summaryrefslogtreecommitdiffstats
path: root/storage/tokudb/PerconaFT/ft/ule.cc
blob: f43094b60703edbddc549ef2624bb3a03de52e40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

// Purpose of this file is to handle all modifications and queries to the database
// at the level of leafentry.  
// 
// ule = Unpacked Leaf Entry
//
// This design unpacks the leafentry into a convenient format, performs all work
// on the unpacked form, then repacks the leafentry into its compact format.
//
// See design documentation for nested transactions at
// TokuWiki/Imp/TransactionsOverview.

#include <my_global.h>
#include "portability/toku_portability.h"

#include "ft/ft-internal.h"
#include "ft/leafentry.h"
#include "ft/logger/logger.h"
#include "ft/msg.h"
#include "ft/txn/txn.h"
#include "ft/txn/txn_manager.h"
#include "ft/ule.h"
#include "ft/ule-internal.h"
#include "ft/txn/xids.h"
#include "util/bytestring.h"
#include "util/omt.h"
#include "util/partitioned_counter.h"
#include "util/scoped_malloc.h"
#include "util/status.h"

#define ULE_DEBUG 0

static uint32_t ule_get_innermost_numbytes(ULE ule, uint32_t keylen);

void toku_le_get_status(LE_STATUS statp) {
    le_status.init();
    *statp = le_status;
}

////////////////////////////////////////////////////////////////////////////////
// Accessor functions used by outside world (e.g. indexer)
//

ULEHANDLE toku_ule_create(LEAFENTRY le) {
    ULE XMALLOC(ule_p);
    le_unpack(ule_p, le);
    return (ULEHANDLE) ule_p;
}

void toku_ule_free(ULEHANDLE ule_p) {
    ule_cleanup((ULE) ule_p);
    toku_free(ule_p);
}

////////////////////////////////////////////////////////////////////////////////
//
// Question: Can any software outside this file modify or read a leafentry?  
// If so, is it worthwhile to put it all here?
//
// There are two entries, one each for modification and query:
//   toku_le_apply_msg()        performs all inserts/deletes/aborts
//
//
//
//

//This is what we use to initialize Xuxrs[0] in a new unpacked leafentry.
const UXR_S committed_delete = {
    .type   = XR_DELETE,
    .vallen = 0,
    .valp   = NULL,
    .xid    = 0
};  // static allocation of uxr with type set to committed delete and xid = 0

#define INSERT_LENGTH(len) ((1U << 31) | len)
#define DELETE_LENGTH(len) (0)
#define GET_LENGTH(len) (len & ((1U << 31)-1))
#define IS_INSERT(len)  (len & (1U << 31))
#define IS_VALID_LEN(len) (len < (1U<<31))

// Local functions:

static inline void msg_init_empty_ule(ULE ule);
static int64_t msg_modify_ule(ULE ule, const ft_msg &msg);
static inline void ule_init_empty_ule(ULE ule);
static void ule_do_implicit_promotions(ULE ule, XIDS xids);
static void ule_try_promote_provisional_outermost(
    ULE ule,
    TXNID oldest_possible_live_xid);
static void ule_promote_provisional_innermost_to_index(ULE ule, uint32_t index);
static void ule_promote_provisional_innermost_to_committed(ULE ule);
static inline int64_t ule_apply_insert_no_overwrite(
    ULE ule,
    XIDS xids,
    uint32_t vallen,
    void* valp);
static inline int64_t ule_apply_insert(
    ULE ule,
    XIDS xids,
    uint32_t vallen,
    void* valp);
static inline int64_t ule_apply_delete(ULE ule, XIDS xids);
static inline void ule_prepare_for_new_uxr(ULE ule, XIDS xids);
static inline int64_t ule_apply_abort(ULE ule, XIDS xids);
static void ule_apply_broadcast_commit_all (ULE ule);
static void ule_apply_commit(ULE ule, XIDS xids);
static inline void ule_push_insert_uxr(
    ULE ule,
    bool is_committed,
    TXNID xid,
    uint32_t vallen,
    void* valp);
static inline void ule_push_delete_uxr(ULE ule, bool is_committed, TXNID xid);
static inline void ule_push_placeholder_uxr(ULE ule, TXNID xid);
static inline UXR ule_get_innermost_uxr(ULE ule);
static inline UXR ule_get_first_empty_uxr(ULE ule);
static inline void ule_remove_innermost_uxr(ULE ule);
static inline TXNID ule_get_innermost_xid(ULE ule);
static inline TXNID ule_get_xid(ULE ule, uint32_t index);
static void ule_remove_innermost_placeholders(ULE ule);
static void ule_add_placeholders(ULE ule, XIDS xids);
static void ule_optimize(ULE ule, XIDS xids);
static inline bool uxr_type_is_insert(uint8_t type);
static inline bool uxr_type_is_delete(uint8_t type);
static inline bool uxr_type_is_placeholder(uint8_t type);
static inline size_t uxr_pack_txnid(UXR uxr, uint8_t *p);
static inline size_t uxr_pack_type_and_length(UXR uxr, uint8_t *p);
static inline size_t uxr_pack_length_and_bit(UXR uxr, uint8_t *p);
static inline size_t uxr_pack_data(UXR uxr, uint8_t *p);
static inline size_t uxr_unpack_txnid(UXR uxr, uint8_t *p);
static inline size_t uxr_unpack_type_and_length(UXR uxr, uint8_t *p);
static inline size_t uxr_unpack_length_and_bit(UXR uxr, uint8_t *p);
static inline size_t uxr_unpack_data(UXR uxr, uint8_t *p);

#if 0
static void ule_print(ULE ule, const char* note) {
    fprintf(stderr, "%s : ULE[0x%p]\n", note, ule);
    fprintf(stderr, "    num_puxrs[%u]\n", ule->num_puxrs);
    fprintf(stderr, "    num_cuxrs[%u]\n", ule->num_cuxrs);
    fprintf(stderr, "    innermost[%u]\n", ule->num_cuxrs + ule->num_puxrs - 1);
    fprintf(stderr, "    first_empty[%u]\n", ule->num_cuxrs + ule->num_puxrs);

    uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs - 1;
    for (uint32_t uxr_num = 0; uxr_num <= num_uxrs; uxr_num++) {
        UXR uxr = &(ule->uxrs[uxr_num]);
        fprintf(stderr, "    uxr[%u]\n", uxr_num);
        switch (uxr->type) {
            case 0: fprintf(stderr, "        type[NONE]\n"); break;
            case 1: fprintf(stderr, "        type[INSERT]\n"); break;
            case 2: fprintf(stderr, "        type[DELETE]\n"); break;
            case 3: fprintf(stderr, "        type[PLACEHOLDER]\n"); break;
            default: fprintf(stderr, "        type[WHAT??]\n"); break;
        }
        fprintf(stderr, "        xid[%lu]\n", uxr->xid);
    }
}
#endif

static void get_space_for_le(
    bn_data* data_buffer,
    uint32_t idx,
    void* keyp,
    uint32_t keylen,
    uint32_t old_keylen,
    uint32_t old_le_size,
    size_t size,
    LEAFENTRY* new_le_space,
    void** const maybe_free) {

    if (data_buffer == nullptr) {
        CAST_FROM_VOIDP(*new_le_space, toku_xmalloc(size));
    } else if (old_le_size > 0) {
        // this means we are overwriting something
        data_buffer->get_space_for_overwrite(
            idx,
            keyp,
            keylen,
            old_keylen,
            old_le_size,
            size,
            new_le_space,
            maybe_free);
    } else {
        // this means we are inserting something new
        data_buffer->get_space_for_insert(
            idx,
            keyp,
            keylen,
            size,
            new_le_space,
            maybe_free);
    }
}


/////////////////////////////////////////////////////////////////////
// Garbage collection related functions
//

static TXNID get_next_older_txnid(TXNID xc, const xid_omt_t &omt) {
    int r;
    TXNID xid;
    r = omt.find<TXNID, toku_find_xid_by_xid>(xc, -1, &xid, nullptr);
    if (r==0) {
        invariant(xid < xc); //sanity check
    } else {
        invariant(r==DB_NOTFOUND);
        xid = TXNID_NONE;
    }
    return xid;
}

//
// This function returns true if live transaction TL1 is allowed to read a
// value committed by transaction xc, false otherwise.
//
static bool xid_reads_committed_xid(
    TXNID tl1,
    TXNID xc,
    const xid_omt_t& snapshot_txnids,
    const rx_omt_t& referenced_xids) {

    bool rval;
    if (tl1 < xc) {
        rval = false; //cannot read a newer txn
    } else {
        TXNID x =
            toku_get_youngest_live_list_txnid_for(
                xc,
                snapshot_txnids,
                referenced_xids);

        if (x == TXNID_NONE) {
            //Not in ANY live list, tl1 can read it.
            rval = true;
        } else {
            //Newer than the 'newest one that has it in live list'
            rval = tl1 > x;
        }
        // we know tl1 > xc
        // we know x > xc
        // if tl1 == x, then we do not read, because tl1 is in xc's live list
        // if x is older than tl1, that means that xc < x < tl1
        // and if xc is in x's live list, it CANNOT be in tl1's live list
    }
    return rval;
}

//
// This function does some simple garbage collection given a TXNID known
// to be the oldest referenced xid, that is, the oldest xid in any live list.
// We find the youngest entry in the stack with an xid less 
// than oldest_referenced_xid. All elements below this entry are garbage,
// so we get rid of them.
//
static void ule_simple_garbage_collection(ULE ule, txn_gc_info *gc_info) {
    if (ule->num_cuxrs == 1) {
        return;
    }

    uint32_t curr_index = 0;
    if (gc_info->mvcc_needed) {
        // starting at the top of the committed stack, find the first
        // uxr with a txnid that is less than oldest_referenced_xid
        for (uint32_t i = 0; i < ule->num_cuxrs; i++) {
            curr_index = ule->num_cuxrs - i - 1;
            if (ule->uxrs[curr_index].xid <
                gc_info->oldest_referenced_xid_for_simple_gc) {
                break;
            }
        }
    } else {
        // if mvcc is not needed, we can need the top committed
        // value and nothing else
        curr_index = ule->num_cuxrs - 1;
    }

    // curr_index is now set to the youngest uxr older than
    // oldest_referenced_xid so if it's not the bottom of the stack..
    if (curr_index != 0) {
        // ..then we need to get rid of the entries below curr_index
        uint32_t num_entries = ule->num_cuxrs + ule->num_puxrs - curr_index;
        memmove(
            &ule->uxrs[0],
            &ule->uxrs[curr_index],
            num_entries * sizeof(ule->uxrs[0]));
        ule->uxrs[0].xid = TXNID_NONE; // New 'bottom of stack' loses its TXNID
        ule->num_cuxrs -= curr_index;
    }
}

// TODO: Clean this up
extern bool garbage_collection_debug;

static void ule_garbage_collect(
    ULE ule,
    const xid_omt_t& snapshot_xids,
    const rx_omt_t& referenced_xids,
    const xid_omt_t& live_root_txns) {

    if (ule->num_cuxrs == 1) {
        return;
    }

    toku::scoped_calloc necessary_buf(ule->num_cuxrs * sizeof(bool));
    bool *necessary = reinterpret_cast<bool *>(necessary_buf.get());

    uint32_t curr_committed_entry;
    curr_committed_entry = ule->num_cuxrs - 1;
    while (true) {
        // mark the curr_committed_entry as necessary
        necessary[curr_committed_entry] = true;
        if (curr_committed_entry == 0) break; //nothing left

        // find the youngest live transaction that reads something 
        // below curr_committed_entry, if it exists
        TXNID tl1;
        TXNID xc = ule->uxrs[curr_committed_entry].xid;

        //
        // If we find that the committed transaction is in the live list,
        // then xc is really in the process of being committed. It has not
        // been fully committed. As a result, our assumption that transactions
        // newer than what is currently in these OMTs will read the top of the
        // stack is not necessarily accurate. Transactions may read what is
        // just below xc.
        // As a result, we must mark what is just below xc as necessary and
        // move on. This issue was found while testing flusher threads, and was
        // fixed for #3979
        //
        bool is_xc_live = toku_is_txn_in_live_root_txn_list(live_root_txns, xc);
        if (is_xc_live) {
            curr_committed_entry--;
            continue;            
        }

        tl1 =
            toku_get_youngest_live_list_txnid_for(
                xc,
                snapshot_xids,
                referenced_xids);

        // if tl1 == xc, that means xc should be live and show up in
        // live_root_txns, which we check above.
        invariant(tl1 != xc);

        if (tl1 == TXNID_NONE) {
            // set tl1 to youngest live transaction older than
            // ule->uxrs[curr_committed_entry]->xid
            tl1 = get_next_older_txnid(xc, snapshot_xids);
            if (tl1 == TXNID_NONE) {
                // remainder is garbage, we're done
                break;
            }
        }
        if (garbage_collection_debug) {
            int r =
                snapshot_xids.find_zero<TXNID, toku_find_xid_by_xid>(
                    tl1,
                    nullptr,
                    nullptr);
            // make sure that the txn you are claiming is live is actually live
            invariant_zero(r);
        }
        //
        // tl1 should now be set
        //
        curr_committed_entry--;
        while (curr_committed_entry > 0) {
            xc = ule->uxrs[curr_committed_entry].xid;
            if (xid_reads_committed_xid(
                    tl1,
                    xc,
                    snapshot_xids,
                   referenced_xids)) {
                break;
            }
            curr_committed_entry--;
        }
    } 
    uint32_t first_free = 0;
    for (uint32_t i = 0; i < ule->num_cuxrs; i++) {
        // Shift values to 'delete' garbage values.
        if (necessary[i]) {
            ule->uxrs[first_free] = ule->uxrs[i];
            first_free++;
        }
    }
    uint32_t saved = first_free;
    invariant(saved <= ule->num_cuxrs);
    invariant(saved >= 1);
    ule->uxrs[0].xid = TXNID_NONE; //New 'bottom of stack' loses its TXNID
    if (first_free != ule->num_cuxrs) {
        // Shift provisional values
        memmove(
            &ule->uxrs[first_free],
            &ule->uxrs[ule->num_cuxrs],
            ule->num_puxrs * sizeof(ule->uxrs[0]));
    }
    ule->num_cuxrs = saved;
}

static size_t ule_packed_memsize(ULE ule) {
// Returns: The size 'ule' would be when packed into a leafentry, or 0 if the
//          topmost committed value is a delete.
    if (ule->num_cuxrs == 1 && ule->num_puxrs == 0) {
        UXR uxr = ule_get_innermost_uxr(ule);
        if (uxr_is_delete(uxr)) {
            return 0;
        }
    }
    return le_memsize_from_ule(ule);
}

// Heuristics to control when we decide to initialize
// txn manager state (possibly expensive) and run gc.
enum {
    ULE_MIN_STACK_SIZE_TO_FORCE_GC = 5,
    ULE_MIN_MEMSIZE_TO_FORCE_GC = 1024 * 1024
};

////////////////////////////////////////////////////////////////////////////////
// This is the big enchilada.  (Bring Tums.)  Note that this level of
// abstraction has no knowledge of the inner structure of either leafentry or
// msg.  It makes calls into the next lower layer (msg_xxx) which handles
// messages.
//
// NOTE: This is the only function (at least in this body of code) that modifies
//       a leafentry.
// NOTE: It is the responsibility of the caller to make sure that the key is set
//       in the FT_MSG, as it will be used to store the data in the data_buffer
//
// Returns -1, 0, or 1 that identifies the change in logical row count needed
//   based on the results of the message application. For example, if a delete
//   finds no logical leafentry or if an insert finds a duplicate and is
//   converted to an update.
//
// old_leafentry - NULL if there was no stored data.
// data_buffer - bn_data storing leafentry, if NULL, means there is no bn_data
// idx - index in data_buffer where leafentry is stored
//       (and should be replaced)
// old_keylen - length of the any key in data_buffer
// new_leafentry_p - If the leafentry is destroyed it sets *new_leafentry_p
//                   to NULL. Otherwise the new_leafentry_p points at the new
//                   leaf entry.
// numbytes_delta_p - change in total size of key and val, not including any
//                    overhead
int64_t toku_le_apply_msg(
    const ft_msg& msg,
    LEAFENTRY old_leafentry,
    bn_data* data_buffer,
    uint32_t idx,
    uint32_t old_keylen,
    txn_gc_info* gc_info,
    LEAFENTRY* new_leafentry_p,
    int64_t* numbytes_delta_p) {

    invariant_notnull(gc_info);
    paranoid_invariant_notnull(new_leafentry_p);
    ULE_S ule;
    int64_t oldnumbytes = 0;
    int64_t newnumbytes = 0;
    uint64_t oldmemsize = 0;
    uint32_t keylen = msg.kdbt()->size;
    int32_t rowcountdelta = 0;

    if (old_leafentry == NULL) {
        msg_init_empty_ule(&ule);
    } else {
        oldmemsize = leafentry_memsize(old_leafentry);
        le_unpack(&ule, old_leafentry); // otherwise unpack leafentry
        oldnumbytes = ule_get_innermost_numbytes(&ule, keylen);
    }

    // modify unpacked leafentry
    rowcountdelta = msg_modify_ule(&ule, msg);

    // - we may be able to immediately promote the newly-apllied outermost
    // provisonal uxr
    // - either way, run simple gc first, and then full gc if there are still
    // some committed uxrs.
    ule_try_promote_provisional_outermost(
        &ule,
        gc_info->oldest_referenced_xid_for_implicit_promotion);
    ule_simple_garbage_collection(&ule, gc_info);
    txn_manager_state *txn_state_for_gc = gc_info->txn_state_for_gc;
    size_t size_before_gc = 0;
    // there is garbage to clean, and our caller gave us state..
    // ..and either the state is pre-initialized, or the committed stack is
    //   large enough
    // ..or the ule's raw memsize is sufficiently large
    // ..then it's worth running gc, possibly initializing the txn manager
    //   state, if it isn't already
    if (ule.num_cuxrs > 1 && txn_state_for_gc != nullptr &&
        (txn_state_for_gc->initialized ||
         ule.num_cuxrs >= ULE_MIN_STACK_SIZE_TO_FORCE_GC ||
         (size_before_gc = ule_packed_memsize(&ule)) >=
         ULE_MIN_MEMSIZE_TO_FORCE_GC)) {
        if (!txn_state_for_gc->initialized) {
            txn_state_for_gc->init();
        }
        // it's already been calculated above
        size_before_gc =
            size_before_gc != 0 ? size_before_gc : ule_packed_memsize(&ule);
        ule_garbage_collect(
            &ule,
            txn_state_for_gc->snapshot_xids,
            txn_state_for_gc->referenced_xids,
            txn_state_for_gc->live_root_txns);
        size_t size_after_gc = ule_packed_memsize(&ule);

        LE_STATUS_INC(LE_APPLY_GC_BYTES_IN, size_before_gc);
        LE_STATUS_INC(LE_APPLY_GC_BYTES_OUT, size_after_gc);
    }

    void* maybe_free = nullptr;
    // create packed leafentry
    // contract of this function is caller has keyp and keylen set, always
    int r =
        le_pack(
            &ule,
            data_buffer,
            idx,
            msg.kdbt()->data,
            keylen,
            old_keylen,
            oldmemsize,
            new_leafentry_p,
            &maybe_free);
    invariant_zero(r);
    if (*new_leafentry_p) {
        newnumbytes = ule_get_innermost_numbytes(&ule, keylen);
    }
    *numbytes_delta_p = newnumbytes - oldnumbytes;

    ule_cleanup(&ule);
    if (maybe_free != nullptr) {
        toku_free(maybe_free);
    }
    return rowcountdelta;
}

bool toku_le_worth_running_garbage_collection(
    LEAFENTRY le,
    txn_gc_info* gc_info) {
// Effect: Quickly determines if it's worth trying to run garbage collection
//         on a leafentry
// Return: True if it makes sense to try garbage collection, false otherwise.
// Rationale: Garbage collection is likely to clean up under two circumstances:
//            1.) There are multiple committed entries. Some may never be read
//                by new txns.
//            2.) There is only one committed entry, but the outermost
//                provisional entry is older than the oldest known referenced
//                xid, so it must have committed. Therefor we can promote it to
//                committed and get rid of the old committed entry.
    if (le->type != LE_MVCC) {
        return false;
    }
    if (le->u.mvcc.num_cxrs > 1) {
        return true;
    } else {
        paranoid_invariant(le->u.mvcc.num_cxrs == 1);
    }
    return le->u.mvcc.num_pxrs > 0 &&
           le_outermost_uncommitted_xid(le) <
           gc_info->oldest_referenced_xid_for_implicit_promotion;
}

// Garbage collect one leaf entry, using the given OMT's.
// Parameters:
// -- old_leaf_entry : the leaf we intend to clean up through garbage
// collecting.
// -- new_leaf_entry (OUTPUT) : a pointer to the leaf entry after
// garbage collection.
// -- new_leaf_entry_memory_size : after this call, our leaf entry
// should be empty or smaller.  This number represents that and is
// used in a previous call to truncate the existing size.
// -- omt : the memory where our leaf entry resides.
// -- mp : our memory pool.
// -- maybe_free (OUTPUT) : in a previous call, we may be able to free
// the memory completely, if we removed the leaf entry.
// -- snapshot_xids : we use these in memory transaction ids to
// determine what to garbage collect.
// -- referenced_xids : list of in memory active transactions.
// NOTE: it is not a good idea to garbage collect a leaf
// entry with only one committed value.
void toku_le_garbage_collect(
    LEAFENTRY old_leaf_entry,
    bn_data* data_buffer,
    uint32_t idx,
    void* keyp,
    uint32_t keylen,
    txn_gc_info* gc_info,
    LEAFENTRY* new_leaf_entry,
    int64_t* numbytes_delta_p) {

    // We shouldn't want to run gc without having provided a snapshot of the
    // txn system.
    invariant_notnull(gc_info);
    invariant_notnull(gc_info->txn_state_for_gc);
    paranoid_invariant_notnull(new_leaf_entry);
    ULE_S ule;
    int64_t oldnumbytes = 0;
    int64_t newnumbytes = 0;

    le_unpack(&ule, old_leaf_entry);

    oldnumbytes = ule_get_innermost_numbytes(&ule, keylen);
    uint32_t old_mem_size = leafentry_memsize(old_leaf_entry);

    // Before running garbage collection, try to promote the outermost
    // provisional entries to committed if its xid is older than the oldest
    // possible live xid.
    //
    // The oldest known refeferenced xid is a lower bound on the oldest possible
    // live xid, so we use that. It's usually close enough to get rid of most
    // garbage in leafentries.
    ule_try_promote_provisional_outermost(
        &ule,
        gc_info->oldest_referenced_xid_for_implicit_promotion);
    // No need to run simple gc here if we're going straight for full gc.
    if (ule.num_cuxrs > 1) {
        size_t size_before_gc = ule_packed_memsize(&ule);
        ule_garbage_collect(
            &ule,
            gc_info->txn_state_for_gc->snapshot_xids,
            gc_info->txn_state_for_gc->referenced_xids,
            gc_info->txn_state_for_gc->live_root_txns);
        size_t size_after_gc = ule_packed_memsize(&ule);

        LE_STATUS_INC(LE_APPLY_GC_BYTES_IN, size_before_gc);
        LE_STATUS_INC(LE_APPLY_GC_BYTES_OUT, size_after_gc);
    }

    void *maybe_free = nullptr;
    // old_keylen, same because the key isn't going to change for gc
    int r =
        le_pack(
            &ule,
            data_buffer,
            idx,
            keyp,
            keylen,
            keylen,
            old_mem_size,
            new_leaf_entry,
            &maybe_free);
    invariant_zero(r);
    if (*new_leaf_entry) {
        newnumbytes = ule_get_innermost_numbytes(&ule, keylen);
    }
    *numbytes_delta_p = newnumbytes - oldnumbytes;

    ule_cleanup(&ule);
    if (maybe_free != nullptr) {
        toku_free(maybe_free);
    }
}

////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (msg_xxx)
// knows the accessors of msg, but not of leafentry or unpacked leaf entry.
// It makes calls into the lower layer (le_xxx) which handles leafentries.

// Purpose is to init the ule with given key and no transaction records
// 
static inline void msg_init_empty_ule(ULE ule) {
    ule_init_empty_ule(ule);
}

// Purpose is to modify the unpacked leafentry in our private workspace.
//
// Returns -1, 0, or 1 that identifies the change in logical row count needed
//   based on the results of the message application. For example, if a delete
//   finds no logical leafentry or if an insert finds a duplicate and is
//   converted to an update.
static int64_t msg_modify_ule(ULE ule, const ft_msg &msg) {
    int64_t retval = 0;
    XIDS xids = msg.xids();
    invariant(toku_xids_get_num_xids(xids) < MAX_TRANSACTION_RECORDS);
    enum ft_msg_type type = msg.type();
    if (FT_LIKELY(type != FT_OPTIMIZE && type != FT_OPTIMIZE_FOR_UPGRADE)) {
        ule_do_implicit_promotions(ule, xids);
    }
    switch (type) {
    case FT_INSERT_NO_OVERWRITE:
        retval =
            ule_apply_insert_no_overwrite(
                ule,
                xids,
                msg.vdbt()->size,
                msg.vdbt()->data);
        break;
    case FT_INSERT:
        retval =
            ule_apply_insert(
                ule,
                xids,
                msg.vdbt()->size,
                msg.vdbt()->data);
        break;
    case FT_DELETE_ANY:
        retval = ule_apply_delete(ule, xids);
        break;
    case FT_ABORT_ANY:
    case FT_ABORT_BROADCAST_TXN:
        retval = ule_apply_abort(ule, xids);
        break;
    case FT_COMMIT_BROADCAST_ALL:
        ule_apply_broadcast_commit_all(ule);
        break;
    case FT_COMMIT_ANY:
    case FT_COMMIT_BROADCAST_TXN:
        ule_apply_commit(ule, xids);
        break;
    case FT_OPTIMIZE:
    case FT_OPTIMIZE_FOR_UPGRADE:
        ule_optimize(ule, xids);
        break;
    case FT_UPDATE:
    case FT_UPDATE_BROADCAST_ALL:
        // These messages don't get this far.  Instead they get translated (in
        // setval_fun in do_update) into FT_INSERT messages.
        assert(false);
        break;
    default:
        // illegal ft msg type
        assert(false);
        break;
    }
    return retval;
}

void test_msg_modify_ule(ULE ule, const ft_msg &msg) {
    msg_modify_ule(ule,msg);
}

static void ule_optimize(ULE ule, XIDS xids) {
    if (ule->num_puxrs) {
        // outermost uncommitted
        TXNID uncommitted = ule->uxrs[ule->num_cuxrs].xid;
        TXNID oldest_living_xid = TXNID_NONE;
        uint32_t num_xids = toku_xids_get_num_xids(xids);
        if (num_xids > 0) {
            invariant(num_xids==1);
            oldest_living_xid = toku_xids_get_xid(xids, 0);
        }
        if (oldest_living_xid == TXNID_NONE ||
            uncommitted < oldest_living_xid) {
            ule_promote_provisional_innermost_to_committed(ule);
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (le_xxx) understands the structure of the leafentry
// and of the unpacked leafentry.  It is the only layer that understands the
// structure of leafentry.  It has no knowledge of any other data structures.
//

//
// required for every le_unpack that is done
//
void ule_cleanup(ULE ule) {
    invariant(ule->uxrs);
    if (ule->uxrs != ule->uxrs_static) {
        toku_free(ule->uxrs);
        ule->uxrs = NULL;
    }
}

// populate an unpacked leafentry using pointers into the given leafentry.
// thus, the memory referenced by 'le' must live as long as the ULE.
void le_unpack(ULE ule, LEAFENTRY le) {
    uint8_t  type = le->type;
    uint8_t *p;
    uint32_t i;
    switch (type) {
        case LE_CLEAN: {
            ule->uxrs = ule->uxrs_static; //Static version is always enough.
            ule->num_cuxrs = 1;
            ule->num_puxrs = 0;
            UXR uxr     = ule->uxrs;
            uxr->type   = XR_INSERT;
            uxr->vallen = toku_dtoh32(le->u.clean.vallen);
            uxr->valp   = le->u.clean.val;
            uxr->xid    = TXNID_NONE;
            //Set p to immediately after leafentry
            p = le->u.clean.val + uxr->vallen;
            break;
        }
        case LE_MVCC:
            ule->num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            invariant(ule->num_cuxrs);
            ule->num_puxrs = le->u.mvcc.num_pxrs;
            //Dynamic memory
            if (ule->num_cuxrs < MAX_TRANSACTION_RECORDS) {
                ule->uxrs = ule->uxrs_static;
            } else {
                XMALLOC_N(
                    ule->num_cuxrs + 1 + MAX_TRANSACTION_RECORDS,
                    ule->uxrs);
            }
            p = le->u.mvcc.xrs;

            //unpack interesting TXNIDs inner to outer.
            if (ule->num_puxrs!=0) {
                UXR outermost = ule->uxrs + ule->num_cuxrs;
                p += uxr_unpack_txnid(outermost, p);
            }
            //unpack other TXNIDS (not for ule->uxrs[0])
            ule->uxrs[0].xid = TXNID_NONE; //0 for super-root is implicit
            for (i = 0; i < ule->num_cuxrs - 1; i++) {
                p += uxr_unpack_txnid(ule->uxrs + ule->num_cuxrs - 1 - i, p);
            }

            //unpack interesting lengths inner to outer.
            if (ule->num_puxrs!=0) {
                UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
                p += uxr_unpack_length_and_bit(innermost, p);
            }
            for (i = 0; i < ule->num_cuxrs; i++) {
                p +=
                    uxr_unpack_length_and_bit(
                        ule->uxrs + ule->num_cuxrs - 1 - i,
                        p);
            }

            //unpack interesting values inner to outer
            if (ule->num_puxrs!=0) {
                UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
                p += uxr_unpack_data(innermost, p);
            }
            for (i = 0; i < ule->num_cuxrs; i++) {
                p += uxr_unpack_data(ule->uxrs + ule->num_cuxrs - 1 - i, p);
            }

            //unpack provisional xrs outer to inner
            if (ule->num_puxrs > 1) {
                {
                    //unpack length, bit, data for outermost uncommitted
                    UXR outermost = ule->uxrs + ule->num_cuxrs;
                    p += uxr_unpack_type_and_length(outermost, p);
                    p += uxr_unpack_data(outermost, p);
                }
                //unpack txnid, length, bit, data for non-outermost, non-innermost
                for (i = ule->num_cuxrs + 1; i < ule->num_cuxrs + ule->num_puxrs - 1; i++) {
                    UXR uxr = ule->uxrs + i;
                    p += uxr_unpack_txnid(uxr, p);
                    p += uxr_unpack_type_and_length(uxr, p);
                    p += uxr_unpack_data(uxr, p);
                }
                {
                    //Just unpack txnid for innermost
                    UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
                    p += uxr_unpack_txnid(innermost, p);
                }
            }
            break;
        default:
            invariant(false);
    }
    
#if ULE_DEBUG
    size_t memsize = le_memsize_from_ule(ule);
    assert(p == ((uint8_t*)le) + memsize);
#endif
}

static inline size_t uxr_pack_txnid(UXR uxr, uint8_t *p) {
    *(TXNID*)p = toku_htod64(uxr->xid);
    return sizeof(TXNID);
}

static inline size_t uxr_pack_type_and_length(UXR uxr, uint8_t *p) {
    size_t rval = 1;
    *p = uxr->type;
    if (uxr_is_insert(uxr)) {
        *(uint32_t*)(p+1) = toku_htod32(uxr->vallen);
        rval += sizeof(uint32_t);
    }
    return rval;
}

static inline size_t uxr_pack_length_and_bit(UXR uxr, uint8_t *p) {
    uint32_t length_and_bit;
    if (uxr_is_insert(uxr)) {
        length_and_bit = INSERT_LENGTH(uxr->vallen);
    } else {
        length_and_bit = DELETE_LENGTH(uxr->vallen);
    }
    *(uint32_t*)p = toku_htod32(length_and_bit);
    return sizeof(uint32_t);
}

static inline size_t uxr_pack_data(UXR uxr, uint8_t *p) {
    if (uxr_is_insert(uxr)) {
        memcpy(p, uxr->valp, uxr->vallen);
        return uxr->vallen;
    }
    return 0;
}

static inline size_t uxr_unpack_txnid(UXR uxr, uint8_t *p) {
    uxr->xid = toku_dtoh64(*(TXNID*)p);
    return sizeof(TXNID);
}

static inline size_t uxr_unpack_type_and_length(UXR uxr, uint8_t *p) {
    size_t rval = 1;
    uxr->type = *p;
    if (uxr_is_insert(uxr)) {
        uxr->vallen = toku_dtoh32(*(uint32_t*)(p+1));
        rval += sizeof(uint32_t);
    }
    return rval;
}

static inline size_t uxr_unpack_length_and_bit(UXR uxr, uint8_t *p) {
    uint32_t length_and_bit = toku_dtoh32(*(uint32_t*)p);
    if (IS_INSERT(length_and_bit)) {
        uxr->type = XR_INSERT;
        uxr->vallen = GET_LENGTH(length_and_bit);
    } else {
        uxr->type   = XR_DELETE;
        uxr->vallen = 0;
    }
    return sizeof(uint32_t);
}

static inline size_t uxr_unpack_data(UXR uxr, uint8_t *p) {
    if (uxr_is_insert(uxr)) {
        uxr->valp = p;
        return uxr->vallen;
    }
    return 0;
}

// executed too often to be worth making threadsafe
static inline void update_le_status(ULE ule, size_t memsize) {
    if (ule->num_cuxrs > LE_STATUS_VAL(LE_MAX_COMMITTED_XR))
        LE_STATUS_VAL(LE_MAX_COMMITTED_XR) = ule->num_cuxrs;
    if (ule->num_puxrs > LE_STATUS_VAL(LE_MAX_PROVISIONAL_XR))
        LE_STATUS_VAL(LE_MAX_PROVISIONAL_XR) = ule->num_puxrs;
    if (ule->num_cuxrs > MAX_TRANSACTION_RECORDS)
        LE_STATUS_VAL(LE_EXPANDED)++;
    if (memsize > LE_STATUS_VAL(LE_MAX_MEMSIZE))
        LE_STATUS_VAL(LE_MAX_MEMSIZE) = memsize;
}

// Purpose is to return a newly allocated leaf entry in packed format, or
// return null if leaf entry should be destroyed (if no transaction records
// are for inserts).
// Transaction records in packed le are stored inner to outer (first xr is
// innermost), with some information extracted out of the transaction records
// into the header.
// Transaction records in ule are stored outer to inner (uxr[0] is outermost).
// Takes 'ule' and creates 'new_leafentry_p
int le_pack(
    ULE ule,
    bn_data* data_buffer,
    uint32_t idx,
    void* keyp,
    uint32_t keylen,
    uint32_t old_keylen,
    uint32_t old_le_size,
    LEAFENTRY* const new_leafentry_p,
    void** const maybe_free) {

    invariant(ule->num_cuxrs > 0);
    invariant(ule->uxrs[0].xid == TXNID_NONE);
    int rval;
    size_t memsize = 0;
    {
        // The unpacked leafentry may contain no inserts anywhere on its stack.
        // If so, then there IS no leafentry to pack, we should return NULL
        // So, first we check the stack to see if there is any insert. If not,
        // Then we can return NULL and exit the function, otherwise, we goto
        // found_insert, and proceed with packing the leafentry
        uint32_t i;
        for (i = 0; i < ule->num_cuxrs + ule->num_puxrs; i++) {
            if (uxr_is_insert(&ule->uxrs[i])) {
                goto found_insert;
            }
        }
        if (data_buffer && old_le_size > 0) {
            // must pass old_keylen and old_le_size, since that's what is
            // actually stored in data_buffer
            data_buffer->delete_leafentry(idx, old_keylen, old_le_size);
        }
        *new_leafentry_p = NULL;
        rval = 0;
        goto cleanup;
    }
found_insert:
    memsize = le_memsize_from_ule(ule);
    LEAFENTRY new_leafentry;
    get_space_for_le(
        data_buffer,
        idx,
        keyp,
        keylen,
        old_keylen,
        old_le_size,
        memsize,
        &new_leafentry,
        maybe_free);

    //p always points to first unused byte after leafentry we are packing
    uint8_t *p;
    invariant(ule->num_cuxrs>0);
    //Type specific data
    if (ule->num_cuxrs == 1 && ule->num_puxrs == 0) {
        //Pack a 'clean leafentry' (no uncommitted transactions, only one
        //committed value)
        new_leafentry->type = LE_CLEAN;

        uint32_t vallen = ule->uxrs[0].vallen;
        //Store vallen
        new_leafentry->u.clean.vallen  = toku_htod32(vallen);

        //Store actual val
        memcpy(new_leafentry->u.clean.val, ule->uxrs[0].valp, vallen);

        //Set p to after leafentry
        p = new_leafentry->u.clean.val + vallen;
    } else {
        uint32_t i;
        //Pack an 'mvcc leafentry'
        new_leafentry->type = LE_MVCC;

        new_leafentry->u.mvcc.num_cxrs = toku_htod32(ule->num_cuxrs);
        // invariant makes cast that follows ok, although not sure if 
        // check should be "< MAX_TRANSACTION_RECORDS" or
        // "< MAX_TRANSACTION_RECORDS - 1"
        invariant(ule->num_puxrs < MAX_TRANSACTION_RECORDS);
        new_leafentry->u.mvcc.num_pxrs = (uint8_t)ule->num_puxrs;

        p = new_leafentry->u.mvcc.xrs;

        //pack interesting TXNIDs inner to outer.
        if (ule->num_puxrs!=0) {
            UXR outermost = ule->uxrs + ule->num_cuxrs;
            p += uxr_pack_txnid(outermost, p);
        }
        //pack other TXNIDS (not for ule->uxrs[0])
        for (i = 0; i < ule->num_cuxrs - 1; i++) {
            p += uxr_pack_txnid(ule->uxrs + ule->num_cuxrs - 1 - i, p);
        }

        //pack interesting lengths inner to outer.
        if (ule->num_puxrs!=0) {
            UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
            p += uxr_pack_length_and_bit(innermost, p);
        }
        for (i = 0; i < ule->num_cuxrs; i++) {
            p += uxr_pack_length_and_bit(ule->uxrs + ule->num_cuxrs - 1 - i, p);
        }

        //pack interesting values inner to outer
        if (ule->num_puxrs!=0) {
            UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
            p += uxr_pack_data(innermost, p);
        }
        for (i = 0; i < ule->num_cuxrs; i++) {
            p += uxr_pack_data(ule->uxrs + ule->num_cuxrs - 1 - i, p);
        }

        //pack provisional xrs outer to inner
        if (ule->num_puxrs > 1) {
            {
                //pack length, bit, data for outermost uncommitted
                UXR outermost = ule->uxrs + ule->num_cuxrs;
                p += uxr_pack_type_and_length(outermost, p);
                p += uxr_pack_data(outermost, p);
            }
            //pack txnid, length, bit, data for non-outermost, non-innermost
            for (i = ule->num_cuxrs + 1;
                 i < ule->num_cuxrs + ule->num_puxrs - 1;
                 i++) {
                UXR uxr = ule->uxrs + i;
                p += uxr_pack_txnid(uxr, p);
                p += uxr_pack_type_and_length(uxr, p);
                p += uxr_pack_data(uxr, p);
            }
            {
                //Just pack txnid for innermost
                UXR innermost = ule->uxrs + ule->num_cuxrs + ule->num_puxrs - 1;
                p += uxr_pack_txnid(innermost, p);
            }
        }
    }

    //p points to first unused byte after packed leafentry

    size_t bytes_written;
    bytes_written = (size_t)p - (size_t)new_leafentry;
    invariant(bytes_written == memsize);

#if ULE_DEBUG
    if (omt) { //Disable recursive debugging.
        size_t memsize_verify = leafentry_memsize(new_leafentry);
        invariant(memsize_verify == memsize);

        ULE_S ule_tmp;
        le_unpack(&ule_tmp, new_leafentry);

        memsize_verify = le_memsize_from_ule(&ule_tmp);
        invariant(memsize_verify == memsize);
        //Debugging code inside le_unpack will repack and verify it is the same.

        LEAFENTRY le_copy;

        int r_tmp = le_pack(&ule_tmp, &memsize_verify, &memsize_verify,
                            &le_copy);
        invariant(r_tmp==0);
        invariant(memsize_verify == memsize);

        invariant(memcmp(new_leafentry, le_copy, memsize)==0);
        toku_free(le_copy);

        ule_cleanup(&ule_tmp);
    }
#endif

    *new_leafentry_p = (LEAFENTRY)new_leafentry;
    rval = 0;
cleanup:
    update_le_status(ule, memsize);
    return rval;
}

////////////////////////////////////////////////////////////////////////////////
// Following functions provide convenient access to a packed leafentry.

//Requires:
//  Leafentry that ule represents should not be destroyed (is not just all
//  deletes)
size_t le_memsize_from_ule (ULE ule) {
    invariant(ule->num_cuxrs);
    size_t rval;
    if (ule->num_cuxrs == 1 && ule->num_puxrs == 0) {
        UXR committed = ule->uxrs;
        invariant(uxr_is_insert(committed));
        rval = 1                    //type
              +4                    //vallen
              +committed->vallen;   //actual val
    } else {
        rval = 1                    //type
              +4                    //num_cuxrs
              +1                    //num_puxrs
              +4*(ule->num_cuxrs)   //types+lengths for committed
              +8*(ule->num_cuxrs + ule->num_puxrs - 1);  //txnids (excluding
                                                         //superroot)
        uint32_t i;
        //Count data from committed uxrs and innermost puxr
        for (i = 0; i < ule->num_cuxrs; i++) {
            UXR uxr = &ule->uxrs[i];
            if (uxr_is_insert(uxr)) {
                rval += uxr->vallen; //actual val
            }
        }
        if (ule->num_puxrs) {
            UXR uxr = ule_get_innermost_uxr(ule);
            if (uxr_is_insert(uxr)) {
                rval += uxr->vallen; //actual val
            }
            rval += 4; //type+length for innermost puxr
            rval += 1*(ule->num_puxrs - 1); //type for remaining puxrs.
            //Count data and lengths from other puxrs
            for (i = 0; i < ule->num_puxrs-1; i++) {
                uxr = &ule->uxrs[i+ule->num_cuxrs];
                if (uxr_is_insert(uxr)) {
                    rval += 4 + uxr->vallen; //length plus actual val
                }
            }
        }
    }
    return rval;
}

// TODO: rename
size_t leafentry_rest_memsize(
    uint32_t num_puxrs,
    uint32_t num_cuxrs,
    uint8_t* start) {

    UXR_S uxr;
    size_t   lengths = 0;
    uint8_t* p = start;

    //Skip TXNIDs
    if (num_puxrs!=0) {
        p += sizeof(TXNID);
    }
    p += (num_cuxrs-1)*sizeof(TXNID);

    //Retrieve interesting lengths inner to outer.
    if (num_puxrs!=0) {
        p += uxr_unpack_length_and_bit(&uxr, p);
        if (uxr_is_insert(&uxr)) {
            lengths += uxr.vallen;
        }
    }
    uint32_t i;
    for (i = 0; i < num_cuxrs; i++) {
        p += uxr_unpack_length_and_bit(&uxr, p);
        if (uxr_is_insert(&uxr)) {
            lengths += uxr.vallen;
        }
    }
    //Skip all interesting 'data'
    p += lengths;

    //unpack provisional xrs outer to inner
    if (num_puxrs > 1) {
        {
            p += uxr_unpack_type_and_length(&uxr, p);
            p += uxr_unpack_data(&uxr, p);
        }
        //unpack txnid, length, bit, data for non-outermost, non-innermost
        for (i = 0; i < num_puxrs - 2; i++) {
            p += uxr_unpack_txnid(&uxr, p);
            p += uxr_unpack_type_and_length(&uxr, p);
            p += uxr_unpack_data(&uxr, p);
        }
        {
            //Just unpack txnid for innermost
            p += uxr_unpack_txnid(&uxr, p);
        }
    }
    size_t rval = (size_t)p - (size_t)start;
    return rval;
}

size_t leafentry_memsize (LEAFENTRY le) {
    size_t rval = 0;

    uint8_t  type = le->type;

    uint8_t *p = NULL;
    switch (type) {
        case LE_CLEAN: {
            uint32_t vallen = toku_dtoh32(le->u.clean.vallen);
            rval = LE_CLEAN_MEMSIZE(vallen);
            break;
        }
        case LE_MVCC: {
            p = le->u.mvcc.xrs;
            uint32_t num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            invariant(num_cuxrs);
            uint32_t num_puxrs = le->u.mvcc.num_pxrs;
            p += leafentry_rest_memsize(num_puxrs, num_cuxrs, p);
            rval = (size_t)p - (size_t)le;
            break;
        }
        default:
            invariant(false);
    }
#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
    size_t slow_rval = le_memsize_from_ule(&ule);
    if (slow_rval!=rval) {
        int r = print_klpair(stderr, le, NULL, 0);
        fprintf(stderr, "\nSlow: [%" PRIu64 "] Fast: [%" PRIu64 "]\n", slow_rval, rval);
        invariant(r==0);
    }
    assert(slow_rval == rval);
    ule_cleanup(&ule);
#endif
    return rval;
}

size_t leafentry_disksize (LEAFENTRY le) {
    return leafentry_memsize(le);
}

bool le_is_clean(LEAFENTRY le) {
    uint8_t  type = le->type;
    uint32_t rval;
    switch (type) {
        case LE_CLEAN:
            rval = true;
            break;
        case LE_MVCC:;
            rval = false;
            break;
        default:
            invariant(false);
    }
    return rval;
}

int le_latest_is_del(LEAFENTRY le) {
    int rval;
    uint8_t  type = le->type;
    uint8_t *p;
    switch (type) {
        case LE_CLEAN: {
            rval = 0;
            break;
        }
        case LE_MVCC: {
            UXR_S uxr;
            uint32_t num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            invariant(num_cuxrs);
            uint32_t num_puxrs = le->u.mvcc.num_pxrs;

            //Position p.
            p = le->u.mvcc.xrs;

            //Skip TXNIDs
            if (num_puxrs!=0) {
                p += sizeof(TXNID);
            }
            p += (num_cuxrs-1)*sizeof(TXNID);

            p += uxr_unpack_length_and_bit(&uxr, p);
            rval = uxr_is_delete(&uxr);
            break;
        }
        default:
            invariant(false);
    }
#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
    UXR uxr = ule_get_innermost_uxr(&ule);
    int slow_rval = uxr_is_delete(uxr);
    assert((rval==0) == (slow_rval==0));
    ule_cleanup(&ule);
#endif
    return rval;
}


//
// returns true if the outermost provisional transaction id on the leafentry's
// stack matches the outermost transaction id in xids
// It is used to determine if a broadcast commit/abort message (look in ft-ops.c)
// should be applied to this leafentry
// If the outermost transactions match, then the broadcast commit/abort should
// be applied
//
bool le_has_xids(LEAFENTRY le, XIDS xids) {
    //Read num_uxrs
    uint32_t num_xids = toku_xids_get_num_xids(xids);
    invariant(num_xids > 0); //Disallow checking for having TXNID_NONE
    TXNID xid = toku_xids_get_xid(xids, 0);
    invariant(xid!=TXNID_NONE);

    bool rval = (le_outermost_uncommitted_xid(le) == xid);
    return rval;
}

void* le_latest_val_and_len (LEAFENTRY le, uint32_t *len) {
    uint8_t  type = le->type;
    void *valp;

    uint8_t *p;
    switch (type) {
        case LE_CLEAN:
            *len = toku_dtoh32(le->u.clean.vallen);
            valp = le->u.clean.val;
            break;
        case LE_MVCC:;
            UXR_S uxr;
            uint32_t num_cuxrs;
            num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            invariant(num_cuxrs);
            uint32_t num_puxrs;
            num_puxrs = le->u.mvcc.num_pxrs;

            //Position p.
            p = le->u.mvcc.xrs;

            //Skip TXNIDs
            if (num_puxrs!=0) {
                p += sizeof(TXNID);
            }
            p += (num_cuxrs-1)*sizeof(TXNID);

            p += uxr_unpack_length_and_bit(&uxr, p);
            if (uxr_is_insert(&uxr)) {
                *len = uxr.vallen;
                valp = p + (num_cuxrs - 1 + (num_puxrs!=0))*sizeof(uint32_t);
            } else {
                *len = 0;
                valp = NULL;
            }
            break;
        default:
            invariant(false);
    }
#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
    UXR uxr = ule_get_innermost_uxr(&ule);
    void     *slow_valp;
    uint32_t slow_len;
    if (uxr_is_insert(uxr)) {
        slow_valp = uxr->valp;
        slow_len  = uxr->vallen; 
    } else {
        slow_valp = NULL;
        slow_len  = 0;
    }
    assert(slow_valp == le_latest_val(le));
    assert(slow_len == le_latest_vallen(le));
    assert(valp==slow_valp);
    assert(*len==slow_len);
    ule_cleanup(&ule);
#endif
    return valp;
}

//DEBUG ONLY can be slow
void* le_latest_val (LEAFENTRY le) {
    ULE_S ule;
    le_unpack(&ule, le);
    UXR uxr = ule_get_innermost_uxr(&ule);
    void *slow_rval;
    if (uxr_is_insert(uxr))
        slow_rval = uxr->valp;
    else
        slow_rval = NULL;
    ule_cleanup(&ule);
    return slow_rval;
}

//needed to be fast for statistics.
uint32_t le_latest_vallen (LEAFENTRY le) {
    uint32_t rval;
    uint8_t  type = le->type;
    uint8_t *p;
    switch (type) {
        case LE_CLEAN:
            rval = toku_dtoh32(le->u.clean.vallen);
            break;
        case LE_MVCC:;
            UXR_S uxr;
            uint32_t num_cuxrs;
            num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            invariant(num_cuxrs);
            uint32_t num_puxrs;
            num_puxrs = le->u.mvcc.num_pxrs;

            //Position p.
            p = le->u.mvcc.xrs;

            //Skip TXNIDs
            if (num_puxrs!=0) {
                p += sizeof(TXNID);
            }
            p += (num_cuxrs-1)*sizeof(TXNID);

            uxr_unpack_length_and_bit(&uxr, p);
            if (uxr_is_insert(&uxr)) {
                rval = uxr.vallen;
            } else {
                rval = 0;
            }
            break;
        default:
            invariant(false);
    }
#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
    UXR uxr = ule_get_innermost_uxr(&ule);
    uint32_t slow_rval;
    if (uxr_is_insert(uxr))
        slow_rval = uxr->vallen;
    else
        slow_rval = 0;
    ule_cleanup(&ule);
    invariant(slow_rval == rval);
#endif
    return rval;
}

uint64_t le_outermost_uncommitted_xid (LEAFENTRY le) {
    uint64_t rval = TXNID_NONE;
    uint8_t  type = le->type;

    uint8_t *p;
    switch (type) {
        case LE_CLEAN:
            break;
        case LE_MVCC:;
            UXR_S uxr;
            uint32_t num_puxrs = le->u.mvcc.num_pxrs;

            if (num_puxrs) {
                p = le->u.mvcc.xrs;
                uxr_unpack_txnid(&uxr, p);
                rval = uxr.xid;
            }
            break;
    }
#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
    TXNID slow_rval = 0;
    if (ule.num_puxrs > 0)
        slow_rval = ule.uxrs[ule.num_cuxrs].xid;
    assert(rval==slow_rval);
    ule_cleanup(&ule);
#endif
    return rval;
}


//Optimization not required.  This is a debug only function.
//Print a leafentry out in human-readable format
int print_klpair (FILE *outf, const void* keyp, uint32_t keylen, LEAFENTRY le) {
    ULE_S ule;
    le_unpack(&ule, le);
    uint32_t i;
    invariant(ule.num_cuxrs > 0);
    UXR uxr;
    if (!le) { printf("NULL"); return 0; }
    if (keyp) {
        fprintf(outf, "{key=");
        toku_print_BYTESTRING(outf, keylen, (char *) keyp);
    }
    for (i = 0; i < ule.num_cuxrs+ule.num_puxrs; i++) {
        // fprintf(outf, "\n%*s", i+1, " "); //Nested indenting
        uxr = &ule.uxrs[i];
        char prov = i < ule.num_cuxrs ? 'c' : 'p';
        fprintf(outf, " ");
        if (uxr_is_placeholder(uxr))
            fprintf(outf, "P: xid=%016" PRIx64, uxr->xid);
        else if (uxr_is_delete(uxr))
            fprintf(outf, "%cD: xid=%016" PRIx64, prov, uxr->xid);
        else {
            assert(uxr_is_insert(uxr));
            fprintf(outf, "%cI: xid=%016" PRIx64 " val=", prov, uxr->xid);
            toku_print_BYTESTRING(outf, uxr->vallen, (char *) uxr->valp);
        }
    }
    fprintf(outf, "}");
    ule_cleanup(&ule);
    return 0;
}

////////////////////////////////////////////////////////////////////////////////
// This layer of abstraction (ule_xxx) knows the structure of the unpacked
// leafentry and no other structure.
//

// ule constructor
// Note that transaction 0 is explicit in the ule
static inline void ule_init_empty_ule(ULE ule) {
    ule->num_cuxrs = 1;
    ule->num_puxrs = 0;
    ule->uxrs      = ule->uxrs_static;
    ule->uxrs[0]   = committed_delete;
}

static inline int32_t min_i32(int32_t a, int32_t b) {
    int32_t rval = a < b ? a : b;
    return rval;
}

///////////////////
// Implicit promotion logic:
//
// If the leafentry has already been promoted, there is nothing to do.
// We have two transaction stacks (one from message, one from leaf entry).
// We want to implicitly promote transactions newer than (but not including)
// the innermost common ancestor (ICA) of the two stacks of transaction ids.  We
// know that this is the right thing to do because each transaction with an id
// greater (later) than the ICA must have been either committed or aborted.
// If it was aborted then we would have seen an abort message and removed the
// xid from the stack of transaction records.  So any transaction still on the 
// leaf entry stack must have been successfully promoted.
// 
// After finding the ICA, promote transaction later than the ICA by copying
// value and type from innermost transaction record of leafentry to transaction
// record of ICA, keeping the transaction id of the ICA.
// Outermost xid is zero for both ule and xids<>
//
static void ule_do_implicit_promotions(ULE ule, XIDS xids) {
    //Optimization for (most) common case.
    //No commits necessary if everything is already committed.
    if (ule->num_puxrs > 0) {
        int num_xids = toku_xids_get_num_xids(xids);
        invariant(num_xids>0);
        uint32_t max_index = ule->num_cuxrs + min_i32(ule->num_puxrs, num_xids) - 1;
        uint32_t ica_index = max_index;
        uint32_t index;
        for (index = ule->num_cuxrs; index <= max_index; index++) {
            TXNID current_msg_xid = toku_xids_get_xid(xids, index - ule->num_cuxrs);
            TXNID current_ule_xid = ule_get_xid(ule, index);
            if (current_msg_xid != current_ule_xid) {
                //ica is innermost transaction with matching xids.
                ica_index = index - 1;
                break;
            }
        }

        if (ica_index < ule->num_cuxrs) {
            invariant(ica_index == ule->num_cuxrs - 1);
            ule_promote_provisional_innermost_to_committed(ule);
        } else if (ica_index < ule->num_cuxrs + ule->num_puxrs - 1) {
            //If ica is the innermost uxr in the leafentry, no commits are
            //necessary.
            ule_promote_provisional_innermost_to_index(ule, ica_index);
        }

    }
}

static void ule_promote_provisional_innermost_to_committed(ULE ule) {
    //Must be something to promote.
    invariant(ule->num_puxrs);
    //Take value (or delete flag) from innermost.
    //Take TXNID from outermost uncommitted txn
    //"Delete" provisional stack
    //add one UXR that is committed using saved TXNID,val/delete flag

    UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
    assert(!uxr_is_placeholder(old_innermost_uxr));

    UXR old_outermost_uncommitted_uxr = &ule->uxrs[ule->num_cuxrs];

    ule->num_puxrs = 0; //Discard all provisional uxrs.
    if (uxr_is_delete(old_innermost_uxr)) {
        ule_push_delete_uxr(ule, true, old_outermost_uncommitted_uxr->xid);
    } else {
        ule_push_insert_uxr(ule, true,
                            old_outermost_uncommitted_uxr->xid,
                            old_innermost_uxr->vallen,
                            old_innermost_uxr->valp);
    }
}

static void ule_try_promote_provisional_outermost(
    ULE ule,
    TXNID oldest_possible_live_xid) {
// Effect: If there is a provisional record whose outermost xid is older than
//         the oldest known referenced_xid, promote it to committed.
    if (ule->num_puxrs > 0 &&
        ule_get_xid(ule, ule->num_cuxrs) < oldest_possible_live_xid) {
        ule_promote_provisional_innermost_to_committed(ule);
    }
}

// Purpose is to promote the value (and type) of the innermost transaction
// record to the uxr at the specified index (keeping the txnid of the uxr at
// specified index.)
static void ule_promote_provisional_innermost_to_index(
    ULE ule,
    uint32_t index) {
    //Must not promote to committed portion of stack.
    invariant(index >= ule->num_cuxrs);
    //Must actually be promoting.
    invariant(index < ule->num_cuxrs + ule->num_puxrs - 1);
    UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
    assert(!uxr_is_placeholder(old_innermost_uxr));
    TXNID new_innermost_xid = ule->uxrs[index].xid;
    //Discard old uxr at index (and everything inner)
    ule->num_puxrs = index - ule->num_cuxrs;
    if (uxr_is_delete(old_innermost_uxr)) {
        ule_push_delete_uxr(ule, false, new_innermost_xid);
    } else {
        ule_push_insert_uxr(
            ule,
            false,
            new_innermost_xid,
            old_innermost_uxr->vallen,
            old_innermost_uxr->valp);
    }
}

///////////////////
//  All ule_apply_xxx operations are done after implicit promotions,
//  so the innermost transaction record in the leafentry is the ICA.
//


// Purpose is to apply an insert message to this leafentry:
static inline int64_t ule_apply_insert_no_overwrite(
    ULE ule,
    XIDS xids,
    uint32_t vallen,
    void* valp) {

    invariant(IS_VALID_LEN(vallen));
    int64_t retval = 0;
    UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
    // If something exists, don't overwrite
    if (uxr_is_insert(old_innermost_uxr)) {
        retval = -1;
        return retval;
    }
    ule_prepare_for_new_uxr(ule, xids);
    // xid of transaction doing this insert
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    ule_push_insert_uxr(ule, this_xid == TXNID_NONE, this_xid, vallen, valp);
    return retval;
}

// Purpose is to apply an insert message to this leafentry:
static inline int64_t ule_apply_insert(
    ULE ule,
    XIDS xids,
    uint32_t vallen,
    void* valp) {

    invariant(IS_VALID_LEN(vallen));
    int64_t retval = 0;
    UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
    // If something exists, overwrite
    if (uxr_is_insert(old_innermost_uxr)) {
        retval = -1;
    }
    ule_prepare_for_new_uxr(ule, xids);
    // xid of transaction doing this insert
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    ule_push_insert_uxr(ule, this_xid == TXNID_NONE, this_xid, vallen, valp);
    return retval;
}

// Purpose is to apply a delete message to this leafentry:
static inline int64_t ule_apply_delete(ULE ule, XIDS xids) {
    int64_t retval = 0;
    UXR old_innermost_uxr = ule_get_innermost_uxr(ule);
    if (FT_UNLIKELY(uxr_is_delete(old_innermost_uxr))) {
        retval = 1;
    }
    ule_prepare_for_new_uxr(ule, xids);
    // xid of transaction doing this delete
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    ule_push_delete_uxr(ule, this_xid == TXNID_NONE, this_xid);
    return retval;
}

// First, discard anything done earlier by this transaction.
// Then, add placeholders if necessary.  This transaction may be nested within 
// outer transactions that are newer than then newest (innermost) transaction in
// the leafentry.  If so, record those outer transactions in the leafentry
// with placeholders.
static inline void ule_prepare_for_new_uxr(ULE ule, XIDS xids) {
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    //This is for LOADER_USE_PUTS or transactionless environment
    //where messages use XIDS of 0
    if (this_xid == TXNID_NONE && ule_get_innermost_xid(ule) == TXNID_NONE) {
        ule_remove_innermost_uxr(ule);
    } else if (ule->num_puxrs > 0 && ule_get_innermost_xid(ule) == this_xid) {
        // case where we are transactional and xids stack matches ule stack
        ule_remove_innermost_uxr(ule);
    } else {
        // case where we are transactional and xids stack does not match ule
        // stack
        ule_add_placeholders(ule, xids);
    }
}

// Purpose is to apply an abort message to this leafentry.
// If the aborted transaction (the transaction whose xid is the innermost xid
// in the id stack passed in the message), has not modified this leafentry,
// then there is nothing to be done.
// If this transaction did modify the leafentry, then undo whatever it did (by
// removing the transaction record (uxr) and any placeholders underneath.
// Remember, the innermost uxr can only be an insert or a delete, not a
// placeholder.
static inline int64_t ule_apply_abort(ULE ule, XIDS xids) {
    int64_t retval = 0;
    // xid of transaction doing this abort
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    invariant(this_xid!=TXNID_NONE);
    UXR innermost = ule_get_innermost_uxr(ule);
    // need to check for provisional entries in ule, otherwise
    // there is nothing to abort, not checking this may result
    // in a bug where the most recently committed has same xid
    // as the XID's innermost
    if (ule->num_puxrs > 0 && innermost->xid == this_xid) {
        // if this is a rollback of a delete of a new ule, return 0
        // (i.e. double delete)
        if (uxr_is_delete(innermost)) {
            if (ule->num_puxrs == 1 && ule->num_cuxrs == 1 &&
                uxr_is_delete(&(ule->uxrs[0]))) {
                retval = 0;
            } else {
                retval = 1;
            }
        } else if (uxr_is_insert(innermost)) {
             if (ule->num_puxrs == 1 && ule->num_cuxrs == 1 &&
                 uxr_is_insert(&(ule->uxrs[0]))) {
                retval = 0;
            } else {
                retval = -1;
            }
        }
        // if this is a rollback of a insert of an exising ule, return 0
        // (i.e. double insert)
        invariant(ule->num_puxrs>0);
        ule_remove_innermost_uxr(ule);                    
        ule_remove_innermost_placeholders(ule); 
    }
    invariant(ule->num_cuxrs > 0);
    return retval;
}

static void ule_apply_broadcast_commit_all (ULE ule) {
    ule->uxrs[0] = ule->uxrs[ule->num_puxrs + ule->num_cuxrs - 1];
    ule->uxrs[0].xid = TXNID_NONE;
    ule->num_puxrs = 0;
    ule->num_cuxrs = 1;
}

// Purpose is to apply a commit message to this leafentry.
// If the committed transaction (the transaction whose xid is the innermost xid
// in the id stack passed in the message), has not modified this leafentry,
// then there is nothing to be done.
// Also, if there are no uncommitted transaction records there is nothing to do.
// If this transaction did modify the leafentry, then promote whatever it did.
// Remember, the innermost uxr can only be an insert or a delete, not a
// placeholder.
void ule_apply_commit(ULE ule, XIDS xids) {
    // xid of transaction committing
    TXNID this_xid = toku_xids_get_innermost_xid(xids);
    invariant(this_xid!=TXNID_NONE);
    // need to check for provisional entries in ule, otherwise
    // there is nothing to abort, not checking this may result
    // in a bug where the most recently committed has same xid
    // as the XID's innermost
    if (ule->num_puxrs > 0 && ule_get_innermost_xid(ule) == this_xid) {
        // 3 cases:
        //1- it's already a committed value (do nothing) (num_puxrs==0)
        //2- it's provisional but root level (make a new committed value
        //   (num_puxrs==1)
        //3- it's provisional and not root (promote); (num_puxrs>1)
        if (ule->num_puxrs == 1) { //new committed value
            ule_promote_provisional_innermost_to_committed(ule);
        } else if (ule->num_puxrs > 1) {
            //ule->uxrs[ule->num_cuxrs+ule->num_puxrs-1] is the innermost
            //    (this transaction)
            //ule->uxrs[ule->num_cuxrs+ule->num_puxrs-2] is the 2nd innermost
            //We want to promote the innermost uxr one level out.
            ule_promote_provisional_innermost_to_index(
                ule,
                ule->num_cuxrs+ule->num_puxrs-2);
        }
    }
}

///////////////////
// Helper functions called from the functions above:
//

// Purpose is to record an insert for this transaction (and set type correctly).
static inline void ule_push_insert_uxr(
    ULE ule,
    bool is_committed, TXNID xid,
    uint32_t vallen,
    void* valp) {

    UXR uxr = ule_get_first_empty_uxr(ule);
    if (is_committed) {
        invariant(ule->num_puxrs==0);
        ule->num_cuxrs++;
    } else {
        ule->num_puxrs++;
    }
    uxr->xid    = xid;
    uxr->vallen = vallen;
    uxr->valp   = valp;
    uxr->type   = XR_INSERT;
}

// Purpose is to record a delete for this transaction.  If this transaction
// is the root transaction, then truly delete the leafentry by marking the 
// ule as empty.
static inline void ule_push_delete_uxr(ULE ule, bool is_committed, TXNID xid) {
    UXR uxr     = ule_get_first_empty_uxr(ule);
    if (is_committed) {
        invariant(ule->num_puxrs==0);
        ule->num_cuxrs++;
    } else {
        ule->num_puxrs++;
    }
    uxr->xid    = xid;
    uxr->type   = XR_DELETE;
}

// Purpose is to push a placeholder on the top of the leafentry's transaction
// stack.
static inline void ule_push_placeholder_uxr(ULE ule, TXNID xid) {
    invariant(ule->num_cuxrs>0);
    UXR uxr           = ule_get_first_empty_uxr(ule);
    uxr->xid          = xid;
    uxr->type         = XR_PLACEHOLDER;
    ule->num_puxrs++;
}

// Return innermost transaction record.
static inline UXR ule_get_innermost_uxr(ULE ule) {
    invariant(ule->num_cuxrs > 0);
    UXR rval = &(ule->uxrs[ule->num_cuxrs + ule->num_puxrs - 1]);
    return rval;
}

// Return first empty transaction record
static inline UXR ule_get_first_empty_uxr(ULE ule) {
    invariant(ule->num_puxrs < MAX_TRANSACTION_RECORDS-1);
    UXR rval = &(ule->uxrs[ule->num_cuxrs+ule->num_puxrs]);
    return rval;
}

// Remove the innermost transaction (pop the leafentry's stack), undoing
// whatever the innermost transaction did.
static inline void ule_remove_innermost_uxr(ULE ule) {
    //It is possible to remove the committed delete at first insert.
    invariant(ule->num_cuxrs > 0);
    if (ule->num_puxrs) {
        ule->num_puxrs--;
    } else {
        //This is for LOADER_USE_PUTS or transactionless environment
        //where messages use XIDS of 0
        invariant(ule->num_cuxrs == 1);
        invariant(ule_get_innermost_xid(ule)==TXNID_NONE);
        ule->num_cuxrs--;
    }
}

static inline TXNID ule_get_innermost_xid(ULE ule) {
    TXNID rval = ule_get_xid(ule, ule->num_cuxrs + ule->num_puxrs - 1);
    return rval;
}

static inline TXNID ule_get_xid(ULE ule, uint32_t index) {
    invariant(index < ule->num_cuxrs + ule->num_puxrs);
    TXNID rval = ule->uxrs[index].xid;
    return rval;
}

// Purpose is to remove any placeholders from the top of the leaf stack (the 
// innermost recorded transactions), if necessary.  This function is idempotent.
// It makes no logical sense for a placeholder to be the innermost recorded
// transaction record, so placeholders at the top of the stack are not legal.
static void ule_remove_innermost_placeholders(ULE ule) {
    UXR uxr = ule_get_innermost_uxr(ule);
    while (uxr_is_placeholder(uxr)) {
        invariant(ule->num_puxrs>0);
        ule_remove_innermost_uxr(ule);
        uxr = ule_get_innermost_uxr(ule);
    }
}

// Purpose is to add placeholders to the top of the leaf stack (the innermost
// recorded transactions), if necessary.  This function is idempotent.
// Note, after placeholders are added, an insert or delete will be added.  This 
// function temporarily leaves the transaction stack in an illegal state (having
// placeholders on top).
static void ule_add_placeholders(ULE ule, XIDS xids) {
    //Placeholders can be placed on top of the committed uxr.
    invariant(ule->num_cuxrs > 0);

    uint32_t num_xids = toku_xids_get_num_xids(xids);
    // we assume that implicit promotion has happened
    // when we get this call, so the number of xids MUST
    // be greater than the number of provisional entries
    invariant(num_xids >= ule->num_puxrs);
    // make sure that the xids stack matches up to a certain amount
    // this first for loop is just debug code
    for (uint32_t i = 0; i < ule->num_puxrs; i++) {
        TXNID current_msg_xid = toku_xids_get_xid(xids, i);
        TXNID current_ule_xid = ule_get_xid(ule, i + ule->num_cuxrs);
        invariant(current_msg_xid == current_ule_xid);
    }
    for (uint32_t i = ule->num_puxrs; i < num_xids-1; i++) {
        TXNID current_msg_xid = toku_xids_get_xid(xids, i);
        ule_push_placeholder_uxr(ule, current_msg_xid);
    }
}

uint64_t ule_num_uxrs(ULE ule) {
    return ule->num_cuxrs + ule->num_puxrs;
}

UXR ule_get_uxr(ULE ule, uint64_t ith) {
    invariant(ith < ule_num_uxrs(ule));
    return &ule->uxrs[ith];
}

uint32_t ule_get_num_committed(ULE ule) {
    return ule->num_cuxrs;
}

uint32_t ule_get_num_provisional(ULE ule) {
    return ule->num_puxrs;
}

int ule_is_committed(ULE ule, uint64_t  ith) {
    invariant(ith < ule_num_uxrs(ule));
    return ith < ule->num_cuxrs;
}

int ule_is_provisional(ULE ule, uint64_t ith) {
    invariant(ith < ule_num_uxrs(ule));
    return ith >= ule->num_cuxrs;
}

// return size of data for innermost uxr, the size of val
uint32_t ule_get_innermost_numbytes(ULE ule, uint32_t keylen) {
    uint32_t rval;
    UXR uxr = ule_get_innermost_uxr(ule);
    if (uxr_is_delete(uxr)) {
        rval = 0;
    } else {
        rval = uxr_get_vallen(uxr) + keylen;
    }
    return rval;
}


/////////////////////////////////////////////////////////////////////////////////
//  This layer of abstraction (uxr_xxx) understands uxr and nothing else.
//

static inline bool uxr_type_is_insert(uint8_t type) {
    bool rval = (bool)(type == XR_INSERT);
    return rval;
}

bool uxr_is_insert(UXR uxr) {
    return uxr_type_is_insert(uxr->type);
}

static inline bool uxr_type_is_delete(uint8_t type) {
    bool rval = (bool)(type == XR_DELETE);
    return rval;
}

bool uxr_is_delete(UXR uxr) {
    return uxr_type_is_delete(uxr->type);
}

static inline bool uxr_type_is_placeholder(uint8_t type) {
    bool rval = (bool)(type == XR_PLACEHOLDER);
    return rval;
}

bool uxr_is_placeholder(UXR uxr) {
    return uxr_type_is_placeholder(uxr->type);
}

void* uxr_get_val(UXR uxr) {
    return uxr->valp;
}

uint32_t uxr_get_vallen(UXR uxr) {
    return uxr->vallen;
}


TXNID uxr_get_txnid(UXR uxr) {
    return uxr->xid;
}

static int le_iterate_get_accepted_index(
    TXNID* xids,
    uint32_t* index,
    uint32_t num_xids,
    LE_ITERATE_CALLBACK f,
    TOKUTXN context,
    bool top_is_provisional) {

    uint32_t i;
    int r = 0;
    // if this for loop does not return anything, we return num_xids-1, which
    // should map to T_0
    for (i = 0; i < num_xids - 1; i++) {
        TXNID xid = toku_dtoh64(xids[i]);
        r = f(xid, context, (i == 0 && top_is_provisional));
        if (r==TOKUDB_ACCEPT) {
            r = 0;
            break; //or goto something
        } else if (r!=0) {
            break;
        }
    }
    *index = i;
    return r;
}

#if ULE_DEBUG
static void ule_verify_xids(ULE ule, uint32_t interesting, TXNID *xids) {
    int has_p = (ule->num_puxrs != 0);
    invariant(ule->num_cuxrs + has_p == interesting);
    uint32_t i;
    for (i = 0; i < interesting - 1; i++) {
        TXNID xid = toku_dtoh64(xids[i]);
        invariant(ule->uxrs[ule->num_cuxrs - 1 + has_p - i].xid == xid);
    }
}
#endif

//
// Iterates over "possible" TXNIDs in a leafentry's stack, until one is
// accepted by 'f'. If the value  associated with the accepted TXNID is not an
// insert, then set *is_emptyp to true, otherwise false
// The "possible" TXNIDs are:
//   If provisionals exist, then the first possible TXNID is the outermost
//       provisional.
//   The next possible TXNIDs are the committed TXNIDs, from most recently
//       committed to T_0.
// If provisionals exist, and the outermost provisional is accepted by 'f',
// the associated value checked is the innermost provisional's value.
// Parameters:
//    le - leafentry to iterate over
//    f - callback function that checks if a TXNID in le is accepted, and its
//        associated value should be examined.
//    is_delp - output parameter that returns answer
//    context - parameter for f
//
static int le_iterate_is_del(
    LEAFENTRY le,
    LE_ITERATE_CALLBACK f,
    bool* is_delp,
    TOKUTXN context) {

#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
#endif

    uint8_t type = le->type;
    int r;
    bool is_del = false;
    switch (type) {
        case LE_CLEAN: {
            r = 0;
#if ULE_DEBUG
            invariant(ule.num_cuxrs == 1);
            invariant(ule.num_puxrs == 0);
            invariant(uxr_is_insert(ule.uxrs));
#endif
            break;
        }
        case LE_MVCC:;
            uint32_t num_cuxrs;
            num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            uint32_t num_puxrs;
            num_puxrs = le->u.mvcc.num_pxrs;
            uint8_t *p;
            p = le->u.mvcc.xrs;

            uint32_t index;
            uint32_t num_interesting;
            num_interesting = num_cuxrs + (num_puxrs != 0);
            TXNID *xids;
            xids = (TXNID*)p;
#if ULE_DEBUG
            ule_verify_xids(&ule, num_interesting, xids);
#endif
            r =
                le_iterate_get_accepted_index(
                    xids,
                    &index,
                    num_interesting,
                    f,
                    context,
                    (num_puxrs != 0));
            if (r != 0) {
                goto cleanup;
            }
            invariant(index < num_interesting);

            //Skip TXNIDs
            p += (num_interesting - 1)*sizeof(TXNID);

            uint32_t *length_and_bits;
            length_and_bits  = (uint32_t*)p;
            uint32_t my_length_and_bit;
            my_length_and_bit = toku_dtoh32(length_and_bits[index]);
            is_del = !IS_INSERT(my_length_and_bit);
#if ULE_DEBUG
            {
                uint32_t has_p = (ule.num_puxrs != 0);
                uint32_t ule_index = (index==0) ?
                    ule.num_cuxrs + ule.num_puxrs - 1 :
                    ule.num_cuxrs - 1 + has_p - index;
                UXR uxr = ule.uxrs + ule_index;
                invariant(uxr_is_delete(uxr) == is_del);
            }
#endif
            break;
        default:
            invariant(false);
    }
cleanup:
#if ULE_DEBUG
    ule_cleanup(&ule);
#endif
    if (!r) *is_delp = is_del;
    return r;
}

static int le_iterate_read_committed_callback(
    TXNID txnid,
    TOKUTXN txn,
    bool is_provisional UU()) {

    if (is_provisional) {
        return toku_txn_reads_txnid(txnid, txn, is_provisional);
    }
    return TOKUDB_ACCEPT;
}

//
// Returns true if the value that is to be read is empty.
//
int le_val_is_del(LEAFENTRY le, enum cursor_read_type read_type, TOKUTXN txn) {
    int rval;
    if (read_type == C_READ_SNAPSHOT || read_type == C_READ_COMMITTED) {
        LE_ITERATE_CALLBACK f = (read_type == C_READ_SNAPSHOT) ?
            toku_txn_reads_txnid :
            le_iterate_read_committed_callback;
        bool is_del = false;
        le_iterate_is_del(
            le,
            f,
            &is_del,
            txn
            );
        rval = is_del;
    } else if (read_type == C_READ_ANY) {
        rval = le_latest_is_del(le);
    } else {
        invariant(false);
    }
    return rval;
}

//
// Iterates over "possible" TXNIDs in a leafentry's stack, until one is accepted
// by 'f'. Set valpp and vallenp to value and length associated with accepted
// TXNID
// The "possible" TXNIDs are:
//   If provisionals exist, then the first possible TXNID is the outermost
//      provisional.
//   The next possible TXNIDs are the committed TXNIDs, from most recently
//      committed to T_0.
// If provisionals exist, and the outermost provisional is accepted by 'f',
// the associated length value is the innermost provisional's length and value.
// Parameters:
//    le - leafentry to iterate over
//    f - callback function that checks if a TXNID in le is accepted, and its
//        associated value should be examined.
//    valpp - output parameter that returns pointer to value
//    vallenp - output parameter that returns length of value
//    context - parameter for f
//
int le_iterate_val(
    LEAFENTRY le,
    LE_ITERATE_CALLBACK f,
    void** valpp,
    uint32_t* vallenp,
    TOKUTXN context) {

#if ULE_DEBUG
    ULE_S ule;
    le_unpack(&ule, le);
#endif

    uint8_t type = le->type;
    int r;
    uint32_t vallen = 0;
    void *valp = NULL;
    switch (type) {
        case LE_CLEAN: {
            vallen = toku_dtoh32(le->u.clean.vallen);
            valp   = le->u.clean.val;
            r = 0;
#if ULE_DEBUG
            invariant(ule.num_cuxrs == 1);
            invariant(ule.num_puxrs == 0);
            invariant(uxr_is_insert(ule.uxrs));
            invariant(ule.uxrs[0].vallen == vallen);
            invariant(ule.uxrs[0].valp == valp);
#endif
            break;
        }
        case LE_MVCC:;
            uint32_t num_cuxrs;
            num_cuxrs = toku_dtoh32(le->u.mvcc.num_cxrs);
            uint32_t num_puxrs;
            num_puxrs = le->u.mvcc.num_pxrs;
            uint8_t *p;
            p = le->u.mvcc.xrs;

            uint32_t index;
            uint32_t num_interesting;
            num_interesting = num_cuxrs + (num_puxrs != 0);
            TXNID *xids;
            xids = (TXNID*)p;
#if ULE_DEBUG
            ule_verify_xids(&ule, num_interesting, xids);
#endif
            r =
                le_iterate_get_accepted_index(
                    xids,
                    &index,
                    num_interesting,
                    f,
                    context,
                    (num_puxrs != 0));
            if (r != 0) {
                goto cleanup;
            }
            invariant(index < num_interesting);

            //Skip TXNIDs
            p += (num_interesting - 1)*sizeof(TXNID);

            UXR_S temp;
            size_t offset;
            offset = 0;

            uint32_t *length_and_bits;
            length_and_bits  = (uint32_t*)p;
            uint32_t i;
            //evaluate the offset
            for (i=0; i < index; i++){
                uxr_unpack_length_and_bit(&temp, (uint8_t*)&length_and_bits[i]);
                offset += temp.vallen;
            }
            uxr_unpack_length_and_bit(&temp, (uint8_t*)&length_and_bits[index]);
            if (uxr_is_delete(&temp)) {
                goto verify_is_empty;
            }
            vallen = temp.vallen;
            
            // move p past the length and bits, now points to beginning of data
            p += num_interesting*sizeof(uint32_t);
            // move p to point to the data we care about
            p += offset;
            valp = p;

#if ULE_DEBUG
            {
                uint32_t has_p = (ule.num_puxrs != 0);
                uint32_t ule_index = (index==0) ?
                    ule.num_cuxrs + ule.num_puxrs - 1 :
                    ule.num_cuxrs - 1 + has_p - index;
                UXR uxr = ule.uxrs + ule_index;
                invariant(uxr_is_insert(uxr));
                invariant(uxr->vallen == vallen);
                invariant(uxr->valp == valp);
            }
#endif
            if (0) {
verify_is_empty:;
#if ULE_DEBUG
                uint32_t has_p = (ule.num_puxrs != 0);
                UXR uxr = ule.uxrs + ule.num_cuxrs - 1 + has_p - index;
                invariant(uxr_is_delete(uxr));
#endif
            }
            break;
        default:
            invariant(false);
    }
cleanup:
#if ULE_DEBUG
    ule_cleanup(&ule);
#endif
    if (!r) {
        *valpp   = valp;
        *vallenp = vallen;
    }
    return r;
}

void le_extract_val(
    LEAFENTRY le,
    // should we return the entire leafentry as the val?
    bool is_leaf_mode,
    enum cursor_read_type read_type,
    TOKUTXN ttxn,
    uint32_t* vallen,
    void** val) {

    if (is_leaf_mode) {
        *val = le;
        *vallen = leafentry_memsize(le);
    } else if (read_type == C_READ_SNAPSHOT || read_type == C_READ_COMMITTED) {
        LE_ITERATE_CALLBACK f = (read_type == C_READ_SNAPSHOT) ?
            toku_txn_reads_txnid :
            le_iterate_read_committed_callback;
        int r = le_iterate_val(le, f, val, vallen, ttxn);
        lazy_assert_zero(r);
    } else if (read_type == C_READ_ANY){
        *val = le_latest_val_and_len(le, vallen);
    } else {
        assert(false);
    }
}

// This is an on-disk format.  static_asserts verify everything is packed and aligned correctly.
struct __attribute__ ((__packed__)) leafentry_13 {
    struct leafentry_committed_13 {
        uint8_t key_val[0];     //Actual key, then actual val
    };
    static_assert(0 == sizeof(leafentry_committed_13), "wrong size");
    static_assert(0 == __builtin_offsetof(leafentry_committed_13, key_val), "wrong offset");
    struct __attribute__ ((__packed__)) leafentry_provisional_13 {
        uint8_t innermost_type;
        TXNID    xid_outermost_uncommitted;
        uint8_t key_val_xrs[0];  //Actual key,
        //then actual innermost inserted val,
        //then transaction records.
    };
    static_assert(9 == sizeof(leafentry_provisional_13), "wrong size");
    static_assert(9 == __builtin_offsetof(leafentry_provisional_13, key_val_xrs), "wrong offset");

    uint8_t  num_xrs;
    uint32_t keylen;
    uint32_t innermost_inserted_vallen;
    union __attribute__ ((__packed__)) {
        struct leafentry_committed_13 comm;
        struct leafentry_provisional_13 prov;
    } u;
};
static_assert(18 == sizeof(leafentry_13), "wrong size");
static_assert(9 == __builtin_offsetof(leafentry_13, u), "wrong offset");

//Requires:
//  Leafentry that ule represents should not be destroyed (is not just all
//  deletes)
static size_t le_memsize_from_ule_13 (ULE ule, LEAFENTRY_13 le) {
    uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
    assert(num_uxrs);
    size_t rval;
    if (num_uxrs == 1) {
        assert(uxr_is_insert(&ule->uxrs[0]));
        rval = 1                    //num_uxrs
              +4                    //keylen
              +4                    //vallen
              +le->keylen          //actual key
              +ule->uxrs[0].vallen; //actual val
    } else {
        rval = 1                    //num_uxrs
              +4                    //keylen
              +le->keylen          //actual key
              +1*num_uxrs      //types
              +8*(num_uxrs-1); //txnids
        uint8_t i;
        for (i = 0; i < num_uxrs; i++) {
            UXR uxr = &ule->uxrs[i];
            if (uxr_is_insert(uxr)) {
                rval += 4;           //vallen
                rval += uxr->vallen; //actual val
            }
        }
    }
    return rval;
}

// This function is mostly copied from 4.1.1 (which is version 12, same as 13
// except that only 13 is upgradable).
// Note, number of transaction records in version 13 has been replaced by
// separate counters in version 14 (MVCC), one counter for committed transaction
// records and one counter for provisional transaction records.  When upgrading
// a version 13 le to version 14, the number of committed transaction records is
// always set to one (1) and the number of provisional transaction records is
// set to the original number of transaction records minus one.  The bottom
// transaction record is assumed to be a committed value.  (If there is no
// committed value then the bottom transaction record of version 13 is a
// committed delete.)
// This is the only change from the 4.1.1 code.  The rest of the leafentry is
// read as is.
static void le_unpack_13(ULE ule, LEAFENTRY_13 le) {
    //Read num_uxrs
    uint8_t num_xrs = le->num_xrs;
    assert(num_xrs > 0);
    ule->uxrs = ule->uxrs_static; //Static version is always enough.
    ule->num_cuxrs = 1;
    ule->num_puxrs = num_xrs - 1;

    //Read the keylen
    uint32_t keylen = toku_dtoh32(le->keylen);

    //Read the vallen of innermost insert
    uint32_t vallen_of_innermost_insert = toku_dtoh32(le->innermost_inserted_vallen);

    uint8_t *p;
    if (num_xrs == 1) {
        //Unpack a 'committed leafentry' (No uncommitted transactions exist)
        //Must be or the leafentry would not exist
        ule->uxrs[0].type   = XR_INSERT;
        ule->uxrs[0].vallen = vallen_of_innermost_insert;
        ule->uxrs[0].valp   = &le->u.comm.key_val[keylen];
        ule->uxrs[0].xid    = 0;          //Required.

        //Set p to immediately after leafentry
        p = &le->u.comm.key_val[keylen + vallen_of_innermost_insert];
    } else {
        //Unpack a 'provisional leafentry' (Uncommitted transactions exist)

        //Read in type.
        uint8_t innermost_type = le->u.prov.innermost_type;
        assert(!uxr_type_is_placeholder(innermost_type));

        //Read in xid
        TXNID xid_outermost_uncommitted = toku_dtoh64(le->u.prov.xid_outermost_uncommitted);

        //Read pointer to innermost inserted val (immediately after key)
        uint8_t *valp_of_innermost_insert = &le->u.prov.key_val_xrs[keylen];

        //Point p to immediately after 'header'
        p = &le->u.prov.key_val_xrs[keylen + vallen_of_innermost_insert];

        bool found_innermost_insert = false;
        int i; //Index in ULE.uxrs[]
        //Loop inner to outer
        for (i = num_xrs - 1; i >= 0; i--) {
            UXR uxr = &ule->uxrs[i];

            //Innermost's type is in header.
            if (i < num_xrs - 1) {
                //Not innermost, so load the type.
                uxr->type = *p;
                p += 1;
            } else {
                //Innermost, load the type previously read from header
                uxr->type = innermost_type;
            }

            //Committed txn id is implicit (0).  (i==0)
            //Outermost uncommitted txnid is stored in header. (i==1)
            if (i > 1) {
                //Not committed nor outermost uncommitted, so load the xid.
                uxr->xid = toku_dtoh64(*(TXNID*)p);
                p += 8;
            } else if (i == 1) {
                //Outermost uncommitted, load the xid previously read from
                //header
                uxr->xid = xid_outermost_uncommitted;
            } else {
                // i == 0, committed entry
                uxr->xid = 0;
            }

            if (uxr_is_insert(uxr)) {
                if (found_innermost_insert) {
                    //Not the innermost insert.  Load vallen/valp
                    uxr->vallen = toku_dtoh32(*(uint32_t*)p);
                    p += 4;

                    uxr->valp = p;
                    p += uxr->vallen;
                } else {
                    //Innermost insert, load the vallen/valp previously read
                    //from header
                    uxr->vallen = vallen_of_innermost_insert;
                    uxr->valp   = valp_of_innermost_insert;
                    found_innermost_insert = true;
                }
            }
        }
        assert(found_innermost_insert);
    }
#if ULE_DEBUG
    size_t memsize = le_memsize_from_ule_13(ule);
    assert(p == ((uint8_t*)le) + memsize);
#endif
}

size_t leafentry_disksize_13(LEAFENTRY_13 le) {
    ULE_S ule;
    le_unpack_13(&ule, le);
    size_t memsize = le_memsize_from_ule_13(&ule, le);
    ule_cleanup(&ule);
    return memsize;
}

int toku_le_upgrade_13_14(
    LEAFENTRY_13 old_leafentry,
    void** keyp,
    uint32_t* keylen,
    size_t* new_leafentry_memorysize,
    LEAFENTRY* new_leafentry_p) {

    ULE_S ule;
    int rval;
    invariant(old_leafentry);
    le_unpack_13(&ule, old_leafentry);
    // get the key
    *keylen = old_leafentry->keylen;
    if (old_leafentry->num_xrs == 1) {
        *keyp = old_leafentry->u.comm.key_val;
    } else {
        *keyp = old_leafentry->u.prov.key_val_xrs;
    }
    // We used to pass NULL for omt and mempool, so that we would use
    // malloc instead of a mempool.  However after supporting upgrade,
    // we need to use mempools and the OMT.
    rval =
        le_pack(
            &ule, // create packed leafentry
            nullptr,
            0, //only matters if we are passing in a bn_data
            nullptr, //only matters if we are passing in a bn_data
            0, //only matters if we are passing in a bn_data
            0, //only matters if we are passing in a bn_data
            0, //only matters if we are passing in a bn_data
            new_leafentry_p,
            nullptr); //only matters if we are passing in a bn_data
    ule_cleanup(&ule);
    *new_leafentry_memorysize = leafentry_memsize(*new_leafentry_p);
    return rval;
}

#include <toku_race_tools.h>
void __attribute__((__constructor__)) toku_ule_helgrind_ignore(void);
void
toku_ule_helgrind_ignore(void) {
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&le_status, sizeof le_status);
}