_print_long_waits_low( arr, waiter, sema, ¬iced)) { fatal = TRUE; } sync_array_exit(arr); } if (noticed) { /* If some crucial semaphore is reserved, then also the InnoDB Monitor can hang, and we do not get diagnostics. Since in many cases an InnoDB hang is caused by a pwrite() or a pread() call hanging inside the operating system, let us print right now the values of pending calls of these. */ fprintf(stderr, "InnoDB: Pending reads " UINT64PF ", writes " UINT64PF "\n", MONITOR_VALUE(MONITOR_OS_PENDING_READS), MONITOR_VALUE(MONITOR_OS_PENDING_WRITES)); lock_wait_timeout_task(nullptr); } return(fatal); } /**********************************************************************//** Prints info of the wait array. */ static void sync_array_print_info_low( /*======================*/ FILE* file, /*!< in: file where to print */ sync_array_t* arr) /*!< in: wait array */ { ulint i; ulint count = 0; fprintf(file, "OS WAIT ARRAY INFO: reservation count " ULINTPF "\n", arr->res_count); for (i = 0; count < arr->n_reserved; ++i) { sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, i); if (cell->latch.mutex != 0) { count++; sync_array_cell_print(file, cell); } } } /**********************************************************************//** Prints info of the wait array. */ static void sync_array_print_info( /*==================*/ FILE* file, /*!< in: file where to print */ sync_array_t* arr) /*!< in: wait array */ { sync_array_enter(arr); sync_array_print_info_low(file, arr); sync_array_exit(arr); } /** Create the primary system wait arrays */ void sync_array_init() { ut_a(sync_wait_array == NULL); ut_a(srv_sync_array_size > 0); ut_a(srv_max_n_threads > 0); sync_array_size = srv_sync_array_size; sync_wait_array = UT_NEW_ARRAY_NOKEY(sync_array_t*, sync_array_size); ulint n_slots = 1 + (srv_max_n_threads - 1) / sync_array_size; for (ulint i = 0; i < sync_array_size; ++i) { sync_wait_array[i] = UT_NEW_NOKEY(sync_array_t(n_slots)); } } /** Destroy the sync array wait sub-system. */ void sync_array_close() { for (ulint i = 0; i < sync_array_size; ++i) { sync_array_free(sync_wait_array[i]); } UT_DELETE_ARRAY(sync_wait_array); sync_wait_array = NULL; } /**********************************************************************//** Print info about the sync array(s). */ void sync_array_print( /*=============*/ FILE* file) /*!< in/out: Print to this stream */ { for (ulint i = 0; i < sync_array_size; ++i) { sync_array_print_info(file, sync_wait_array[i]); } fprintf(file, "OS WAIT ARRAY INFO: signal count " ULINTPF "\n", sg_count); } /**********************************************************************//** Prints info of the wait array without using any mutexes/semaphores. */ UNIV_INTERN void sync_array_print_innodb(void) /*=========================*/ { ulint i; sync_array_t* arr = sync_array_get(); fputs("InnoDB: Semaphore wait debug output started for InnoDB:\n", stderr); for (i = 0; i < arr->n_cells; i++) { void* wait_object; sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, i); wait_object = cell->latch.mutex; if (wait_object == NULL || !cell->waiting) { continue; } fputs("InnoDB: Warning: semaphore wait:\n", stderr); sync_array_cell_print(stderr, cell); } fputs("InnoDB: Semaphore wait debug output ended:\n", stderr); } /**********************************************************************//** Get number of items on sync array. */ UNIV_INTERN ulint sync_arr_get_n_items(void) /*======================*/ { sync_array_t* sync_arr = sync_array_get(); return (ulint) sync_arr->n_cells; } /******************************************************************//** Get specified item from sync array if it is reserved. Set given pointer to array item if it is reserved. @return true if item is reserved, false othervise */ UNIV_INTERN ibool sync_arr_get_item( /*==============*/ ulint i, /*!< in: requested item */ sync_cell_t **cell) /*!< out: cell contents if item reserved */ { sync_array_t* sync_arr; sync_cell_t* wait_cell; void* wait_object; ibool found = FALSE; sync_arr = sync_array_get(); wait_cell = sync_array_get_nth_cell(sync_arr, i); if (wait_cell) { wait_object = wait_cell->latch.mutex; if(wait_object != NULL && wait_cell->waiting) { found = TRUE; *cell = wait_cell; } } return found; } /*******************************************************************//** Function to populate INFORMATION_SCHEMA.INNODB_SYS_SEMAPHORE_WAITS table. Loop through each item on sync array, and extract the column information and fill the INFORMATION_SCHEMA.INNODB_SYS_SEMAPHORE_WAITS table. @return 0 on success */ UNIV_INTERN int sync_arr_fill_sys_semphore_waits_table( /*===================================*/ THD* thd, /*!< in: thread */ TABLE_LIST* tables, /*!< in/out: tables to fill */ Item* ) /*!< in: condition (not used) */ { Field** fields; ulint n_items; DBUG_ENTER("i_s_sys_semaphore_waits_fill_table"); RETURN_IF_INNODB_NOT_STARTED(tables->schema_table_name.str); /* deny access to user without PROCESS_ACL privilege */ if (check_global_access(thd, PROCESS_ACL)) { DBUG_RETURN(0); } fields = tables->table->field; n_items = sync_arr_get_n_items(); ulint type; for(ulint i=0; i < n_items;i++) { sync_cell_t *cell=NULL; if (sync_arr_get_item(i, &cell)) { WaitMutex* mutex; type = cell->request_type; /* JAN: FIXME OK(fields[SYS_SEMAPHORE_WAITS_THREAD_ID]->store(, ulint(cell->thread), true)); */ OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_FILE], innobase_basename(cell->file))); OK(fields[SYS_SEMAPHORE_WAITS_LINE]->store(cell->line, true)); fields[SYS_SEMAPHORE_WAITS_LINE]->set_notnull(); OK(fields[SYS_SEMAPHORE_WAITS_WAIT_TIME]->store( difftime(time(NULL), cell->reservation_time))); if (type == SYNC_MUTEX) { mutex = static_cast(cell->latch.mutex); if (mutex) { // JAN: FIXME // OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_OBJECT_NAME], mutex->cmutex_name)); OK(fields[SYS_SEMAPHORE_WAITS_WAIT_OBJECT]->store((longlong)mutex, true)); OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "MUTEX")); //OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_THREAD_ID]->store(mutex->thread_id, true)); //OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_HOLDER_FILE], innobase_basename(mutex->file_name))); //OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->store(mutex->line, true)); //fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->set_notnull(); //OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_CREATED_FILE], innobase_basename(mutex->cfile_name))); //OK(fields[SYS_SEMAPHORE_WAITS_CREATED_LINE]->store(mutex->cline, true)); //fields[SYS_SEMAPHORE_WAITS_CREATED_LINE]->set_notnull(); //OK(fields[SYS_SEMAPHORE_WAITS_WAITERS_FLAG]->store(mutex->waiters, true)); //OK(fields[SYS_SEMAPHORE_WAITS_LOCK_WORD]->store(mutex->lock_word, true)); //OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_FILE], innobase_basename(mutex->file_name))); //OK(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->store(mutex->line, true)); //fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->set_notnull(); //OK(fields[SYS_SEMAPHORE_WAITS_OS_WAIT_COUNT]->store(mutex->count_os_wait, true)); } } else if (type == RW_LOCK_X_WAIT || type == RW_LOCK_X || type == RW_LOCK_SX || type == RW_LOCK_S) { rw_lock_t* rwlock=NULL; rwlock = static_cast (cell->latch.lock); if (rwlock) { ulint writer = rw_lock_get_writer(rwlock); OK(fields[SYS_SEMAPHORE_WAITS_WAIT_OBJECT]->store((longlong)rwlock, true)); if (type == RW_LOCK_X) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_X")); } else if (type == RW_LOCK_X_WAIT) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_X_WAIT")); } else if (type == RW_LOCK_S) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_S")); } else if (type == RW_LOCK_SX) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_SX")); } if (writer != RW_LOCK_NOT_LOCKED) { // JAN: FIXME // OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_OBJECT_NAME], rwlock->lock_name)); OK(fields[SYS_SEMAPHORE_WAITS_WRITER_THREAD]->store(ulint(rwlock->writer_thread), true)); if (writer == RW_LOCK_X) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_X")); } else if (writer == RW_LOCK_X_WAIT) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_X_WAIT")); } else if (type == RW_LOCK_SX) { OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_SX")); } //OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_THREAD_ID]->store(rwlock->thread_id, true)); //OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_HOLDER_FILE], innobase_basename(rwlock->file_name))); //OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->store(rwlock->line, true)); //fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->set_notnull(); OK(fields[SYS_SEMAPHORE_WAITS_READERS]->store(rw_lock_get_reader_count(rwlock), true)); OK(fields[SYS_SEMAPHORE_WAITS_WAITERS_FLAG]->store( rwlock->waiters, true)); OK(fields[SYS_SEMAPHORE_WAITS_LOCK_WORD]->store( rwlock->lock_word, true)); OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_FILE], innobase_basename(rwlock->last_x_file_name))); OK(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->store(rwlock->last_x_line, true)); fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->set_notnull(); OK(fields[SYS_SEMAPHORE_WAITS_OS_WAIT_COUNT]->store(rwlock->count_os_wait, true)); } } } OK(schema_table_store_record(thd, tables->table)); } } DBUG_RETURN(0); }