summaryrefslogtreecommitdiffstats
path: root/libmariadb/external/zlib/inffast_chunk.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:00:34 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:00:34 +0000
commit3f619478f796eddbba6e39502fe941b285dd97b1 (patch)
treee2c7b5777f728320e5b5542b6213fd3591ba51e2 /libmariadb/external/zlib/inffast_chunk.c
parentInitial commit. (diff)
downloadmariadb-3f619478f796eddbba6e39502fe941b285dd97b1.tar.xz
mariadb-3f619478f796eddbba6e39502fe941b285dd97b1.zip
Adding upstream version 1:10.11.6.upstream/1%10.11.6upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'libmariadb/external/zlib/inffast_chunk.c')
-rw-r--r--libmariadb/external/zlib/inffast_chunk.c379
1 files changed, 379 insertions, 0 deletions
diff --git a/libmariadb/external/zlib/inffast_chunk.c b/libmariadb/external/zlib/inffast_chunk.c
new file mode 100644
index 00000000..829a8ec3
--- /dev/null
+++ b/libmariadb/external/zlib/inffast_chunk.c
@@ -0,0 +1,379 @@
+/* inffast_chunk.c -- fast decoding
+ *
+ * (C) 1995-2013 Jean-loup Gailly and Mark Adler
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty. In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ * claim that you wrote the original software. If you use this software
+ * in a product, an acknowledgment in the product documentation would be
+ * appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ * misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ *
+ * Jean-loup Gailly Mark Adler
+ * jloup@gzip.org madler@alumni.caltech.edu
+ *
+ * Copyright (C) 1995-2017 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#include "zutil.h"
+#include "inftrees.h"
+#include "inflate.h"
+#include "inffast_chunk.h"
+#include "chunkcopy.h"
+
+#ifdef ASMINF
+# pragma message("Assembler code may have bugs -- use at your own risk")
+#else
+
+/*
+ Decode literal, length, and distance codes and write out the resulting
+ literal and match bytes until either not enough input or output is
+ available, an end-of-block is encountered, or a data error is encountered.
+ When large enough input and output buffers are supplied to inflate(), for
+ example, a 16K input buffer and a 64K output buffer, more than 95% of the
+ inflate() execution time is spent in this routine.
+
+ Entry assumptions:
+
+ state->mode == LEN
+ strm->avail_in >= INFLATE_FAST_MIN_INPUT (6 or 8 bytes)
+ strm->avail_out >= INFLATE_FAST_MIN_OUTPUT (258 bytes)
+ start >= strm->avail_out
+ state->bits < 8
+ strm->next_out[0..strm->avail_out] does not overlap with
+ strm->next_in[0..strm->avail_in]
+ strm->state->window is allocated with an additional
+ CHUNKCOPY_CHUNK_SIZE-1 bytes of padding beyond strm->state->wsize
+
+ On return, state->mode is one of:
+
+ LEN -- ran out of enough output space or enough available input
+ TYPE -- reached end of block code, inflate() to interpret next block
+ BAD -- error in block data
+
+ Notes:
+
+ INFLATE_FAST_MIN_INPUT: 6 or 8 bytes
+
+ - The maximum input bits used by a length/distance pair is 15 bits for the
+ length code, 5 bits for the length extra, 15 bits for the distance code,
+ and 13 bits for the distance extra. This totals 48 bits, or six bytes.
+ Therefore if strm->avail_in >= 6, then there is enough input to avoid
+ checking for available input while decoding.
+
+ - The wide input data reading option reads 64 input bits at a time. Thus,
+ if strm->avail_in >= 8, then there is enough input to avoid checking for
+ available input while decoding. Reading consumes the input with:
+
+ hold |= read64le(in) << bits;
+ in += 6;
+ bits += 48;
+
+ reporting 6 bytes of new input because |bits| is 0..15 (2 bytes rounded
+ up, worst case) and 6 bytes is enough to decode as noted above. At exit,
+ hold &= (1U << bits) - 1 drops excess input to keep the invariant:
+
+ (state->hold >> state->bits) == 0
+
+ INFLATE_FAST_MIN_OUTPUT: 258 bytes
+ - The maximum bytes that a single length/distance pair can output is 258
+ bytes, which is the maximum length that can be coded. inflate_fast()
+ requires strm->avail_out >= 258 for each loop to avoid checking for
+ available output space while decoding.
+ */
+void ZLIB_INTERNAL inflate_fast_chunk_(strm, start)
+z_streamp strm;
+unsigned start; /* inflate()'s starting value for strm->avail_out */
+{
+ struct inflate_state FAR *state;
+ z_const unsigned char FAR *in; /* local strm->next_in */
+ z_const unsigned char FAR *last; /* have enough input while in < last */
+ unsigned char FAR *out; /* local strm->next_out */
+ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */
+ unsigned char FAR *end; /* while out < end, enough space available */
+ unsigned char FAR *limit; /* safety limit for chunky copies */
+#ifdef INFLATE_STRICT
+ unsigned dmax; /* maximum distance from zlib header */
+#endif
+ unsigned wsize; /* window size or zero if not using window */
+ unsigned whave; /* valid bytes in the window */
+ unsigned wnext; /* window write index */
+ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */
+ inflate_holder_t hold; /* local strm->hold */
+ unsigned bits; /* local strm->bits */
+ code const FAR *lcode; /* local strm->lencode */
+ code const FAR *dcode; /* local strm->distcode */
+ unsigned lmask; /* mask for first level of length codes */
+ unsigned dmask; /* mask for first level of distance codes */
+ code here; /* retrieved table entry */
+ unsigned op; /* code bits, operation, extra bits, or */
+ /* window position, window bytes to copy */
+ unsigned len; /* match length, unused bytes */
+ unsigned dist; /* match distance */
+ unsigned char FAR *from; /* where to copy match from */
+
+ /* copy state to local variables */
+ state = (struct inflate_state FAR *)strm->state;
+ in = strm->next_in;
+ last = in + (strm->avail_in - (INFLATE_FAST_MIN_INPUT - 1));
+ out = strm->next_out;
+ beg = out - (start - strm->avail_out);
+ end = out + (strm->avail_out - (INFLATE_FAST_MIN_OUTPUT - 1));
+ limit = out + strm->avail_out;
+#ifdef INFLATE_STRICT
+ dmax = state->dmax;
+#endif
+ wsize = state->wsize;
+ whave = state->whave;
+ wnext = (state->wnext == 0 && whave >= wsize) ? wsize : state->wnext;
+ window = state->window;
+ hold = state->hold;
+ bits = state->bits;
+ lcode = state->lencode;
+ dcode = state->distcode;
+ lmask = (1U << state->lenbits) - 1;
+ dmask = (1U << state->distbits) - 1;
+
+ /* decode literals and length/distances until end-of-block or not enough
+ input data or output space */
+ do {
+ if (bits < 15) {
+#ifdef INFLATE_CHUNK_READ_64LE
+ hold |= read64le(in) << bits;
+ in += 6;
+ bits += 48;
+#else
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+#endif
+ }
+ here = lcode[hold & lmask];
+ dolen:
+ op = (unsigned)(here.bits);
+ hold >>= op;
+ bits -= op;
+ op = (unsigned)(here.op);
+ if (op == 0) { /* literal */
+ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
+ "inflate: literal '%c'\n" :
+ "inflate: literal 0x%02x\n", here.val));
+ *out++ = (unsigned char)(here.val);
+ }
+ else if (op & 16) { /* length base */
+ len = (unsigned)(here.val);
+ op &= 15; /* number of extra bits */
+ if (op) {
+ if (bits < op) {
+#ifdef INFLATE_CHUNK_READ_64LE
+ hold |= read64le(in) << bits;
+ in += 6;
+ bits += 48;
+#else
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+#endif
+ }
+ len += (unsigned)hold & ((1U << op) - 1);
+ hold >>= op;
+ bits -= op;
+ }
+ Tracevv((stderr, "inflate: length %u\n", len));
+ if (bits < 15) {
+#ifdef INFLATE_CHUNK_READ_64LE
+ hold |= read64le(in) << bits;
+ in += 6;
+ bits += 48;
+#else
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+#endif
+ }
+ here = dcode[hold & dmask];
+ dodist:
+ op = (unsigned)(here.bits);
+ hold >>= op;
+ bits -= op;
+ op = (unsigned)(here.op);
+ if (op & 16) { /* distance base */
+ dist = (unsigned)(here.val);
+ op &= 15; /* number of extra bits */
+ if (bits < op) {
+#ifdef INFLATE_CHUNK_READ_64LE
+ hold |= read64le(in) << bits;
+ in += 6;
+ bits += 48;
+#else
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+ if (bits < op) {
+ hold += (unsigned long)(*in++) << bits;
+ bits += 8;
+ }
+#endif
+ }
+ dist += (unsigned)hold & ((1U << op) - 1);
+#ifdef INFLATE_STRICT
+ if (dist > dmax) {
+ strm->msg = (char *)"invalid distance too far back";
+ state->mode = BAD;
+ break;
+ }
+#endif
+ hold >>= op;
+ bits -= op;
+ Tracevv((stderr, "inflate: distance %u\n", dist));
+ op = (unsigned)(out - beg); /* max distance in output */
+ if (dist > op) { /* see if copy from window */
+ op = dist - op; /* distance back in window */
+ if (op > whave) {
+ if (state->sane) {
+ strm->msg =
+ (char *)"invalid distance too far back";
+ state->mode = BAD;
+ break;
+ }
+#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
+ if (len <= op - whave) {
+ do {
+ *out++ = 0;
+ } while (--len);
+ continue;
+ }
+ len -= op - whave;
+ do {
+ *out++ = 0;
+ } while (--op > whave);
+ if (op == 0) {
+ from = out - dist;
+ do {
+ *out++ = *from++;
+ } while (--len);
+ continue;
+ }
+#endif
+ }
+ from = window;
+ if (wnext >= op) { /* contiguous in window */
+ from += wnext - op;
+ }
+ else { /* wrap around window */
+ op -= wnext;
+ from += wsize - op;
+ if (op < len) { /* some from end of window */
+ len -= op;
+ out = chunkcopy_safe(out, from, op, limit);
+ from = window; /* more from start of window */
+ op = wnext;
+ /* This (rare) case can create a situation where
+ the first chunkcopy below must be checked.
+ */
+ }
+ }
+ if (op < len) { /* still need some from output */
+ out = chunkcopy_safe(out, from, op, limit);
+ len -= op;
+ /* When dist is small the amount of data that can be
+ copied from the window is also small, and progress
+ towards the dangerous end of the output buffer is
+ also small. This means that for trivial memsets and
+ for chunkunroll_relaxed() a safety check is
+ unnecessary. However, these conditions may not be
+ entered at all, and in that case it's possible that
+ the main copy is near the end.
+ */
+ out = chunkunroll_relaxed(out, &dist, &len);
+ out = chunkcopy_safe_ugly(out, dist, len, limit);
+ } else {
+ /* from points to window, so there is no risk of
+ overlapping pointers requiring memset-like behaviour
+ */
+ out = chunkcopy_safe(out, from, len, limit);
+ }
+ }
+ else {
+ /* Whole reference is in range of current output. No
+ range checks are necessary because we start with room
+ for at least 258 bytes of output, so unroll and roundoff
+ operations can write beyond `out+len` so long as they
+ stay within 258 bytes of `out`.
+ */
+ out = chunkcopy_lapped_relaxed(out, dist, len);
+ }
+ }
+ else if ((op & 64) == 0) { /* 2nd level distance code */
+ here = dcode[here.val + (hold & ((1U << op) - 1))];
+ goto dodist;
+ }
+ else {
+ strm->msg = (char *)"invalid distance code";
+ state->mode = BAD;
+ break;
+ }
+ }
+ else if ((op & 64) == 0) { /* 2nd level length code */
+ here = lcode[here.val + (hold & ((1U << op) - 1))];
+ goto dolen;
+ }
+ else if (op & 32) { /* end-of-block */
+ Tracevv((stderr, "inflate: end of block\n"));
+ state->mode = TYPE;
+ break;
+ }
+ else {
+ strm->msg = (char *)"invalid literal/length code";
+ state->mode = BAD;
+ break;
+ }
+ } while (in < last && out < end);
+
+ /* return unused bytes (on entry, bits < 8, so in won't go too far back) */
+ len = bits >> 3;
+ in -= len;
+ bits -= len << 3;
+ hold &= (1U << bits) - 1;
+
+ /* update state and return */
+ strm->next_in = in;
+ strm->next_out = out;
+ strm->avail_in = (unsigned)(in < last ?
+ (INFLATE_FAST_MIN_INPUT - 1) + (last - in) :
+ (INFLATE_FAST_MIN_INPUT - 1) - (in - last));
+ strm->avail_out = (unsigned)(out < end ?
+ (INFLATE_FAST_MIN_OUTPUT - 1) + (end - out) :
+ (INFLATE_FAST_MIN_OUTPUT - 1) - (out - end));
+ state->hold = hold;
+ state->bits = bits;
+
+ Assert((state->hold >> state->bits) == 0, "invalid input data state");
+ return;
+}
+
+/*
+ inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe):
+ - Using bit fields for code structure
+ - Different op definition to avoid & for extra bits (do & for table bits)
+ - Three separate decoding do-loops for direct, window, and wnext == 0
+ - Special case for distance > 1 copies to do overlapped load and store copy
+ - Explicit branch predictions (based on measured branch probabilities)
+ - Deferring match copy and interspersed it with decoding subsequent codes
+ - Swapping literal/length else
+ - Swapping window/direct else
+ - Larger unrolled copy loops (three is about right)
+ - Moving len -= 3 statement into middle of loop
+ */
+
+#endif /* !ASMINF */