summaryrefslogtreecommitdiffstats
path: root/sql/opt_range.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:00:34 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:00:34 +0000
commit3f619478f796eddbba6e39502fe941b285dd97b1 (patch)
treee2c7b5777f728320e5b5542b6213fd3591ba51e2 /sql/opt_range.cc
parentInitial commit. (diff)
downloadmariadb-3f619478f796eddbba6e39502fe941b285dd97b1.tar.xz
mariadb-3f619478f796eddbba6e39502fe941b285dd97b1.zip
Adding upstream version 1:10.11.6.upstream/1%10.11.6upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--sql/opt_range.cc16784
1 files changed, 16784 insertions, 0 deletions
diff --git a/sql/opt_range.cc b/sql/opt_range.cc
new file mode 100644
index 00000000..0ca8402f
--- /dev/null
+++ b/sql/opt_range.cc
@@ -0,0 +1,16784 @@
+/* Copyright (c) 2000, 2015, Oracle and/or its affiliates.
+ Copyright (c) 2008, 2021, MariaDB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
+
+/*
+ TODO:
+ Fix that MAYBE_KEY are stored in the tree so that we can detect use
+ of full hash keys for queries like:
+
+ select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
+
+*/
+
+/*
+ This file contains:
+
+ RangeAnalysisModule
+ A module that accepts a condition, index (or partitioning) description,
+ and builds lists of intervals (in index/partitioning space), such that
+ all possible records that match the condition are contained within the
+ intervals.
+ The entry point for the range analysis module is get_mm_tree() function.
+
+ The lists are returned in form of complicated structure of interlinked
+ SEL_TREE/SEL_IMERGE/SEL_ARG objects.
+ See quick_range_seq_next, find_used_partitions for examples of how to walk
+ this structure.
+ All direct "users" of this module are located within this file, too.
+
+
+ PartitionPruningModule
+ A module that accepts a partitioned table, condition, and finds which
+ partitions we will need to use in query execution. Search down for
+ "PartitionPruningModule" for description.
+ The module has single entry point - prune_partitions() function.
+
+
+ Range/index_merge/groupby-minmax optimizer module
+ A module that accepts a table, condition, and returns
+ - a QUICK_*_SELECT object that can be used to retrieve rows that match
+ the specified condition, or a "no records will match the condition"
+ statement.
+
+ The module entry points are
+ test_quick_select()
+ get_quick_select_for_ref()
+
+
+ Record retrieval code for range/index_merge/groupby-min-max.
+ Implementations of QUICK_*_SELECT classes.
+
+ KeyTupleFormat
+ ~~~~~~~~~~~~~~
+ The code in this file (and elsewhere) makes operations on key value tuples.
+ Those tuples are stored in the following format:
+
+ The tuple is a sequence of key part values. The length of key part value
+ depends only on its type (and not depends on the what value is stored)
+
+ KeyTuple: keypart1-data, keypart2-data, ...
+
+ The value of each keypart is stored in the following format:
+
+ keypart_data: [isnull_byte] keypart-value-bytes
+
+ If a keypart may have a NULL value (key_part->field->real_maybe_null() can
+ be used to check this), then the first byte is a NULL indicator with the
+ following valid values:
+ 1 - keypart has NULL value.
+ 0 - keypart has non-NULL value.
+
+ <questionable-statement> If isnull_byte==1 (NULL value), then the following
+ keypart->length bytes must be 0.
+ </questionable-statement>
+
+ keypart-value-bytes holds the value. Its format depends on the field type.
+ The length of keypart-value-bytes may or may not depend on the value being
+ stored. The default is that length is static and equal to
+ KEY_PART_INFO::length.
+
+ Key parts with (key_part_flag & HA_BLOB_PART) have length depending of the
+ value:
+
+ keypart-value-bytes: value_length value_bytes
+
+ The value_length part itself occupies HA_KEY_BLOB_LENGTH=2 bytes.
+
+ See key_copy() and key_restore() for code to move data between index tuple
+ and table record
+
+ CAUTION: the above description is only sergefp's understanding of the
+ subject and may omit some details.
+*/
+
+#ifdef USE_PRAGMA_IMPLEMENTATION
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include "mariadb.h"
+#include "sql_priv.h"
+#include "key.h" // is_key_used, key_copy, key_cmp, key_restore
+#include "sql_parse.h" // check_stack_overrun
+#include "sql_partition.h" // get_part_id_func, PARTITION_ITERATOR,
+ // struct partition_info, NOT_A_PARTITION_ID
+#include "records.h" // init_read_record, end_read_record
+#include <m_ctype.h>
+#include "sql_select.h"
+#include "sql_statistics.h"
+#include "uniques.h"
+#include "my_json_writer.h"
+
+#ifndef EXTRA_DEBUG
+#define test_rb_tree(A,B) {}
+#define test_use_count(A) {}
+#endif
+
+/*
+ Convert double value to #rows. Currently this does floor(), and we
+ might consider using round() instead.
+*/
+#define double2rows(x) ((ha_rows)(x))
+
+/*
+ this should be long enough so that any memcmp with a string that
+ starts from '\0' won't cross is_null_string boundaries, even
+ if the memcmp is optimized to compare 4- 8- or 16- bytes at once
+*/
+static uchar is_null_string[20]= {1,0};
+
+/**
+ Helper function to compare two SEL_ARG's.
+*/
+static bool all_same(const SEL_ARG *sa1, const SEL_ARG *sa2)
+{
+ if (sa1 == NULL && sa2 == NULL)
+ return true;
+ if ((sa1 != NULL && sa2 == NULL) || (sa1 == NULL && sa2 != NULL))
+ return false;
+ return sa1->all_same(sa2);
+}
+
+class SEL_IMERGE;
+
+#define CLONE_KEY1_MAYBE 1
+#define CLONE_KEY2_MAYBE 2
+#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
+
+
+/*
+ While objects of the class SEL_ARG represent ranges for indexes or
+ index infixes (including ranges for index prefixes and index suffixes),
+ objects of the class SEL_TREE represent AND/OR formulas of such ranges.
+ Currently an AND/OR formula represented by a SEL_TREE object can have
+ at most three levels:
+
+ <SEL_TREE formula> ::=
+ [ <SEL_RANGE_TREE formula> AND ]
+ [ <SEL_IMERGE formula> [ AND <SEL_IMERGE formula> ...] ]
+
+ <SEL_RANGE_TREE formula> ::=
+ <SEL_ARG formula> [ AND <SEL_ARG_formula> ... ]
+
+ <SEL_IMERGE formula> ::=
+ <SEL_RANGE_TREE formula> [ OR <SEL_RANGE_TREE formula> ]
+
+ As we can see from the above definitions:
+ - SEL_RANGE_TREE formula is a conjunction of SEL_ARG formulas
+ - SEL_IMERGE formula is a disjunction of SEL_RANGE_TREE formulas
+ - SEL_TREE formula is a conjunction of a SEL_RANGE_TREE formula
+ and SEL_IMERGE formulas.
+ It's required above that a SEL_TREE formula has at least one conjunct.
+
+ Usually we will consider normalized SEL_RANGE_TREE formulas where we use
+ TRUE as conjunct members for those indexes whose SEL_ARG trees are empty.
+
+ We will call an SEL_TREE object simply 'tree'.
+ The part of a tree that represents SEL_RANGE_TREE formula is called
+ 'range part' of the tree while the remaining part is called 'imerge part'.
+ If a tree contains only a range part then we call such a tree 'range tree'.
+ Components of a range tree that represent SEL_ARG formulas are called ranges.
+ If a tree does not contain any range part we call such a tree 'imerge tree'.
+ Components of the imerge part of a tree that represent SEL_IMERGE formula
+ are called imerges.
+
+ Usually we'll designate:
+ SEL_TREE formulas by T_1,...,T_k
+ SEL_ARG formulas by R_1,...,R_k
+ SEL_RANGE_TREE formulas by RT_1,...,RT_k
+ SEL_IMERGE formulas by M_1,...,M_k
+ Accordingly we'll use:
+ t_1,...,t_k - to designate trees representing T_1,...,T_k
+ r_1,...,r_k - to designate ranges representing R_1,...,R_k
+ rt_1,...,r_tk - to designate range trees representing RT_1,...,RT_k
+ m_1,...,m_k - to designate imerges representing M_1,...,M_k
+
+ SEL_TREE objects are usually built from WHERE conditions or
+ ON expressions.
+ A SEL_TREE object always represents an inference of the condition it is
+ built from. Therefore, if a row satisfies a SEL_TREE formula it also
+ satisfies the condition it is built from.
+
+ The following transformations of tree t representing SEL_TREE formula T
+ yield a new tree t1 thar represents an inference of T: T=>T1.
+ (1) remove any of SEL_ARG tree from the range part of t
+ (2) remove any imerge from the tree t
+ (3) remove any of SEL_ARG tree from any range tree contained
+ in any imerge of tree
+
+ Since the basic blocks of any SEL_TREE objects are ranges, SEL_TREE
+ objects in many cases can be effectively used to filter out a big part
+ of table rows that do not satisfy WHERE/IN conditions utilizing
+ only single or multiple range index scans.
+
+ A single range index scan is constructed for a range tree that contains
+ only one SEL_ARG object for an index or an index prefix.
+ An index intersection scan can be constructed for a range tree
+ that contains several SEL_ARG objects. Currently index intersection
+ scans are constructed only for single-point ranges.
+ An index merge scan is constructed for a imerge tree that contains only
+ one imerge. If range trees of this imerge contain only single-point merges
+ than a union of index intersections can be built.
+
+ Usually the tree built by the range optimizer for a query table contains
+ more than one range in the range part, and additionally may contain some
+ imerges in the imerge part. The range optimizer evaluates all of them one
+ by one and chooses the range or the imerge that provides the cheapest
+ single or multiple range index scan of the table. According to rules
+ (1)-(3) this scan always filter out only those rows that do not satisfy
+ the query conditions.
+
+ For any condition the SEL_TREE object for it is built in a bottom up
+ manner starting from the range trees for the predicates. The tree_and
+ function builds a tree for any conjunction of formulas from the trees
+ for its conjuncts. The tree_or function builds a tree for any disjunction
+ of formulas from the trees for its disjuncts.
+*/
+
+class SEL_TREE :public Sql_alloc
+{
+public:
+ /*
+ Starting an effort to document this field:
+ (for some i, keys[i]->type == SEL_ARG::IMPOSSIBLE) =>
+ (type == SEL_TREE::IMPOSSIBLE)
+ */
+ enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
+
+ SEL_TREE(enum Type type_arg, MEM_ROOT *root, size_t num_keys)
+ : type(type_arg), keys(root, num_keys), n_ror_scans(0)
+ {
+ keys_map.clear_all();
+ }
+
+ SEL_TREE(MEM_ROOT *root, size_t num_keys) :
+ type(KEY), keys(root, num_keys), n_ror_scans(0)
+ {
+ keys_map.clear_all();
+ }
+
+ SEL_TREE(SEL_TREE *arg, bool without_merges, RANGE_OPT_PARAM *param);
+ /*
+ Note: there may exist SEL_TREE objects with sel_tree->type=KEY and
+ keys[i]=0 for all i. (SergeyP: it is not clear whether there is any
+ merit in range analyzer functions (e.g. get_mm_parts) returning a
+ pointer to such SEL_TREE instead of NULL)
+ */
+ Mem_root_array<SEL_ARG *, true> keys;
+ key_map keys_map; /* bitmask of non-NULL elements in keys */
+
+ /*
+ Possible ways to read rows using index_merge. The list is non-empty only
+ if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
+ */
+ List<SEL_IMERGE> merges;
+
+ /* The members below are filled/used only after get_mm_tree is done */
+ key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */
+ uint n_ror_scans; /* number of set bits in ror_scans_map */
+
+ struct st_index_scan_info **index_scans; /* list of index scans */
+ struct st_index_scan_info **index_scans_end; /* last index scan */
+
+ struct st_ror_scan_info **ror_scans; /* list of ROR key scans */
+ struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
+ /* Note that #records for each key scan is stored in table->quick_rows */
+
+ bool without_ranges() { return keys_map.is_clear_all(); }
+ bool without_imerges() { return merges.is_empty(); }
+};
+
+
+class PARAM : public RANGE_OPT_PARAM
+{
+public:
+ ha_rows quick_rows[MAX_KEY];
+
+ /*
+ This will collect 'possible keys' based on the range optimization.
+
+ Queries with a JOIN object actually use ref optimizer (see add_key_field)
+ to collect possible_keys. This is used by single table UPDATE/DELETE.
+ */
+ key_map possible_keys;
+ longlong baseflag;
+ uint max_key_parts, range_count;
+
+ bool quick; // Don't calulate possible keys
+
+ uint fields_bitmap_size;
+ MY_BITMAP needed_fields; /* bitmask of fields needed by the query */
+ MY_BITMAP tmp_covered_fields;
+
+ key_map *needed_reg; /* ptr to SQL_SELECT::needed_reg */
+
+ uint *imerge_cost_buff; /* buffer for index_merge cost estimates */
+ uint imerge_cost_buff_size; /* size of the buffer */
+
+ /* Number of ranges in the last checked tree->key */
+ uint n_ranges;
+ uint8 first_null_comp; /* first null component if any, 0 - otherwise */
+};
+
+
+class TABLE_READ_PLAN;
+ class TRP_RANGE;
+ class TRP_ROR_INTERSECT;
+ class TRP_ROR_UNION;
+ class TRP_INDEX_INTERSECT;
+ class TRP_INDEX_MERGE;
+ class TRP_GROUP_MIN_MAX;
+
+struct st_index_scan_info;
+struct st_ror_scan_info;
+
+static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
+static ha_rows check_quick_select(PARAM *param, uint idx, bool index_only,
+ SEL_ARG *tree, bool update_tbl_stats,
+ uint *mrr_flags, uint *bufsize,
+ Cost_estimate *cost, bool *is_ror_scan);
+
+QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
+ SEL_ARG *key_tree, uint mrr_flags,
+ uint mrr_buf_size, MEM_ROOT *alloc);
+static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
+ bool index_read_must_be_used,
+ bool for_range_access,
+ double read_time);
+static
+TRP_INDEX_INTERSECT *get_best_index_intersect(PARAM *param, SEL_TREE *tree,
+ double read_time);
+static
+TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
+ double read_time,
+ bool *are_all_covering);
+static
+TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
+ SEL_TREE *tree,
+ double read_time);
+static
+TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
+ double read_time, bool named_trace= false);
+static
+TABLE_READ_PLAN *merge_same_index_scans(PARAM *param, SEL_IMERGE *imerge,
+ TRP_INDEX_MERGE *imerge_trp,
+ double read_time);
+static
+TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree,
+ double read_time);
+
+#ifndef DBUG_OFF
+static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
+ const char *msg);
+static void print_ror_scans_arr(TABLE *table, const char *msg,
+ struct st_ror_scan_info **start,
+ struct st_ror_scan_info **end);
+static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
+#endif
+
+static SEL_TREE *tree_and(RANGE_OPT_PARAM *param,
+ SEL_TREE *tree1, SEL_TREE *tree2);
+static SEL_TREE *tree_or(RANGE_OPT_PARAM *param,
+ SEL_TREE *tree1,SEL_TREE *tree2);
+static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
+static SEL_ARG *key_or(RANGE_OPT_PARAM *param,
+ SEL_ARG *key1, SEL_ARG *key2);
+static SEL_ARG *key_and(RANGE_OPT_PARAM *param,
+ SEL_ARG *key1, SEL_ARG *key2,
+ uint clone_flag);
+static SEL_ARG *key_or_with_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *key1, SEL_ARG *key2);
+static SEL_ARG *key_and_with_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *key1, SEL_ARG *key2,
+ uint clone_flag);
+static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
+bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
+ SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
+ uchar *max_key,uint max_key_flag);
+static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
+
+SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
+static bool null_part_in_key(KEY_PART *key_part, const uchar *key,
+ uint length);
+static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
+
+static
+SEL_ARG *enforce_sel_arg_weight_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *sel_arg);
+static
+bool sel_arg_and_weight_heuristic(RANGE_OPT_PARAM *param, SEL_ARG *key1,
+ SEL_ARG *key2);
+
+#include "opt_range_mrr.cc"
+
+static bool sel_trees_have_common_keys(SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map *common_keys);
+static void eliminate_single_tree_imerges(RANGE_OPT_PARAM *param,
+ SEL_TREE *tree);
+
+static bool sel_trees_can_be_ored(RANGE_OPT_PARAM* param,
+ SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map *common_keys);
+static bool sel_trees_must_be_ored(RANGE_OPT_PARAM* param,
+ SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map common_keys);
+static int and_range_trees(RANGE_OPT_PARAM *param,
+ SEL_TREE *tree1, SEL_TREE *tree2,
+ SEL_TREE *result);
+static bool remove_nonrange_trees(PARAM *param, SEL_TREE *tree);
+static void restore_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree,
+ SEL_ARG **backup);
+static void print_key_value(String *out, const KEY_PART_INFO *key_part,
+ const uchar* key, uint length);
+static void print_keyparts_name(String *out, const KEY_PART_INFO *key_part,
+ uint n_keypart, key_part_map keypart_map);
+
+static void trace_ranges(Json_writer_array *range_trace,
+ PARAM *param, uint idx,
+ SEL_ARG *keypart,
+ const KEY_PART_INFO *key_parts);
+
+static
+void print_range(String *out, const KEY_PART_INFO *key_part,
+ KEY_MULTI_RANGE *range, uint n_key_parts);
+
+static
+void print_range_for_non_indexed_field(String *out, Field *field,
+ KEY_MULTI_RANGE *range);
+
+static void print_min_range_operator(String *out, const ha_rkey_function flag);
+static void print_max_range_operator(String *out, const ha_rkey_function flag);
+
+static bool is_field_an_unique_index(Field *field);
+
+/*
+ SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
+ a condition in the following form:
+ (t_1||t_2||...||t_N) && (next)
+
+ where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
+ (t_i,t_j) contains SEL_ARGS for the same index.
+
+ SEL_TREE contained in SEL_IMERGE always has merges=NULL.
+
+ This class relies on memory manager to do the cleanup.
+*/
+
+class SEL_IMERGE : public Sql_alloc
+{
+ enum { PREALLOCED_TREES= 10};
+public:
+ SEL_TREE *trees_prealloced[PREALLOCED_TREES];
+ SEL_TREE **trees; /* trees used to do index_merge */
+ SEL_TREE **trees_next; /* last of these trees */
+ SEL_TREE **trees_end; /* end of allocated space */
+
+ SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */
+
+ SEL_IMERGE() :
+ trees(&trees_prealloced[0]),
+ trees_next(trees),
+ trees_end(trees + PREALLOCED_TREES)
+ {}
+ SEL_IMERGE (SEL_IMERGE *arg, uint cnt, RANGE_OPT_PARAM *param);
+ int or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree);
+ bool have_common_keys(RANGE_OPT_PARAM *param, SEL_TREE *tree);
+ int and_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree,
+ SEL_IMERGE *new_imerge);
+ int or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
+ uint n_init_trees,
+ SEL_TREE *new_tree,
+ bool is_first_check_pass,
+ bool *is_last_check_pass);
+ int or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
+ uint n_init_trees,
+ SEL_IMERGE* imerge,
+ bool is_first_check_pass,
+ bool *is_last_check_pass);
+};
+
+
+/*
+ Add a range tree to the range trees of this imerge
+
+ SYNOPSIS
+ or_sel_tree()
+ param Context info for the operation
+ tree SEL_TREE to add to this imerge
+
+ DESCRIPTION
+ The function just adds the range tree 'tree' to the range trees
+ of this imerge.
+
+ RETURN
+ 0 if the operation is success
+ -1 if the function runs out memory
+*/
+
+int SEL_IMERGE::or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree)
+{
+ if (trees_next == trees_end)
+ {
+ const int realloc_ratio= 2; /* Double size for next round */
+ size_t old_elements= (trees_end - trees);
+ size_t old_size= sizeof(SEL_TREE**) * old_elements;
+ size_t new_size= old_size * realloc_ratio;
+ SEL_TREE **new_trees;
+ if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
+ return -1;
+ memcpy(new_trees, trees, old_size);
+ trees= new_trees;
+ trees_next= trees + old_elements;
+ trees_end= trees + old_elements * realloc_ratio;
+ }
+ *(trees_next++)= tree;
+ return 0;
+}
+
+
+/*
+ Check if any of the range trees of this imerge intersects with a given tree
+
+ SYNOPSIS
+ have_common_keys()
+ param Context info for the function
+ tree SEL_TREE intersection with the imerge range trees is checked for
+
+ DESCRIPTION
+ The function checks whether there is any range tree rt_i in this imerge
+ such that there are some indexes for which ranges are defined in both
+ rt_i and the range part of the SEL_TREE tree.
+ To check this the function calls the function sel_trees_have_common_keys.
+
+ RETURN
+ TRUE if there are such range trees in this imerge
+ FALSE otherwise
+*/
+
+bool SEL_IMERGE::have_common_keys(RANGE_OPT_PARAM *param, SEL_TREE *tree)
+{
+ for (SEL_TREE** or_tree= trees, **bound= trees_next;
+ or_tree != bound; or_tree++)
+ {
+ key_map common_keys;
+ if (sel_trees_have_common_keys(*or_tree, tree, &common_keys))
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/*
+ Perform AND operation for this imerge and the range part of a tree
+
+ SYNOPSIS
+ and_sel_tree()
+ param Context info for the operation
+ tree SEL_TREE for the second operand of the operation
+ new_imerge OUT imerge for the result of the operation
+
+ DESCRIPTION
+ This function performs AND operation for this imerge m and the
+ range part of the SEL_TREE tree rt. In other words the function
+ pushes rt into this imerge. The resulting imerge is returned in
+ the parameter new_imerge.
+ If this imerge m represent the formula
+ RT_1 OR ... OR RT_k
+ then the resulting imerge of the function represents the formula
+ (RT_1 AND RT) OR ... OR (RT_k AND RT)
+ The function calls the function and_range_trees to construct the
+ range tree representing (RT_i AND RT).
+
+ NOTE
+ The function may return an empty imerge without any range trees.
+ This happens when each call of and_range_trees returns an
+ impossible range tree (SEL_TREE::IMPOSSIBLE).
+ Example: (key1 < 2 AND key2 > 10) AND (key1 > 4 OR key2 < 6).
+
+ RETURN
+ 0 if the operation is a success
+ -1 otherwise: there is not enough memory to perform the operation
+*/
+
+int SEL_IMERGE::and_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree,
+ SEL_IMERGE *new_imerge)
+{
+ for (SEL_TREE** or_tree= trees; or_tree != trees_next; or_tree++)
+ {
+ SEL_TREE *res_or_tree= 0;
+ SEL_TREE *and_tree= 0;
+ if (!(res_or_tree= new SEL_TREE(param->mem_root, param->keys)) ||
+ !(and_tree= new SEL_TREE(tree, TRUE, param)))
+ return (-1);
+ if (!and_range_trees(param, *or_tree, and_tree, res_or_tree))
+ {
+ if (new_imerge->or_sel_tree(param, res_or_tree))
+ return (-1);
+ }
+ }
+ return 0;
+}
+
+
+/*
+ Perform OR operation on this imerge and the range part of a tree
+
+ SYNOPSIS
+ or_sel_tree_with_checks()
+ param Context info for the operation
+ n_trees Number of trees in this imerge to check for oring
+ tree SEL_TREE whose range part is to be ored
+ is_first_check_pass <=> the first call of the function for this imerge
+ is_last_check_pass OUT <=> no more calls of the function for this imerge
+
+ DESCRIPTION
+ The function performs OR operation on this imerge m and the range part
+ of the SEL_TREE tree rt. It always replaces this imerge with the result
+ of the operation.
+
+ The operation can be performed in two different modes: with
+ is_first_check_pass==TRUE and is_first_check_pass==FALSE, transforming
+ this imerge differently.
+
+ Given this imerge represents the formula
+ RT_1 OR ... OR RT_k:
+
+ 1. In the first mode, when is_first_check_pass==TRUE :
+ 1.1. If rt must be ored(see the function sel_trees_must_be_ored) with
+ some rt_j (there may be only one such range tree in the imerge)
+ then the function produces an imerge representing the formula
+ RT_1 OR ... OR (RT_j OR RT) OR ... OR RT_k,
+ where the tree for (RT_j OR RT) is built by oring the pairs
+ of SEL_ARG trees for the corresponding indexes
+ 1.2. Otherwise the function produces the imerge representing the formula:
+ RT_1 OR ... OR RT_k OR RT.
+
+ 2. In the second mode, when is_first_check_pass==FALSE :
+ 2.1. For each rt_j in the imerge that can be ored (see the function
+ sel_trees_can_be_ored) with rt the function replaces rt_j for a
+ range tree such that for each index for which ranges are defined
+ in both in rt_j and rt the tree contains the result of oring of
+ these ranges.
+ 2.2. In other cases the function does not produce any imerge.
+
+ When is_first_check==TRUE the function returns FALSE in the parameter
+ is_last_check_pass if there is no rt_j such that rt_j can be ored with rt,
+ but, at the same time, it's not true that rt_j must be ored with rt.
+ When is_first_check==FALSE the function always returns FALSE in the
+ parameter is_last_check_pass.
+
+ RETURN
+ 1 The result of oring of rt_j and rt that must be ored returns the
+ the range tree with type==SEL_TREE::ALWAYS
+ (in this case the imerge m should be discarded)
+ -1 The function runs out of memory
+ 0 in all other cases
+*/
+
+int SEL_IMERGE::or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
+ uint n_trees,
+ SEL_TREE *tree,
+ bool is_first_check_pass,
+ bool *is_last_check_pass)
+{
+ bool was_ored= FALSE;
+ *is_last_check_pass= is_first_check_pass;
+ SEL_TREE** or_tree= trees;
+ for (uint i= 0; i < n_trees; i++, or_tree++)
+ {
+ SEL_TREE *result= 0;
+ key_map result_keys;
+ key_map ored_keys;
+ if (sel_trees_can_be_ored(param, *or_tree, tree, &ored_keys))
+ {
+ bool must_be_ored= sel_trees_must_be_ored(param, *or_tree, tree,
+ ored_keys);
+ if (must_be_ored || !is_first_check_pass)
+ {
+ result_keys.clear_all();
+ result= *or_tree;
+ for (uint key_no= 0; key_no < param->keys; key_no++)
+ {
+ if (!ored_keys.is_set(key_no))
+ {
+ result->keys[key_no]= 0;
+ continue;
+ }
+ SEL_ARG *key1= (*or_tree)->keys[key_no];
+ SEL_ARG *key2= tree->keys[key_no];
+ key2->incr_refs();
+ if ((result->keys[key_no]= key_or_with_limit(param, key_no, key1,
+ key2)))
+ {
+
+ result_keys.set_bit(key_no);
+#ifdef EXTRA_DEBUG
+ if (param->alloced_sel_args <
+ param->thd->variables.optimizer_max_sel_args)
+ {
+ key1= result->keys[key_no];
+ (key1)->test_use_count(key1);
+ }
+#endif
+ }
+ }
+ }
+ else if(is_first_check_pass)
+ *is_last_check_pass= FALSE;
+ }
+
+ if (result)
+ {
+ result->keys_map= result_keys;
+ if (result_keys.is_clear_all())
+ result->type= SEL_TREE::ALWAYS;
+ if ((result->type == SEL_TREE::MAYBE) ||
+ (result->type == SEL_TREE::ALWAYS))
+ return 1;
+ /* SEL_TREE::IMPOSSIBLE is impossible here */
+ *or_tree= result;
+ was_ored= TRUE;
+ }
+ }
+ if (was_ored)
+ return 0;
+
+ if (is_first_check_pass && !*is_last_check_pass &&
+ !(tree= new SEL_TREE(tree, FALSE, param)))
+ return (-1);
+ return or_sel_tree(param, tree);
+}
+
+
+/*
+ Perform OR operation on this imerge and and another imerge
+
+ SYNOPSIS
+ or_sel_imerge_with_checks()
+ param Context info for the operation
+ n_trees Number of trees in this imerge to check for oring
+ imerge The second operand of the operation
+ is_first_check_pass <=> the first call of the function for this imerge
+ is_last_check_pass OUT <=> no more calls of the function for this imerge
+
+ DESCRIPTION
+ For each range tree rt from 'imerge' the function calls the method
+ SEL_IMERGE::or_sel_tree_with_checks that performs OR operation on this
+ SEL_IMERGE object m and the tree rt. The mode of the operation is
+ specified by the parameter is_first_check_pass. Each call of
+ SEL_IMERGE::or_sel_tree_with_checks transforms this SEL_IMERGE object m.
+ The function returns FALSE in the prameter is_last_check_pass if
+ at least one of the calls of SEL_IMERGE::or_sel_tree_with_checks
+ returns FALSE as the value of its last parameter.
+
+ RETURN
+ 1 One of the calls of SEL_IMERGE::or_sel_tree_with_checks returns 1.
+ (in this case the imerge m should be discarded)
+ -1 The function runs out of memory
+ 0 in all other cases
+*/
+
+int SEL_IMERGE::or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
+ uint n_trees,
+ SEL_IMERGE* imerge,
+ bool is_first_check_pass,
+ bool *is_last_check_pass)
+{
+ *is_last_check_pass= TRUE;
+ SEL_TREE** tree= imerge->trees;
+ SEL_TREE** tree_end= imerge->trees_next;
+ for ( ; tree < tree_end; tree++)
+ {
+ uint rc;
+ bool is_last= TRUE;
+ rc= or_sel_tree_with_checks(param, n_trees, *tree,
+ is_first_check_pass, &is_last);
+ if (!is_last)
+ *is_last_check_pass= FALSE;
+ if (rc)
+ return rc;
+ }
+ return 0;
+}
+
+
+/*
+ Copy constructor for SEL_TREE objects
+
+ SYNOPSIS
+ SEL_TREE
+ arg The source tree for the constructor
+ without_merges <=> only the range part of the tree arg is copied
+ param Context info for the operation
+
+ DESCRIPTION
+ The constructor creates a full copy of the SEL_TREE arg if
+ the prameter without_merges==FALSE. Otherwise a tree is created
+ that contains the copy only of the range part of the tree arg.
+*/
+
+SEL_TREE::SEL_TREE(SEL_TREE *arg, bool without_merges,
+ RANGE_OPT_PARAM *param)
+ : Sql_alloc(),
+ keys(param->mem_root, param->keys),
+ n_ror_scans(0)
+{
+ keys_map= arg->keys_map;
+ type= arg->type;
+ MEM_ROOT *mem_root;
+
+ for (uint idx= 0; idx < param->keys; idx++)
+ {
+ if ((keys[idx]= arg->keys[idx]))
+ keys[idx]->incr_refs_all();
+ }
+
+ if (without_merges)
+ return;
+
+ mem_root= current_thd->mem_root;
+ List_iterator<SEL_IMERGE> it(arg->merges);
+ for (SEL_IMERGE *el= it++; el; el= it++)
+ {
+ SEL_IMERGE *merge= new (mem_root) SEL_IMERGE(el, 0, param);
+ if (!merge || merge->trees == merge->trees_next)
+ {
+ merges.empty();
+ return;
+ }
+ merges.push_back(merge, mem_root);
+ }
+}
+
+
+/*
+ Copy constructor for SEL_IMERGE objects
+
+ SYNOPSIS
+ SEL_IMERGE
+ arg The source imerge for the constructor
+ cnt How many trees from arg are to be copied
+ param Context info for the operation
+
+ DESCRIPTION
+ The cnt==0 then the constructor creates a full copy of the
+ imerge arg. Otherwise only the first cnt trees of the imerge
+ are copied.
+*/
+
+SEL_IMERGE::SEL_IMERGE(SEL_IMERGE *arg, uint cnt,
+ RANGE_OPT_PARAM *param) : Sql_alloc()
+{
+ size_t elements= (arg->trees_end - arg->trees);
+ if (elements > PREALLOCED_TREES)
+ {
+ size_t size= elements * sizeof (SEL_TREE **);
+ if (!(trees= (SEL_TREE **)alloc_root(param->mem_root, size)))
+ goto mem_err;
+ }
+ else
+ trees= &trees_prealloced[0];
+
+ trees_next= trees + (cnt ? cnt : arg->trees_next-arg->trees);
+ trees_end= trees + elements;
+
+ for (SEL_TREE **tree= trees, **arg_tree= arg->trees; tree < trees_next;
+ tree++, arg_tree++)
+ {
+ if (!(*tree= new SEL_TREE(*arg_tree, TRUE, param)))
+ goto mem_err;
+ }
+
+ return;
+
+mem_err:
+ trees= &trees_prealloced[0];
+ trees_next= trees;
+ trees_end= trees;
+}
+
+
+/*
+ Perform AND operation on two imerge lists
+
+ SYNOPSIS
+ imerge_list_and_list()
+ param Context info for the operation
+ im1 The first imerge list for the operation
+ im2 The second imerge list for the operation
+
+ DESCRIPTION
+ The function just appends the imerge list im2 to the imerge list im1
+
+ RETURN VALUE
+ none
+*/
+
+inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
+{
+ im1->append(im2);
+}
+
+
+/*
+ Perform OR operation on two imerge lists
+
+ SYNOPSIS
+ imerge_list_or_list()
+ param Context info for the operation
+ im1 The first imerge list for the operation
+ im2 The second imerge list for the operation
+
+ DESCRIPTION
+ Assuming that the first imerge list represents the formula
+ F1= M1_1 AND ... AND M1_k1
+ while the second imerge list represents the formula
+ F2= M2_1 AND ... AND M2_k2,
+ where M1_i= RT1_i_1 OR ... OR RT1_i_l1i (i in [1..k1])
+ and M2_i = RT2_i_1 OR ... OR RT2_i_l2i (i in [1..k2]),
+ the function builds a list of imerges for some formula that can be
+ inferred from the formula (F1 OR F2).
+
+ More exactly the function builds imerges for the formula (M1_1 OR M2_1).
+ Note that
+ (F1 OR F2) = (M1_1 AND ... AND M1_k1) OR (M2_1 AND ... AND M2_k2) =
+ AND (M1_i OR M2_j) (i in [1..k1], j in [1..k2]) =>
+ M1_1 OR M2_1.
+ So (M1_1 OR M2_1) is indeed an inference formula for (F1 OR F2).
+
+ To build imerges for the formula (M1_1 OR M2_1) the function invokes,
+ possibly twice, the method SEL_IMERGE::or_sel_imerge_with_checks
+ for the imerge m1_1.
+ At its first invocation the method SEL_IMERGE::or_sel_imerge_with_checks
+ performs OR operation on the imerge m1_1 and the range tree rt2_1_1 by
+ calling SEL_IMERGE::or_sel_tree_with_checks with is_first_pass_check==TRUE.
+ The resulting imerge of the operation is ored with the next range tree of
+ the imerge m2_1. This oring continues until the last range tree from
+ m2_1 has been ored.
+ At its second invocation the method SEL_IMERGE::or_sel_imerge_with_checks
+ performs the same sequence of OR operations, but now calling
+ SEL_IMERGE::or_sel_tree_with_checks with is_first_pass_check==FALSE.
+
+ The imerges that the operation produces replace those in the list im1
+
+ RETURN
+ 0 if the operation is a success
+ -1 if the function has run out of memory
+*/
+
+int imerge_list_or_list(RANGE_OPT_PARAM *param,
+ List<SEL_IMERGE> *im1,
+ List<SEL_IMERGE> *im2)
+{
+
+ uint rc;
+ bool is_last_check_pass= FALSE;
+ SEL_IMERGE *imerge= im1->head();
+ uint elems= (uint)(imerge->trees_next-imerge->trees);
+ MEM_ROOT *mem_root= current_thd->mem_root;
+
+ im1->empty();
+ im1->push_back(imerge, mem_root);
+
+ rc= imerge->or_sel_imerge_with_checks(param, elems, im2->head(),
+ TRUE, &is_last_check_pass);
+ if (rc)
+ {
+ if (rc == 1)
+ {
+ im1->empty();
+ rc= 0;
+ }
+ return rc;
+ }
+
+ if (!is_last_check_pass)
+ {
+ SEL_IMERGE* new_imerge= new (mem_root) SEL_IMERGE(imerge, elems, param);
+ if (new_imerge)
+ {
+ is_last_check_pass= TRUE;
+ rc= new_imerge->or_sel_imerge_with_checks(param, elems, im2->head(),
+ FALSE, &is_last_check_pass);
+ if (!rc)
+ im1->push_back(new_imerge, mem_root);
+ }
+ }
+ return rc;
+}
+
+
+/*
+ Perform OR operation for each imerge from a list and the range part of a tree
+
+ SYNOPSIS
+ imerge_list_or_tree()
+ param Context info for the operation
+ merges The list of imerges to be ored with the range part of tree
+ tree SEL_TREE whose range part is to be ored with the imerges
+
+ DESCRIPTION
+ For each imerge mi from the list 'merges' the function performes OR
+ operation with mi and the range part of 'tree' rt, producing one or
+ two imerges.
+
+ Given the merge mi represent the formula RTi_1 OR ... OR RTi_k,
+ the function forms the merges by the following rules:
+
+ 1. If rt cannot be ored with any of the trees rti the function just
+ produces an imerge that represents the formula
+ RTi_1 OR ... RTi_k OR RT.
+ 2. If there exist a tree rtj that must be ored with rt the function
+ produces an imerge the represents the formula
+ RTi_1 OR ... OR (RTi_j OR RT) OR ... OR RTi_k,
+ where the range tree for (RTi_j OR RT) is constructed by oring the
+ SEL_ARG trees that must be ored.
+ 3. For each rti_j that can be ored with rt the function produces
+ the new tree rti_j' and substitutes rti_j for this new range tree.
+
+ In any case the function removes mi from the list and then adds all
+ produced imerges.
+
+ To build imerges by rules 1-3 the function calls the method
+ SEL_IMERGE::or_sel_tree_with_checks, possibly twice. With the first
+ call it passes TRUE for the third parameter of the function.
+ At this first call imerges by rules 1-2 are built. If the call
+ returns FALSE as the return value of its fourth parameter then the
+ function are called for the second time. At this call the imerge
+ of rule 3 is produced.
+
+ If a call of SEL_IMERGE::or_sel_tree_with_checks returns 1 then
+ then it means that the produced tree contains an always true
+ range tree and the whole imerge can be discarded.
+
+ RETURN
+ 1 if no imerges are produced
+ 0 otherwise
+*/
+
+static
+int imerge_list_or_tree(RANGE_OPT_PARAM *param,
+ List<SEL_IMERGE> *merges,
+ SEL_TREE *tree)
+{
+ SEL_IMERGE *imerge;
+ List<SEL_IMERGE> additional_merges;
+ List_iterator<SEL_IMERGE> it(*merges);
+ MEM_ROOT *mem_root= current_thd->mem_root;
+
+ while ((imerge= it++))
+ {
+ bool is_last_check_pass;
+ int rc= 0;
+ int rc1= 0;
+ SEL_TREE *or_tree= new (mem_root) SEL_TREE (tree, FALSE, param);
+ if (or_tree)
+ {
+ uint elems= (uint)(imerge->trees_next-imerge->trees);
+ rc= imerge->or_sel_tree_with_checks(param, elems, or_tree,
+ TRUE, &is_last_check_pass);
+ if (!is_last_check_pass)
+ {
+ SEL_IMERGE *new_imerge= new (mem_root) SEL_IMERGE(imerge, elems,
+ param);
+ if (new_imerge)
+ {
+ rc1= new_imerge->or_sel_tree_with_checks(param, elems, or_tree,
+ FALSE, &is_last_check_pass);
+ if (!rc1)
+ additional_merges.push_back(new_imerge, mem_root);
+ }
+ }
+ }
+ if (rc || rc1 || !or_tree)
+ it.remove();
+ }
+
+ merges->append(&additional_merges);
+ return merges->is_empty();
+}
+
+
+/*
+ Perform pushdown operation of the range part of a tree into given imerges
+
+ SYNOPSIS
+ imerge_list_and_tree()
+ param Context info for the operation
+ merges IN/OUT List of imerges to push the range part of 'tree' into
+ tree SEL_TREE whose range part is to be pushed into imerges
+ replace if the pushdow operation for a imerge is a success
+ then the original imerge is replaced for the result
+ of the pushdown
+
+ DESCRIPTION
+ For each imerge from the list merges the function pushes the range part
+ rt of 'tree' into the imerge.
+ More exactly if the imerge mi from the list represents the formula
+ RTi_1 OR ... OR RTi_k
+ the function bulds a new imerge that represents the formula
+ (RTi_1 AND RT) OR ... OR (RTi_k AND RT)
+ and adds this imerge to the list merges.
+ To perform this pushdown operation the function calls the method
+ SEL_IMERGE::and_sel_tree.
+ For any imerge mi the new imerge is not created if for each pair of
+ trees rti_j and rt the intersection of the indexes with defined ranges
+ is empty.
+ If the result of the pushdown operation for the imerge mi returns an
+ imerge with no trees then then not only nothing is added to the list
+ merges but mi itself is removed from the list.
+
+ TODO
+ Optimize the code in order to not create new SEL_IMERGE and new SER_TREE
+ objects when 'replace' is TRUE. (Currently this function is called always
+ with this parameter equal to TRUE.)
+
+ RETURN
+ 1 if no imerges are left in the list merges
+ 0 otherwise
+*/
+
+static
+int imerge_list_and_tree(RANGE_OPT_PARAM *param,
+ List<SEL_IMERGE> *merges,
+ SEL_TREE *tree,
+ bool replace)
+{
+ SEL_IMERGE *imerge;
+ SEL_IMERGE *new_imerge= NULL;
+ List<SEL_IMERGE> new_merges;
+ List_iterator<SEL_IMERGE> it(*merges);
+ MEM_ROOT *mem_root= current_thd->mem_root;
+
+ while ((imerge= it++))
+ {
+ if (!new_imerge)
+ new_imerge= new (mem_root) SEL_IMERGE();
+ if (imerge->have_common_keys(param, tree) &&
+ new_imerge && !imerge->and_sel_tree(param, tree, new_imerge))
+ {
+ if (new_imerge->trees == new_imerge->trees_next)
+ it.remove();
+ else
+ {
+ if (replace)
+ it.replace(new_imerge);
+ else
+ new_merges.push_back(new_imerge, mem_root);
+ new_imerge= NULL;
+ }
+ }
+ }
+ imerge_list_and_list(&new_merges, merges);
+ *merges= new_merges;
+ return merges->is_empty();
+}
+
+
+/***************************************************************************
+** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
+***************************************************************************/
+
+ /* make a select from mysql info
+ Error is set as following:
+ 0 = ok
+ 1 = Got some error (out of memory?)
+ */
+
+SQL_SELECT *make_select(TABLE *head, table_map const_tables,
+ table_map read_tables, COND *conds,
+ SORT_INFO *filesort,
+ bool allow_null_cond,
+ int *error)
+{
+ SQL_SELECT *select;
+ DBUG_ENTER("make_select");
+
+ *error=0;
+
+ if (!conds && !allow_null_cond)
+ DBUG_RETURN(0);
+ if (!(select= new (head->in_use->mem_root) SQL_SELECT))
+ {
+ *error= 1; // out of memory
+ DBUG_RETURN(0); /* purecov: inspected */
+ }
+ select->read_tables=read_tables;
+ select->const_tables=const_tables;
+ select->head=head;
+ select->cond= conds;
+
+ if (filesort && my_b_inited(&filesort->io_cache))
+ {
+ /*
+ Hijack the filesort io_cache for make_select
+ SQL_SELECT will be responsible for ensuring that it's properly freed.
+ */
+ select->file= filesort->io_cache;
+ select->records=(ha_rows) (select->file.end_of_file/
+ head->file->ref_length);
+ my_b_clear(&filesort->io_cache);
+ }
+ DBUG_RETURN(select);
+}
+
+
+SQL_SELECT::SQL_SELECT() :quick(0),cond(0),pre_idx_push_select_cond(NULL),free_cond(0)
+{
+ quick_keys.clear_all(); needed_reg.clear_all();
+ my_b_clear(&file);
+}
+
+
+void SQL_SELECT::cleanup()
+{
+ delete quick;
+ quick= 0;
+ if (free_cond)
+ {
+ free_cond=0;
+ delete cond;
+ cond= 0;
+ }
+ close_cached_file(&file);
+}
+
+
+SQL_SELECT::~SQL_SELECT()
+{
+ cleanup();
+}
+
+#undef index // Fix for Unixware 7
+
+QUICK_SELECT_I::QUICK_SELECT_I()
+ :max_used_key_length(0),
+ used_key_parts(0)
+{}
+
+QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
+ bool no_alloc, MEM_ROOT *parent_alloc,
+ bool *create_error)
+ :thd(thd), no_alloc(no_alloc), parent_alloc(parent_alloc),
+ free_file(0),cur_range(NULL),last_range(0),dont_free(0)
+{
+ my_bitmap_map *bitmap;
+ DBUG_ENTER("QUICK_RANGE_SELECT::QUICK_RANGE_SELECT");
+
+ in_ror_merged_scan= 0;
+ index= key_nr;
+ head= table;
+ key_part_info= head->key_info[index].key_part;
+
+ /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
+ mrr_buf_size= thd->variables.mrr_buff_size;
+ mrr_buf_desc= NULL;
+
+ if (!no_alloc && !parent_alloc)
+ {
+ // Allocates everything through the internal memroot
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ thd->mem_root= &alloc;
+ }
+ else
+ bzero((char*) &alloc,sizeof(alloc));
+ file= head->file;
+ record= head->record[0];
+
+ my_init_dynamic_array2(PSI_INSTRUMENT_ME, &ranges, sizeof(QUICK_RANGE*),
+ thd->alloc(sizeof(QUICK_RANGE*) * 16), 16, 16,
+ MYF(MY_THREAD_SPECIFIC));
+
+ /* Allocate a bitmap for used columns */
+ if (!(bitmap= (my_bitmap_map*) thd->alloc(head->s->column_bitmap_size)))
+ {
+ column_bitmap.bitmap= 0;
+ *create_error= 1;
+ }
+ else
+ my_bitmap_init(&column_bitmap, bitmap, head->s->fields);
+ DBUG_VOID_RETURN;
+}
+
+
+void QUICK_RANGE_SELECT::need_sorted_output()
+{
+ if (!(mrr_flags & HA_MRR_SORTED))
+ {
+ /*
+ Native implementation can't produce sorted output. We'll have to
+ switch to default
+ */
+ mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
+ }
+ mrr_flags |= HA_MRR_SORTED;
+}
+
+
+int QUICK_RANGE_SELECT::init()
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT::init");
+
+ if (file->inited != handler::NONE)
+ file->ha_index_or_rnd_end();
+ DBUG_RETURN(FALSE);
+}
+
+
+void QUICK_RANGE_SELECT::range_end()
+{
+ if (file->inited != handler::NONE)
+ file->ha_index_or_rnd_end();
+}
+
+
+QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
+ if (!dont_free)
+ {
+ /* file is NULL for CPK scan on covering ROR-intersection */
+ if (file)
+ {
+ range_end();
+ file->ha_end_keyread();
+ if (free_file)
+ {
+ DBUG_PRINT("info", ("Freeing separate handler %p (free: %d)", file,
+ free_file));
+ file->ha_external_unlock(current_thd);
+ file->ha_close();
+ delete file;
+ }
+ }
+ delete_dynamic(&ranges); /* ranges are allocated in alloc */
+ free_root(&alloc,MYF(0));
+ }
+ my_free(mrr_buf_desc);
+ DBUG_VOID_RETURN;
+}
+
+/*
+ QUICK_INDEX_SORT_SELECT works as follows:
+ - Do index scans, accumulate rowids in the Unique object
+ (Unique will also sort and de-duplicate rowids)
+ - Use rowids from unique to run a disk-ordered sweep
+*/
+
+QUICK_INDEX_SORT_SELECT::QUICK_INDEX_SORT_SELECT(THD *thd_param, TABLE *table)
+ :unique(NULL), pk_quick_select(NULL), thd(thd_param)
+{
+ DBUG_ENTER("QUICK_INDEX_SORT_SELECT::QUICK_INDEX_SORT_SELECT");
+ index= MAX_KEY;
+ head= table;
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ DBUG_VOID_RETURN;
+}
+
+int QUICK_INDEX_SORT_SELECT::init()
+{
+ DBUG_ENTER("QUICK_INDEX_SORT_SELECT::init");
+ DBUG_RETURN(0);
+}
+
+int QUICK_INDEX_SORT_SELECT::reset()
+{
+ DBUG_ENTER("QUICK_INDEX_SORT_SELECT::reset");
+ const int retval= read_keys_and_merge();
+ DBUG_RETURN(retval);
+}
+
+bool
+QUICK_INDEX_SORT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
+{
+ DBUG_ENTER("QUICK_INDEX_SORT_SELECT::push_quick_back");
+ if (head->file->is_clustering_key(quick_sel_range->index))
+ {
+ /*
+ A quick_select over a clustered primary key is handled specifically
+ Here we assume:
+ - PK columns are included in any other merged index
+ - Scan on the PK is disk-ordered.
+ (not meeting #2 will only cause performance degradation)
+
+ We could treat clustered PK as any other index, but that would
+ be inefficient. There is no point in doing scan on
+ CPK, remembering the rowid, then making rnd_pos() call with
+ that rowid.
+ */
+ pk_quick_select= quick_sel_range;
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(quick_selects.push_back(quick_sel_range, thd->mem_root));
+}
+
+QUICK_INDEX_SORT_SELECT::~QUICK_INDEX_SORT_SELECT()
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
+ QUICK_RANGE_SELECT* quick;
+ DBUG_ENTER("QUICK_INDEX_SORT_SELECT::~QUICK_INDEX_SORT_SELECT");
+ delete unique;
+ quick_it.rewind();
+ while ((quick= quick_it++))
+ quick->file= NULL;
+ quick_selects.delete_elements();
+ delete pk_quick_select;
+ /* It's ok to call the next two even if they are already deinitialized */
+ end_read_record(&read_record);
+ free_root(&alloc,MYF(0));
+ DBUG_VOID_RETURN;
+}
+
+QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
+ TABLE *table,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+ : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
+ scans_inited(FALSE)
+{
+ index= MAX_KEY;
+ head= table;
+ record= head->record[0];
+ if (!parent_alloc)
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ else
+ bzero(&alloc, sizeof(MEM_ROOT));
+ last_rowid= (uchar*) alloc_root(parent_alloc? parent_alloc : &alloc,
+ head->file->ref_length);
+}
+
+
+/*
+ Do post-constructor initialization.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::init()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::init()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
+ /* Check if last_rowid was successfully allocated in ctor */
+ DBUG_RETURN(!last_rowid);
+}
+
+
+/*
+ Initialize this quick select to be a ROR-merged scan.
+
+ SYNOPSIS
+ QUICK_RANGE_SELECT::init_ror_merged_scan()
+ reuse_handler If TRUE, use head->file, otherwise create a separate
+ handler object
+
+ NOTES
+ This function creates and prepares for subsequent use a separate handler
+ object if it can't reuse head->file. The reason for this is that during
+ ROR-merge several key scans are performed simultaneously, and a single
+ handler is only capable of preserving context of a single key scan.
+
+ In ROR-merge the quick select doing merge does full records retrieval,
+ merged quick selects read only keys.
+
+ RETURN
+ 0 ROR child scan initialized, ok to use.
+ 1 error
+*/
+
+int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler,
+ MEM_ROOT *local_alloc)
+{
+ handler *save_file= file, *org_file;
+ THD *thd= head->in_use;
+ MY_BITMAP * const save_read_set= head->read_set;
+ MY_BITMAP * const save_write_set= head->write_set;
+ DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
+
+ in_ror_merged_scan= 1;
+ if (reuse_handler)
+ {
+ DBUG_PRINT("info", ("Reusing handler %p", file));
+ if (init())
+ {
+ DBUG_RETURN(1);
+ }
+ goto end;
+ }
+
+ /* Create a separate handler object for this quick select */
+ if (free_file)
+ {
+ /* already have own 'handler' object. */
+ DBUG_RETURN(0);
+ }
+
+ if (!(file= head->file->clone(head->s->normalized_path.str, local_alloc)))
+ {
+ /*
+ Manually set the error flag. Note: there seems to be quite a few
+ places where a failure could cause the server to "hang" the client by
+ sending no response to a query. ATM those are not real errors because
+ the storage engine calls in question happen to never fail with the
+ existing storage engines.
+ */
+ my_error(ER_OUT_OF_RESOURCES, MYF(0)); /* purecov: inspected */
+ /* Caller will free the memory */
+ goto failure; /* purecov: inspected */
+ }
+
+ if (file->ha_external_lock(thd, F_RDLCK))
+ goto failure;
+
+ if (init())
+ {
+ file->ha_external_unlock(thd);
+ file->ha_close();
+ goto failure;
+ }
+ free_file= TRUE;
+ last_rowid= file->ref;
+
+end:
+ /*
+ We are only going to read key fields and call position() on 'file'
+ The following sets head->read_set (== column_bitmap) to only use this
+ key. The 'column_bitmap' is used in ::get_next()
+ */
+ org_file= head->file;
+ head->file= file;
+
+ head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
+ head->prepare_for_keyread(index, &column_bitmap);
+ head->prepare_for_position();
+
+ head->file= org_file;
+
+ /* Restore head->read_set (and write_set) to what they had before the call */
+ head->column_bitmaps_set(save_read_set, save_write_set);
+
+ if (reset())
+ {
+ if (!reuse_handler)
+ {
+ file->ha_external_unlock(thd);
+ file->ha_close();
+ goto failure;
+ }
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+
+failure:
+ head->column_bitmaps_set(save_read_set, save_write_set);
+ delete file;
+ file= save_file;
+ free_file= false;
+ DBUG_RETURN(1);
+}
+
+
+/*
+ Initialize this quick select to be a part of a ROR-merged scan.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
+ reuse_handler If TRUE, use head->file, otherwise create separate
+ handler object.
+ RETURN
+ 0 OK
+ other error code
+*/
+int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler,
+ MEM_ROOT *local_alloc)
+{
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> quick_it(quick_selects);
+ QUICK_SELECT_WITH_RECORD *cur;
+ QUICK_RANGE_SELECT *quick;
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
+
+ /* Initialize all merged "children" quick selects */
+ DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
+ if (!need_to_fetch_row && reuse_handler)
+ {
+ cur= quick_it++;
+ quick= cur->quick;
+ /*
+ There is no use of this->file. Use it for the first of merged range
+ selects.
+ */
+ int error= quick->init_ror_merged_scan(TRUE, local_alloc);
+ if (unlikely(error))
+ DBUG_RETURN(error);
+ quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
+ }
+ while ((cur= quick_it++))
+ {
+ quick= cur->quick;
+#ifndef DBUG_OFF
+ const MY_BITMAP * const save_read_set= quick->head->read_set;
+ const MY_BITMAP * const save_write_set= quick->head->write_set;
+#endif
+ if (quick->init_ror_merged_scan(FALSE, local_alloc))
+ DBUG_RETURN(1);
+ quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
+
+ // Sets are shared by all members of "quick_selects" so must not change
+#ifndef DBUG_OFF
+ DBUG_ASSERT(quick->head->read_set == save_read_set);
+ DBUG_ASSERT(quick->head->write_set == save_write_set);
+#endif
+ /* All merged scans share the same record buffer in intersection. */
+ quick->record= head->record[0];
+ }
+
+ if (need_to_fetch_row &&
+ unlikely(head->file->ha_rnd_init_with_error(false)))
+ {
+ DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Initialize quick select for row retrieval.
+ SYNOPSIS
+ reset()
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::reset()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
+ if (!scans_inited && init_ror_merged_scan(TRUE, &alloc))
+ DBUG_RETURN(1);
+ scans_inited= TRUE;
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+ QUICK_SELECT_WITH_RECORD *qr;
+ while ((qr= it++))
+ qr->quick->reset();
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Add a merged quick select to this ROR-intersection quick select.
+
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::push_quick_back()
+ alloc Mem root to create auxiliary structures on
+ quick Quick select to be added. The quick select must return
+ rows in rowid order.
+ NOTES
+ This call can only be made before init() is called.
+
+ RETURN
+ FALSE OK
+ TRUE Out of memory.
+*/
+
+bool
+QUICK_ROR_INTERSECT_SELECT::push_quick_back(MEM_ROOT *local_alloc,
+ QUICK_RANGE_SELECT *quick)
+{
+ QUICK_SELECT_WITH_RECORD *qr;
+ if (!(qr= new QUICK_SELECT_WITH_RECORD) ||
+ !(qr->key_tuple= (uchar*)alloc_root(local_alloc,
+ quick->max_used_key_length)))
+ return TRUE;
+ qr->quick= quick;
+ return quick_selects.push_back(qr);
+}
+
+
+QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
+ quick_selects.delete_elements();
+ delete cpk_quick;
+ free_root(&alloc,MYF(0));
+ if (need_to_fetch_row && head->file->inited != handler::NONE)
+ head->file->ha_rnd_end();
+ DBUG_VOID_RETURN;
+}
+
+
+QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
+ TABLE *table)
+ : thd(thd_param), scans_inited(FALSE)
+{
+ index= MAX_KEY;
+ head= table;
+ rowid_length= table->file->ref_length;
+ record= head->record[0];
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ thd_param->mem_root= &alloc;
+}
+
+
+/*
+ Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
+ queue.
+
+ SYNPOSIS
+ QUICK_ROR_UNION_SELECT_queue_cmp()
+ arg Pointer to QUICK_ROR_UNION_SELECT
+ val1 First merged select
+ val2 Second merged select
+*/
+
+C_MODE_START
+
+static int QUICK_ROR_UNION_SELECT_queue_cmp(void *arg, uchar *val1, uchar *val2)
+{
+ QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
+ return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
+ ((QUICK_SELECT_I*)val2)->last_rowid);
+}
+
+C_MODE_END
+
+
+/*
+ Do post-constructor initialization.
+ SYNOPSIS
+ QUICK_ROR_UNION_SELECT::init()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_UNION_SELECT::init()
+{
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
+ if (init_queue(&queue, quick_selects.elements, 0,
+ FALSE , QUICK_ROR_UNION_SELECT_queue_cmp,
+ (void*) this, 0, 0))
+ {
+ bzero(&queue, sizeof(QUEUE));
+ DBUG_RETURN(1);
+ }
+
+ if (!(cur_rowid= (uchar*) alloc_root(&alloc, 2*head->file->ref_length)))
+ DBUG_RETURN(1);
+ prev_rowid= cur_rowid + head->file->ref_length;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Initialize quick select for row retrieval.
+ SYNOPSIS
+ reset()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_UNION_SELECT::reset()
+{
+ QUICK_SELECT_I *quick;
+ int error;
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
+ have_prev_rowid= FALSE;
+ if (!scans_inited)
+ {
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (quick->init_ror_merged_scan(FALSE, &alloc))
+ DBUG_RETURN(1);
+ }
+ scans_inited= TRUE;
+ }
+ queue_remove_all(&queue);
+ /*
+ Initialize scans for merged quick selects and put all merged quick
+ selects into the queue.
+ */
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (unlikely((error= quick->reset())))
+ DBUG_RETURN(error);
+ if (unlikely((error= quick->get_next())))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ continue;
+ DBUG_RETURN(error);
+ }
+ quick->save_last_pos();
+ queue_insert(&queue, (uchar*)quick);
+ }
+ /* Prepare for ha_rnd_pos calls. */
+ if (head->file->inited && unlikely((error= head->file->ha_rnd_end())))
+ {
+ DBUG_PRINT("error", ("ROR index_merge rnd_end call failed"));
+ DBUG_RETURN(error);
+ }
+ if (unlikely((error= head->file->ha_rnd_init(false))))
+ {
+ DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
+ DBUG_RETURN(error);
+ }
+
+ DBUG_RETURN(0);
+}
+
+
+bool
+QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
+{
+ return quick_selects.push_back(quick_sel_range);
+}
+
+QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
+{
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
+ delete_queue(&queue);
+ quick_selects.delete_elements();
+ if (head->file->inited != handler::NONE)
+ head->file->ha_rnd_end();
+ free_root(&alloc,MYF(0));
+ DBUG_VOID_RETURN;
+}
+
+
+QUICK_RANGE::QUICK_RANGE()
+ :min_key(0),max_key(0),min_length(0),max_length(0),
+ flag(NO_MIN_RANGE | NO_MAX_RANGE),
+ min_keypart_map(0), max_keypart_map(0)
+{}
+
+SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
+{
+ type=arg.type;
+ min_flag=arg.min_flag;
+ max_flag=arg.max_flag;
+ maybe_flag=arg.maybe_flag;
+ maybe_null=arg.maybe_null;
+ part=arg.part;
+ field=arg.field;
+ min_value=arg.min_value;
+ max_value=arg.max_value;
+ next_key_part=arg.next_key_part;
+ max_part_no= arg.max_part_no;
+ use_count=1; elements=1;
+ weight=1;
+ next= 0;
+ if (next_key_part)
+ {
+ next_key_part->increment_use_count(1);
+ weight += next_key_part->weight;
+ }
+}
+
+
+inline void SEL_ARG::make_root()
+{
+ left=right= &null_element;
+ color=BLACK;
+ next=prev=0;
+ use_count=0;
+ elements=1;
+ weight= 1 + (next_key_part? next_key_part->weight : 0);
+}
+
+SEL_ARG::SEL_ARG(Field *f, const uchar *min_value_arg,
+ const uchar *max_value_arg)
+ :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
+ elements(1), use_count(1), field(f), min_value((uchar*) min_value_arg),
+ max_value((uchar*) max_value_arg), next(0),prev(0),
+ next_key_part(0), color(BLACK), type(KEY_RANGE), weight(1)
+{
+ left=right= &null_element;
+ max_part_no= 1;
+}
+
+SEL_ARG::SEL_ARG(Field *field_,uint8 part_,
+ uchar *min_value_, uchar *max_value_,
+ uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
+ :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
+ part(part_),maybe_null(field_->real_maybe_null()),
+ elements(1),use_count(1),
+ field(field_), min_value(min_value_), max_value(max_value_),
+ next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE), weight(1)
+{
+ max_part_no= part+1;
+ left=right= &null_element;
+}
+
+
+/*
+ A number of helper classes:
+ SEL_ARG_LE, SEL_ARG_LT, SEL_ARG_GT, SEL_ARG_GE,
+ to share the code between:
+ Field::stored_field_make_mm_leaf()
+ Field::stored_field_make_mm_leaf_exact()
+*/
+class SEL_ARG_LE: public SEL_ARG
+{
+public:
+ SEL_ARG_LE(const uchar *key, Field *field)
+ :SEL_ARG(field, key, key)
+ {
+ if (!field->real_maybe_null())
+ min_flag= NO_MIN_RANGE; // From start
+ else
+ {
+ min_value= is_null_string;
+ min_flag= NEAR_MIN; // > NULL
+ }
+ }
+};
+
+
+class SEL_ARG_LT: public SEL_ARG_LE
+{
+public:
+ /*
+ Use this constructor if value->save_in_field() went precisely,
+ without any data rounding or truncation.
+ */
+ SEL_ARG_LT(const uchar *key, const KEY_PART *key_part, Field *field)
+ :SEL_ARG_LE(key, field)
+ {
+ // Don't use open ranges for partial key_segments
+ if (!(key_part->flag & HA_PART_KEY_SEG))
+ max_flag= NEAR_MAX;
+ }
+ /*
+ Use this constructor if value->save_in_field() returned success,
+ but we don't know if rounding or truncation happened
+ (as some Field::store() do not report minor data changes).
+ */
+ SEL_ARG_LT(THD *thd, const uchar *key,
+ const KEY_PART *key_part, Field *field, Item *value)
+ :SEL_ARG_LE(key, field)
+ {
+ // Don't use open ranges for partial key_segments
+ if (!(key_part->flag & HA_PART_KEY_SEG) &&
+ stored_field_cmp_to_item(thd, field, value) == 0)
+ max_flag= NEAR_MAX;
+ }
+};
+
+
+class SEL_ARG_GT: public SEL_ARG
+{
+public:
+ /*
+ Use this constructor if value->save_in_field() went precisely,
+ without any data rounding or truncation.
+ */
+ SEL_ARG_GT(const uchar *key, const KEY_PART *key_part, Field *field)
+ :SEL_ARG(field, key, key)
+ {
+ // Don't use open ranges for partial key_segments
+ if (!(key_part->flag & HA_PART_KEY_SEG))
+ min_flag= NEAR_MIN;
+ max_flag= NO_MAX_RANGE;
+ }
+ /*
+ Use this constructor if value->save_in_field() returned success,
+ but we don't know if rounding or truncation happened
+ (as some Field::store() do not report minor data changes).
+ */
+ SEL_ARG_GT(THD *thd, const uchar *key,
+ const KEY_PART *key_part, Field *field, Item *value)
+ :SEL_ARG(field, key, key)
+ {
+ // Don't use open ranges for partial key_segments
+ if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
+ (stored_field_cmp_to_item(thd, field, value) <= 0))
+ min_flag= NEAR_MIN;
+ max_flag= NO_MAX_RANGE;
+ }
+};
+
+
+class SEL_ARG_GE: public SEL_ARG
+{
+public:
+ /*
+ Use this constructor if value->save_in_field() went precisely,
+ without any data rounding or truncation.
+ */
+ SEL_ARG_GE(const uchar *key, Field *field)
+ :SEL_ARG(field, key, key)
+ {
+ max_flag= NO_MAX_RANGE;
+ }
+ /*
+ Use this constructor if value->save_in_field() returned success,
+ but we don't know if rounding or truncation happened
+ (as some Field::store() do not report minor data changes).
+ */
+ SEL_ARG_GE(THD *thd, const uchar *key,
+ const KEY_PART *key_part, Field *field, Item *value)
+ :SEL_ARG(field, key, key)
+ {
+ // Don't use open ranges for partial key_segments
+ if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
+ (stored_field_cmp_to_item(thd, field, value) < 0))
+ min_flag= NEAR_MIN;
+ max_flag= NO_MAX_RANGE;
+ }
+};
+
+
+SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent,
+ SEL_ARG **next_arg)
+{
+ SEL_ARG *tmp;
+
+ /* Bail out if we have already generated too many SEL_ARGs */
+ if (++param->alloced_sel_args > param->thd->variables.optimizer_max_sel_args)
+ return 0;
+
+ if (type != KEY_RANGE)
+ {
+ if (!(tmp= new (param->mem_root) SEL_ARG(type)))
+ return 0; // out of memory
+ tmp->prev= *next_arg; // Link into next/prev chain
+ (*next_arg)->next=tmp;
+ (*next_arg)= tmp;
+ tmp->part= this->part;
+ }
+ else
+ {
+ if (!(tmp= new (param->mem_root) SEL_ARG(field, part,
+ min_value, max_value,
+ min_flag, max_flag, maybe_flag)))
+ return 0; // OOM
+ tmp->parent=new_parent;
+ tmp->next_key_part=next_key_part;
+ if (left != &null_element)
+ if (!(tmp->left=left->clone(param, tmp, next_arg)))
+ return 0; // OOM
+
+ tmp->prev= *next_arg; // Link into next/prev chain
+ (*next_arg)->next=tmp;
+ (*next_arg)= tmp;
+
+ if (right != &null_element)
+ if (!(tmp->right= right->clone(param, tmp, next_arg)))
+ return 0; // OOM
+ }
+ increment_use_count(1);
+ tmp->color= color;
+ tmp->elements= this->elements;
+ tmp->max_part_no= max_part_no;
+ tmp->weight= weight;
+ return tmp;
+}
+
+/**
+ This gives the first SEL_ARG in the interval list, and the minimal element
+ in the red-black tree
+
+ @return
+ SEL_ARG first SEL_ARG in the interval list
+*/
+SEL_ARG *SEL_ARG::first()
+{
+ SEL_ARG *next_arg=this;
+ if (!next_arg->left)
+ return 0; // MAYBE_KEY
+ while (next_arg->left != &null_element)
+ next_arg=next_arg->left;
+ return next_arg;
+}
+
+const SEL_ARG *SEL_ARG::first() const
+{
+ return const_cast<SEL_ARG*>(this)->first();
+}
+
+SEL_ARG *SEL_ARG::last()
+{
+ SEL_ARG *next_arg=this;
+ if (!next_arg->right)
+ return 0; // MAYBE_KEY
+ while (next_arg->right != &null_element)
+ next_arg=next_arg->right;
+ return next_arg;
+}
+
+
+/*
+ Check if a compare is ok, when one takes ranges in account
+ Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
+*/
+
+int SEL_ARG::sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
+ uint8 b_flag)
+{
+ int cmp;
+ /* First check if there was a compare to a min or max element */
+ if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
+ {
+ if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
+ (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
+ return 0;
+ return (a_flag & NO_MIN_RANGE) ? -1 : 1;
+ }
+ if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
+ return (b_flag & NO_MIN_RANGE) ? 1 : -1;
+
+ if (field->real_maybe_null()) // If null is part of key
+ {
+ if (*a != *b)
+ {
+ return *a ? -1 : 1;
+ }
+ if (*a)
+ goto end; // NULL where equal
+ a++; b++; // Skip NULL marker
+ }
+ cmp=field->key_cmp(a , b);
+ if (cmp) return cmp < 0 ? -1 : 1; // The values differed
+
+ // Check if the compared equal arguments was defined with open/closed range
+ end:
+ if (a_flag & (NEAR_MIN | NEAR_MAX))
+ {
+ if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
+ return 0;
+ if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
+ return (a_flag & NEAR_MIN) ? 2 : -2;
+ return (a_flag & NEAR_MIN) ? 1 : -1;
+ }
+ if (b_flag & (NEAR_MIN | NEAR_MAX))
+ return (b_flag & NEAR_MIN) ? -2 : 2;
+ return 0; // The elements where equal
+}
+
+
+SEL_ARG *SEL_ARG::clone_tree(RANGE_OPT_PARAM *param)
+{
+ SEL_ARG tmp_link,*next_arg,*root;
+ next_arg= &tmp_link;
+ if (!(root= clone(param, (SEL_ARG *) 0, &next_arg)))
+ return 0;
+ next_arg->next=0; // Fix last link
+ tmp_link.next->prev=0; // Fix first link
+ if (root) // If not OOM
+ root->use_count= 0;
+ return root;
+}
+
+
+/*
+ Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
+ objects from table read plans.
+*/
+class TABLE_READ_PLAN
+{
+public:
+ /*
+ Plan read cost, with or without cost of full row retrieval, depending
+ on plan creation parameters.
+ */
+ double read_cost;
+ ha_rows records; /* estimate of #rows to be examined */
+
+ /*
+ If TRUE, the scan returns rows in rowid order. This is used only for
+ scans that can be both ROR and non-ROR.
+ */
+ bool is_ror;
+
+ /*
+ Create quick select for this plan.
+ SYNOPSIS
+ make_quick()
+ param Parameter from test_quick_select
+ retrieve_full_rows If TRUE, created quick select will do full record
+ retrieval.
+ parent_alloc Memory pool to use, if any.
+
+ NOTES
+ retrieve_full_rows is ignored by some implementations.
+
+ RETURN
+ created quick select
+ NULL on any error.
+ */
+ virtual QUICK_SELECT_I *make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc=NULL) = 0;
+
+ /* Table read plans are allocated on MEM_ROOT and are never deleted */
+ static void *operator new(size_t size, MEM_ROOT *mem_root)
+ { return (void*) alloc_root(mem_root, (uint) size); }
+ static void operator delete(void *ptr,size_t size) { TRASH_FREE(ptr, size); }
+ static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
+ virtual ~TABLE_READ_PLAN() = default; /* Remove gcc warning */
+ /**
+ Add basic info for this TABLE_READ_PLAN to the optimizer trace.
+
+ @param param Parameters for range analysis of this table
+ @param trace_object The optimizer trace object the info is appended to
+ */
+ virtual void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const= 0;
+
+};
+
+class TRP_ROR_INTERSECT;
+class TRP_ROR_UNION;
+class TRP_INDEX_MERGE;
+
+
+/*
+ Plan for a QUICK_RANGE_SELECT scan.
+ TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
+ QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
+ record retrieval scans.
+*/
+
+class TRP_RANGE : public TABLE_READ_PLAN
+{
+public:
+ SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
+ uint key_idx; /* key number in PARAM::key */
+ uint mrr_flags;
+ uint mrr_buf_size;
+
+ TRP_RANGE(SEL_ARG *key_arg, uint idx_arg, uint mrr_flags_arg)
+ : key(key_arg), key_idx(idx_arg), mrr_flags(mrr_flags_arg)
+ {}
+ virtual ~TRP_RANGE() = default; /* Remove gcc warning */
+
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+ {
+ DBUG_ENTER("TRP_RANGE::make_quick");
+ QUICK_RANGE_SELECT *quick;
+ if ((quick= get_quick_select(param, key_idx, key, mrr_flags,
+ mrr_buf_size, parent_alloc)))
+ {
+ quick->records= records;
+ quick->read_time= read_cost;
+ }
+ DBUG_RETURN(quick);
+ }
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+};
+
+void TRP_RANGE::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ DBUG_ASSERT(trace_object->trace_started());
+ DBUG_ASSERT(param->using_real_indexes);
+ const uint keynr_in_table= param->real_keynr[key_idx];
+
+ const KEY &cur_key= param->table->key_info[keynr_in_table];
+ const KEY_PART_INFO *key_part= cur_key.key_part;
+
+ trace_object->add("type", "range_scan")
+ .add("index", cur_key.name)
+ .add("rows", records);
+
+ Json_writer_array trace_range(param->thd, "ranges");
+
+ // TRP_RANGE should not be created if there are no range intervals
+ DBUG_ASSERT(key);
+
+ trace_ranges(&trace_range, param, key_idx, key, key_part);
+}
+
+
+/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */
+
+class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
+{
+public:
+ TRP_ROR_INTERSECT() = default; /* Remove gcc warning */
+ virtual ~TRP_ROR_INTERSECT() = default; /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+
+ /* Array of pointers to ROR range scans used in this intersection */
+ struct st_ror_scan_info **first_scan;
+ struct st_ror_scan_info **last_scan; /* End of the above array */
+ struct st_ror_scan_info *cpk_scan; /* Clustered PK scan, if there is one */
+ bool is_covering; /* TRUE if no row retrieval phase is necessary */
+ double index_scan_costs; /* SUM(cost(index_scan)) */
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+};
+
+
+
+/*
+ Plan for QUICK_ROR_UNION_SELECT scan.
+ QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
+ is ignored by make_quick.
+*/
+
+class TRP_ROR_UNION : public TABLE_READ_PLAN
+{
+public:
+ TRP_ROR_UNION() = default; /* Remove gcc warning */
+ virtual ~TRP_ROR_UNION() = default; /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
+ TABLE_READ_PLAN **last_ror; /* end of the above array */
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+};
+
+void TRP_ROR_UNION::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ THD *thd= param->thd;
+ DBUG_ASSERT(trace_object->trace_started());
+ trace_object->add("type", "index_roworder_union");
+ Json_writer_array smth_trace(thd, "union_of");
+ for (TABLE_READ_PLAN **current= first_ror; current != last_ror; current++)
+ {
+ Json_writer_object trp_info(thd);
+ (*current)->trace_basic_info(param, &trp_info);
+ }
+}
+
+/*
+ Plan for QUICK_INDEX_INTERSECT_SELECT scan.
+ QUICK_INDEX_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
+ is ignored by make_quick.
+*/
+
+class TRP_INDEX_INTERSECT : public TABLE_READ_PLAN
+{
+public:
+ TRP_INDEX_INTERSECT() = default; /* Remove gcc warning */
+ virtual ~TRP_INDEX_INTERSECT() = default; /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ TRP_RANGE **range_scans; /* array of ptrs to plans of intersected scans */
+ TRP_RANGE **range_scans_end; /* end of the array */
+ /* keys whose scans are to be filtered by cpk conditions */
+ key_map filtered_scans;
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+
+};
+
+void TRP_INDEX_INTERSECT::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ THD *thd= param->thd;
+ DBUG_ASSERT(trace_object->trace_started());
+ trace_object->add("type", "index_sort_intersect");
+ Json_writer_array smth_trace(thd, "index_sort_intersect_of");
+ for (TRP_RANGE **current= range_scans; current != range_scans_end;
+ current++)
+ {
+ Json_writer_object trp_info(thd);
+ (*current)->trace_basic_info(param, &trp_info);
+ }
+}
+
+/*
+ Plan for QUICK_INDEX_MERGE_SELECT scan.
+ QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
+ is ignored by make_quick.
+*/
+
+class TRP_INDEX_MERGE : public TABLE_READ_PLAN
+{
+public:
+ TRP_INDEX_MERGE() = default; /* Remove gcc warning */
+ virtual ~TRP_INDEX_MERGE() = default; /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
+ TRP_RANGE **range_scans_end; /* end of the array */
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+};
+
+void TRP_INDEX_MERGE::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ THD *thd= param->thd;
+ DBUG_ASSERT(trace_object->trace_started());
+ trace_object->add("type", "index_merge");
+ Json_writer_array smth_trace(thd, "index_merge_of");
+ for (TRP_RANGE **current= range_scans; current != range_scans_end; current++)
+ {
+ Json_writer_object trp_info(thd);
+ (*current)->trace_basic_info(param, &trp_info);
+ }
+}
+
+/*
+ Plan for a QUICK_GROUP_MIN_MAX_SELECT scan.
+*/
+
+class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
+{
+private:
+ bool have_min, have_max, have_agg_distinct;
+ KEY_PART_INFO *min_max_arg_part;
+ uint group_prefix_len;
+ uint used_key_parts;
+ uint group_key_parts;
+ KEY *index_info;
+ uint index;
+ uint key_infix_len;
+ uchar key_infix[MAX_KEY_LENGTH];
+ SEL_TREE *range_tree; /* Represents all range predicates in the query. */
+ SEL_ARG *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
+ uint param_idx; /* Index of used key in param->key. */
+ bool is_index_scan; /* Use index_next() instead of random read */
+public:
+ /* Number of records selected by the ranges in index_tree. */
+ ha_rows quick_prefix_records;
+public:
+ TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
+ bool have_agg_distinct_arg,
+ KEY_PART_INFO *min_max_arg_part_arg,
+ uint group_prefix_len_arg, uint used_key_parts_arg,
+ uint group_key_parts_arg, KEY *index_info_arg,
+ uint index_arg, uint key_infix_len_arg,
+ uchar *key_infix_arg,
+ SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
+ uint param_idx_arg, ha_rows quick_prefix_records_arg)
+ : have_min(have_min_arg), have_max(have_max_arg),
+ have_agg_distinct(have_agg_distinct_arg),
+ min_max_arg_part(min_max_arg_part_arg),
+ group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
+ group_key_parts(group_key_parts_arg), index_info(index_info_arg),
+ index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
+ index_tree(index_tree_arg), param_idx(param_idx_arg), is_index_scan(FALSE),
+ quick_prefix_records(quick_prefix_records_arg)
+ {
+ if (key_infix_len)
+ memcpy(this->key_infix, key_infix_arg, key_infix_len);
+ }
+ virtual ~TRP_GROUP_MIN_MAX() = default; /* Remove gcc warning */
+
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ void use_index_scan() { is_index_scan= TRUE; }
+ void trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const;
+};
+
+
+void TRP_GROUP_MIN_MAX::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ THD *thd= param->thd;
+ DBUG_ASSERT(trace_object->trace_started());
+
+ trace_object->add("type", "index_group").add("index", index_info->name);
+
+ if (min_max_arg_part)
+ trace_object->add("min_max_arg", min_max_arg_part->field->field_name);
+ else
+ trace_object->add_null("min_max_arg");
+
+ trace_object->add("min_aggregate", have_min)
+ .add("max_aggregate", have_max)
+ .add("distinct_aggregate", have_agg_distinct)
+ .add("rows", records)
+ .add("cost", read_cost);
+
+ const KEY_PART_INFO *key_part= index_info->key_part;
+ {
+ Json_writer_array trace_keyparts(thd, "key_parts_used_for_access");
+ for (uint partno= 0; partno < used_key_parts; partno++)
+ {
+ const KEY_PART_INFO *cur_key_part= key_part + partno;
+ trace_keyparts.add(cur_key_part->field->field_name);
+ }
+ }
+
+ Json_writer_array trace_range(thd, "ranges");
+
+ // can have group quick without ranges
+ if (index_tree)
+ {
+ trace_ranges(&trace_range, param, param_idx,
+ index_tree, key_part);
+ }
+}
+
+
+typedef struct st_index_scan_info
+{
+ uint idx; /* # of used key in param->keys */
+ uint keynr; /* # of used key in table */
+ uint range_count;
+ ha_rows records; /* estimate of # records this scan will return */
+
+ /* Set of intervals over key fields that will be used for row retrieval. */
+ SEL_ARG *sel_arg;
+
+ KEY *key_info;
+ uint used_key_parts;
+
+ /* Estimate of # records filtered out by intersection with cpk */
+ ha_rows filtered_out;
+ /* Bitmap of fields used in index intersection */
+ MY_BITMAP used_fields;
+
+ /* Fields used in the query and covered by ROR scan. */
+ MY_BITMAP covered_fields;
+ uint used_fields_covered; /* # of set bits in covered_fields */
+ int key_rec_length; /* length of key record (including rowid) */
+
+ /*
+ Cost of reading all index records with values in sel_arg intervals set
+ (assuming there is no need to access full table records)
+ */
+ double index_read_cost;
+ uint first_uncovered_field; /* first unused bit in covered_fields */
+ uint key_components; /* # of parts in the key */
+} INDEX_SCAN_INFO;
+
+/*
+ Fill param->needed_fields with bitmap of fields used in the query.
+ SYNOPSIS
+ fill_used_fields_bitmap()
+ param Parameter from test_quick_select function.
+
+ NOTES
+ Clustered PK members are not put into the bitmap as they are implicitly
+ present in all keys (and it is impossible to avoid reading them).
+ RETURN
+ 0 Ok
+ 1 Out of memory.
+*/
+
+static int fill_used_fields_bitmap(PARAM *param)
+{
+ TABLE *table= param->table;
+ my_bitmap_map *tmp;
+ uint pk;
+ param->tmp_covered_fields.bitmap= 0;
+ param->fields_bitmap_size= table->s->column_bitmap_size;
+ if (!(tmp= (my_bitmap_map*) alloc_root(param->mem_root,
+ param->fields_bitmap_size)) ||
+ my_bitmap_init(&param->needed_fields, tmp, table->s->fields))
+ return 1;
+
+ bitmap_copy(&param->needed_fields, table->read_set);
+ bitmap_union(&param->needed_fields, table->write_set);
+
+ pk= param->table->s->primary_key;
+ if (param->table->file->pk_is_clustering_key(pk))
+ {
+ /* The table uses clustered PK and it is not internally generated */
+ KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
+ KEY_PART_INFO *key_part_end= key_part +
+ param->table->key_info[pk].user_defined_key_parts;
+ for (;key_part != key_part_end; ++key_part)
+ bitmap_clear_bit(&param->needed_fields, key_part->fieldnr-1);
+ }
+ return 0;
+}
+
+
+/*
+ Test if a key can be used in different ranges
+
+ SYNOPSIS
+ SQL_SELECT::test_quick_select()
+ thd Current thread
+ keys_to_use Keys to use for range retrieval
+ prev_tables Tables assumed to be already read when the scan is
+ performed (but not read at the moment of this call)
+ limit Query limit
+ force_quick_range Prefer to use range (instead of full table scan) even
+ if it is more expensive.
+ remove_false_parts_of_where Remove parts of OR-clauses for which range
+ analysis produced SEL_TREE(IMPOSSIBLE)
+ only_single_index_range_scan Evaluate only single index range scans
+
+ NOTES
+ Updates the following in the select parameter:
+ needed_reg - Bits for keys with may be used if all prev regs are read
+ quick - Parameter to use when reading records.
+
+ In the table struct the following information is updated:
+ quick_keys - Which keys can be used
+ quick_rows - How many rows the key matches
+ opt_range_condition_rows - E(# rows that will satisfy the table condition)
+
+ IMPLEMENTATION
+ opt_range_condition_rows value is obtained as follows:
+
+ It is a minimum of E(#output rows) for all considered table access
+ methods (range and index_merge accesses over various indexes).
+
+ The obtained value is not a true E(#rows that satisfy table condition)
+ but rather a pessimistic estimate. To obtain a true E(#...) one would
+ need to combine estimates of various access methods, taking into account
+ correlations between sets of rows they will return.
+
+ For example, if values of tbl.key1 and tbl.key2 are independent (a right
+ assumption if we have no information about their correlation) then the
+ correct estimate will be:
+
+ E(#rows("tbl.key1 < c1 AND tbl.key2 < c2")) =
+ = E(#rows(tbl.key1 < c1)) / total_rows(tbl) * E(#rows(tbl.key2 < c2)
+
+ which is smaller than
+
+ MIN(E(#rows(tbl.key1 < c1), E(#rows(tbl.key2 < c2)))
+
+ which is currently produced.
+
+ TODO
+ * Change the value returned in opt_range_condition_rows from a pessimistic
+ estimate to true E(#rows that satisfy table condition).
+ (we can re-use some of E(#rows) calcuation code from
+ index_merge/intersection for this)
+
+ * Check if this function really needs to modify keys_to_use, and change the
+ code to pass it by reference if it doesn't.
+
+ * In addition to force_quick_range other means can be (an usually are) used
+ to make this function prefer range over full table scan. Figure out if
+ force_quick_range is really needed.
+
+ RETURN
+ SQL_SELECT::
+ IMPOSSIBLE_RANGE,
+ impossible select (i.e. certainly no rows will be selected)
+ ERROR,
+ an error occurred, either memory or in evaluating conditions
+ OK = 1,
+ either
+ found usable ranges and quick select has been successfully created.
+ or can't use quick_select
+*/
+
+quick_select_return
+SQL_SELECT::test_quick_select(THD *thd,
+ key_map keys_to_use,
+ table_map prev_tables,
+ ha_rows limit, bool force_quick_range,
+ bool ordered_output,
+ bool remove_false_parts_of_where,
+ bool only_single_index_range_scan,
+ bool suppress_unusable_key_notes)
+{
+ uint idx;
+ double scan_time;
+ Item *notnull_cond= NULL;
+ TABLE_READ_PLAN *best_trp= NULL;
+ SEL_ARG **backup_keys= 0;
+ quick_select_return returnval= OK;
+
+ DBUG_ENTER("SQL_SELECT::test_quick_select");
+ DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
+ (ulong) keys_to_use.to_ulonglong(), (ulong) prev_tables,
+ (ulong) const_tables));
+ DBUG_PRINT("info", ("records: %lu", (ulong) head->stat_records()));
+ delete quick;
+ quick=0;
+ needed_reg.clear_all();
+ quick_keys.clear_all();
+ head->with_impossible_ranges.clear_all();
+ DBUG_ASSERT(!head->is_filled_at_execution());
+ if (keys_to_use.is_clear_all() || head->is_filled_at_execution())
+ DBUG_RETURN(OK);
+ records= head->stat_records();
+ notnull_cond= head->notnull_cond;
+ if (!records)
+ records++; /* purecov: inspected */
+ if (head->file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
+ only_single_index_range_scan= 1;
+
+ if (head->force_index || force_quick_range)
+ scan_time= read_time= DBL_MAX;
+ else
+ {
+ scan_time= rows2double(records) / TIME_FOR_COMPARE;
+ /*
+ The 2 is there to prefer range scans to full table scans.
+ This is mainly to make the test suite happy as many tests has
+ very few rows. In real life tables has more than a few rows and the
+ +2 has no practical effect.
+ */
+ read_time= (double) head->file->scan_time() + scan_time + 2;
+ if (limit < records && read_time < (double) records + scan_time + 1 )
+ {
+ read_time= (double) records + scan_time + 1; // Force to use index
+ notnull_cond= NULL;
+ }
+ }
+
+ possible_keys.clear_all();
+
+ DBUG_PRINT("info",("Time to scan table: %g", read_time));
+
+ Json_writer_object table_records(thd);
+ table_records.add_table_name(head);
+
+ Json_writer_object trace_range(thd, "range_analysis");
+ {
+ Json_writer_object table_rec(thd, "table_scan");
+ table_rec.add("rows", records).add("cost", read_time);
+ }
+
+ keys_to_use.intersect(head->keys_in_use_for_query);
+ if (!keys_to_use.is_clear_all())
+ {
+ uchar buff[STACK_BUFF_ALLOC];
+ MEM_ROOT alloc;
+ SEL_TREE *tree= NULL;
+ SEL_TREE *notnull_cond_tree= NULL;
+ KEY_PART *key_parts;
+ KEY *key_info;
+ PARAM param;
+ bool force_group_by = false;
+
+ if (check_stack_overrun(thd, 2*STACK_MIN_SIZE + sizeof(PARAM), buff))
+ DBUG_RETURN(ERROR); // Fatal error flag is set
+
+ /* set up parameter that is passed to all functions */
+ bzero((void*) &param, sizeof(param));
+ param.thd= thd;
+ param.baseflag= head->file->ha_table_flags();
+ param.prev_tables=prev_tables | const_tables;
+ param.read_tables=read_tables;
+ param.current_table= head->map;
+ param.table=head;
+ param.keys=0;
+ param.mem_root= &alloc;
+ param.old_root= thd->mem_root;
+ param.needed_reg= &needed_reg;
+ param.imerge_cost_buff_size= 0;
+ param.using_real_indexes= TRUE;
+ param.remove_jump_scans= TRUE;
+ param.max_key_parts= 0;
+ param.remove_false_where_parts= remove_false_parts_of_where;
+ param.force_default_mrr= ordered_output;
+ param.note_unusable_keys= (!suppress_unusable_key_notes &&
+ thd->give_notes_for_unusable_keys());
+
+ param.possible_keys.clear_all();
+
+ thd->no_errors=1; // Don't warn about NULL
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ if (!(param.key_parts=
+ (KEY_PART*) alloc_root(&alloc,
+ sizeof(KEY_PART) *
+ head->s->actual_n_key_parts(thd))) ||
+ fill_used_fields_bitmap(&param))
+ {
+ thd->no_errors=0;
+ free_root(&alloc,MYF(0)); // Return memory & allocator
+ DBUG_RETURN(ERROR);
+ }
+ key_parts= param.key_parts;
+
+ /*
+ Make an array with description of all key parts of all table keys.
+ This is used in get_mm_parts function.
+ */
+ key_info= head->key_info;
+ uint max_key_len= 0;
+
+ Json_writer_array trace_idx(thd, "potential_range_indexes");
+
+ for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
+ {
+ Json_writer_object trace_idx_details(thd);
+ trace_idx_details.add("index", key_info->name);
+ KEY_PART_INFO *key_part_info;
+ uint n_key_parts= head->actual_n_key_parts(key_info);
+
+ if (!keys_to_use.is_set(idx))
+ {
+ trace_idx_details.add("usable", false)
+ .add("cause", "not applicable");
+ continue;
+ }
+ if (key_info->flags & HA_FULLTEXT)
+ {
+ trace_idx_details.add("usable", false).add("cause", "fulltext");
+ continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
+ }
+ trace_idx_details.add("usable", true);
+ param.key[param.keys]=key_parts;
+ key_part_info= key_info->key_part;
+ uint cur_key_len= 0;
+ Json_writer_array trace_keypart(thd, "key_parts");
+ for (uint part= 0 ; part < n_key_parts ;
+ part++, key_parts++, key_part_info++)
+ {
+ key_parts->key= param.keys;
+ key_parts->part= part;
+ key_parts->length= key_part_info->length;
+ key_parts->store_length= key_part_info->store_length;
+ cur_key_len += key_part_info->store_length;
+ key_parts->field= key_part_info->field;
+ key_parts->null_bit= key_part_info->null_bit;
+ key_parts->image_type =
+ (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
+ /* Only HA_PART_KEY_SEG is used */
+ key_parts->flag= (uint8) key_part_info->key_part_flag;
+ trace_keypart.add(key_parts->field->field_name);
+ }
+ trace_keypart.end();
+ param.real_keynr[param.keys++]=idx;
+ if (cur_key_len > max_key_len)
+ max_key_len= cur_key_len;
+ }
+ trace_idx.end();
+
+ param.key_parts_end=key_parts;
+ param.alloced_sel_args= 0;
+
+ max_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
+ if (!(param.min_key= (uchar*)alloc_root(&alloc,max_key_len)) ||
+ !(param.max_key= (uchar*)alloc_root(&alloc,max_key_len)))
+ {
+ thd->no_errors=0;
+ free_root(&alloc,MYF(0)); // Return memory & allocator
+ DBUG_RETURN(ERROR);
+ }
+
+ thd->mem_root= &alloc;
+ /* Calculate cost of full index read for the shortest covering index */
+ if (!force_quick_range && !head->covering_keys.is_clear_all())
+ {
+ int key_for_use= find_shortest_key(head, &head->covering_keys);
+ double key_read_time= (head->file->key_scan_time(key_for_use) +
+ rows2double(records) / TIME_FOR_COMPARE);
+ DBUG_PRINT("info", ("'all'+'using index' scan will be using key %d, "
+ "read time %g", key_for_use, key_read_time));
+
+ Json_writer_object trace_cov(thd, "best_covering_index_scan");
+ bool chosen= FALSE;
+ if (key_read_time < read_time)
+ {
+ read_time= key_read_time;
+ chosen= TRUE;
+ }
+ trace_cov.add("index", head->key_info[key_for_use].name)
+ .add("cost", key_read_time).add("chosen", chosen);
+ if (!chosen)
+ trace_cov.add("cause", "cost");
+ }
+
+ double best_read_time= read_time;
+
+ if (notnull_cond)
+ notnull_cond_tree= notnull_cond->get_mm_tree(&param, &notnull_cond);
+
+ if (cond || notnull_cond_tree)
+ {
+ {
+ Json_writer_array trace_range_summary(thd,
+ "setup_range_conditions");
+ if (cond)
+ tree= cond->get_mm_tree(&param, &cond);
+ if (notnull_cond_tree)
+ tree= tree_and(&param, tree, notnull_cond_tree);
+ if (thd->trace_started() &&
+ param.alloced_sel_args >= thd->variables.optimizer_max_sel_args)
+ {
+ Json_writer_object wrapper(thd);
+ Json_writer_object obj(thd, "sel_arg_alloc_limit_hit");
+ obj.add("alloced_sel_args", param.alloced_sel_args);
+ }
+ }
+ if (tree)
+ {
+ if (tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ records=0L;
+ returnval= IMPOSSIBLE_RANGE;
+ read_time= (double) HA_POS_ERROR;
+ trace_range.add("impossible_range", true);
+ goto free_mem;
+ }
+ /*
+ If the tree can't be used for range scans, proceed anyway, as we
+ can construct a group-min-max quick select
+ */
+ if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
+ {
+ trace_range.add("range_scan_possible", false);
+ tree= NULL;
+ }
+ }
+ else if (thd->is_error())
+ {
+ thd->no_errors=0;
+ thd->mem_root= param.old_root;
+ free_root(&alloc, MYF(0));
+ DBUG_RETURN(ERROR);
+ }
+ }
+
+ if (tree)
+ {
+ /*
+ It is possible to use a range-based quick select (but it might be
+ slower than 'all' table scan).
+ */
+ TRP_ROR_INTERSECT *rori_trp;
+ TRP_INDEX_INTERSECT *intersect_trp;
+ bool can_build_covering= FALSE;
+ Json_writer_object trace_range(thd, "analyzing_range_alternatives");
+
+ backup_keys= (SEL_ARG**) alloca(sizeof(backup_keys[0])*param.keys);
+ memcpy(&backup_keys[0], &tree->keys[0],
+ sizeof(backup_keys[0])*param.keys);
+
+ remove_nonrange_trees(&param, tree);
+
+ /* Get best 'range' plan and prepare data for making other plans */
+ if (auto range_trp= get_key_scans_params(&param, tree,
+ only_single_index_range_scan,
+ true, best_read_time))
+ {
+ best_trp= range_trp;
+ best_read_time= best_trp->read_cost;
+ }
+
+ /*
+ Simultaneous key scans and row deletes on several handler
+ objects are not allowed so don't use ROR-intersection for
+ table deletes.
+ */
+ if ((thd->lex->sql_command != SQLCOM_DELETE) &&
+ optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
+ !only_single_index_range_scan)
+ {
+ /*
+ Get best non-covering ROR-intersection plan and prepare data for
+ building covering ROR-intersection.
+ */
+ if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
+ &can_build_covering)))
+ {
+ best_trp= rori_trp;
+ best_read_time= best_trp->read_cost;
+ /*
+ Try constructing covering ROR-intersect only if it looks possible
+ and worth doing.
+ */
+ if (!rori_trp->is_covering && can_build_covering &&
+ (rori_trp= get_best_covering_ror_intersect(&param, tree,
+ best_read_time)))
+ best_trp= rori_trp;
+ }
+ }
+ /*
+ Do not look for an index intersection plan if there is a covering
+ index. The scan by this covering index will be always cheaper than
+ any index intersection.
+ */
+ if (param.table->covering_keys.is_clear_all() &&
+ optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
+ optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE_SORT_INTERSECT) &&
+ !only_single_index_range_scan)
+ {
+ if ((intersect_trp= get_best_index_intersect(&param, tree,
+ best_read_time)))
+ {
+ best_trp= intersect_trp;
+ best_read_time= best_trp->read_cost;
+ set_if_smaller(param.table->opt_range_condition_rows,
+ intersect_trp->records);
+ }
+ }
+
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
+ head->stat_records() != 0 && !only_single_index_range_scan)
+ {
+ /* Try creating index_merge/ROR-union scan. */
+ SEL_IMERGE *imerge;
+ TABLE_READ_PLAN *best_conj_trp= NULL,
+ *UNINIT_VAR(new_conj_trp); /* no empty index_merge lists possible */
+ DBUG_PRINT("info",("No range reads possible,"
+ " trying to construct index_merge"));
+ List_iterator_fast<SEL_IMERGE> it(tree->merges);
+ Json_writer_array trace_idx_merge(thd, "analyzing_index_merge_union");
+ while ((imerge= it++))
+ {
+ new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
+ if (new_conj_trp)
+ set_if_smaller(param.table->opt_range_condition_rows,
+ new_conj_trp->records);
+ if (new_conj_trp &&
+ (!best_conj_trp ||
+ new_conj_trp->read_cost < best_conj_trp->read_cost))
+ {
+ best_conj_trp= new_conj_trp;
+ best_read_time= best_conj_trp->read_cost;
+ }
+ }
+ if (best_conj_trp)
+ best_trp= best_conj_trp;
+ }
+ }
+
+ /*
+ Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
+ Notice that it can be constructed no matter if there is a range tree.
+ */
+ DBUG_EXECUTE_IF("force_group_by", force_group_by = true; );
+ if (!only_single_index_range_scan)
+ {
+ TRP_GROUP_MIN_MAX *group_trp;
+ if (tree)
+ restore_nonrange_trees(&param, tree, backup_keys);
+ if ((group_trp= get_best_group_min_max(&param, tree, read_time)))
+ {
+ set_if_smaller(param.table->opt_range_condition_rows,
+ group_trp->records);
+ Json_writer_object grp_summary(thd, "best_group_range_summary");
+
+ if (unlikely(thd->trace_started()))
+ group_trp->trace_basic_info(&param, &grp_summary);
+
+ if (group_trp->read_cost < best_read_time || force_group_by)
+ {
+ grp_summary.add("chosen", true);
+ best_trp= group_trp;
+ best_read_time= best_trp->read_cost;
+ }
+ else
+ grp_summary.add("chosen", false).add("cause", "cost");
+ }
+ if (tree)
+ remove_nonrange_trees(&param, tree);
+ }
+
+ thd->mem_root= param.old_root;
+
+ /* If we got a read plan, create a quick select from it. */
+ if (best_trp)
+ {
+ records= best_trp->records;
+ if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
+ {
+ delete quick;
+ quick= NULL;
+ }
+ if (quick && records)
+ returnval= OK;
+ }
+ possible_keys= param.possible_keys;
+
+ if (!records)
+ returnval= IMPOSSIBLE_RANGE;
+
+ free_mem:
+ if (unlikely(quick && best_trp && thd->trace_started()))
+ {
+ Json_writer_object trace_range_summary(thd,
+ "chosen_range_access_summary");
+ {
+ Json_writer_object trace_range_plan(thd, "range_access_plan");
+ best_trp->trace_basic_info(&param, &trace_range_plan);
+ }
+ trace_range_summary.add("rows_for_plan", quick->records)
+ .add("cost_for_plan", quick->read_time)
+ .add("chosen", true);
+ }
+
+ free_root(&alloc,MYF(0)); // Return memory & allocator
+ thd->mem_root= param.old_root;
+ thd->no_errors=0;
+ }
+
+ DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
+
+ /*
+ Assume that if the user is using 'limit' we will only need to scan
+ limit rows if we are using a key
+ */
+ DBUG_RETURN(returnval);
+}
+
+/****************************************************************************
+ * Condition selectivity module
+ ****************************************************************************/
+
+
+/*
+ Build descriptors of pseudo-indexes over columns to perform range analysis
+
+ SYNOPSIS
+ create_key_parts_for_pseudo_indexes()
+ param IN/OUT data structure for the descriptors to be built
+ used_fields bitmap of columns for which the descriptors are to be built
+
+ DESCRIPTION
+ For each column marked in the bitmap used_fields the function builds
+ a descriptor of a single-component pseudo-index over this column that
+ can be used for the range analysis of the predicates over this columns.
+ The descriptors are created in the memory of param->mem_root.
+
+ RETURN
+ FALSE in the case of success
+ TRUE otherwise
+*/
+
+static
+bool create_key_parts_for_pseudo_indexes(RANGE_OPT_PARAM *param,
+ MY_BITMAP *used_fields)
+{
+ Field **field_ptr;
+ TABLE *table= param->table;
+ uint parts= 0;
+
+ for (field_ptr= table->field; *field_ptr; field_ptr++)
+ {
+ Field *field= *field_ptr;
+ if (bitmap_is_set(used_fields, field->field_index) &&
+ is_eits_usable(field))
+ parts++;
+ }
+
+ KEY_PART *key_part;
+ uint keys= 0;
+
+ if (!parts)
+ return TRUE;
+
+ if (!(key_part= (KEY_PART *) alloc_root(param->mem_root,
+ sizeof(KEY_PART) * parts)))
+ return TRUE;
+
+ param->key_parts= key_part;
+ uint max_key_len= 0;
+ for (field_ptr= table->field; *field_ptr; field_ptr++)
+ {
+ Field *field= *field_ptr;
+ if (bitmap_is_set(used_fields, field->field_index))
+ {
+ if (!is_eits_usable(field))
+ continue;
+
+ uint16 store_length;
+ uint16 max_key_part_length= (uint16) table->file->max_key_part_length();
+ key_part->key= keys;
+ key_part->part= 0;
+ if (field->flags & BLOB_FLAG)
+ key_part->length= max_key_part_length;
+ else
+ {
+ key_part->length= (uint16) field->key_length();
+ set_if_smaller(key_part->length, max_key_part_length);
+ }
+ store_length= key_part->length;
+ if (field->real_maybe_null())
+ store_length+= HA_KEY_NULL_LENGTH;
+ if (field->real_type() == MYSQL_TYPE_VARCHAR)
+ store_length+= HA_KEY_BLOB_LENGTH;
+ if (max_key_len < store_length)
+ max_key_len= store_length;
+ key_part->store_length= store_length;
+ key_part->field= field;
+ key_part->image_type= Field::itRAW;
+ key_part->flag= 0;
+ param->key[keys]= key_part;
+ keys++;
+ key_part++;
+ }
+ }
+
+ max_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
+ if (!(param->min_key= (uchar*)alloc_root(param->mem_root, max_key_len)) ||
+ !(param->max_key= (uchar*)alloc_root(param->mem_root, max_key_len)))
+ {
+ return true;
+ }
+ param->keys= keys;
+ param->key_parts_end= key_part;
+
+ return FALSE;
+}
+
+
+/*
+ Estimate the number of rows in all ranges built for a column
+ by the range optimizer
+
+ SYNOPSIS
+ records_in_column_ranges()
+ param the data structure to access descriptors of pseudo indexes
+ built over columns used in the condition of the processed query
+ idx the index of the descriptor of interest in param
+ tree the tree representing ranges built for the interesting column
+
+ DESCRIPTION
+ This function retrieves the ranges represented by the SEL_ARG 'tree' and
+ for each of them r it calls the function get_column_range_cardinality()
+ that estimates the number of expected rows in r. It is assumed that param
+ is the data structure containing the descriptors of pseudo-indexes that
+ has been built to perform range analysis of the range conditions imposed
+ on the columns used in the processed query, while idx is the index of the
+ descriptor created in 'param' exactly for the column for which 'tree'
+ has been built by the range optimizer.
+
+ RETURN
+ the number of rows in the retrieved ranges
+*/
+
+static
+double records_in_column_ranges(PARAM *param, uint idx,
+ SEL_ARG *tree)
+{
+ THD *thd= param->thd;
+ SEL_ARG_RANGE_SEQ seq;
+ KEY_MULTI_RANGE range;
+ range_seq_t seq_it;
+ double rows;
+ Field *field;
+ uint flags= 0;
+ double total_rows= 0;
+ RANGE_SEQ_IF seq_if = {NULL, sel_arg_range_seq_init,
+ sel_arg_range_seq_next, 0, 0};
+
+ /* Handle cases when we don't have a valid non-empty list of range */
+ if (!tree)
+ return DBL_MAX;
+ if (tree->type == SEL_ARG::IMPOSSIBLE)
+ return (0L);
+
+ field= tree->field;
+
+ seq.keyno= idx;
+ seq.real_keyno= MAX_KEY;
+ seq.key_parts= param->key[idx];
+ seq.param= param;
+ seq.start= tree;
+ seq.is_ror_scan= FALSE;
+
+ seq_it= seq_if.init((void *) &seq, 0, flags);
+
+ Json_writer_array range_trace(thd, "ranges");
+
+ while (!seq_if.next(seq_it, &range))
+ {
+ key_range *min_endp, *max_endp;
+ min_endp= range.start_key.length? &range.start_key : NULL;
+ max_endp= range.end_key.length? &range.end_key : NULL;
+ int range_flag= range.range_flag;
+
+ if (!range.start_key.length)
+ range_flag |= NO_MIN_RANGE;
+ if (!range.end_key.length)
+ range_flag |= NO_MAX_RANGE;
+ if (range.start_key.flag == HA_READ_AFTER_KEY)
+ range_flag |= NEAR_MIN;
+ if (range.start_key.flag == HA_READ_BEFORE_KEY)
+ range_flag |= NEAR_MAX;
+
+ if (unlikely(thd->trace_started()))
+ {
+ StringBuffer<128> range_info(system_charset_info);
+ print_range_for_non_indexed_field(&range_info, field, &range);
+ range_trace.add(range_info.c_ptr_safe(), range_info.length());
+ }
+
+ rows= get_column_range_cardinality(field, min_endp, max_endp, range_flag);
+ if (DBL_MAX == rows)
+ {
+ total_rows= DBL_MAX;
+ break;
+ }
+ total_rows += rows;
+ }
+ if (total_rows == 0)
+ total_rows= MY_MIN(1, rows2double(param->table->stat_records()));
+
+ return total_rows;
+}
+
+
+/*
+ Compare quick select ranges according to number of found rows
+ If there is equal amounts of rows, use the long key part.
+ The idea is that if we have keys (a),(a,b) and (a,b,c) and we have
+ a query like WHERE a=1 and b=1 and c=1,
+ it is better to use key (a,b,c) than (a) as it will ensure we don't also
+ use histograms for columns b and c
+*/
+
+static
+int cmp_quick_ranges(TABLE *table, uint *a, uint *b)
+{
+ int tmp= CMP_NUM(table->opt_range[*a].rows, table->opt_range[*b].rows);
+ if (tmp)
+ return tmp;
+ return -CMP_NUM(table->opt_range[*a].key_parts, table->opt_range[*b].key_parts);
+}
+
+
+/*
+ Calculate the selectivity of the condition imposed on the rows of a table
+
+ SYNOPSIS
+ calculate_cond_selectivity_for_table()
+ thd the context handle
+ table the table of interest
+ cond conditions imposed on the rows of the table
+
+ DESCRIPTION
+ This function calculates the selectivity of range conditions cond imposed
+ on the rows of 'table' in the processed query.
+ The calculated selectivity is assigned to the field table->cond_selectivity.
+
+ Selectivity is calculated as a product of selectivities imposed by:
+
+ 1. possible range accesses. (if multiple range accesses use the same
+ restrictions on the same field, we make adjustments for that)
+ 2. Sargable conditions on fields for which we have column statistics (if
+ a field is used in a possible range access, we assume that selectivity
+ is already provided by the range access' estimates)
+ 3. Reading a few records from the table pages and checking the condition
+ selectivity (this is used for conditions like "column LIKE '%val%'"
+ where approaches #1 and #2 do not provide selectivity data).
+
+ NOTE
+ Currently the selectivities of range conditions over different columns are
+ considered independent.
+
+ RETURN
+ FALSE on success
+ TRUE otherwise
+*/
+
+bool calculate_cond_selectivity_for_table(THD *thd, TABLE *table, Item **cond)
+{
+ uint keynr, range_index, ranges;
+ MY_BITMAP *used_fields= &table->cond_set;
+ double table_records= (double)table->stat_records();
+ uint optimal_key_order[MAX_KEY];
+ DBUG_ENTER("calculate_cond_selectivity_for_table");
+
+ table->cond_selectivity= 1.0;
+
+ if (table_records == 0)
+ DBUG_RETURN(FALSE);
+
+ QUICK_SELECT_I *quick;
+ if ((quick=table->reginfo.join_tab->quick) &&
+ quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
+ {
+ table->cond_selectivity*= (quick->records/table_records);
+ DBUG_RETURN(FALSE);
+ }
+
+ if (!*cond)
+ DBUG_RETURN(FALSE);
+
+ if (table->pos_in_table_list->schema_table)
+ DBUG_RETURN(FALSE);
+
+ MY_BITMAP handled_columns;
+ my_bitmap_map* buf;
+ if (!(buf= (my_bitmap_map*)thd->alloc(table->s->column_bitmap_size)))
+ DBUG_RETURN(TRUE);
+ my_bitmap_init(&handled_columns, buf, table->s->fields);
+
+ /*
+ Calculate the selectivity of the range conditions supported by indexes.
+
+ First, take into account possible range accesses.
+ range access estimates are the most precise, we prefer them to any other
+ estimate sources.
+ */
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_array selectivity_for_indexes(thd, "selectivity_for_indexes");
+
+ /*
+ Walk through all quick ranges in the order of least found rows.
+ */
+ for (ranges= keynr= 0 ; keynr < table->s->keys; keynr++)
+ if (table->opt_range_keys.is_set(keynr))
+ optimal_key_order[ranges++]= keynr;
+
+ my_qsort2(optimal_key_order, ranges,
+ sizeof(optimal_key_order[0]),
+ (qsort2_cmp) cmp_quick_ranges, table);
+
+ for (range_index= 0 ; range_index < ranges ; range_index++)
+ {
+ uint keynr= optimal_key_order[range_index];
+ {
+ {
+ uint i;
+ uint used_key_parts= table->opt_range[keynr].key_parts;
+ double quick_cond_selectivity= (table->opt_range[keynr].rows /
+ table_records);
+ KEY *key_info= table->key_info + keynr;
+ KEY_PART_INFO* key_part= key_info->key_part;
+ /*
+ Suppose, there are range conditions on two keys
+ KEY1 (col1, col2)
+ KEY2 (col3, col2)
+
+ we don't want to count selectivity of condition on col2 twice.
+
+ First, find the longest key prefix that's made of columns whose
+ selectivity wasn't already accounted for.
+ */
+ for (i= 0; i < used_key_parts; i++, key_part++)
+ {
+ if (bitmap_is_set(&handled_columns, key_part->fieldnr-1))
+ break;
+ bitmap_set_bit(&handled_columns, key_part->fieldnr-1);
+ }
+ if (i)
+ {
+ double UNINIT_VAR(selectivity_mult);
+
+ /*
+ There is at least 1-column prefix of columns whose selectivity has
+ not yet been accounted for.
+ */
+ table->cond_selectivity*= quick_cond_selectivity;
+ Json_writer_object selectivity_for_index(thd);
+ selectivity_for_index.add("index_name", key_info->name)
+ .add("selectivity_from_index",
+ quick_cond_selectivity);
+ if (i != used_key_parts)
+ {
+ /*
+ Range access got us estimate for #used_key_parts.
+ We need estimate for #(i-1) key parts.
+ */
+ double f1= key_info->actual_rec_per_key(i-1);
+ double f2= key_info->actual_rec_per_key(i);
+ if (f1 > 0 && f2 > 0)
+ selectivity_mult= f1 / f2;
+ else
+ {
+ /*
+ No statistics available, assume the selectivity is proportional
+ to the number of key parts.
+ (i=0 means 1 keypart, i=1 means 2 keyparts, so use i+1)
+ */
+ selectivity_mult= ((double)(i+1)) / i;
+ }
+ table->cond_selectivity*= selectivity_mult;
+ selectivity_for_index.add("selectivity_multiplier",
+ selectivity_mult);
+ }
+ /*
+ We need to set selectivity for fields supported by indexes.
+ For single-component indexes and for some first components
+ of other indexes we do it here. For the remaining fields
+ we do it later in this function, in the same way as for the
+ fields not used in any indexes.
+ */
+ if (i == 1)
+ {
+ uint fieldnr= key_info->key_part[0].fieldnr;
+ table->field[fieldnr-1]->cond_selectivity= quick_cond_selectivity;
+ if (i != used_key_parts)
+ table->field[fieldnr-1]->cond_selectivity*= selectivity_mult;
+ bitmap_clear_bit(used_fields, fieldnr-1);
+ }
+ }
+ }
+ }
+ }
+ selectivity_for_indexes.end();
+
+ /*
+ Second step: calculate the selectivity of the range conditions not
+ supported by any index and selectivity of the range condition
+ over the fields whose selectivity has not been set yet.
+ */
+ Json_writer_array selectivity_for_columns(thd, "selectivity_for_columns");
+
+ if (thd->variables.optimizer_use_condition_selectivity > 2 &&
+ !bitmap_is_clear_all(used_fields) &&
+ thd->variables.use_stat_tables > 0 && table->stats_is_read)
+ {
+ PARAM param;
+ MEM_ROOT alloc;
+ SEL_TREE *tree;
+ double rows;
+
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ bzero((void*) &param, sizeof(param));
+ param.thd= thd;
+ param.mem_root= &alloc;
+ param.old_root= thd->mem_root;
+ param.table= table;
+ param.remove_false_where_parts= true;
+
+ if (create_key_parts_for_pseudo_indexes(&param, used_fields))
+ goto free_alloc;
+
+ param.prev_tables= param.read_tables= 0;
+ param.current_table= table->map;
+ param.using_real_indexes= FALSE;
+ param.real_keynr[0]= 0;
+ param.alloced_sel_args= 0;
+ param.max_key_parts= 0;
+
+ thd->no_errors=1;
+
+ tree= cond[0]->get_mm_tree(&param, cond);
+
+ if (!tree)
+ goto free_alloc;
+
+ table->reginfo.impossible_range= 0;
+ if (tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ rows= 0;
+ table->reginfo.impossible_range= 1;
+ goto free_alloc;
+ }
+ else if (tree->type == SEL_TREE::ALWAYS)
+ {
+ rows= table_records;
+ goto free_alloc;
+ }
+ else if (tree->type == SEL_TREE::MAYBE)
+ {
+ rows= table_records;
+ goto free_alloc;
+ }
+
+ for (uint idx= 0; idx < param.keys; idx++)
+ {
+ SEL_ARG *key= tree->keys[idx];
+ if (key)
+ {
+ Json_writer_object selectivity_for_column(thd);
+ selectivity_for_column.add("column_name", key->field->field_name);
+ if (key->type == SEL_ARG::IMPOSSIBLE)
+ {
+ rows= 0;
+ table->reginfo.impossible_range= 1;
+ selectivity_for_column.add("selectivity_from_histogram", rows);
+ selectivity_for_column.add("cause", "impossible range");
+ goto free_alloc;
+ }
+ else
+ {
+ enum_check_fields save_count_cuted_fields= thd->count_cuted_fields;
+ thd->count_cuted_fields= CHECK_FIELD_IGNORE;
+ rows= records_in_column_ranges(&param, idx, key);
+ thd->count_cuted_fields= save_count_cuted_fields;
+ if (rows != DBL_MAX)
+ {
+ key->field->cond_selectivity= rows/table_records;
+ selectivity_for_column.add("selectivity_from_histogram",
+ key->field->cond_selectivity);
+ }
+ }
+ }
+ }
+
+ for (Field **field_ptr= table->field; *field_ptr; field_ptr++)
+ {
+ Field *table_field= *field_ptr;
+ if (bitmap_is_set(used_fields, table_field->field_index) &&
+ table_field->cond_selectivity < 1.0)
+ {
+ if (!bitmap_is_set(&handled_columns, table_field->field_index))
+ table->cond_selectivity*= table_field->cond_selectivity;
+ }
+ }
+
+ free_alloc:
+ thd->no_errors= 0;
+ thd->mem_root= param.old_root;
+ free_root(&alloc, MYF(0));
+
+ }
+ selectivity_for_columns.end();
+
+ if (quick && (quick->get_type() == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
+ quick->get_type() == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE))
+ {
+ table->cond_selectivity*= (quick->records/table_records);
+ }
+
+ bitmap_union(used_fields, &handled_columns);
+
+ /* Check if we can improve selectivity estimates by using sampling */
+ ulong check_rows=
+ MY_MIN(thd->variables.optimizer_selectivity_sampling_limit,
+ (ulong) (table_records * SELECTIVITY_SAMPLING_SHARE));
+ if (*cond && check_rows > SELECTIVITY_SAMPLING_THRESHOLD &&
+ thd->variables.optimizer_use_condition_selectivity > 4)
+ {
+ find_selective_predicates_list_processor_data *dt=
+ (find_selective_predicates_list_processor_data *)
+ alloc_root(thd->mem_root,
+ sizeof(find_selective_predicates_list_processor_data));
+ if (!dt)
+ DBUG_RETURN(TRUE);
+ dt->list.empty();
+ dt->table= table;
+ if ((*cond)->walk(&Item::find_selective_predicates_list_processor, 0, dt))
+ DBUG_RETURN(TRUE);
+ if (dt->list.elements > 0)
+ {
+ check_rows= check_selectivity(thd, check_rows, table, &dt->list);
+ if (check_rows > SELECTIVITY_SAMPLING_THRESHOLD)
+ {
+ COND_STATISTIC *stat;
+ List_iterator_fast<COND_STATISTIC> it(dt->list);
+ double examined_rows= check_rows;
+ while ((stat= it++))
+ {
+ if (!stat->positive)
+ {
+ DBUG_PRINT("info", ("To avoid 0 assigned 1 to the counter"));
+ stat->positive= 1; // avoid 0
+ }
+ DBUG_PRINT("info", ("The predicate selectivity : %g",
+ (double)stat->positive / examined_rows));
+ double selectivity= ((double)stat->positive) / examined_rows;
+ table->cond_selectivity*= selectivity;
+ /*
+ If a field is involved then we register its selectivity in case
+ there in an equality with the field.
+ For example in case
+ t1.a LIKE "%bla%" and t1.a = t2.b
+ the selectivity we have found could be used also for t2.
+ */
+ if (stat->field_arg)
+ {
+ stat->field_arg->cond_selectivity*= selectivity;
+
+ if (stat->field_arg->next_equal_field)
+ {
+ for (Field *next_field= stat->field_arg->next_equal_field;
+ next_field != stat->field_arg;
+ next_field= next_field->next_equal_field)
+ {
+ next_field->cond_selectivity*= selectivity;
+ next_field->table->cond_selectivity*= selectivity;
+ }
+ }
+ }
+ }
+
+ }
+ /* This list and its elements put to mem_root so should not be freed */
+ table->cond_selectivity_sampling_explain= &dt->list;
+ }
+ }
+ trace_wrapper.add("cond_selectivity", table->cond_selectivity);
+ DBUG_RETURN(FALSE);
+}
+
+/****************************************************************************
+ * Condition selectivity code ends
+ ****************************************************************************/
+
+/****************************************************************************
+ * Partition pruning module
+ ****************************************************************************/
+
+/*
+ Store field key image to table record
+
+ SYNOPSIS
+ store_key_image_to_rec()
+ field Field which key image should be stored
+ ptr Field value in key format
+ len Length of the value, in bytes
+
+ ATTENTION
+ len is the length of the value not counting the NULL-byte (at the same
+ time, ptr points to the key image, which starts with NULL-byte for
+ nullable columns)
+
+ DESCRIPTION
+ Copy the field value from its key image to the table record. The source
+ is the value in key image format, occupying len bytes in buffer pointed
+ by ptr. The destination is table record, in "field value in table record"
+ format.
+*/
+
+void store_key_image_to_rec(Field *field, uchar *ptr, uint len)
+{
+ /* Do the same as print_key() does */
+
+ if (field->real_maybe_null())
+ {
+ if (*ptr)
+ {
+ field->set_null();
+ return;
+ }
+ field->set_notnull();
+ ptr++;
+ }
+ MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table,
+ &field->table->write_set);
+ field->set_key_image(ptr, len);
+ dbug_tmp_restore_column_map(&field->table->write_set, old_map);
+}
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+
+/*
+ PartitionPruningModule
+
+ This part of the code does partition pruning. Partition pruning solves the
+ following problem: given a query over partitioned tables, find partitions
+ that we will not need to access (i.e. partitions that we can assume to be
+ empty) when executing the query.
+ The set of partitions to prune doesn't depend on which query execution
+ plan will be used to execute the query.
+
+ HOW IT WORKS
+
+ Partition pruning module makes use of RangeAnalysisModule. The following
+ examples show how the problem of partition pruning can be reduced to the
+ range analysis problem:
+
+ EXAMPLE 1
+ Consider a query:
+
+ SELECT * FROM t1 WHERE (t1.a < 5 OR t1.a = 10) AND t1.a > 3 AND t1.b='z'
+
+ where table t1 is partitioned using PARTITION BY RANGE(t1.a). An apparent
+ way to find the used (i.e. not pruned away) partitions is as follows:
+
+ 1. analyze the WHERE clause and extract the list of intervals over t1.a
+ for the above query we will get this list: {(3 < t1.a < 5), (t1.a=10)}
+
+ 2. for each interval I
+ {
+ find partitions that have non-empty intersection with I;
+ mark them as used;
+ }
+
+ EXAMPLE 2
+ Suppose the table is partitioned by HASH(part_func(t1.a, t1.b)). Then
+ we need to:
+
+ 1. Analyze the WHERE clause and get a list of intervals over (t1.a, t1.b).
+ The list of intervals we'll obtain will look like this:
+ ((t1.a, t1.b) = (1,'foo')),
+ ((t1.a, t1.b) = (2,'bar')),
+ ((t1,a, t1.b) > (10,'zz'))
+
+ 2. for each interval I
+ {
+ if (the interval has form "(t1.a, t1.b) = (const1, const2)" )
+ {
+ calculate HASH(part_func(t1.a, t1.b));
+ find which partition has records with this hash value and mark
+ it as used;
+ }
+ else
+ {
+ mark all partitions as used;
+ break;
+ }
+ }
+
+ For both examples the step #1 is exactly what RangeAnalysisModule could
+ be used to do, if it was provided with appropriate index description
+ (array of KEY_PART structures).
+ In example #1, we need to provide it with description of index(t1.a),
+ in example #2, we need to provide it with description of index(t1.a, t1.b).
+
+ These index descriptions are further called "partitioning index
+ descriptions". Note that it doesn't matter if such indexes really exist,
+ as range analysis module only uses the description.
+
+ Putting it all together, partitioning module works as follows:
+
+ prune_partitions() {
+ call create_partition_index_description();
+
+ call get_mm_tree(); // invoke the RangeAnalysisModule
+
+ // analyze the obtained interval list and get used partitions
+ call find_used_partitions();
+ }
+
+*/
+
+struct st_part_prune_param;
+struct st_part_opt_info;
+
+typedef void (*mark_full_part_func)(partition_info*, uint32);
+
+/*
+ Partition pruning operation context
+*/
+typedef struct st_part_prune_param
+{
+ RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
+
+ /***************************************************************
+ Following fields are filled in based solely on partitioning
+ definition and not modified after that:
+ **************************************************************/
+ partition_info *part_info; /* Copy of table->part_info */
+ /* Function to get partition id from partitioning fields only */
+ get_part_id_func get_top_partition_id_func;
+ /* Function to mark a partition as used (w/all subpartitions if they exist)*/
+ mark_full_part_func mark_full_partition_used;
+
+ /* Partitioning 'index' description, array of key parts */
+ KEY_PART *key;
+
+ /*
+ Number of fields in partitioning 'index' definition created for
+ partitioning (0 if partitioning 'index' doesn't include partitioning
+ fields)
+ */
+ uint part_fields;
+ uint subpart_fields; /* Same as above for subpartitioning */
+
+ /*
+ Number of the last partitioning field keypart in the index, or -1 if
+ partitioning index definition doesn't include partitioning fields.
+ */
+ int last_part_partno;
+ int last_subpart_partno; /* Same as above for supartitioning */
+
+ /*
+ is_part_keypart[i] == MY_TEST(keypart #i in partitioning index is a member
+ used in partitioning)
+ Used to maintain current values of cur_part_fields and cur_subpart_fields
+ */
+ my_bool *is_part_keypart;
+ /* Same as above for subpartitioning */
+ my_bool *is_subpart_keypart;
+
+ my_bool ignore_part_fields; /* Ignore rest of partioning fields */
+
+ /***************************************************************
+ Following fields form find_used_partitions() recursion context:
+ **************************************************************/
+ SEL_ARG **arg_stack; /* "Stack" of SEL_ARGs */
+ SEL_ARG **arg_stack_end; /* Top of the stack */
+ /* Number of partitioning fields for which we have a SEL_ARG* in arg_stack */
+ uint cur_part_fields;
+ /* Same as cur_part_fields, but for subpartitioning */
+ uint cur_subpart_fields;
+
+ /* Iterator to be used to obtain the "current" set of used partitions */
+ PARTITION_ITERATOR part_iter;
+
+ /* Initialized bitmap of num_subparts size */
+ MY_BITMAP subparts_bitmap;
+
+ uchar *cur_min_key;
+ uchar *cur_max_key;
+
+ uint cur_min_flag, cur_max_flag;
+} PART_PRUNE_PARAM;
+
+static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
+static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
+static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
+ SEL_IMERGE *imerge);
+static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
+ List<SEL_IMERGE> &merges);
+static void mark_all_partitions_as_used(partition_info *part_info);
+
+#ifndef DBUG_OFF
+static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
+static void dbug_print_field(Field *field);
+static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
+static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
+#endif
+
+
+/**
+ Perform partition pruning for a given table and condition.
+
+ @param thd Thread handle
+ @param table Table to perform partition pruning for
+ @param pprune_cond Condition to use for partition pruning
+
+ @note This function assumes that lock_partitions are setup when it
+ is invoked. The function analyzes the condition, finds partitions that
+ need to be used to retrieve the records that match the condition, and
+ marks them as used by setting appropriate bit in part_info->read_partitions
+ In the worst case all partitions are marked as used. If the table is not
+ yet locked, it will also unset bits in part_info->lock_partitions that is
+ not set in read_partitions.
+
+ This function returns promptly if called for non-partitioned table.
+
+ @return Operation status
+ @retval true Failure
+ @retval false Success
+*/
+
+bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
+{
+ bool retval= FALSE;
+ partition_info *part_info = table->part_info;
+ DBUG_ENTER("prune_partitions");
+
+ if (!part_info)
+ DBUG_RETURN(FALSE); /* not a partitioned table */
+
+ if (!pprune_cond)
+ {
+ mark_all_partitions_as_used(part_info);
+ DBUG_RETURN(FALSE);
+ }
+
+ PART_PRUNE_PARAM prune_param;
+ MEM_ROOT alloc;
+ RANGE_OPT_PARAM *range_par= &prune_param.range_param;
+ MY_BITMAP *old_sets[2];
+
+ prune_param.part_info= part_info;
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ bzero((void*) range_par, sizeof(*range_par));
+ range_par->mem_root= &alloc;
+ range_par->old_root= thd->mem_root;
+
+ if (create_partition_index_description(&prune_param))
+ {
+ mark_all_partitions_as_used(part_info);
+ free_root(&alloc,MYF(0)); // Return memory & allocator
+ DBUG_RETURN(FALSE);
+ }
+
+ dbug_tmp_use_all_columns(table, old_sets,
+ &table->read_set, &table->write_set);
+ range_par->thd= thd;
+ range_par->table= table;
+ /* range_par->cond doesn't need initialization */
+ range_par->prev_tables= range_par->read_tables= 0;
+ range_par->current_table= table->map;
+ /* It should be possible to switch the following ON: */
+ range_par->remove_false_where_parts= false;
+
+ range_par->keys= 1; // one index
+ range_par->using_real_indexes= FALSE;
+ range_par->remove_jump_scans= FALSE;
+ range_par->real_keynr[0]= 0;
+ range_par->alloced_sel_args= 0;
+ range_par->note_unusable_keys= 0;
+
+ thd->no_errors=1; // Don't warn about NULL
+ thd->mem_root=&alloc;
+
+ bitmap_clear_all(&part_info->read_partitions);
+
+ prune_param.key= prune_param.range_param.key_parts;
+ SEL_TREE *tree;
+ int res;
+
+ tree= pprune_cond->get_mm_tree(range_par, &pprune_cond);
+ if (!tree)
+ goto all_used;
+
+ if (tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ retval= TRUE;
+ goto end;
+ }
+
+ if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
+ goto all_used;
+
+ if (tree->merges.is_empty())
+ {
+ /* Range analysis has produced a single list of intervals. */
+ prune_param.arg_stack_end= prune_param.arg_stack;
+ prune_param.cur_part_fields= 0;
+ prune_param.cur_subpart_fields= 0;
+
+ prune_param.cur_min_key= prune_param.range_param.min_key;
+ prune_param.cur_max_key= prune_param.range_param.max_key;
+ prune_param.cur_min_flag= prune_param.cur_max_flag= 0;
+
+ init_all_partitions_iterator(part_info, &prune_param.part_iter);
+ if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
+ tree->keys[0]))))
+ goto all_used;
+ }
+ else
+ {
+ if (tree->merges.elements == 1)
+ {
+ /*
+ Range analysis has produced a "merge" of several intervals lists, a
+ SEL_TREE that represents an expression in form
+ sel_imerge = (tree1 OR tree2 OR ... OR treeN)
+ that cannot be reduced to one tree. This can only happen when
+ partitioning index has several keyparts and the condition is OR of
+ conditions that refer to different key parts. For example, we'll get
+ here for "partitioning_field=const1 OR subpartitioning_field=const2"
+ */
+ if (-1 == (res= find_used_partitions_imerge(&prune_param,
+ tree->merges.head())))
+ goto all_used;
+ }
+ else
+ {
+ /*
+ Range analysis has produced a list of several imerges, i.e. a
+ structure that represents a condition in form
+ imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
+ This is produced for complicated WHERE clauses that range analyzer
+ can't really analyze properly.
+ */
+ if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
+ tree->merges)))
+ goto all_used;
+ }
+ }
+
+ /*
+ res == 0 => no used partitions => retval=TRUE
+ res == 1 => some used partitions => retval=FALSE
+ res == -1 - we jump over this line to all_used:
+ */
+ retval= MY_TEST(!res);
+ goto end;
+
+all_used:
+ retval= FALSE; // some partitions are used
+ mark_all_partitions_as_used(prune_param.part_info);
+end:
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+ thd->no_errors=0;
+ thd->mem_root= range_par->old_root;
+ free_root(&alloc,MYF(0)); // Return memory & allocator
+ /*
+ Must be a subset of the locked partitions.
+ lock_partitions contains the partitions marked by explicit partition
+ selection (... t PARTITION (pX) ...) and we must only use partitions
+ within that set.
+ */
+ bitmap_intersect(&prune_param.part_info->read_partitions,
+ &prune_param.part_info->lock_partitions);
+ /*
+ If not yet locked, also prune partitions to lock if not UPDATEing
+ partition key fields. This will also prune lock_partitions if we are under
+ LOCK TABLES, so prune away calls to start_stmt().
+ TODO: enhance this prune locking to also allow pruning of
+ 'UPDATE t SET part_key = const WHERE cond_is_prunable' so it adds
+ a lock for part_key partition.
+ */
+ if (table->file->get_lock_type() == F_UNLCK &&
+ !partition_key_modified(table, table->write_set))
+ {
+ bitmap_copy(&prune_param.part_info->lock_partitions,
+ &prune_param.part_info->read_partitions);
+ }
+ if (bitmap_is_clear_all(&(prune_param.part_info->read_partitions)))
+ {
+ table->all_partitions_pruned_away= true;
+ retval= TRUE;
+ }
+ DBUG_RETURN(retval);
+}
+
+
+/*
+ For SEL_ARG* array, store sel_arg->min values into table record buffer
+
+ SYNOPSIS
+ store_selargs_to_rec()
+ ppar Partition pruning context
+ start Array of SEL_ARG* for which the minimum values should be stored
+ num Number of elements in the array
+
+ DESCRIPTION
+ For each SEL_ARG* interval in the specified array, store the left edge
+ field value (sel_arg->min, key image format) into the table record.
+*/
+
+static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
+ int num)
+{
+ KEY_PART *parts= ppar->range_param.key_parts;
+ for (SEL_ARG **end= start + num; start != end; start++)
+ {
+ SEL_ARG *sel_arg= (*start);
+ store_key_image_to_rec(sel_arg->field, sel_arg->min_value,
+ parts[sel_arg->part].length);
+ }
+}
+
+
+/* Mark a partition as used in the case when there are no subpartitions */
+static void mark_full_partition_used_no_parts(partition_info* part_info,
+ uint32 part_id)
+{
+ DBUG_ENTER("mark_full_partition_used_no_parts");
+ DBUG_PRINT("enter", ("Mark partition %u as used", part_id));
+ bitmap_set_bit(&part_info->read_partitions, part_id);
+ DBUG_VOID_RETURN;
+}
+
+
+/* Mark a partition as used in the case when there are subpartitions */
+static void mark_full_partition_used_with_parts(partition_info *part_info,
+ uint32 part_id)
+{
+ uint32 start= part_id * part_info->num_subparts;
+ uint32 end= start + part_info->num_subparts;
+ DBUG_ENTER("mark_full_partition_used_with_parts");
+
+ for (; start != end; start++)
+ {
+ DBUG_PRINT("info", ("1:Mark subpartition %u as used", start));
+ bitmap_set_bit(&part_info->read_partitions, start);
+ }
+ DBUG_VOID_RETURN;
+}
+
+/*
+ Find the set of used partitions for List<SEL_IMERGE>
+ SYNOPSIS
+ find_used_partitions_imerge_list
+ ppar Partition pruning context.
+ key_tree Intervals tree to perform pruning for.
+
+ DESCRIPTION
+ List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
+ The set of used partitions is an intersection of used partitions sets
+ for imerge_{i}.
+ We accumulate this intersection in a separate bitmap.
+
+ RETURN
+ See find_used_partitions()
+*/
+
+static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
+ List<SEL_IMERGE> &merges)
+{
+ MY_BITMAP all_merges;
+ uint bitmap_bytes;
+ my_bitmap_map *bitmap_buf;
+ uint n_bits= ppar->part_info->read_partitions.n_bits;
+ bitmap_bytes= bitmap_buffer_size(n_bits);
+ if (!(bitmap_buf= (my_bitmap_map*) alloc_root(ppar->range_param.mem_root,
+ bitmap_bytes)))
+ {
+ /*
+ Fallback, process just the first SEL_IMERGE. This can leave us with more
+ partitions marked as used then actually needed.
+ */
+ return find_used_partitions_imerge(ppar, merges.head());
+ }
+ my_bitmap_init(&all_merges, bitmap_buf, n_bits);
+ bitmap_set_prefix(&all_merges, n_bits);
+
+ List_iterator<SEL_IMERGE> it(merges);
+ SEL_IMERGE *imerge;
+ while ((imerge=it++))
+ {
+ int res= find_used_partitions_imerge(ppar, imerge);
+ if (!res)
+ {
+ /* no used partitions on one ANDed imerge => no used partitions at all */
+ return 0;
+ }
+
+ if (res != -1)
+ bitmap_intersect(&all_merges, &ppar->part_info->read_partitions);
+
+
+ if (bitmap_is_clear_all(&all_merges))
+ return 0;
+
+ bitmap_clear_all(&ppar->part_info->read_partitions);
+ }
+ memcpy(ppar->part_info->read_partitions.bitmap, all_merges.bitmap,
+ bitmap_bytes);
+ return 1;
+}
+
+
+/*
+ Find the set of used partitions for SEL_IMERGE structure
+ SYNOPSIS
+ find_used_partitions_imerge()
+ ppar Partition pruning context.
+ key_tree Intervals tree to perform pruning for.
+
+ DESCRIPTION
+ SEL_IMERGE represents "tree1 OR tree2 OR ...". The implementation is
+ trivial - just use mark used partitions for each tree and bail out early
+ if for some tree_{i} all partitions are used.
+
+ RETURN
+ See find_used_partitions().
+*/
+
+static
+int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
+{
+ int res= 0;
+ for (SEL_TREE **ptree= imerge->trees; ptree < imerge->trees_next; ptree++)
+ {
+ ppar->arg_stack_end= ppar->arg_stack;
+ ppar->cur_part_fields= 0;
+ ppar->cur_subpart_fields= 0;
+
+ ppar->cur_min_key= ppar->range_param.min_key;
+ ppar->cur_max_key= ppar->range_param.max_key;
+ ppar->cur_min_flag= ppar->cur_max_flag= 0;
+
+ init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
+ SEL_ARG *key_tree= (*ptree)->keys[0];
+ if (!key_tree || (-1 == (res |= find_used_partitions(ppar, key_tree))))
+ return -1;
+ }
+ return res;
+}
+
+
+/*
+ Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
+
+ SYNOPSIS
+ find_used_partitions()
+ ppar Partition pruning context.
+ key_tree SEL_ARG range tree to perform pruning for
+
+ DESCRIPTION
+ This function
+ * recursively walks the SEL_ARG* tree collecting partitioning "intervals"
+ * finds the partitions one needs to use to get rows in these intervals
+ * marks these partitions as used.
+ The next session desribes the process in greater detail.
+
+ IMPLEMENTATION
+ TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
+ We can find out which [sub]partitions to use if we obtain restrictions on
+ [sub]partitioning fields in the following form:
+ 1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
+ 1.1 Same as (1) but for subpartition fields
+
+ If partitioning supports interval analysis (i.e. partitioning is a
+ function of a single table field, and partition_info::
+ get_part_iter_for_interval != NULL), then we can also use condition in
+ this form:
+ 2. "const1 <=? partition_field <=? const2"
+ 2.1 Same as (2) but for subpartition_field
+
+ INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
+
+ The below is an example of what SEL_ARG tree may represent:
+
+ (start)
+ | $
+ | Partitioning keyparts $ subpartitioning keyparts
+ | $
+ | ... ... $
+ | | | $
+ | +---------+ +---------+ $ +-----------+ +-----------+
+ \-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
+ +---------+ +---------+ $ +-----------+ +-----------+
+ | $ | |
+ | $ | +-----------+
+ | $ | | subpar2=c6|
+ | $ | +-----------+
+ | $ |
+ | $ +-----------+ +-----------+
+ | $ | subpar1=c4|--| subpar2=c8|
+ | $ +-----------+ +-----------+
+ | $
+ | $
+ +---------+ $ +------------+ +------------+
+ | par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
+ +---------+ $ +------------+ +------------+
+ | $
+ ... $
+
+ The up-down connections are connections via SEL_ARG::left and
+ SEL_ARG::right. A horizontal connection to the right is the
+ SEL_ARG::next_key_part connection.
+
+ find_used_partitions() traverses the entire tree via recursion on
+ * SEL_ARG::next_key_part (from left to right on the picture)
+ * SEL_ARG::left|right (up/down on the pic). Left-right recursion is
+ performed for each depth level.
+
+ Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
+ ppar->arg_stack) constraints on partitioning and subpartitioning fields.
+ For the example in the above picture, one of stack states is:
+ in find_used_partitions(key_tree = "subpar2=c5") (***)
+ in find_used_partitions(key_tree = "subpar1=c3")
+ in find_used_partitions(key_tree = "par2=c2") (**)
+ in find_used_partitions(key_tree = "par1=c1")
+ in prune_partitions(...)
+ We apply partitioning limits as soon as possible, e.g. when we reach the
+ depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
+ and save them in ppar->part_iter.
+ When we reach the depth (***), we find which subpartition(s) correspond to
+ "subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
+ appropriate subpartitions as used.
+
+ It is possible that constraints on some partitioning fields are missing.
+ For the above example, consider this stack state:
+ in find_used_partitions(key_tree = "subpar2=c12") (***)
+ in find_used_partitions(key_tree = "subpar1=c10")
+ in find_used_partitions(key_tree = "par1=c2")
+ in prune_partitions(...)
+ Here we don't have constraints for all partitioning fields. Since we've
+ never set the ppar->part_iter to contain used set of partitions, we use
+ its default "all partitions" value. We get subpartition id for
+ "subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
+ partition.
+
+ The inverse is also possible: we may get constraints on partitioning
+ fields, but not constraints on subpartitioning fields. In that case,
+ calls to find_used_partitions() with depth below (**) will return -1,
+ and we will mark entire partition as used.
+
+ TODO
+ Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
+
+ RETURN
+ 1 OK, one or more [sub]partitions are marked as used.
+ 0 The passed condition doesn't match any partitions
+ -1 Couldn't infer any partition pruning "intervals" from the passed
+ SEL_ARG* tree (which means that all partitions should be marked as
+ used) Marking partitions as used is the responsibility of the caller.
+*/
+
+static
+int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
+{
+ int res, left_res=0, right_res=0;
+ int key_tree_part= (int)key_tree->part;
+ bool set_full_part_if_bad_ret= FALSE;
+ bool ignore_part_fields= ppar->ignore_part_fields;
+ bool did_set_ignore_part_fields= FALSE;
+ RANGE_OPT_PARAM *range_par= &(ppar->range_param);
+
+ if (check_stack_overrun(range_par->thd, 3*STACK_MIN_SIZE, NULL))
+ return -1;
+
+ if (key_tree->left != &null_element)
+ {
+ if (-1 == (left_res= find_used_partitions(ppar,key_tree->left)))
+ return -1;
+ }
+
+ /* Push SEL_ARG's to stack to enable looking backwards as well */
+ ppar->cur_part_fields+= ppar->is_part_keypart[key_tree_part];
+ ppar->cur_subpart_fields+= ppar->is_subpart_keypart[key_tree_part];
+ *(ppar->arg_stack_end++)= key_tree;
+
+ if (ignore_part_fields)
+ {
+ /*
+ We come here when a condition on the first partitioning
+ fields led to evaluating the partitioning condition
+ (due to finding a condition of the type a < const or
+ b > const). Thus we must ignore the rest of the
+ partitioning fields but we still want to analyse the
+ subpartitioning fields.
+ */
+ if (key_tree->next_key_part)
+ res= find_used_partitions(ppar, key_tree->next_key_part);
+ else
+ res= -1;
+ goto pop_and_go_right;
+ }
+
+ if (key_tree->type == SEL_ARG::KEY_RANGE)
+ {
+ if (ppar->part_info->get_part_iter_for_interval &&
+ key_tree->part <= ppar->last_part_partno)
+ {
+ /* Collect left and right bound, their lengths and flags */
+ uchar *min_key= ppar->cur_min_key;
+ uchar *max_key= ppar->cur_max_key;
+ uchar *tmp_min_key= min_key;
+ uchar *tmp_max_key= max_key;
+ key_tree->store_min(ppar->key[key_tree->part].store_length,
+ &tmp_min_key, ppar->cur_min_flag);
+ key_tree->store_max(ppar->key[key_tree->part].store_length,
+ &tmp_max_key, ppar->cur_max_flag);
+ uint flag;
+ if (key_tree->next_key_part &&
+ key_tree->next_key_part->part == key_tree->part+1 &&
+ key_tree->next_key_part->part <= ppar->last_part_partno &&
+ key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
+ {
+ /*
+ There are more key parts for partition pruning to handle
+ This mainly happens when the condition is an equality
+ condition.
+ */
+ if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
+ (memcmp(min_key, max_key, (uint)(tmp_max_key - max_key)) == 0) &&
+ !key_tree->min_flag && !key_tree->max_flag)
+ {
+ /* Set 'parameters' */
+ ppar->cur_min_key= tmp_min_key;
+ ppar->cur_max_key= tmp_max_key;
+ uint save_min_flag= ppar->cur_min_flag;
+ uint save_max_flag= ppar->cur_max_flag;
+
+ ppar->cur_min_flag|= key_tree->min_flag;
+ ppar->cur_max_flag|= key_tree->max_flag;
+
+ res= find_used_partitions(ppar, key_tree->next_key_part);
+
+ /* Restore 'parameters' back */
+ ppar->cur_min_key= min_key;
+ ppar->cur_max_key= max_key;
+
+ ppar->cur_min_flag= save_min_flag;
+ ppar->cur_max_flag= save_max_flag;
+ goto pop_and_go_right;
+ }
+ /* We have arrived at the last field in the partition pruning */
+ uint tmp_min_flag= key_tree->min_flag,
+ tmp_max_flag= key_tree->max_flag;
+ if (!tmp_min_flag)
+ key_tree->next_key_part->store_min_key(ppar->key,
+ &tmp_min_key,
+ &tmp_min_flag,
+ ppar->last_part_partno,
+ true);
+ if (!tmp_max_flag)
+ key_tree->next_key_part->store_max_key(ppar->key,
+ &tmp_max_key,
+ &tmp_max_flag,
+ ppar->last_part_partno,
+ false);
+ flag= tmp_min_flag | tmp_max_flag;
+ }
+ else
+ flag= key_tree->min_flag | key_tree->max_flag;
+
+ if (tmp_min_key != range_par->min_key)
+ flag&= ~NO_MIN_RANGE;
+ else
+ flag|= NO_MIN_RANGE;
+ if (tmp_max_key != range_par->max_key)
+ flag&= ~NO_MAX_RANGE;
+ else
+ flag|= NO_MAX_RANGE;
+
+ /*
+ We need to call the interval mapper if we have a condition which
+ makes sense to prune on. In the example of COLUMNS on a and
+ b it makes sense if we have a condition on a, or conditions on
+ both a and b. If we only have conditions on b it might make sense
+ but this is a harder case we will solve later. For the harder case
+ this clause then turns into use of all partitions and thus we
+ simply set res= -1 as if the mapper had returned that.
+ TODO: What to do here is defined in WL#4065.
+ */
+ if (ppar->arg_stack[0]->part == 0 || ppar->part_info->part_type == VERSIONING_PARTITION)
+ {
+ uint32 i;
+ uint32 store_length_array[MAX_KEY];
+ uint32 num_keys= ppar->part_fields;
+
+ for (i= 0; i < num_keys; i++)
+ store_length_array[i]= ppar->key[i].store_length;
+ res= ppar->part_info->
+ get_part_iter_for_interval(ppar->part_info,
+ FALSE,
+ store_length_array,
+ range_par->min_key,
+ range_par->max_key,
+ (uint)(tmp_min_key - range_par->min_key),
+ (uint)(tmp_max_key - range_par->max_key),
+ flag,
+ &ppar->part_iter);
+ if (!res)
+ goto pop_and_go_right; /* res==0 --> no satisfying partitions */
+ }
+ else
+ res= -1;
+
+ if (res == -1)
+ {
+ /* get a full range iterator */
+ init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
+ }
+ /*
+ Save our intent to mark full partition as used if we will not be able
+ to obtain further limits on subpartitions
+ */
+ if (key_tree_part < ppar->last_part_partno)
+ {
+ /*
+ We need to ignore the rest of the partitioning fields in all
+ evaluations after this
+ */
+ did_set_ignore_part_fields= TRUE;
+ ppar->ignore_part_fields= TRUE;
+ }
+ set_full_part_if_bad_ret= TRUE;
+ goto process_next_key_part;
+ }
+
+ if (key_tree_part == ppar->last_subpart_partno &&
+ (NULL != ppar->part_info->get_subpart_iter_for_interval))
+ {
+ PARTITION_ITERATOR subpart_iter;
+ DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
+ range_par->key_parts););
+ res= ppar->part_info->
+ get_subpart_iter_for_interval(ppar->part_info,
+ TRUE,
+ NULL, /* Currently not used here */
+ key_tree->min_value,
+ key_tree->max_value,
+ 0, 0, /* Those are ignored here */
+ key_tree->min_flag |
+ key_tree->max_flag,
+ &subpart_iter);
+ if (res == 0)
+ {
+ /*
+ The only case where we can get "no satisfying subpartitions"
+ returned from the above call is when an error has occurred.
+ */
+ DBUG_ASSERT(range_par->thd->is_error());
+ return 0;
+ }
+
+ if (res == -1)
+ goto pop_and_go_right; /* all subpartitions satisfy */
+
+ uint32 subpart_id;
+ bitmap_clear_all(&ppar->subparts_bitmap);
+ while ((subpart_id= subpart_iter.get_next(&subpart_iter)) !=
+ NOT_A_PARTITION_ID)
+ bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
+
+ /* Mark each partition as used in each subpartition. */
+ uint32 part_id;
+ while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
+ NOT_A_PARTITION_ID)
+ {
+ for (uint i= 0; i < ppar->part_info->num_subparts; i++)
+ if (bitmap_is_set(&ppar->subparts_bitmap, i))
+ bitmap_set_bit(&ppar->part_info->read_partitions,
+ part_id * ppar->part_info->num_subparts + i);
+ }
+ goto pop_and_go_right;
+ }
+
+ if (key_tree->is_singlepoint())
+ {
+ if (key_tree_part == ppar->last_part_partno &&
+ ppar->cur_part_fields == ppar->part_fields &&
+ ppar->part_info->get_part_iter_for_interval == NULL)
+ {
+ /*
+ Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all partitioning
+ fields. Save all constN constants into table record buffer.
+ */
+ store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
+ DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
+ ppar->part_fields););
+ uint32 part_id;
+ longlong func_value;
+ /* Find in which partition the {const1, ...,constN} tuple goes */
+ if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
+ &func_value))
+ {
+ res= 0; /* No satisfying partitions */
+ goto pop_and_go_right;
+ }
+ /* Rembember the limit we got - single partition #part_id */
+ init_single_partition_iterator(part_id, &ppar->part_iter);
+
+ /*
+ If there are no subpartitions/we fail to get any limit for them,
+ then we'll mark full partition as used.
+ */
+ set_full_part_if_bad_ret= TRUE;
+ goto process_next_key_part;
+ }
+
+ if (key_tree_part == ppar->last_subpart_partno &&
+ ppar->cur_subpart_fields == ppar->subpart_fields)
+ {
+ /*
+ Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
+ fields. Save all constN constants into table record buffer.
+ */
+ store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
+ ppar->subpart_fields);
+ DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end-
+ ppar->subpart_fields,
+ ppar->subpart_fields););
+ /* Find the subpartition (it's HASH/KEY so we always have one) */
+ partition_info *part_info= ppar->part_info;
+ uint32 part_id, subpart_id;
+
+ if (part_info->get_subpartition_id(part_info, &subpart_id))
+ return 0;
+
+ /* Mark this partition as used in each subpartition. */
+ while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
+ NOT_A_PARTITION_ID)
+ {
+ bitmap_set_bit(&part_info->read_partitions,
+ part_id * part_info->num_subparts + subpart_id);
+ }
+ res= 1; /* Some partitions were marked as used */
+ goto pop_and_go_right;
+ }
+ }
+ else
+ {
+ /*
+ Can't handle condition on current key part. If we're that deep that
+ we're processing subpartititoning's key parts, this means we'll not be
+ able to infer any suitable condition, so bail out.
+ */
+ if (key_tree_part >= ppar->last_part_partno)
+ {
+ res= -1;
+ goto pop_and_go_right;
+ }
+ /*
+ No meaning in continuing with rest of partitioning key parts.
+ Will try to continue with subpartitioning key parts.
+ */
+ ppar->ignore_part_fields= true;
+ did_set_ignore_part_fields= true;
+ goto process_next_key_part;
+ }
+ }
+
+process_next_key_part:
+ if (key_tree->next_key_part)
+ res= find_used_partitions(ppar, key_tree->next_key_part);
+ else
+ res= -1;
+
+ if (did_set_ignore_part_fields)
+ {
+ /*
+ We have returned from processing all key trees linked to our next
+ key part. We are ready to be moving down (using right pointers) and
+ this tree is a new evaluation requiring its own decision on whether
+ to ignore partitioning fields.
+ */
+ ppar->ignore_part_fields= FALSE;
+ }
+ if (set_full_part_if_bad_ret)
+ {
+ if (res == -1)
+ {
+ /* Got "full range" for subpartitioning fields */
+ uint32 part_id;
+ bool found= FALSE;
+ while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
+ NOT_A_PARTITION_ID)
+ {
+ ppar->mark_full_partition_used(ppar->part_info, part_id);
+ found= TRUE;
+ }
+ res= MY_TEST(found);
+ }
+ /*
+ Restore the "used partitions iterator" to the default setting that
+ specifies iteration over all partitions.
+ */
+ init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
+ }
+
+pop_and_go_right:
+ /* Pop this key part info off the "stack" */
+ ppar->arg_stack_end--;
+ ppar->cur_part_fields-= ppar->is_part_keypart[key_tree_part];
+ ppar->cur_subpart_fields-= ppar->is_subpart_keypart[key_tree_part];
+
+ if (res == -1)
+ return -1;
+ if (key_tree->right != &null_element)
+ {
+ if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
+ return -1;
+ }
+ return (left_res || right_res || res);
+}
+
+
+static void mark_all_partitions_as_used(partition_info *part_info)
+{
+ bitmap_copy(&(part_info->read_partitions),
+ &(part_info->lock_partitions));
+}
+
+
+/*
+ Check if field types allow to construct partitioning index description
+
+ SYNOPSIS
+ fields_ok_for_partition_index()
+ pfield NULL-terminated array of pointers to fields.
+
+ DESCRIPTION
+ For an array of fields, check if we can use all of the fields to create
+ partitioning index description.
+
+ We can't process GEOMETRY fields - for these fields singlepoint intervals
+ cant be generated, and non-singlepoint are "special" kinds of intervals
+ to which our processing logic can't be applied.
+
+ It is not known if we could process ENUM fields, so they are disabled to be
+ on the safe side.
+
+ RETURN
+ TRUE Yes, fields can be used in partitioning index
+ FALSE Otherwise
+*/
+
+static bool fields_ok_for_partition_index(Field **pfield)
+{
+ if (!pfield)
+ return FALSE;
+ for (; (*pfield); pfield++)
+ {
+ enum_field_types ftype= (*pfield)->real_type();
+ if (ftype == MYSQL_TYPE_ENUM || ftype == MYSQL_TYPE_GEOMETRY)
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+/*
+ Create partition index description and fill related info in the context
+ struct
+
+ SYNOPSIS
+ create_partition_index_description()
+ prune_par INOUT Partition pruning context
+
+ DESCRIPTION
+ Create partition index description. Partition index description is:
+
+ part_index(used_fields_list(part_expr), used_fields_list(subpart_expr))
+
+ If partitioning/sub-partitioning uses BLOB or Geometry fields, then
+ corresponding fields_list(...) is not included into index description
+ and we don't perform partition pruning for partitions/subpartitions.
+
+ RETURN
+ TRUE Out of memory or can't do partition pruning at all
+ FALSE OK
+*/
+
+static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
+{
+ RANGE_OPT_PARAM *range_par= &(ppar->range_param);
+ partition_info *part_info= ppar->part_info;
+ uint used_part_fields, used_subpart_fields;
+
+ used_part_fields= fields_ok_for_partition_index(part_info->part_field_array) ?
+ part_info->num_part_fields : 0;
+ used_subpart_fields=
+ fields_ok_for_partition_index(part_info->subpart_field_array)?
+ part_info->num_subpart_fields : 0;
+
+ uint total_parts= used_part_fields + used_subpart_fields;
+
+ ppar->ignore_part_fields= FALSE;
+ ppar->part_fields= used_part_fields;
+ ppar->last_part_partno= (int)used_part_fields - 1;
+
+ ppar->subpart_fields= used_subpart_fields;
+ ppar->last_subpart_partno=
+ used_subpart_fields?(int)(used_part_fields + used_subpart_fields - 1): -1;
+
+ if (part_info->is_sub_partitioned())
+ {
+ ppar->mark_full_partition_used= mark_full_partition_used_with_parts;
+ ppar->get_top_partition_id_func= part_info->get_part_partition_id;
+ }
+ else
+ {
+ ppar->mark_full_partition_used= mark_full_partition_used_no_parts;
+ ppar->get_top_partition_id_func= part_info->get_partition_id;
+ }
+
+ KEY_PART *key_part;
+ MEM_ROOT *alloc= range_par->mem_root;
+ if (!total_parts ||
+ !(key_part= (KEY_PART*)alloc_root(alloc, sizeof(KEY_PART)*
+ total_parts)) ||
+ !(ppar->arg_stack= (SEL_ARG**)alloc_root(alloc, sizeof(SEL_ARG*)*
+ total_parts)) ||
+ !(ppar->is_part_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
+ total_parts)) ||
+ !(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
+ total_parts)))
+ return TRUE;
+
+ if (ppar->subpart_fields)
+ {
+ my_bitmap_map *buf;
+ uint32 bufsize= bitmap_buffer_size(ppar->part_info->num_subparts);
+ if (!(buf= (my_bitmap_map*) alloc_root(alloc, bufsize)))
+ return TRUE;
+ my_bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->num_subparts);
+ }
+ range_par->key_parts= key_part;
+ Field **field= (ppar->part_fields)? part_info->part_field_array :
+ part_info->subpart_field_array;
+ bool in_subpart_fields= FALSE;
+ uint total_key_len= 0;
+ for (uint part= 0; part < total_parts; part++, key_part++)
+ {
+ key_part->key= 0;
+ key_part->part= part;
+ key_part->length= (uint16)(*field)->key_length();
+ key_part->store_length= (uint16)get_partition_field_store_length(*field);
+ total_key_len += key_part->store_length;
+
+ DBUG_PRINT("info", ("part %u length %u store_length %u", part,
+ key_part->length, key_part->store_length));
+
+ key_part->field= (*field);
+ key_part->image_type = Field::itRAW;
+ /*
+ We set keypart flag to 0 here as the only HA_PART_KEY_SEG is checked
+ in the RangeAnalysisModule.
+ */
+ key_part->flag= 0;
+ /* We don't set key_parts->null_bit as it will not be used */
+
+ ppar->is_part_keypart[part]= !in_subpart_fields;
+ ppar->is_subpart_keypart[part]= in_subpart_fields;
+
+ /*
+ Check if this was last field in this array, in this case we
+ switch to subpartitioning fields. (This will only happens if
+ there are subpartitioning fields to cater for).
+ */
+ if (!*(++field))
+ {
+ field= part_info->subpart_field_array;
+ in_subpart_fields= TRUE;
+ }
+ }
+ range_par->key_parts_end= key_part;
+
+ total_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
+ if (!(range_par->min_key= (uchar*)alloc_root(alloc,total_key_len)) ||
+ !(range_par->max_key= (uchar*)alloc_root(alloc,total_key_len)))
+ {
+ return true;
+ }
+
+ DBUG_EXECUTE("info", print_partitioning_index(range_par->key_parts,
+ range_par->key_parts_end););
+ return FALSE;
+}
+
+
+#ifndef DBUG_OFF
+
+static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end)
+{
+ DBUG_ENTER("print_partitioning_index");
+ DBUG_LOCK_FILE;
+ fprintf(DBUG_FILE, "partitioning INDEX(");
+ for (KEY_PART *p=parts; p != parts_end; p++)
+ {
+ fprintf(DBUG_FILE, "%s%s", p==parts?"":" ,", p->field->field_name.str);
+ }
+ fputs(");\n", DBUG_FILE);
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+
+/* Print field value into debug trace, in NULL-aware way. */
+static void dbug_print_field(Field *field)
+{
+ if (field->is_real_null())
+ fprintf(DBUG_FILE, "NULL");
+ else
+ {
+ char buf[256];
+ String str(buf, sizeof(buf), &my_charset_bin);
+ str.length(0);
+ String *pstr;
+ pstr= field->val_str(&str);
+ fprintf(DBUG_FILE, "'%s'", pstr->c_ptr_safe());
+ }
+}
+
+
+/* Print a "c1 < keypartX < c2" - type interval into debug trace. */
+static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
+{
+ DBUG_ENTER("dbug_print_segment_range");
+ DBUG_LOCK_FILE;
+ if (!(arg->min_flag & NO_MIN_RANGE))
+ {
+ store_key_image_to_rec(part->field, arg->min_value, part->length);
+ dbug_print_field(part->field);
+ if (arg->min_flag & NEAR_MIN)
+ fputs(" < ", DBUG_FILE);
+ else
+ fputs(" <= ", DBUG_FILE);
+ }
+
+ fprintf(DBUG_FILE, "%s", part->field->field_name.str);
+
+ if (!(arg->max_flag & NO_MAX_RANGE))
+ {
+ if (arg->max_flag & NEAR_MAX)
+ fputs(" < ", DBUG_FILE);
+ else
+ fputs(" <= ", DBUG_FILE);
+ store_key_image_to_rec(part->field, arg->max_value, part->length);
+ dbug_print_field(part->field);
+ }
+ fputs("\n", DBUG_FILE);
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Print a singlepoint multi-keypart range interval to debug trace
+
+ SYNOPSIS
+ dbug_print_singlepoint_range()
+ start Array of SEL_ARG* ptrs representing conditions on key parts
+ num Number of elements in the array.
+
+ DESCRIPTION
+ This function prints a "keypartN=constN AND ... AND keypartK=constK"-type
+ interval to debug trace.
+*/
+
+static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
+{
+ DBUG_ENTER("dbug_print_singlepoint_range");
+ DBUG_LOCK_FILE;
+ SEL_ARG **end= start + num;
+
+ for (SEL_ARG **arg= start; arg != end; arg++)
+ {
+ Field *field= (*arg)->field;
+ fprintf(DBUG_FILE, "%s%s=", (arg==start)?"":", ", field->field_name.str);
+ dbug_print_field(field);
+ }
+ fputs("\n", DBUG_FILE);
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+#endif
+
+/****************************************************************************
+ * Partition pruning code ends
+ ****************************************************************************/
+#endif
+
+
+/*
+ Get cost of 'sweep' full records retrieval.
+ SYNOPSIS
+ get_sweep_read_cost()
+ param Parameter from test_quick_select
+ records # of records to be retrieved
+ RETURN
+ cost of sweep
+*/
+
+double get_sweep_read_cost(const PARAM *param, ha_rows records)
+{
+ double result;
+ uint pk= param->table->s->primary_key;
+ DBUG_ENTER("get_sweep_read_cost");
+ if (param->table->file->pk_is_clustering_key(pk) ||
+ param->table->file->stats.block_size == 0 /* HEAP */)
+ {
+ /*
+ We are using the primary key to find the rows.
+ Calculate the cost for this.
+ */
+ result= param->table->file->read_time(pk, (uint)records, records);
+ }
+ else
+ {
+ /*
+ Rows will be retreived with rnd_pos(). Caluclate the expected
+ cost for this.
+ */
+ double n_blocks=
+ ceil(ulonglong2double(param->table->file->stats.data_file_length) /
+ IO_SIZE);
+ double busy_blocks=
+ n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
+ if (busy_blocks < 1.0)
+ busy_blocks= 1.0;
+ DBUG_PRINT("info",("sweep: nblocks: %g, busy_blocks: %g", n_blocks,
+ busy_blocks));
+ /*
+ Disabled: Bail out if # of blocks to read is bigger than # of blocks in
+ table data file.
+ if (max_cost != DBL_MAX && (busy_blocks+index_reads_cost) >= n_blocks)
+ return 1;
+ */
+ JOIN *join= param->thd->lex->first_select_lex()->join;
+ if (!join || join->table_count == 1)
+ {
+ /* No join, assume reading is done in one 'sweep' */
+ result= busy_blocks*(DISK_SEEK_BASE_COST +
+ DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
+ }
+ else
+ {
+ /*
+ Possibly this is a join with source table being non-last table, so
+ assume that disk seeks are random here.
+ */
+ result= busy_blocks;
+ }
+ }
+ DBUG_PRINT("return",("cost: %g", result));
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Get best plan for a SEL_IMERGE disjunctive expression.
+ SYNOPSIS
+ get_best_disjunct_quick()
+ param Parameter from check_quick_select function
+ imerge Expression to use
+ read_time Don't create scans with cost > read_time
+
+ NOTES
+ index_merge cost is calculated as follows:
+ index_merge_cost =
+ cost(index_reads) + (see #1)
+ cost(rowid_to_row_scan) + (see #2)
+ cost(unique_use) (see #3)
+
+ 1. cost(index_reads) =SUM_i(cost(index_read_i))
+ For non-CPK scans,
+ cost(index_read_i) = {cost of ordinary 'index only' scan}
+ For CPK scan,
+ cost(index_read_i) = {cost of non-'index only' scan}
+
+ 2. cost(rowid_to_row_scan)
+ If table PK is clustered then
+ cost(rowid_to_row_scan) =
+ {cost of ordinary clustered PK scan with n_ranges=n_rows}
+
+ Otherwise, we use the following model to calculate costs:
+ We need to retrieve n_rows rows from file that occupies n_blocks blocks.
+ We assume that offsets of rows we need are independent variates with
+ uniform distribution in [0..max_file_offset] range.
+
+ We'll denote block as "busy" if it contains row(s) we need to retrieve
+ and "empty" if doesn't contain rows we need.
+
+ Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
+ applies to any block in file). Let x_i be a variate taking value 1 if
+ block #i is empty and 0 otherwise.
+
+ Then E(x_i) = (1 - 1/n_blocks)^n_rows;
+
+ E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
+ = n_blocks * ((1 - 1/n_blocks)^n_rows) =
+ ~= n_blocks * exp(-n_rows/n_blocks).
+
+ E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
+ ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
+
+ Average size of "hole" between neighbor non-empty blocks is
+ E(hole_size) = n_blocks/E(n_busy_blocks).
+
+ The total cost of reading all needed blocks in one "sweep" is:
+
+ E(n_busy_blocks)*
+ (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).
+
+ 3. Cost of Unique use is calculated in Unique::get_use_cost function.
+
+ ROR-union cost is calculated in the same way index_merge, but instead of
+ Unique a priority queue is used.
+
+ RETURN
+ Created read plan
+ NULL - Out of memory or no read scan could be built.
+*/
+
+static
+TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
+ double read_time, bool named_trace)
+{
+ SEL_TREE **ptree;
+ TRP_INDEX_MERGE *imerge_trp= NULL;
+ TRP_RANGE **range_scans;
+ TRP_RANGE **cur_child;
+ TRP_RANGE **cpk_scan= NULL;
+ bool imerge_too_expensive= FALSE;
+ double imerge_cost= 0.0;
+ ha_rows cpk_scan_records= 0;
+ ha_rows non_cpk_scan_records= 0;
+ bool all_scans_ror_able= TRUE;
+ bool all_scans_rors= TRUE;
+ uint unique_calc_buff_size;
+ TABLE_READ_PLAN **roru_read_plans;
+ TABLE_READ_PLAN **cur_roru_plan;
+ double roru_index_costs;
+ ha_rows roru_total_records;
+ double roru_intersect_part= 1.0;
+ size_t n_child_scans;
+ double limit_read_time= read_time;
+ THD *thd= param->thd;
+ DBUG_ENTER("get_best_disjunct_quick");
+ DBUG_PRINT("info", ("Full table scan cost: %g", read_time));
+
+ /*
+ In every tree of imerge remove SEL_ARG trees that do not make ranges.
+ If after this removal some SEL_ARG tree becomes empty discard imerge.
+ */
+ for (ptree= imerge->trees; ptree != imerge->trees_next; ptree++)
+ {
+ if (remove_nonrange_trees(param, *ptree))
+ {
+ imerge->trees_next= imerge->trees;
+ break;
+ }
+ }
+
+ n_child_scans= imerge->trees_next - imerge->trees;
+
+ if (!n_child_scans)
+ DBUG_RETURN(NULL);
+
+ if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
+ sizeof(TRP_RANGE*)*
+ n_child_scans)))
+ DBUG_RETURN(NULL);
+
+ const char* trace_best_disjunct_obj_name= named_trace ? "best_disjunct_quick" : nullptr;
+ Json_writer_object trace_best_disjunct(thd, trace_best_disjunct_obj_name);
+ Json_writer_array to_merge(thd, "indexes_to_merge");
+ /*
+ Collect best 'range' scan for each of disjuncts, and, while doing so,
+ analyze possibility of ROR scans. Also calculate some values needed by
+ other parts of the code.
+ */
+ for (ptree= imerge->trees, cur_child= range_scans;
+ ptree != imerge->trees_next;
+ ptree++, cur_child++)
+ {
+ DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
+ "tree in SEL_IMERGE"););
+ Json_writer_object trace_idx(thd);
+ if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, FALSE,
+ read_time)))
+ {
+ /*
+ One of index scans in this index_merge is more expensive than entire
+ table read for another available option. The entire index_merge (and
+ any possible ROR-union) will be more expensive then, too. We continue
+ here only to update SQL_SELECT members.
+ */
+ imerge_too_expensive= TRUE;
+ }
+ if (imerge_too_expensive)
+ {
+ trace_idx.add("chosen", false).add("cause", "cost");
+ continue;
+ }
+ const uint keynr_in_table= param->real_keynr[(*cur_child)->key_idx];
+ imerge_cost += (*cur_child)->read_cost;
+ all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
+ all_scans_rors &= (*cur_child)->is_ror;
+ if (param->table->file->is_clustering_key(param->real_keynr[(*cur_child)->key_idx]))
+ {
+ cpk_scan= cur_child;
+ cpk_scan_records= (*cur_child)->records;
+ }
+ else
+ non_cpk_scan_records += (*cur_child)->records;
+ trace_idx.add("index_to_merge",
+ param->table->key_info[keynr_in_table].name)
+ .add("cumulated_cost", imerge_cost);
+ }
+
+ to_merge.end();
+
+ DBUG_PRINT("info", ("index_merge scans cost %g", imerge_cost));
+ trace_best_disjunct.add("cost_of_reading_ranges", imerge_cost);
+
+ if (imerge_too_expensive || (imerge_cost > read_time) ||
+ ((non_cpk_scan_records+cpk_scan_records >=
+ param->table->stat_records()) &&
+ read_time != DBL_MAX))
+ {
+ /*
+ Bail out if it is obvious that both index_merge and ROR-union will be
+ more expensive
+ */
+ DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
+ "full table scan, bailing out"));
+ trace_best_disjunct.add("chosen", false).add("cause", "cost");
+ DBUG_RETURN(NULL);
+ }
+
+ /*
+ If all scans happen to be ROR, proceed to generate a ROR-union plan (it's
+ guaranteed to be cheaper than non-ROR union), unless ROR-unions are
+ disabled in @@optimizer_switch
+ */
+ if (all_scans_rors &&
+ optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_UNION))
+ {
+ roru_read_plans= (TABLE_READ_PLAN**)range_scans;
+ trace_best_disjunct.add("use_roworder_union", true)
+ .add("cause",
+ "always cheaper than non roworder retrieval");
+ goto skip_to_ror_scan;
+ }
+
+ if (cpk_scan)
+ {
+ /*
+ Add one ROWID comparison for each row retrieved on non-CPK scan. (it
+ is done in QUICK_RANGE_SELECT::row_in_ranges)
+ */
+ double rid_comp_cost= (rows2double(non_cpk_scan_records) /
+ TIME_FOR_COMPARE_ROWID);
+ imerge_cost+= rid_comp_cost;
+ trace_best_disjunct.add("cost_of_mapping_rowid_in_non_clustered_pk_scan",
+ rid_comp_cost);
+ }
+
+ /* Calculate cost(rowid_to_row_scan) */
+ {
+ double sweep_cost= get_sweep_read_cost(param, non_cpk_scan_records);
+ imerge_cost+= sweep_cost;
+ trace_best_disjunct.add("cost_sort_rowid_and_read_disk", sweep_cost);
+ }
+ DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
+ imerge_cost));
+ if (imerge_cost > read_time ||
+ !optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION))
+ {
+ trace_best_disjunct.add("use_roworder_index_merge", true);
+ trace_best_disjunct.add("cause", "cost");
+ goto build_ror_index_merge;
+ }
+
+ /* Add Unique operations cost */
+ unique_calc_buff_size=
+ Unique::get_cost_calc_buff_size((ulong)non_cpk_scan_records,
+ param->table->file->ref_length,
+ (size_t)param->thd->variables.sortbuff_size);
+ if (param->imerge_cost_buff_size < unique_calc_buff_size)
+ {
+ if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
+ unique_calc_buff_size)))
+ DBUG_RETURN(NULL);
+ param->imerge_cost_buff_size= unique_calc_buff_size;
+ }
+
+ {
+ const double dup_removal_cost= Unique::get_use_cost(
+ param->imerge_cost_buff, (uint)non_cpk_scan_records,
+ param->table->file->ref_length,
+ (size_t)param->thd->variables.sortbuff_size,
+ TIME_FOR_COMPARE_ROWID,
+ FALSE, NULL);
+ imerge_cost+= dup_removal_cost;
+ trace_best_disjunct.add("cost_duplicate_removal", dup_removal_cost)
+ .add("total_cost", imerge_cost);
+ }
+
+ DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
+ imerge_cost, read_time));
+ if (imerge_cost < read_time)
+ {
+ if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
+ {
+ imerge_trp->read_cost= imerge_cost;
+ imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
+ imerge_trp->records= MY_MIN(imerge_trp->records,
+ param->table->stat_records());
+ imerge_trp->range_scans= range_scans;
+ imerge_trp->range_scans_end= range_scans + n_child_scans;
+ read_time= imerge_cost;
+ }
+ if (imerge_trp)
+ {
+ TABLE_READ_PLAN *trp= merge_same_index_scans(param, imerge, imerge_trp,
+ limit_read_time);
+ if (trp != imerge_trp)
+ DBUG_RETURN(trp);
+ }
+ }
+
+build_ror_index_merge:
+ if (!all_scans_ror_able ||
+ param->thd->lex->sql_command == SQLCOM_DELETE ||
+ !optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_UNION))
+ DBUG_RETURN(imerge_trp);
+
+ /* Ok, it is possible to build a ROR-union, try it. */
+ bool dummy;
+ if (!(roru_read_plans=
+ (TABLE_READ_PLAN**)alloc_root(param->mem_root,
+ sizeof(TABLE_READ_PLAN*)*
+ n_child_scans)))
+ DBUG_RETURN(imerge_trp);
+
+skip_to_ror_scan:
+ roru_index_costs= 0.0;
+ roru_total_records= 0;
+ cur_roru_plan= roru_read_plans;
+
+ Json_writer_array trace_analyze_ror(thd, "analyzing_roworder_scans");
+
+ /* Find 'best' ROR scan for each of trees in disjunction */
+ for (ptree= imerge->trees, cur_child= range_scans;
+ ptree != imerge->trees_next;
+ ptree++, cur_child++, cur_roru_plan++)
+ {
+ Json_writer_object trp_info(thd);
+ if (unlikely(thd->trace_started()))
+ (*cur_child)->trace_basic_info(param, &trp_info);
+ /*
+ Assume the best ROR scan is the one that has cheapest full-row-retrieval
+ scan cost.
+ Also accumulate index_only scan costs as we'll need them to calculate
+ overall index_intersection cost.
+ */
+ double cost;
+ if ((*cur_child)->is_ror)
+ {
+ /* Ok, we have index_only cost, now get full rows scan cost */
+ cost= param->table->file->
+ read_time(param->real_keynr[(*cur_child)->key_idx], 1,
+ (*cur_child)->records) +
+ rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
+ }
+ else
+ cost= read_time;
+
+ TABLE_READ_PLAN *prev_plan= *cur_child;
+ if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
+ &dummy)))
+ {
+ if (prev_plan->is_ror)
+ *cur_roru_plan= prev_plan;
+ else
+ DBUG_RETURN(imerge_trp);
+ roru_index_costs += (*cur_roru_plan)->read_cost;
+ }
+ else
+ roru_index_costs +=
+ ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
+ roru_total_records += (*cur_roru_plan)->records;
+ roru_intersect_part *= (*cur_roru_plan)->records /
+ param->table->stat_records();
+ }
+ trace_analyze_ror.end();
+ /*
+ rows to retrieve=
+ SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
+ This is valid because index_merge construction guarantees that conditions
+ in disjunction do not share key parts.
+ */
+ roru_total_records -= (ha_rows)(roru_intersect_part*
+ param->table->stat_records());
+ /* ok, got a ROR read plan for each of the disjuncts
+ Calculate cost:
+ cost(index_union_scan(scan_1, ... scan_n)) =
+ SUM_i(cost_of_index_only_scan(scan_i)) +
+ queue_use_cost(rowid_len, n) +
+ cost_of_row_retrieval
+ See get_merge_buffers_cost function for queue_use_cost formula derivation.
+ */
+
+ double roru_total_cost;
+ roru_total_cost= roru_index_costs +
+ rows2double(roru_total_records)*log((double)n_child_scans) /
+ (TIME_FOR_COMPARE_ROWID * M_LN2) +
+ get_sweep_read_cost(param, roru_total_records);
+
+ DBUG_PRINT("info", ("ROR-union: cost %g, %zu members",
+ roru_total_cost, n_child_scans));
+ trace_best_disjunct.add("index_roworder_union_cost", roru_total_cost)
+ .add("members", n_child_scans);
+ TRP_ROR_UNION* roru;
+ if (roru_total_cost < read_time)
+ {
+ if ((roru= new (param->mem_root) TRP_ROR_UNION))
+ {
+ trace_best_disjunct.add("chosen", true);
+ roru->first_ror= roru_read_plans;
+ roru->last_ror= roru_read_plans + n_child_scans;
+ roru->read_cost= roru_total_cost;
+ roru->records= roru_total_records;
+ DBUG_RETURN(roru);
+ }
+ }
+ else
+ trace_best_disjunct.add("chosen", false);
+ DBUG_RETURN(imerge_trp);
+}
+
+
+/*
+ Merge index scans for the same indexes in an index merge plan
+
+ SYNOPSIS
+ merge_same_index_scans()
+ param Context info for the operation
+ imerge IN/OUT SEL_IMERGE from which imerge_trp has been extracted
+ imerge_trp The index merge plan where index scans for the same
+ indexes are to be merges
+ read_time The upper bound for the cost of the plan to be evaluated
+
+ DESRIPTION
+ For the given index merge plan imerge_trp extracted from the SEL_MERGE
+ imerge the function looks for range scans with the same indexes and merges
+ them into SEL_ARG trees. Then for each such SEL_ARG tree r_i the function
+ creates a range tree rt_i that contains only r_i. All rt_i are joined
+ into one index merge that replaces the original index merge imerge.
+ The function calls get_best_disjunct_quick for the new index merge to
+ get a new index merge plan that contains index scans only for different
+ indexes.
+ If there are no index scans for the same index in the original index
+ merge plan the function does not change the original imerge and returns
+ imerge_trp as its result.
+
+ RETURN
+ The original or or improved index merge plan
+*/
+
+static
+TABLE_READ_PLAN *merge_same_index_scans(PARAM *param, SEL_IMERGE *imerge,
+ TRP_INDEX_MERGE *imerge_trp,
+ double read_time)
+{
+ uint16 first_scan_tree_idx[MAX_KEY];
+ SEL_TREE **tree;
+ TRP_RANGE **cur_child;
+ uint removed_cnt= 0;
+
+ DBUG_ENTER("merge_same_index_scans");
+
+ bzero(first_scan_tree_idx, sizeof(first_scan_tree_idx[0])*param->keys);
+
+ for (tree= imerge->trees, cur_child= imerge_trp->range_scans;
+ tree != imerge->trees_next;
+ tree++, cur_child++)
+ {
+ DBUG_ASSERT(tree);
+ uint key_idx= (*cur_child)->key_idx;
+ uint16 *tree_idx_ptr= &first_scan_tree_idx[key_idx];
+ if (!*tree_idx_ptr)
+ *tree_idx_ptr= (uint16) (tree-imerge->trees+1);
+ else
+ {
+ SEL_TREE **changed_tree= imerge->trees+(*tree_idx_ptr-1);
+ SEL_ARG *key= (*changed_tree)->keys[key_idx];
+ for (uint i= 0; i < param->keys; i++)
+ (*changed_tree)->keys[i]= NULL;
+ (*changed_tree)->keys_map.clear_all();
+ if (key)
+ key->incr_refs();
+ if ((*tree)->keys[key_idx])
+ (*tree)->keys[key_idx]->incr_refs();
+ if (((*changed_tree)->keys[key_idx]=
+ key_or_with_limit(param, key_idx, key, (*tree)->keys[key_idx])))
+ (*changed_tree)->keys_map.set_bit(key_idx);
+ *tree= NULL;
+ removed_cnt++;
+ }
+ }
+ if (!removed_cnt)
+ DBUG_RETURN(imerge_trp);
+
+ TABLE_READ_PLAN *trp= NULL;
+ SEL_TREE **new_trees_next= imerge->trees;
+ for (tree= new_trees_next; tree != imerge->trees_next; tree++)
+ {
+ if (!*tree)
+ continue;
+ if (tree > new_trees_next)
+ *new_trees_next= *tree;
+ new_trees_next++;
+ }
+ imerge->trees_next= new_trees_next;
+
+ DBUG_ASSERT(imerge->trees_next>imerge->trees);
+
+ if (imerge->trees_next-imerge->trees > 1)
+ trp= get_best_disjunct_quick(param, imerge, read_time, true);
+ else
+ {
+ /*
+ This alternative theoretically can be reached when the cost
+ of the index merge for such a formula as
+ (key1 BETWEEN c1_1 AND c1_2) AND key2 > c2 OR
+ (key1 BETWEEN c1_3 AND c1_4) AND key3 > c3
+ is estimated as being cheaper than the cost of index scan for
+ the formula
+ (key1 BETWEEN c1_1 AND c1_2) OR (key1 BETWEEN c1_3 AND c1_4)
+
+ In the current code this may happen for two reasons:
+ 1. for a single index range scan data records are accessed in
+ a random order
+ 2. the functions that estimate the cost of a range scan and an
+ index merge retrievals are not well calibrated
+
+ As the best range access has been already chosen it does not
+ make sense to evaluate the one obtained from a degenerated
+ index merge.
+ */
+ trp= 0;
+ }
+
+ DBUG_RETURN(trp);
+}
+
+
+/*
+ This structure contains the info common for all steps of a partial
+ index intersection plan. Morever it contains also the info common
+ for index intersect plans. This info is filled in by the function
+ prepare_search_best just before searching for the best index
+ intersection plan.
+*/
+
+typedef struct st_common_index_intersect_info
+{
+ PARAM *param; /* context info for range optimizations */
+ uint key_size; /* size of a ROWID element stored in Unique object */
+ double compare_factor; /* 1/compare - cost to compare two ROWIDs */
+ size_t max_memory_size; /* maximum space allowed for Unique objects */
+ ha_rows table_cardinality; /* estimate of the number of records in table */
+ double cutoff_cost; /* discard index intersects with greater costs */
+ INDEX_SCAN_INFO *cpk_scan; /* clustered primary key used in intersection */
+
+ bool in_memory; /* unique object for intersection is completely in memory */
+
+ INDEX_SCAN_INFO **search_scans; /* scans possibly included in intersect */
+ uint n_search_scans; /* number of elements in search_scans */
+
+ bool best_uses_cpk; /* current best intersect uses clustered primary key */
+ double best_cost; /* cost of the current best index intersection */
+ /* estimate of the number of records in the current best intersection */
+ ha_rows best_records;
+ uint best_length; /* number of indexes in the current best intersection */
+ INDEX_SCAN_INFO **best_intersect; /* the current best index intersection */
+ /* scans from the best intersect to be filtrered by cpk conditions */
+ key_map filtered_scans;
+
+ uint *buff_elems; /* buffer to calculate cost of index intersection */
+
+} COMMON_INDEX_INTERSECT_INFO;
+
+
+/*
+ This structure contains the info specific for one step of an index
+ intersection plan. The structure is filled in by the function
+ check_index_intersect_extension.
+*/
+
+typedef struct st_partial_index_intersect_info
+{
+ COMMON_INDEX_INTERSECT_INFO *common_info; /* shared by index intersects */
+ uint length; /* number of index scans in the partial intersection */
+ ha_rows records; /* estimate of the number of records in intersection */
+ double cost; /* cost of the partial index intersection */
+
+ /* estimate of total number of records of all scans of the partial index
+ intersect sent to the Unique object used for the intersection */
+ ha_rows records_sent_to_unique;
+
+ /* total cost of the scans of indexes from the partial index intersection */
+ double index_read_cost;
+
+ bool use_cpk_filter; /* cpk filter is to be used for this scan */
+ bool in_memory; /* uses unique object in memory */
+ double in_memory_cost; /* cost of using unique object in memory */
+
+ key_map filtered_scans; /* scans to be filtered by cpk conditions */
+
+ MY_BITMAP *intersect_fields; /* bitmap of fields used in intersection */
+
+ void init()
+ {
+ common_info= NULL;
+ intersect_fields= NULL;
+ records_sent_to_unique= records= length= in_memory= use_cpk_filter= 0;
+ cost= index_read_cost= in_memory_cost= 0.0;
+ filtered_scans.clear_all();
+ }
+} PARTIAL_INDEX_INTERSECT_INFO;
+
+
+/* Check whether two indexes have the same first n components */
+
+static
+bool same_index_prefix(KEY *key1, KEY *key2, uint used_parts)
+{
+ KEY_PART_INFO *part1= key1->key_part;
+ KEY_PART_INFO *part2= key2->key_part;
+ for(uint i= 0; i < used_parts; i++, part1++, part2++)
+ {
+ if (part1->fieldnr != part2->fieldnr)
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+/* Create a bitmap for all fields of a table */
+
+static
+bool create_fields_bitmap(PARAM *param, MY_BITMAP *fields_bitmap)
+{
+ my_bitmap_map *bitmap_buf;
+
+ if (!(bitmap_buf= (my_bitmap_map *) alloc_root(param->mem_root,
+ param->fields_bitmap_size)))
+ return TRUE;
+ if (my_bitmap_init(fields_bitmap, bitmap_buf, param->table->s->fields))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Compare two indexes scans for sort before search for the best intersection */
+
+static
+int cmp_intersect_index_scan(INDEX_SCAN_INFO **a, INDEX_SCAN_INFO **b)
+{
+ return (*a)->records < (*b)->records ?
+ -1 : (*a)->records == (*b)->records ? 0 : 1;
+}
+
+
+static inline
+void set_field_bitmap_for_index_prefix(MY_BITMAP *field_bitmap,
+ KEY_PART_INFO *key_part,
+ uint used_key_parts)
+{
+ bitmap_clear_all(field_bitmap);
+ for (KEY_PART_INFO *key_part_end= key_part+used_key_parts;
+ key_part < key_part_end; key_part++)
+ {
+ bitmap_set_bit(field_bitmap, key_part->fieldnr-1);
+ }
+}
+
+
+/*
+ Round up table cardinality read from statistics provided by engine.
+ This function should go away when mysql test will allow to handle
+ more or less easily in the test suites deviations of InnoDB
+ statistical data.
+*/
+
+static inline
+ha_rows get_table_cardinality_for_index_intersect(TABLE *table)
+{
+ if (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)
+ return table->stat_records();
+ else
+ {
+ ha_rows d;
+ double q;
+ for (q= (double)table->stat_records(), d= 1 ; q >= 10; q/= 10, d*= 10 ) ;
+ return (ha_rows) (floor(q+0.5) * d);
+ }
+}
+
+static
+void print_keyparts(THD *thd, KEY *key, uint key_parts)
+{
+ DBUG_ASSERT(thd->trace_started());
+
+ KEY_PART_INFO *part= key->key_part;
+ Json_writer_array keyparts(thd, "keyparts");
+ for(uint i= 0; i < key_parts; i++, part++)
+ keyparts.add(part->field->field_name);
+}
+
+
+static
+ha_rows records_in_index_intersect_extension(PARTIAL_INDEX_INTERSECT_INFO *curr,
+ INDEX_SCAN_INFO *ext_index_scan);
+
+/*
+ Prepare to search for the best index intersection
+
+ SYNOPSIS
+ prepare_search_best_index_intersect()
+ param common info about index ranges
+ tree tree of ranges for indexes than can be intersected
+ common OUT info needed for search to be filled by the function
+ init OUT info for an initial pseudo step of the intersection plans
+ cutoff_cost cut off cost of the interesting index intersection
+
+ DESCRIPTION
+ The function initializes all fields of the structure 'common' to be used
+ when searching for the best intersection plan. It also allocates
+ memory to store the most cheap index intersection.
+
+ NOTES
+ When selecting candidates for index intersection we always take only
+ one representative out of any set of indexes that share the same range
+ conditions. These indexes always have the same prefixes and the
+ components of this prefixes are exactly those used in these range
+ conditions.
+ Range conditions over clustered primary key (cpk) is always used only
+ as the condition that filters out some rowids retrieved by the scans
+ for secondary indexes. The cpk index will be handled in special way by
+ the function that search for the best index intersection.
+
+ RETURN
+ FALSE in the case of success
+ TRUE otherwise
+*/
+
+static
+bool prepare_search_best_index_intersect(PARAM *param,
+ SEL_TREE *tree,
+ COMMON_INDEX_INTERSECT_INFO *common,
+ PARTIAL_INDEX_INTERSECT_INFO *init,
+ double cutoff_cost)
+{
+ uint i;
+ uint n_search_scans;
+ double cost;
+ INDEX_SCAN_INFO **index_scan;
+ INDEX_SCAN_INFO **scan_ptr;
+ INDEX_SCAN_INFO *cpk_scan= NULL;
+ TABLE *table= param->table;
+ uint n_index_scans= (uint)(tree->index_scans_end - tree->index_scans);
+ THD *thd= param->thd;
+
+ if (n_index_scans <= 1)
+ return 1;
+
+ init->init();
+ init->common_info= common;
+ init->cost= cutoff_cost;
+
+ common->param= param;
+ common->key_size= table->file->ref_length;
+ common->compare_factor= TIME_FOR_COMPARE_ROWID;
+ common->max_memory_size= (size_t)param->thd->variables.sortbuff_size;
+ common->cutoff_cost= cutoff_cost;
+ common->cpk_scan= NULL;
+ common->table_cardinality=
+ get_table_cardinality_for_index_intersect(table);
+
+ if (table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX)
+ {
+ INDEX_SCAN_INFO **index_scan_end;
+ index_scan= tree->index_scans;
+ index_scan_end= index_scan+n_index_scans;
+ for ( ; index_scan < index_scan_end; index_scan++)
+ {
+ if (table->file->is_clustering_key((*index_scan)->keynr))
+ {
+ common->cpk_scan= cpk_scan= *index_scan;
+ break;
+ }
+ }
+ }
+
+ i= n_index_scans - MY_TEST(cpk_scan != NULL) + 1;
+
+ if (!(common->search_scans =
+ (INDEX_SCAN_INFO **) alloc_root (param->mem_root,
+ sizeof(INDEX_SCAN_INFO *) * i)))
+ return TRUE;
+ bzero(common->search_scans, sizeof(INDEX_SCAN_INFO *) * i);
+
+ INDEX_SCAN_INFO **selected_index_scans= common->search_scans;
+ Json_writer_array potential_idx_scans(thd, "potential_index_scans");
+ for (i=0, index_scan= tree->index_scans; i < n_index_scans; i++, index_scan++)
+ {
+ Json_writer_object idx_scan(thd);
+ uint used_key_parts= (*index_scan)->used_key_parts;
+ KEY *key_info= (*index_scan)->key_info;
+ idx_scan.add("index", key_info->name);
+
+ if (*index_scan == cpk_scan)
+ {
+ idx_scan.add("chosen", "false")
+ .add("cause", "clustered index used for filtering");
+ continue;
+ }
+ if (cpk_scan && cpk_scan->used_key_parts >= used_key_parts &&
+ same_index_prefix(cpk_scan->key_info, key_info, used_key_parts))
+ {
+ idx_scan.add("chosen", "false")
+ .add("cause", "clustered index used for filtering");
+ continue;
+ }
+
+ cost= table->opt_range[(*index_scan)->keynr].index_only_cost;
+
+ idx_scan.add("cost", cost);
+
+ if (cost >= cutoff_cost)
+ {
+ idx_scan.add("chosen", false);
+ idx_scan.add("cause", "cost");
+ continue;
+ }
+
+ for (scan_ptr= selected_index_scans; *scan_ptr ; scan_ptr++)
+ {
+ /*
+ When we have range conditions for two different indexes with the same
+ beginning it does not make sense to consider both of them for index
+ intersection if the range conditions are covered by common initial
+ components of the indexes. Actually in this case the indexes are
+ guaranteed to have the same range conditions.
+ */
+ if ((*scan_ptr)->used_key_parts == used_key_parts &&
+ same_index_prefix((*scan_ptr)->key_info, key_info, used_key_parts))
+ break;
+ }
+ if (!*scan_ptr || cost < (*scan_ptr)->index_read_cost)
+ {
+ idx_scan.add("chosen", true);
+ if (!*scan_ptr)
+ idx_scan.add("cause", "first occurrence of index prefix");
+ else
+ idx_scan.add("cause", "better cost for same idx prefix");
+ *scan_ptr= *index_scan;
+ (*scan_ptr)->index_read_cost= cost;
+ }
+ else
+ {
+ idx_scan.add("chosen", false).add("cause", "cost");
+ }
+ }
+ potential_idx_scans.end();
+
+ ha_rows records_in_scans= 0;
+
+ for (scan_ptr=selected_index_scans, i= 0; *scan_ptr; scan_ptr++, i++)
+ {
+ if (create_fields_bitmap(param, &(*scan_ptr)->used_fields))
+ return TRUE;
+ records_in_scans+= (*scan_ptr)->records;
+ }
+
+ n_search_scans= i;
+
+ if (cpk_scan && create_fields_bitmap(param, &cpk_scan->used_fields))
+ return TRUE;
+
+ if (!(common->n_search_scans= n_search_scans))
+ return TRUE;
+
+ common->best_uses_cpk= FALSE;
+ common->best_cost= cutoff_cost + COST_EPS;
+ common->best_length= 0;
+
+ if (!(common->best_intersect=
+ (INDEX_SCAN_INFO **) alloc_root (param->mem_root,
+ sizeof(INDEX_SCAN_INFO *) *
+ (i + MY_TEST(cpk_scan != NULL)))))
+ return TRUE;
+
+ size_t calc_cost_buff_size=
+ Unique::get_cost_calc_buff_size((size_t)records_in_scans,
+ common->key_size,
+ common->max_memory_size);
+ if (!(common->buff_elems= (uint *) alloc_root(param->mem_root,
+ calc_cost_buff_size)))
+ return TRUE;
+
+ my_qsort(selected_index_scans, n_search_scans, sizeof(INDEX_SCAN_INFO *),
+ (qsort_cmp) cmp_intersect_index_scan);
+
+ Json_writer_array selected_idx_scans(thd, "selected_index_scans");
+ if (cpk_scan)
+ {
+ PARTIAL_INDEX_INTERSECT_INFO curr;
+ set_field_bitmap_for_index_prefix(&cpk_scan->used_fields,
+ cpk_scan->key_info->key_part,
+ cpk_scan->used_key_parts);
+ curr.common_info= common;
+ curr.intersect_fields= &cpk_scan->used_fields;
+ curr.records= cpk_scan->records;
+ curr.length= 1;
+ for (scan_ptr=selected_index_scans; *scan_ptr; scan_ptr++)
+ {
+ KEY *key_info= (*scan_ptr)->key_info;
+ ha_rows scan_records= (*scan_ptr)->records;
+ ha_rows records= records_in_index_intersect_extension(&curr, *scan_ptr);
+ (*scan_ptr)->filtered_out= records >= scan_records ?
+ 0 : scan_records-records;
+ if (thd->trace_started())
+ {
+ Json_writer_object selected_idx(thd);
+ selected_idx.add("index", key_info->name);
+ print_keyparts(thd, key_info, (*scan_ptr)->used_key_parts);
+ selected_idx.add("records", (*scan_ptr)->records)
+ .add("filtered_records", (*scan_ptr)->filtered_out);
+ }
+ }
+ }
+ else
+ {
+ for (scan_ptr=selected_index_scans; *scan_ptr; scan_ptr++)
+ {
+ KEY *key_info= (*scan_ptr)->key_info;
+ (*scan_ptr)->filtered_out= 0;
+ if (thd->trace_started())
+ {
+ Json_writer_object selected_idx(thd);
+ selected_idx.add("index", key_info->name);
+ print_keyparts(thd, key_info, (*scan_ptr)->used_key_parts);
+ selected_idx.add("records", (*scan_ptr)->records)
+ .add("filtered_records", (*scan_ptr)->filtered_out);
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+
+/*
+ On Estimation of the Number of Records in an Index Intersection
+ ===============================================================
+
+ Consider query Q over table t. Let C be the WHERE condition of this query,
+ and, idx1(a1_1,...,a1_k1) and idx2(a2_1,...,a2_k2) be some indexes defined
+ on table t.
+ Let rt1 and rt2 be the range trees extracted by the range optimizer from C
+ for idx1 and idx2 respectively.
+ Let #t be the estimate of the number of records in table t provided for the
+ optimizer.
+ Let #r1 and #r2 be the estimates of the number of records in the range trees
+ rt1 and rt2, respectively, obtained by the range optimizer.
+
+ We need to get an estimate for the number of records in the index
+ intersection of rt1 and rt2. In other words, we need to estimate the
+ cardinality of the set of records that are in both trees. Let's designate
+ this number by #r.
+
+ If we do not make any assumptions then we can only state that
+ #r<=MY_MIN(#r1,#r2).
+ With this estimate we can't say that the index intersection scan will be
+ cheaper than the cheapest index scan.
+
+ Let Rt1 and Rt2 be AND/OR conditions representing rt and rt2 respectively.
+ The probability that a record belongs to rt1 is sel(Rt1)=#r1/#t.
+ The probability that a record belongs to rt2 is sel(Rt2)=#r2/#t.
+
+ If we assume that the values in columns of idx1 and idx2 are independent
+ then #r/#t=sel(Rt1&Rt2)=sel(Rt1)*sel(Rt2)=(#r1/#t)*(#r2/#t).
+ So in this case we have: #r=#r1*#r2/#t.
+
+ The above assumption of independence of the columns in idx1 and idx2 means
+ that:
+ - all columns are different
+ - values from one column do not correlate with values from any other column.
+
+ We can't help with the case when column correlate with each other.
+ Yet, if they are assumed to be uncorrelated the value of #r theoretically can
+ be evaluated . Unfortunately this evaluation, in general, is rather complex.
+
+ Let's consider two indexes idx1:(dept, manager), idx2:(dept, building)
+ over table 'employee' and two range conditions over these indexes:
+ Rt1: dept=10 AND manager LIKE 'S%'
+ Rt2: dept=10 AND building LIKE 'L%'.
+ We can state that:
+ sel(Rt1&Rt2)=sel(dept=10)*sel(manager LIKE 'S%')*sel(building LIKE 'L%')
+ =sel(Rt1)*sel(Rt2)/sel(dept=10).
+ sel(Rt1/2_0:dept=10) can be estimated if we know the cardinality #r1_0 of
+ the range for sub-index idx1_0 (dept) of the index idx1 or the cardinality
+ #rt2_0 of the same range for sub-index idx2_0(dept) of the index idx2.
+ The current code does not make an estimate either for #rt1_0, or for #rt2_0,
+ but it can be adjusted to provide those numbers.
+ Alternatively, MY_MIN(rec_per_key) for (dept) could be used to get an upper
+ bound for the value of sel(Rt1&Rt2). Yet this statistics is not provided
+ now.
+
+ Let's consider two other indexes idx1:(dept, last_name),
+ idx2:(first_name, last_name) and two range conditions over these indexes:
+ Rt1: dept=5 AND last_name='Sm%'
+ Rt2: first_name='Robert' AND last_name='Sm%'.
+
+ sel(Rt1&Rt2)=sel(dept=5)*sel(last_name='Sm5')*sel(first_name='Robert')
+ =sel(Rt2)*sel(dept=5)
+ Here MY_MAX(rec_per_key) for (dept) could be used to get an upper bound for
+ the value of sel(Rt1&Rt2).
+
+ When the intersected indexes have different major columns, but some
+ minor column are common the picture may be more complicated.
+
+ Let's consider the following range conditions for the same indexes as in
+ the previous example:
+ Rt1: (Rt11: dept=5 AND last_name='So%')
+ OR
+ (Rt12: dept=7 AND last_name='Saw%')
+ Rt2: (Rt21: first_name='Robert' AND last_name='Saw%')
+ OR
+ (Rt22: first_name='Bob' AND last_name='So%')
+ Here we have:
+ sel(Rt1&Rt2)= sel(Rt11)*sel(Rt21)+sel(Rt22)*sel(dept=5) +
+ sel(Rt21)*sel(dept=7)+sel(Rt12)*sel(Rt22)
+ Now consider the range condition:
+ Rt1_0: (dept=5 OR dept=7)
+ For this condition we can state that:
+ sel(Rt1_0&Rt2)=(sel(dept=5)+sel(dept=7))*(sel(Rt21)+sel(Rt22))=
+ sel(dept=5)*sel(Rt21)+sel(dept=7)*sel(Rt21)+
+ sel(dept=5)*sel(Rt22)+sel(dept=7)*sel(Rt22)=
+ sel(dept=5)*sel(Rt21)+sel(Rt21)*sel(dept=7)+
+ sel(Rt22)*sel(dept=5)+sel(dept=7)*sel(Rt22) >
+ sel(Rt11)*sel(Rt21)+sel(Rt22)*sel(dept=5)+
+ sel(Rt21)*sel(dept=7)+sel(Rt12)*sel(Rt22) >
+ sel(Rt1 & Rt2)
+
+ We've just demonstrated for an example what is intuitively almost obvious
+ in general. We can remove the ending parts fromrange trees getting less
+ selective range conditions for sub-indexes.
+ So if not a most major component with the number k of an index idx is
+ encountered in the index with which we intersect we can use the sub-index
+ idx_k-1 that includes the components of idx up to the i-th component and
+ the range tree for idx_k-1 to make an upper bound estimate for the number
+ of records in the index intersection.
+ The range tree for idx_k-1 we use here is the subtree of the original range
+ tree for idx that contains only parts from the first k-1 components.
+
+ As it was mentioned above the range optimizer currently does not provide
+ an estimate for the number of records in the ranges for sub-indexes.
+ However, some reasonable upper bound estimate can be obtained.
+
+ Let's consider the following range tree:
+ Rt: (first_name='Robert' AND last_name='Saw%')
+ OR
+ (first_name='Bob' AND last_name='So%')
+ Let #r be the number of records in Rt. Let f_1 be the fan-out of column
+ last_name:
+ f_1 = rec_per_key[first_name]/rec_per_key[last_name].
+ The the number of records in the range tree:
+ Rt_0: (first_name='Robert' OR first_name='Bob')
+ for the sub-index (first_name) is not greater than MY_MAX(#r*f_1, #t).
+ Strictly speaking, we can state only that it's not greater than
+ MY_MAX(#r*max_f_1, #t), where
+ max_f_1= max_rec_per_key[first_name]/min_rec_per_key[last_name].
+ Yet, if #r/#t is big enough (and this is the case of an index intersection,
+ because using this index range with a single index scan is cheaper than
+ the cost of the intersection when #r/#t is small) then almost safely we
+ can use here f_1 instead of max_f_1.
+
+ The above considerations can be used in future development. Now, they are
+ used partly in the function that provides a rough upper bound estimate for
+ the number of records in an index intersection that follow below.
+*/
+
+/*
+ Estimate the number of records selected by an extension a partial intersection
+
+ SYNOPSIS
+ records_in_index_intersect_extension()
+ curr partial intersection plan to be extended
+ ext_index_scan the evaluated extension of this partial plan
+
+ DESCRIPTION
+ The function provides an estimate for the number of records in the
+ intersection of the partial index intersection curr with the index
+ ext_index_scan. If all intersected indexes does not have common columns
+ then the function returns an exact estimate (assuming there are no
+ correlations between values in the columns). If the intersected indexes
+ have common columns the function returns an upper bound for the number
+ of records in the intersection provided that the intersection of curr
+ with ext_index_scan can is expected to have less records than the expected
+ number of records in the partial intersection curr. In this case the
+ function also assigns the bitmap of the columns in the extended
+ intersection to ext_index_scan->used_fields.
+ If the function cannot expect that the number of records in the extended
+ intersection is less that the expected number of records #r in curr then
+ the function returns a number bigger than #r.
+
+ NOTES
+ See the comment before the desription of the function that explains the
+ reasoning used by this function.
+
+ RETURN
+ The expected number of rows in the extended index intersection
+*/
+
+static
+ha_rows records_in_index_intersect_extension(PARTIAL_INDEX_INTERSECT_INFO *curr,
+ INDEX_SCAN_INFO *ext_index_scan)
+{
+ KEY *key_info= ext_index_scan->key_info;
+ KEY_PART_INFO* key_part= key_info->key_part;
+ uint used_key_parts= ext_index_scan->used_key_parts;
+ MY_BITMAP *used_fields= &ext_index_scan->used_fields;
+
+ if (!curr->length)
+ {
+ /*
+ If this the first index in the intersection just mark the
+ fields in the used_fields bitmap and return the expected
+ number of records in the range scan for the index provided
+ by the range optimizer.
+ */
+ set_field_bitmap_for_index_prefix(used_fields, key_part, used_key_parts);
+ return ext_index_scan->records;
+ }
+
+ uint i;
+ bool better_selectivity= FALSE;
+ ha_rows records= curr->records;
+ MY_BITMAP *curr_intersect_fields= curr->intersect_fields;
+ for (i= 0; i < used_key_parts; i++, key_part++)
+ {
+ if (bitmap_is_set(curr_intersect_fields, key_part->fieldnr-1))
+ break;
+ }
+ if (i)
+ {
+ ha_rows table_cardinality= curr->common_info->table_cardinality;
+ ha_rows ext_records= ext_index_scan->records;
+ if (i < used_key_parts)
+ {
+ double f1= key_info->actual_rec_per_key(i-1);
+ double f2= key_info->actual_rec_per_key(i);
+ ext_records= (ha_rows) ((double) ext_records / f2 * f1);
+ }
+ if (ext_records < table_cardinality)
+ {
+ better_selectivity= TRUE;
+ records= (ha_rows) ((double) records / table_cardinality *
+ ext_records);
+ bitmap_copy(used_fields, curr_intersect_fields);
+ key_part= key_info->key_part;
+ for (uint j= 0; j < used_key_parts; j++, key_part++)
+ bitmap_set_bit(used_fields, key_part->fieldnr-1);
+ }
+ }
+ return !better_selectivity ? records+1 :
+ !records ? 1 : records;
+}
+
+
+/*
+ Estimate the cost a binary search within disjoint cpk range intervals
+
+ Number of comparisons to check whether a cpk value satisfies
+ the cpk range condition = log2(cpk_scan->range_count).
+*/
+
+static inline
+double get_cpk_filter_cost(ha_rows filtered_records,
+ INDEX_SCAN_INFO *cpk_scan,
+ double compare_factor)
+{
+ return log((double) (cpk_scan->range_count+1)) / (compare_factor * M_LN2) *
+ filtered_records;
+}
+
+
+/*
+ Check whether a patial index intersection plan can be extended
+
+ SYNOPSIS
+ check_index_intersect_extension()
+ curr partial intersection plan to be extended
+ ext_index_scan a possible extension of this plan to be checked
+ next OUT the structure to be filled for the extended plan
+
+ DESCRIPTION
+ The function checks whether it makes sense to extend the index
+ intersection plan adding the index ext_index_scan, and, if this
+ the case, the function fills in the structure for the extended plan.
+
+ RETURN
+ TRUE if it makes sense to extend the given plan
+ FALSE otherwise
+*/
+
+static
+bool check_index_intersect_extension(PARTIAL_INDEX_INTERSECT_INFO *curr,
+ INDEX_SCAN_INFO *ext_index_scan,
+ PARTIAL_INDEX_INTERSECT_INFO *next)
+{
+ ha_rows records;
+ ha_rows records_sent_to_unique;
+ double cost;
+ ha_rows ext_index_scan_records= ext_index_scan->records;
+ ha_rows records_filtered_out_by_cpk= ext_index_scan->filtered_out;
+ COMMON_INDEX_INTERSECT_INFO *common_info= curr->common_info;
+ double cutoff_cost= common_info->cutoff_cost;
+ uint idx= curr->length;
+ next->index_read_cost= curr->index_read_cost+ext_index_scan->index_read_cost;
+ if (next->index_read_cost > cutoff_cost)
+ return FALSE;
+
+ if ((next->in_memory= curr->in_memory))
+ next->in_memory_cost= curr->in_memory_cost;
+
+ next->intersect_fields= &ext_index_scan->used_fields;
+ next->filtered_scans= curr->filtered_scans;
+
+ records_sent_to_unique= curr->records_sent_to_unique;
+
+ next->use_cpk_filter= FALSE;
+
+ /* Calculate the cost of using a Unique object for index intersection */
+ if (idx && next->in_memory)
+ {
+ /*
+ All rowids received from the first scan are expected in one unique tree
+ */
+ ha_rows elems_in_tree= common_info->search_scans[0]->records-
+ common_info->search_scans[0]->filtered_out ;
+ next->in_memory_cost+= Unique::get_search_cost(elems_in_tree,
+ common_info->compare_factor)*
+ ext_index_scan_records;
+ cost= next->in_memory_cost;
+ }
+ else
+ {
+ uint *buff_elems= common_info->buff_elems;
+ uint key_size= common_info->key_size;
+ double compare_factor= common_info->compare_factor;
+ size_t max_memory_size= common_info->max_memory_size;
+
+ records_sent_to_unique+= ext_index_scan_records;
+ cost= Unique::get_use_cost(buff_elems, (size_t) records_sent_to_unique, key_size,
+ max_memory_size, compare_factor, TRUE,
+ &next->in_memory);
+ if (records_filtered_out_by_cpk)
+ {
+ /* Check whether using cpk filter for this scan is beneficial */
+
+ double cost2;
+ bool in_memory2;
+ ha_rows records2= records_sent_to_unique-records_filtered_out_by_cpk;
+ cost2= Unique::get_use_cost(buff_elems, (size_t) records2, key_size,
+ max_memory_size, compare_factor, TRUE,
+ &in_memory2);
+ cost2+= get_cpk_filter_cost(ext_index_scan_records, common_info->cpk_scan,
+ compare_factor);
+ if (cost > cost2 + COST_EPS)
+ {
+ cost= cost2;
+ next->in_memory= in_memory2;
+ next->use_cpk_filter= TRUE;
+ records_sent_to_unique= records2;
+ }
+
+ }
+ if (next->in_memory)
+ next->in_memory_cost= cost;
+ }
+
+ if (next->use_cpk_filter)
+ {
+ next->filtered_scans.set_bit(ext_index_scan->keynr);
+ bitmap_union(&ext_index_scan->used_fields,
+ &common_info->cpk_scan->used_fields);
+ }
+ next->records_sent_to_unique= records_sent_to_unique;
+
+ records= records_in_index_intersect_extension(curr, ext_index_scan);
+ if (idx && records > curr->records)
+ return FALSE;
+ if (next->use_cpk_filter && curr->filtered_scans.is_clear_all())
+ records-= records_filtered_out_by_cpk;
+ next->records= records;
+
+ cost+= next->index_read_cost;
+ if (cost >= cutoff_cost)
+ return FALSE;
+
+ cost+= get_sweep_read_cost(common_info->param, records);
+
+ next->cost= cost;
+ next->length= curr->length+1;
+
+ return TRUE;
+}
+
+
+/*
+ Search for the cheapest extensions of range scans used to access a table
+
+ SYNOPSIS
+ find_index_intersect_best_extension()
+ curr partial intersection to evaluate all possible extension for
+
+ DESCRIPTION
+ The function tries to extend the partial plan curr in all possible ways
+ to look for a cheapest index intersection whose cost less than the
+ cut off value set in curr->common_info.cutoff_cost.
+*/
+
+static
+void find_index_intersect_best_extension(PARTIAL_INDEX_INTERSECT_INFO *curr)
+{
+ PARTIAL_INDEX_INTERSECT_INFO next;
+ COMMON_INDEX_INTERSECT_INFO *common_info= curr->common_info;
+ INDEX_SCAN_INFO **index_scans= common_info->search_scans;
+ uint idx= curr->length;
+ INDEX_SCAN_INFO **rem_first_index_scan_ptr= &index_scans[idx];
+ double cost= curr->cost;
+
+ if (cost + COST_EPS < common_info->best_cost)
+ {
+ common_info->best_cost= cost;
+ common_info->best_length= curr->length;
+ common_info->best_records= curr->records;
+ common_info->filtered_scans= curr->filtered_scans;
+ /* common_info->best_uses_cpk <=> at least one scan uses a cpk filter */
+ common_info->best_uses_cpk= !curr->filtered_scans.is_clear_all();
+ uint sz= sizeof(INDEX_SCAN_INFO *) * curr->length;
+ memcpy(common_info->best_intersect, common_info->search_scans, sz);
+ common_info->cutoff_cost= cost;
+ }
+
+ if (!(*rem_first_index_scan_ptr))
+ return;
+
+ next.common_info= common_info;
+
+ INDEX_SCAN_INFO *rem_first_index_scan= *rem_first_index_scan_ptr;
+ for (INDEX_SCAN_INFO **index_scan_ptr= rem_first_index_scan_ptr;
+ *index_scan_ptr; index_scan_ptr++)
+ {
+ *rem_first_index_scan_ptr= *index_scan_ptr;
+ *index_scan_ptr= rem_first_index_scan;
+ if (check_index_intersect_extension(curr, *rem_first_index_scan_ptr, &next))
+ find_index_intersect_best_extension(&next);
+ *index_scan_ptr= *rem_first_index_scan_ptr;
+ *rem_first_index_scan_ptr= rem_first_index_scan;
+ }
+}
+
+
+/*
+ Get the plan of the best intersection of range scans used to access a table
+
+ SYNOPSIS
+ get_best_index_intersect()
+ param common info about index ranges
+ tree tree of ranges for indexes than can be intersected
+ read_time cut off value for the evaluated plans
+
+ DESCRIPTION
+ The function looks for the cheapest index intersection of the range
+ scans to access a table. The info about the ranges for all indexes
+ is provided by the range optimizer and is passed through the
+ parameters param and tree. Any plan whose cost is greater than read_time
+ is rejected.
+ After the best index intersection is found the function constructs
+ the structure that manages the execution by the chosen plan.
+
+ RETURN
+ Pointer to the generated execution structure if a success,
+ 0 - otherwise.
+*/
+
+static
+TRP_INDEX_INTERSECT *get_best_index_intersect(PARAM *param, SEL_TREE *tree,
+ double read_time)
+{
+ uint i;
+ uint count;
+ TRP_RANGE **cur_range;
+ TRP_RANGE **range_scans;
+ INDEX_SCAN_INFO *index_scan;
+ COMMON_INDEX_INTERSECT_INFO common;
+ PARTIAL_INDEX_INTERSECT_INFO init;
+ TRP_INDEX_INTERSECT *intersect_trp= NULL;
+ TABLE *table= param->table;
+ THD *thd= param->thd;
+
+ DBUG_ENTER("get_best_index_intersect");
+
+ Json_writer_object trace_idx_interect(thd, "analyzing_sort_intersect");
+
+ if (prepare_search_best_index_intersect(param, tree, &common, &init,
+ read_time))
+ DBUG_RETURN(NULL);
+
+ find_index_intersect_best_extension(&init);
+
+ if (common.best_length <= 1 && !common.best_uses_cpk)
+ DBUG_RETURN(NULL);
+
+ if (common.best_uses_cpk)
+ {
+ memmove((char *) (common.best_intersect+1), (char *) common.best_intersect,
+ sizeof(INDEX_SCAN_INFO *) * common.best_length);
+ common.best_intersect[0]= common.cpk_scan;
+ common.best_length++;
+ }
+
+ count= common.best_length;
+
+ if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
+ sizeof(TRP_RANGE *)*
+ count)))
+ DBUG_RETURN(NULL);
+
+ for (i= 0, cur_range= range_scans; i < count; i++)
+ {
+ index_scan= common.best_intersect[i];
+ if ((*cur_range= new (param->mem_root) TRP_RANGE(index_scan->sel_arg,
+ index_scan->idx, 0)))
+ {
+ TRP_RANGE *trp= *cur_range;
+ trp->read_cost= index_scan->index_read_cost;
+ trp->records= index_scan->records;
+ trp->is_ror= FALSE;
+ trp->mrr_buf_size= 0;
+ table->intersect_keys.set_bit(index_scan->keynr);
+ cur_range++;
+ }
+ }
+
+ count= (uint)(tree->index_scans_end - tree->index_scans);
+ for (i= 0; i < count; i++)
+ {
+ index_scan= tree->index_scans[i];
+ if (!table->intersect_keys.is_set(index_scan->keynr))
+ {
+ for (uint j= 0; j < common.best_length; j++)
+ {
+ INDEX_SCAN_INFO *scan= common.best_intersect[j];
+ if (same_index_prefix(index_scan->key_info, scan->key_info,
+ scan->used_key_parts))
+ {
+ table->intersect_keys.set_bit(index_scan->keynr);
+ break;
+ }
+ }
+ }
+ }
+
+ if ((intersect_trp= new (param->mem_root)TRP_INDEX_INTERSECT))
+ {
+
+ intersect_trp->read_cost= common.best_cost;
+ intersect_trp->records= common.best_records;
+ intersect_trp->range_scans= range_scans;
+ intersect_trp->range_scans_end= cur_range;
+ intersect_trp->filtered_scans= common.filtered_scans;
+ trace_idx_interect.add("rows", intersect_trp->records)
+ .add("cost", intersect_trp->read_cost)
+ .add("chosen",true);
+ }
+ DBUG_RETURN(intersect_trp);
+}
+
+
+typedef struct st_ror_scan_info : INDEX_SCAN_INFO
+{
+} ROR_SCAN_INFO;
+
+void TRP_ROR_INTERSECT::trace_basic_info(PARAM *param,
+ Json_writer_object *trace_object) const
+{
+ THD *thd= param->thd;
+ DBUG_ASSERT(trace_object->trace_started());
+
+ trace_object->add("type", "index_roworder_intersect");
+ trace_object->add("rows", records);
+ trace_object->add("cost", read_cost);
+ trace_object->add("covering", is_covering);
+ trace_object->add("clustered_pk_scan", cpk_scan != NULL);
+
+ Json_writer_array smth_trace(thd, "intersect_of");
+ for (ROR_SCAN_INFO **cur_scan= first_scan; cur_scan != last_scan;
+ cur_scan++)
+ {
+ const KEY &cur_key= param->table->key_info[(*cur_scan)->keynr];
+ const KEY_PART_INFO *key_part= cur_key.key_part;
+
+ Json_writer_object trace_isect_idx(thd);
+ trace_isect_idx.add("type", "range_scan");
+ trace_isect_idx.add("index", cur_key.name);
+ trace_isect_idx.add("rows", (*cur_scan)->records);
+
+ Json_writer_array trace_range(thd, "ranges");
+
+ trace_ranges(&trace_range, param, (*cur_scan)->idx,
+ (*cur_scan)->sel_arg, key_part);
+ }
+}
+
+
+/*
+ Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
+ sel_arg set of intervals.
+
+ SYNOPSIS
+ make_ror_scan()
+ param Parameter from test_quick_select function
+ idx Index of key in param->keys
+ sel_arg Set of intervals for a given key
+
+ RETURN
+ NULL - out of memory
+ ROR scan structure containing a scan for {idx, sel_arg}
+*/
+
+static
+ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
+{
+ ROR_SCAN_INFO *ror_scan;
+ my_bitmap_map *bitmap_buf;
+ uint keynr;
+ DBUG_ENTER("make_ror_scan");
+
+ if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO))))
+ DBUG_RETURN(NULL);
+
+ ror_scan->idx= idx;
+ ror_scan->keynr= keynr= param->real_keynr[idx];
+ ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
+ param->table->file->ref_length);
+ ror_scan->sel_arg= sel_arg;
+ ror_scan->records= param->quick_rows[keynr];
+
+ if (!(bitmap_buf= (my_bitmap_map*) alloc_root(param->mem_root,
+ param->fields_bitmap_size)))
+ DBUG_RETURN(NULL);
+
+ if (my_bitmap_init(&ror_scan->covered_fields, bitmap_buf,
+ param->table->s->fields))
+ DBUG_RETURN(NULL);
+ bitmap_clear_all(&ror_scan->covered_fields);
+
+ KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
+ KEY_PART_INFO *key_part_end= key_part +
+ param->table->key_info[keynr].user_defined_key_parts;
+ for (;key_part != key_part_end; ++key_part)
+ {
+ if (bitmap_is_set(&param->needed_fields, key_part->fieldnr-1))
+ bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr-1);
+ }
+ ror_scan->index_read_cost=
+ param->table->file->keyread_time(ror_scan->keynr, 1, ror_scan->records);
+ DBUG_RETURN(ror_scan);
+}
+
+
+/*
+ Compare two ROR_SCAN_INFO** by E(#records_matched) * key_record_length.
+ SYNOPSIS
+ cmp_ror_scan_info()
+ a ptr to first compared value
+ b ptr to second compared value
+
+ RETURN
+ -1 a < b
+ 0 a = b
+ 1 a > b
+*/
+
+static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
+{
+ double val1= rows2double((*a)->records) * (*a)->key_rec_length;
+ double val2= rows2double((*b)->records) * (*b)->key_rec_length;
+ return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
+}
+
+/*
+ Compare two ROR_SCAN_INFO** by
+ (#covered fields in F desc,
+ #components asc,
+ number of first not covered component asc)
+
+ SYNOPSIS
+ cmp_ror_scan_info_covering()
+ a ptr to first compared value
+ b ptr to second compared value
+
+ RETURN
+ -1 a < b
+ 0 a = b
+ 1 a > b
+*/
+
+static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
+{
+ if ((*a)->used_fields_covered > (*b)->used_fields_covered)
+ return -1;
+ if ((*a)->used_fields_covered < (*b)->used_fields_covered)
+ return 1;
+ if ((*a)->key_components < (*b)->key_components)
+ return -1;
+ if ((*a)->key_components > (*b)->key_components)
+ return 1;
+ if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
+ return -1;
+ if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
+ return 1;
+ return 0;
+}
+
+
+/* Auxiliary structure for incremental ROR-intersection creation */
+typedef struct
+{
+ const PARAM *param;
+ MY_BITMAP covered_fields; /* union of fields covered by all scans */
+ /*
+ Fraction of table records that satisfies conditions of all scans.
+ This is the number of full records that will be retrieved if a
+ non-index_only index intersection will be employed.
+ */
+ double out_rows;
+ /* TRUE if covered_fields is a superset of needed_fields */
+ bool is_covering;
+
+ ha_rows index_records; /* sum(#records to look in indexes) */
+ double index_scan_costs; /* SUM(cost of 'index-only' scans) */
+ double total_cost;
+} ROR_INTERSECT_INFO;
+
+
+/*
+ Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.
+
+ SYNOPSIS
+ ror_intersect_init()
+ param Parameter from test_quick_select
+
+ RETURN
+ allocated structure
+ NULL on error
+*/
+
+static
+ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
+{
+ ROR_INTERSECT_INFO *info;
+ my_bitmap_map* buf;
+ if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
+ sizeof(ROR_INTERSECT_INFO))))
+ return NULL;
+ info->param= param;
+ if (!(buf= (my_bitmap_map*) alloc_root(param->mem_root,
+ param->fields_bitmap_size)))
+ return NULL;
+ if (my_bitmap_init(&info->covered_fields, buf, param->table->s->fields))
+ return NULL;
+ info->is_covering= FALSE;
+ info->index_scan_costs= 0.0;
+ info->index_records= 0;
+ info->out_rows= (double) param->table->stat_records();
+ bitmap_clear_all(&info->covered_fields);
+ return info;
+}
+
+void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
+{
+ dst->param= src->param;
+ memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap,
+ no_bytes_in_map(&src->covered_fields));
+ dst->out_rows= src->out_rows;
+ dst->is_covering= src->is_covering;
+ dst->index_records= src->index_records;
+ dst->index_scan_costs= src->index_scan_costs;
+ dst->total_cost= src->total_cost;
+}
+
+
+/*
+ Get selectivity of a ROR scan wrt ROR-intersection.
+
+ SYNOPSIS
+ ror_scan_selectivity()
+ info ROR-interection
+ scan ROR scan
+
+ NOTES
+ Suppose we have a condition on several keys
+ cond=k_11=c_11 AND k_12=c_12 AND ... // parts of first key
+ k_21=c_21 AND k_22=c_22 AND ... // parts of second key
+ ...
+ k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //parts of the key used by *scan
+
+ where k_ij may be the same as any k_pq (i.e. keys may have common parts).
+
+ A full row is retrieved if entire condition holds.
+
+ The recursive procedure for finding P(cond) is as follows:
+
+ First step:
+ Pick 1st part of 1st key and break conjunction (1) into two parts:
+ cond= (k_11=c_11 AND R)
+
+ Here R may still contain condition(s) equivalent to k_11=c_11.
+ Nevertheless, the following holds:
+
+ P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
+
+ Mark k_11 as fixed field (and satisfied condition) F, save P(F),
+ save R to be cond and proceed to recursion step.
+
+ Recursion step:
+ We have a set of fixed fields/satisfied conditions) F, probability P(F),
+ and remaining conjunction R
+ Pick next key part on current key and its condition "k_ij=c_ij".
+ We will add "k_ij=c_ij" into F and update P(F).
+ Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then
+
+ P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
+
+ (where '|' mean conditional probability, not "or")
+
+ Consider the first multiplier in (2). One of the following holds:
+ a) F contains condition on field used in t (i.e. t AND F = F).
+ Then P(t|F) = 1
+
+ b) F doesn't contain condition on field used in t. Then F and t are
+ considered independent.
+
+ P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
+ = P(t|fields_before_t_in_key).
+
+ P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
+ #records(fields_before_t_in_key, t)
+
+ The second multiplier is calculated by applying this step recursively.
+
+ IMPLEMENTATION
+ This function calculates the result of application of the "recursion step"
+ described above for all fixed key members of a single key, accumulating set
+ of covered fields, selectivity, etc.
+
+ The calculation is conducted as follows:
+ Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
+
+ n_{k1} n_{k2}
+ --------- * --------- * .... (3)
+ n_{k1-1} n_{k2-1}
+
+ where k1,k2,... are key parts which fields were not yet marked as fixed
+ ( this is result of application of option b) of the recursion step for
+ parts of a single key).
+ Since it is reasonable to expect that most of the fields are not marked
+ as fixed, we calculate (3) as
+
+ n_{i1} n_{i2}
+ (3) = n_{max_key_part} / ( --------- * --------- * .... )
+ n_{i1-1} n_{i2-1}
+
+ where i1,i2, .. are key parts that were already marked as fixed.
+
+ In order to minimize number of expensive records_in_range calls we group
+ and reduce adjacent fractions.
+
+ RETURN
+ Selectivity of given ROR scan.
+*/
+
+static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info,
+ const ROR_SCAN_INFO *scan)
+{
+ double selectivity_mult= 1.0;
+ KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
+ uchar key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
+ uchar *key_ptr= key_val;
+ SEL_ARG *sel_arg, *tuple_arg= NULL;
+ key_part_map keypart_map= 0;
+ bool cur_covered;
+ bool prev_covered= MY_TEST(bitmap_is_set(&info->covered_fields,
+ key_part->fieldnr - 1));
+ key_range min_range;
+ key_range max_range;
+ min_range.key= key_val;
+ min_range.flag= HA_READ_KEY_EXACT;
+ max_range.key= key_val;
+ max_range.flag= HA_READ_AFTER_KEY;
+ ha_rows prev_records= info->param->table->stat_records();
+ DBUG_ENTER("ror_scan_selectivity");
+
+ for (sel_arg= scan->sel_arg; sel_arg;
+ sel_arg= sel_arg->next_key_part)
+ {
+ DBUG_PRINT("info",("sel_arg step"));
+ cur_covered= MY_TEST(bitmap_is_set(&info->covered_fields,
+ key_part[sel_arg->part].fieldnr - 1));
+ if (cur_covered != prev_covered)
+ {
+ /* create (part1val, ..., part{n-1}val) tuple. */
+ ha_rows records;
+ page_range pages;
+ if (!tuple_arg)
+ {
+ tuple_arg= scan->sel_arg;
+ /* Here we use the length of the first key part */
+ tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
+ keypart_map= 1;
+ }
+ while (tuple_arg->next_key_part != sel_arg)
+ {
+ tuple_arg= tuple_arg->next_key_part;
+ tuple_arg->store_min(key_part[tuple_arg->part].store_length,
+ &key_ptr, 0);
+ keypart_map= (keypart_map << 1) | 1;
+ }
+ min_range.length= max_range.length= (uint) (key_ptr - key_val);
+ min_range.keypart_map= max_range.keypart_map= keypart_map;
+ records= (info->param->table->file->
+ records_in_range(scan->keynr, &min_range, &max_range, &pages));
+ if (cur_covered)
+ {
+ /* uncovered -> covered */
+ double tmp= rows2double(records)/rows2double(prev_records);
+ DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
+ selectivity_mult *= tmp;
+ prev_records= HA_POS_ERROR;
+ }
+ else
+ {
+ /* covered -> uncovered */
+ prev_records= records;
+ }
+ }
+ prev_covered= cur_covered;
+ }
+ if (!prev_covered)
+ {
+ double tmp= rows2double(info->param->quick_rows[scan->keynr]) /
+ rows2double(prev_records);
+ DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
+ selectivity_mult *= tmp;
+ }
+ DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
+ DBUG_RETURN(selectivity_mult);
+}
+
+
+/*
+ Check if adding a ROR scan to a ROR-intersection reduces its cost of
+ ROR-intersection and if yes, update parameters of ROR-intersection,
+ including its cost.
+
+ SYNOPSIS
+ ror_intersect_add()
+ param Parameter from test_quick_select
+ info ROR-intersection structure to add the scan to.
+ ror_scan ROR scan info to add.
+ is_cpk_scan If TRUE, add the scan as CPK scan (this can be inferred
+ from other parameters and is passed separately only to
+ avoid duplicating the inference code)
+
+ NOTES
+ Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
+ intersection decreases. The cost of ROR-intersection is calculated as
+ follows:
+
+ cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval
+
+ When we add a scan the first increases and the second decreases.
+
+ cost_of_full_rows_retrieval=
+ (union of indexes used covers all needed fields) ?
+ cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
+ 0
+
+ E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
+ ror_scan_selectivity({scan1}, scan2) * ... *
+ ror_scan_selectivity({scan1,...}, scanN).
+ RETURN
+ TRUE ROR scan added to ROR-intersection, cost updated.
+ FALSE It doesn't make sense to add this ROR scan to this ROR-intersection.
+*/
+
+static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
+ ROR_SCAN_INFO* ror_scan,
+ Json_writer_object *trace_costs,
+ bool is_cpk_scan)
+{
+ double selectivity_mult= 1.0;
+
+ DBUG_ENTER("ror_intersect_add");
+ DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
+ DBUG_PRINT("info", ("Adding scan on %s",
+ info->param->table->key_info[ror_scan->keynr].name.str));
+ DBUG_PRINT("info", ("is_cpk_scan: %d",is_cpk_scan));
+
+ selectivity_mult = ror_scan_selectivity(info, ror_scan);
+ if (selectivity_mult == 1.0)
+ {
+ /* Don't add this scan if it doesn't improve selectivity. */
+ DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
+ DBUG_RETURN(FALSE);
+ }
+
+ info->out_rows *= selectivity_mult;
+
+ if (is_cpk_scan)
+ {
+ /*
+ CPK scan is used to filter out rows. We apply filtering for
+ each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
+ per check this gives us:
+ */
+ const double idx_cost= rows2double(info->index_records) /
+ TIME_FOR_COMPARE_ROWID;
+ info->index_scan_costs+= idx_cost;
+ trace_costs->add("index_scan_cost", idx_cost);
+ }
+ else
+ {
+ info->index_records += info->param->quick_rows[ror_scan->keynr];
+ info->index_scan_costs += ror_scan->index_read_cost;
+ trace_costs->add("index_scan_cost", ror_scan->index_read_cost);
+ bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
+ if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
+ &info->covered_fields))
+ {
+ DBUG_PRINT("info", ("ROR-intersect is covering now"));
+ info->is_covering= TRUE;
+ }
+ }
+
+ info->total_cost= info->index_scan_costs;
+ trace_costs->add("cumulated_index_scan_cost", info->index_scan_costs);
+ DBUG_PRINT("info", ("info->total_cost: %g", info->total_cost));
+ if (!info->is_covering)
+ {
+ double sweep_cost= get_sweep_read_cost(info->param,
+ double2rows(info->out_rows));
+ info->total_cost+= sweep_cost;
+ trace_costs->add("disk_sweep_cost", sweep_cost);
+ DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
+ }
+ else
+ trace_costs->add("disk_sweep_cost", 0);
+
+ DBUG_PRINT("info", ("New out_rows: %g", info->out_rows));
+ DBUG_PRINT("info", ("New cost: %g, %scovering", info->total_cost,
+ info->is_covering?"" : "non-"));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Get best ROR-intersection plan using non-covering ROR-intersection search
+ algorithm. The returned plan may be covering.
+
+ SYNOPSIS
+ get_best_ror_intersect()
+ param Parameter from test_quick_select function.
+ tree Transformed restriction condition to be used to look
+ for ROR scans.
+ read_time Do not return read plans with cost > read_time.
+ are_all_covering [out] set to TRUE if union of all scans covers all
+ fields needed by the query (and it is possible to build
+ a covering ROR-intersection)
+
+ NOTES
+ get_key_scans_params must be called before this function can be called.
+
+ When this function is called by ROR-union construction algorithm it
+ assumes it is building an uncovered ROR-intersection (and thus # of full
+ records to be retrieved is wrong here). This is a hack.
+
+ IMPLEMENTATION
+ The approximate best non-covering plan search algorithm is as follows:
+
+ find_min_ror_intersection_scan()
+ {
+ R= select all ROR scans;
+ order R by (E(#records_matched) * key_record_length).
+
+ S= first(R); -- set of scans that will be used for ROR-intersection
+ R= R-first(S);
+ min_cost= cost(S);
+ min_scan= make_scan(S);
+ while (R is not empty)
+ {
+ firstR= R - first(R);
+ if (!selectivity(S + firstR < selectivity(S)))
+ continue;
+
+ S= S + first(R);
+ if (cost(S) < min_cost)
+ {
+ min_cost= cost(S);
+ min_scan= make_scan(S);
+ }
+ }
+ return min_scan;
+ }
+
+ See ror_intersect_add function for ROR intersection costs.
+
+ Special handling for Clustered PK scans
+ Clustered PK contains all table fields, so using it as a regular scan in
+ index intersection doesn't make sense: a range scan on CPK will be less
+ expensive in this case.
+ Clustered PK scan has special handling in ROR-intersection: it is not used
+ to retrieve rows, instead its condition is used to filter row references
+ we get from scans on other keys.
+
+ RETURN
+ ROR-intersection table read plan
+ NULL if out of memory or no suitable plan found.
+*/
+
+static
+TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
+ double read_time,
+ bool *are_all_covering)
+{
+ uint idx;
+ double min_cost= DBL_MAX;
+ DBUG_ENTER("get_best_ror_intersect");
+ THD *thd= param->thd;
+ Json_writer_object trace_ror(thd, "analyzing_roworder_intersect");
+
+ if ((tree->n_ror_scans < 2) || !param->table->stat_records() ||
+ !optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT))
+ {
+ if (tree->n_ror_scans < 2)
+ trace_ror.add("cause", "too few roworder scans");
+ DBUG_RETURN(NULL);
+ }
+
+ /*
+ Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of
+ them. Also find and save clustered PK scan if there is one.
+ */
+ ROR_SCAN_INFO **cur_ror_scan;
+ ROR_SCAN_INFO *cpk_scan= NULL;
+ uint cpk_no;
+
+ if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ param->keys)))
+ return NULL;
+ cpk_no= (param->table->file->
+ pk_is_clustering_key(param->table->s->primary_key) ?
+ param->table->s->primary_key : MAX_KEY);
+
+ for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
+ {
+ ROR_SCAN_INFO *scan;
+ uint key_no;
+ if (!tree->ror_scans_map.is_set(idx))
+ continue;
+ key_no= param->real_keynr[idx];
+ if (key_no != cpk_no &&
+ param->table->file->index_flags(key_no,0,0) & HA_CLUSTERED_INDEX)
+ {
+ /* Ignore clustering keys */
+ tree->n_ror_scans--;
+ continue;
+ }
+ if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
+ return NULL;
+ if (key_no == cpk_no)
+ {
+ cpk_scan= scan;
+ tree->n_ror_scans--;
+ }
+ else
+ *(cur_ror_scan++)= scan;
+ }
+
+ tree->ror_scans_end= cur_ror_scan;
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
+ tree->ror_scans,
+ tree->ror_scans_end););
+ /*
+ Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
+ ROR_SCAN_INFO's.
+ Step 2: Get best ROR-intersection using an approximate algorithm.
+ */
+ my_qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
+ (qsort_cmp)cmp_ror_scan_info);
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
+ tree->ror_scans,
+ tree->ror_scans_end););
+
+ ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
+ ROR_SCAN_INFO **intersect_scans_end;
+ if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ tree->n_ror_scans)))
+ return NULL;
+ intersect_scans_end= intersect_scans;
+
+ /* Create and incrementally update ROR intersection. */
+ ROR_INTERSECT_INFO *intersect, *intersect_best;
+ if (!(intersect= ror_intersect_init(param)) ||
+ !(intersect_best= ror_intersect_init(param)))
+ return NULL;
+
+ /* [intersect_scans,intersect_scans_best) will hold the best intersection */
+ ROR_SCAN_INFO **intersect_scans_best;
+ cur_ror_scan= tree->ror_scans;
+ intersect_scans_best= intersect_scans;
+ Json_writer_array trace_isect_idx(thd, "intersecting_indexes");
+ while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
+ {
+ Json_writer_object trace_idx(thd);
+ trace_idx.add("index",
+ param->table->key_info[(*cur_ror_scan)->keynr].name);
+
+ /* S= S + first(R); R= R - first(R); */
+ if (!ror_intersect_add(intersect, *cur_ror_scan, &trace_idx, FALSE))
+ {
+ trace_idx.add("usable", false)
+ .add("cause", "does not reduce cost of intersect");
+ cur_ror_scan++;
+ continue;
+ }
+
+ trace_idx.add("cumulative_total_cost", intersect->total_cost)
+ .add("usable", true)
+ .add("matching_rows_now", intersect->out_rows)
+ .add("intersect_covering_with_this_index", intersect->is_covering);
+
+ *(intersect_scans_end++)= *(cur_ror_scan++);
+
+ if (intersect->total_cost < min_cost)
+ {
+ /* Local minimum found, save it */
+ ror_intersect_cpy(intersect_best, intersect);
+ intersect_scans_best= intersect_scans_end;
+ min_cost = intersect->total_cost;
+ trace_idx.add("chosen", true);
+ }
+ else
+ {
+ trace_idx.add("chosen", false)
+ .add("cause", "does not reduce cost");
+ }
+ }
+ trace_isect_idx.end();
+
+ if (intersect_scans_best == intersect_scans)
+ {
+ DBUG_PRINT("info", ("None of scans increase selectivity"));
+ trace_ror.add("chosen", false)
+ .add("cause","does not increase selectivity");
+ DBUG_RETURN(NULL);
+ }
+
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
+ "best ROR-intersection",
+ intersect_scans,
+ intersect_scans_best););
+
+ *are_all_covering= intersect->is_covering;
+ uint best_num= (uint)(intersect_scans_best - intersect_scans);
+ ror_intersect_cpy(intersect, intersect_best);
+
+ /*
+ Ok, found the best ROR-intersection of non-CPK key scans.
+ Check if we should add a CPK scan. If the obtained ROR-intersection is
+ covering, it doesn't make sense to add CPK scan.
+ */
+ Json_writer_object trace_cpk(thd, "clustered_pk");
+ if (cpk_scan && !intersect->is_covering)
+ {
+ if (ror_intersect_add(intersect, cpk_scan, &trace_cpk, TRUE) &&
+ (intersect->total_cost < min_cost))
+ {
+ trace_cpk.add("clustered_pk_scan_added_to_intersect", true)
+ .add("cumulated_cost", intersect->total_cost);
+ intersect_best= intersect; //just set pointer here
+ }
+ else
+ {
+ trace_cpk.add("clustered_pk_added_to_intersect", false)
+ .add("cause", "cost");
+ cpk_scan= 0; // Don't use cpk_scan
+ }
+ }
+ else
+ {
+ trace_cpk.add("clustered_pk_added_to_intersect", false)
+ .add("cause", cpk_scan ? "roworder is covering"
+ : "no clustered pk index");
+ cpk_scan= 0; // Don't use cpk_scan
+ }
+ trace_cpk.end();
+
+ /* Ok, return ROR-intersect plan if we have found one */
+ TRP_ROR_INTERSECT *trp= NULL;
+ if (min_cost < read_time && (cpk_scan || best_num > 1))
+ {
+ if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
+ DBUG_RETURN(trp);
+ if (!(trp->first_scan=
+ (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*best_num)))
+ DBUG_RETURN(NULL);
+ memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
+ trp->last_scan= trp->first_scan + best_num;
+ trp->is_covering= intersect_best->is_covering;
+ trp->read_cost= intersect_best->total_cost;
+ /* Prevent divisons by zero */
+ ha_rows best_rows = double2rows(intersect_best->out_rows);
+ if (!best_rows)
+ best_rows= 1;
+ set_if_smaller(param->table->opt_range_condition_rows, best_rows);
+ trp->records= best_rows;
+ trp->index_scan_costs= intersect_best->index_scan_costs;
+ trp->cpk_scan= cpk_scan;
+ DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
+ "cost %g, records %lu",
+ trp->read_cost, (ulong) trp->records));
+ trace_ror.add("rows", trp->records)
+ .add("cost", trp->read_cost)
+ .add("covering", trp->is_covering)
+ .add("chosen", true);
+ }
+ else
+ {
+ trace_ror.add("chosen", false)
+ .add("cause", (read_time > min_cost)
+ ? "too few indexes to merge"
+ : "cost");
+ }
+ DBUG_RETURN(trp);
+}
+
+
+/*
+ Get best covering ROR-intersection.
+ SYNOPSIS
+ get_best_ntersectcovering_ror_intersect()
+ param Parameter from test_quick_select function.
+ tree SEL_TREE with sets of intervals for different keys.
+ read_time Don't return table read plans with cost > read_time.
+
+ RETURN
+ Best covering ROR-intersection plan
+ NULL if no plan found.
+
+ NOTES
+ get_best_ror_intersect must be called for a tree before calling this
+ function for it.
+ This function invalidates tree->ror_scans member values.
+
+ The following approximate algorithm is used:
+ I=set of all covering indexes
+ F=set of all fields to cover
+ S={}
+
+ do
+ {
+ Order I by (#covered fields in F desc,
+ #components asc,
+ number of first not covered component asc);
+ F=F-covered by first(I);
+ S=S+first(I);
+ I=I-first(I);
+ } while F is not empty.
+*/
+
+static
+TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
+ SEL_TREE *tree,
+ double read_time)
+{
+ ROR_SCAN_INFO **ror_scan_mark;
+ ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
+ DBUG_ENTER("get_best_covering_ror_intersect");
+
+ if (!optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT))
+ DBUG_RETURN(NULL);
+
+ for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
+ (*scan)->key_components=
+ param->table->key_info[(*scan)->keynr].user_defined_key_parts;
+
+ /*
+ Run covering-ROR-search algorithm.
+ Assume set I is [ror_scan .. ror_scans_end)
+ */
+
+ /*I=set of all covering indexes */
+ ror_scan_mark= tree->ror_scans;
+
+ MY_BITMAP *covered_fields= &param->tmp_covered_fields;
+ if (!covered_fields->bitmap)
+ covered_fields->bitmap= (my_bitmap_map*)alloc_root(param->mem_root,
+ param->fields_bitmap_size);
+ if (!covered_fields->bitmap ||
+ my_bitmap_init(covered_fields, covered_fields->bitmap,
+ param->table->s->fields))
+ DBUG_RETURN(0);
+ bitmap_clear_all(covered_fields);
+
+ double total_cost= 0.0f;
+ ha_rows records=0;
+ bool all_covered;
+
+ DBUG_PRINT("info", ("Building covering ROR-intersection"));
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "building covering ROR-I",
+ ror_scan_mark, ror_scans_end););
+ do
+ {
+ /*
+ Update changed sorting info:
+ #covered fields,
+ number of first not covered component
+ Calculate and save these values for each of remaining scans.
+ */
+ for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
+ {
+ bitmap_subtract(&(*scan)->covered_fields, covered_fields);
+ (*scan)->used_fields_covered=
+ bitmap_bits_set(&(*scan)->covered_fields);
+ (*scan)->first_uncovered_field=
+ bitmap_get_first(&(*scan)->covered_fields);
+ }
+
+ my_qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
+ (qsort_cmp)cmp_ror_scan_info_covering);
+
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "remaining scans",
+ ror_scan_mark, ror_scans_end););
+
+ /* I=I-first(I) */
+ total_cost += (*ror_scan_mark)->index_read_cost;
+ records += (*ror_scan_mark)->records;
+ DBUG_PRINT("info", ("Adding scan on %s",
+ param->table->key_info[(*ror_scan_mark)->keynr].name.str));
+ if (total_cost > read_time)
+ DBUG_RETURN(NULL);
+ /* F=F-covered by first(I) */
+ bitmap_union(covered_fields, &(*ror_scan_mark)->covered_fields);
+ all_covered= bitmap_is_subset(&param->needed_fields, covered_fields);
+ } while ((++ror_scan_mark < ror_scans_end) && !all_covered);
+
+ if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
+ DBUG_RETURN(NULL);
+
+ /*
+ Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
+ cost total_cost.
+ */
+ DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "creating covering ROR-intersect",
+ tree->ror_scans, ror_scan_mark););
+
+ /* Add priority queue use cost. */
+ total_cost += rows2double(records)*
+ log((double)(ror_scan_mark - tree->ror_scans)) /
+ (TIME_FOR_COMPARE_ROWID * M_LN2);
+ DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));
+
+ if (total_cost > read_time)
+ DBUG_RETURN(NULL);
+
+ TRP_ROR_INTERSECT *trp;
+ if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
+ DBUG_RETURN(trp);
+ uint best_num= (uint)(ror_scan_mark - tree->ror_scans);
+ if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ best_num)))
+ DBUG_RETURN(NULL);
+ memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*));
+ trp->last_scan= trp->first_scan + best_num;
+ trp->is_covering= TRUE;
+ trp->read_cost= total_cost;
+ trp->records= records;
+ trp->cpk_scan= NULL;
+ set_if_smaller(param->table->opt_range_condition_rows, records);
+
+ DBUG_PRINT("info",
+ ("Returning covering ROR-intersect plan: cost %g, records %lu",
+ trp->read_cost, (ulong) trp->records));
+ DBUG_RETURN(trp);
+}
+
+
+/*
+ Get best "range" table read plan for given SEL_TREE.
+ Also update PARAM members and store ROR scans info in the SEL_TREE.
+ SYNOPSIS
+ get_key_scans_params
+ param parameters from test_quick_select
+ tree make range select for this SEL_TREE
+ index_read_must_be_used if TRUE, assume 'index only' option will be set
+ (except for clustered PK indexes)
+ for_range_access if TRUE the function is called to get the best range
+ plan for range access, not for index merge access
+ read_time don't create read plans with cost > read_time.
+ RETURN
+ Best range read plan
+ NULL if no plan found or error occurred
+*/
+
+static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
+ bool index_read_must_be_used,
+ bool for_range_access,
+ double read_time)
+{
+ uint idx, UNINIT_VAR(best_idx);
+ SEL_ARG *key_to_read= NULL;
+ ha_rows UNINIT_VAR(best_records); /* protected by key_to_read */
+ uint UNINIT_VAR(best_mrr_flags), /* protected by key_to_read */
+ UNINIT_VAR(best_buf_size); /* protected by key_to_read */
+ TRP_RANGE* read_plan= NULL;
+ DBUG_ENTER("get_key_scans_params");
+ THD *thd= param->thd;
+ /*
+ Note that there may be trees that have type SEL_TREE::KEY but contain no
+ key reads at all, e.g. tree for expression "key1 is not null" where key1
+ is defined as "not null".
+ */
+ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
+ "tree scans"););
+ Json_writer_array range_scan_alt(thd, "range_scan_alternatives");
+
+ tree->ror_scans_map.clear_all();
+ tree->n_ror_scans= 0;
+ tree->index_scans= 0;
+ if (!tree->keys_map.is_clear_all())
+ {
+ tree->index_scans=
+ (INDEX_SCAN_INFO **) alloc_root(param->mem_root,
+ sizeof(INDEX_SCAN_INFO *) * param->keys);
+ }
+ tree->index_scans_end= tree->index_scans;
+
+ for (idx= 0; idx < param->keys; idx++)
+ {
+ SEL_ARG *key= tree->keys[idx];
+ if (key)
+ {
+ ha_rows found_records;
+ Cost_estimate cost;
+ double found_read_time;
+ uint mrr_flags, buf_size;
+ bool is_ror_scan= FALSE;
+ INDEX_SCAN_INFO *index_scan;
+ uint keynr= param->real_keynr[idx];
+ if (key->type == SEL_ARG::MAYBE_KEY ||
+ key->maybe_flag)
+ param->needed_reg->set_bit(keynr);
+
+ bool read_index_only= index_read_must_be_used ? TRUE :
+ (bool) param->table->covering_keys.is_set(keynr);
+
+ Json_writer_object trace_idx(thd);
+ trace_idx.add("index", param->table->key_info[keynr].name);
+
+ found_records= check_quick_select(param, idx, read_index_only, key,
+ for_range_access, &mrr_flags,
+ &buf_size, &cost, &is_ror_scan);
+
+ if (!for_range_access && !is_ror_scan &&
+ !optimizer_flag(param->thd,OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION))
+ {
+ /* The scan is not a ROR-scan, just skip it */
+ continue;
+ }
+
+ if (found_records != HA_POS_ERROR && tree->index_scans &&
+ (index_scan= (INDEX_SCAN_INFO *)alloc_root(param->mem_root,
+ sizeof(INDEX_SCAN_INFO))))
+ {
+ Json_writer_array trace_range(thd, "ranges");
+
+ const KEY &cur_key= param->table->key_info[keynr];
+ const KEY_PART_INFO *key_part= cur_key.key_part;
+
+ index_scan->idx= idx;
+ index_scan->keynr= keynr;
+ index_scan->key_info= &param->table->key_info[keynr];
+ index_scan->used_key_parts= param->max_key_parts;
+ index_scan->range_count= param->range_count;
+ index_scan->records= found_records;
+ index_scan->sel_arg= key;
+ *tree->index_scans_end++= index_scan;
+
+ if (unlikely(thd->trace_started()))
+ trace_ranges(&trace_range, param, idx, key, key_part);
+ trace_range.end();
+
+ trace_idx.add("rowid_ordered", is_ror_scan)
+ .add("using_mrr", !(mrr_flags & HA_MRR_USE_DEFAULT_IMPL))
+ .add("index_only", read_index_only)
+ .add("rows", found_records)
+ .add("cost", cost.total_cost());
+ }
+ if ((found_records != HA_POS_ERROR) && is_ror_scan)
+ {
+ tree->n_ror_scans++;
+ tree->ror_scans_map.set_bit(idx);
+ }
+ if (found_records != HA_POS_ERROR &&
+ read_time > (found_read_time= cost.total_cost()))
+ {
+ read_time= found_read_time;
+ best_records= found_records;
+ key_to_read= key;
+ best_idx= idx;
+ best_mrr_flags= mrr_flags;
+ best_buf_size= buf_size;
+ trace_idx.add("chosen", true);
+ }
+ else
+ {
+ trace_idx.add("chosen", false);
+ if (found_records == HA_POS_ERROR)
+ {
+ if (key->type == SEL_ARG::Type::MAYBE_KEY)
+ trace_idx.add("cause", "depends on unread values");
+ else
+ trace_idx.add("cause", "unknown");
+ }
+ else
+ trace_idx.add("cause", "cost");
+ }
+ }
+ }
+
+ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
+ "ROR scans"););
+ if (key_to_read)
+ {
+ if ((read_plan= new (param->mem_root) TRP_RANGE(key_to_read, best_idx,
+ best_mrr_flags)))
+ {
+ read_plan->records= best_records;
+ read_plan->is_ror= tree->ror_scans_map.is_set(best_idx);
+ read_plan->read_cost= read_time;
+ read_plan->mrr_buf_size= best_buf_size;
+ DBUG_PRINT("info",
+ ("Returning range plan for key %s, cost %g, records %lu",
+ param->table->key_info[param->real_keynr[best_idx]].name.str,
+ read_plan->read_cost, (ulong) read_plan->records));
+ }
+ }
+ else
+ DBUG_PRINT("info", ("No 'range' table read plan found"));
+
+ DBUG_RETURN(read_plan);
+}
+
+
+QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_INDEX_MERGE_SELECT *quick_imerge;
+ QUICK_RANGE_SELECT *quick;
+ /* index_merge always retrieves full rows, ignore retrieve_full_rows */
+ if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
+ return NULL;
+
+ quick_imerge->records= records;
+ quick_imerge->read_time= read_cost;
+ for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
+ range_scan++)
+ {
+ if (!(quick= (QUICK_RANGE_SELECT*)
+ ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
+ quick_imerge->push_quick_back(quick))
+ {
+ delete quick;
+ delete quick_imerge;
+ return NULL;
+ }
+ }
+ return quick_imerge;
+}
+
+
+QUICK_SELECT_I *TRP_INDEX_INTERSECT::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_INDEX_INTERSECT_SELECT *quick_intersect;
+ QUICK_RANGE_SELECT *quick;
+ /* index_merge always retrieves full rows, ignore retrieve_full_rows */
+ if (!(quick_intersect= new QUICK_INDEX_INTERSECT_SELECT(param->thd, param->table)))
+ return NULL;
+
+ quick_intersect->records= records;
+ quick_intersect->read_time= read_cost;
+ quick_intersect->filtered_scans= filtered_scans;
+ for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
+ range_scan++)
+ {
+ if (!(quick= (QUICK_RANGE_SELECT*)
+ ((*range_scan)->make_quick(param, FALSE, &quick_intersect->alloc)))||
+ quick_intersect->push_quick_back(quick))
+ {
+ delete quick;
+ delete quick_intersect;
+ return NULL;
+ }
+ }
+ return quick_intersect;
+}
+
+
+QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
+ QUICK_RANGE_SELECT *quick;
+ DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
+ MEM_ROOT *alloc;
+
+ if ((quick_intrsect=
+ new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
+ (retrieve_full_rows? (!is_covering) :
+ FALSE),
+ parent_alloc)))
+ {
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "creating ROR-intersect",
+ first_scan, last_scan););
+ alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
+ for (ROR_SCAN_INFO **curr_scan= first_scan; curr_scan != last_scan;
+ ++curr_scan)
+ {
+ if (!(quick= get_quick_select(param, (*curr_scan)->idx,
+ (*curr_scan)->sel_arg,
+ HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED,
+ 0, alloc)) ||
+ quick_intrsect->push_quick_back(alloc, quick))
+ {
+ delete quick_intrsect;
+ DBUG_RETURN(NULL);
+ }
+ }
+ if (cpk_scan)
+ {
+ if (!(quick= get_quick_select(param, cpk_scan->idx,
+ cpk_scan->sel_arg,
+ HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED,
+ 0, alloc)))
+ {
+ delete quick_intrsect;
+ DBUG_RETURN(NULL);
+ }
+ quick->file= NULL;
+ quick_intrsect->cpk_quick= quick;
+ }
+ quick_intrsect->records= records;
+ quick_intrsect->read_time= read_cost;
+ }
+ DBUG_RETURN(quick_intrsect);
+}
+
+
+QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_ROR_UNION_SELECT *quick_roru;
+ TABLE_READ_PLAN **scan;
+ QUICK_SELECT_I *quick;
+ DBUG_ENTER("TRP_ROR_UNION::make_quick");
+ /*
+ It is impossible to construct a ROR-union that will not retrieve full
+ rows, ignore retrieve_full_rows parameter.
+ */
+ if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
+ {
+ for (scan= first_ror; scan != last_ror; scan++)
+ {
+ if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
+ quick_roru->push_quick_back(quick))
+ {
+ delete quick_roru;
+ DBUG_RETURN(NULL);
+ }
+ }
+ quick_roru->records= records;
+ quick_roru->read_time= read_cost;
+ }
+ DBUG_RETURN(quick_roru);
+}
+
+
+/*
+ Build a SEL_TREE for <> or NOT BETWEEN predicate
+
+ SYNOPSIS
+ get_ne_mm_tree()
+ param PARAM from SQL_SELECT::test_quick_select
+ cond_func item for the predicate
+ field field in the predicate
+ lt_value constant that field should be smaller
+ gt_value constant that field should be greaterr
+
+ RETURN
+ # Pointer to tree built tree
+ 0 on error
+*/
+
+SEL_TREE *Item_bool_func::get_ne_mm_tree(RANGE_OPT_PARAM *param,
+ Field *field,
+ Item *lt_value, Item *gt_value)
+{
+ SEL_TREE *tree;
+ tree= get_mm_parts(param, field, Item_func::LT_FUNC, lt_value);
+ if (tree)
+ tree= tree_or(param, tree, get_mm_parts(param, field, Item_func::GT_FUNC,
+ gt_value));
+ return tree;
+}
+
+
+SEL_TREE *Item_func_ne::get_func_mm_tree(RANGE_OPT_PARAM *param,
+ Field *field, Item *value)
+{
+ DBUG_ENTER("Item_func_ne::get_func_mm_tree");
+ /*
+ If this condition is a "col1<>...", where there is a UNIQUE KEY(col1),
+ do not construct a SEL_TREE from it. A condition that excludes just one
+ row in the table is not selective (unless there are only a few rows)
+
+ Note: this logic must be in sync with code in
+ check_group_min_max_predicates(). That function walks an Item* condition
+ and checks if the range optimizer would produce an equivalent range for
+ it.
+ */
+ if (param->using_real_indexes && is_field_an_unique_index(field))
+ DBUG_RETURN(NULL);
+ DBUG_RETURN(get_ne_mm_tree(param, field, value, value));
+}
+
+
+SEL_TREE *Item_func_between::get_func_mm_tree(RANGE_OPT_PARAM *param,
+ Field *field, Item *value)
+{
+ SEL_TREE *tree;
+ DBUG_ENTER("Item_func_between::get_func_mm_tree");
+ if (!value)
+ {
+ if (negated)
+ {
+ tree= get_ne_mm_tree(param, field, args[1], args[2]);
+ }
+ else
+ {
+ tree= get_mm_parts(param, field, Item_func::GE_FUNC, args[1]);
+ if (tree)
+ {
+ tree= tree_and(param, tree, get_mm_parts(param, field,
+ Item_func::LE_FUNC,
+ args[2]));
+ }
+ }
+ }
+ else
+ {
+ tree= get_mm_parts(param, field,
+ (negated ?
+ (value == (Item*)1 ? Item_func::GT_FUNC :
+ Item_func::LT_FUNC):
+ (value == (Item*)1 ? Item_func::LE_FUNC :
+ Item_func::GE_FUNC)),
+ args[0]);
+ }
+ DBUG_RETURN(tree);
+}
+
+
+SEL_TREE *Item_func_in::get_func_mm_tree(RANGE_OPT_PARAM *param,
+ Field *field, Item *value)
+{
+ SEL_TREE *tree= 0;
+ DBUG_ENTER("Item_func_in::get_func_mm_tree");
+ /*
+ Array for IN() is constructed when all values have the same result
+ type. Tree won't be built for values with different result types,
+ so we check it here to avoid unnecessary work.
+ */
+ if (!arg_types_compatible)
+ DBUG_RETURN(0);
+
+ if (negated)
+ {
+ if (array && array->type_handler()->result_type() != ROW_RESULT)
+ {
+ /*
+ We get here for conditions in form "t.key NOT IN (c1, c2, ...)",
+ where c{i} are constants. Our goal is to produce a SEL_TREE that
+ represents intervals:
+
+ ($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ... (*)
+
+ where $MIN is either "-inf" or NULL.
+
+ The most straightforward way to produce it is to convert NOT IN
+ into "(t.key != c1) AND (t.key != c2) AND ... " and let the range
+ analyzer to build SEL_TREE from that. The problem is that the
+ range analyzer will use O(N^2) memory (which is probably a bug),
+ and people do use big NOT IN lists (e.g. see BUG#15872, BUG#21282),
+ will run out of memory.
+
+ Another problem with big lists like (*) is that a big list is
+ unlikely to produce a good "range" access, while considering that
+ range access will require expensive CPU calculations (and for
+ MyISAM even index accesses). In short, big NOT IN lists are rarely
+ worth analyzing.
+
+ Considering the above, we'll handle NOT IN as follows:
+ * if the number of entries in the NOT IN list is less than
+ NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*) manually.
+ * Otherwise, don't produce a SEL_TREE.
+ */
+#define NOT_IN_IGNORE_THRESHOLD 1000
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ /*
+ Create one Item_type constant object. We'll need it as
+ get_mm_parts only accepts constant values wrapped in Item_Type
+ objects.
+ We create the Item on param->mem_root which points to
+ per-statement mem_root (while thd->mem_root is currently pointing
+ to mem_root local to range optimizer).
+ */
+ Item *value_item= array->create_item(param->thd);
+ param->thd->mem_root= tmp_root;
+
+ if (array->count > NOT_IN_IGNORE_THRESHOLD || !value_item)
+ DBUG_RETURN(0);
+
+ /*
+ if this is a "col1 NOT IN (...)", and there is a UNIQUE KEY(col1), do
+ not constuct a SEL_TREE from it. The rationale is as follows:
+ - if there are only a few constants, this condition is not selective
+ (unless the table is also very small in which case we won't gain
+ anything)
+ - if there are a lot of constants, the overhead of building and
+ processing enormous range list is not worth it.
+ */
+ if (param->using_real_indexes && is_field_an_unique_index(field))
+ DBUG_RETURN(0);
+
+ /* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */
+ uint i=0;
+ do
+ {
+ array->value_to_item(i, value_item);
+ tree= get_mm_parts(param, field, Item_func::LT_FUNC, value_item);
+ if (!tree)
+ break;
+ i++;
+ } while (i < array->count && tree->type == SEL_TREE::IMPOSSIBLE);
+
+ if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ /* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
+ DBUG_RETURN(NULL);
+ }
+ SEL_TREE *tree2;
+ for (; i < array->used_count; i++)
+ {
+ if (array->compare_elems(i, i-1))
+ {
+ /* Get a SEL_TREE for "-inf < X < c_i" interval */
+ array->value_to_item(i, value_item);
+ tree2= get_mm_parts(param, field, Item_func::LT_FUNC, value_item);
+ if (!tree2)
+ {
+ tree= NULL;
+ break;
+ }
+
+ /* Change all intervals to be "c_{i-1} < X < c_i" */
+ for (uint idx= 0; idx < param->keys; idx++)
+ {
+ SEL_ARG *new_interval, *last_val;
+ if (((new_interval= tree2->keys[idx])) &&
+ (tree->keys[idx]) &&
+ ((last_val= tree->keys[idx]->last())))
+ {
+ new_interval->min_value= last_val->max_value;
+ new_interval->min_flag= NEAR_MIN;
+
+ /*
+ If the interval is over a partial keypart, the
+ interval must be "c_{i-1} <= X < c_i" instead of
+ "c_{i-1} < X < c_i". Reason:
+
+ Consider a table with a column "my_col VARCHAR(3)",
+ and an index with definition
+ "INDEX my_idx my_col(1)". If the table contains rows
+ with my_col values "f" and "foo", the index will not
+ distinguish the two rows.
+
+ Note that tree_or() below will effectively merge
+ this range with the range created for c_{i-1} and
+ we'll eventually end up with only one range:
+ "NULL < X".
+
+ Partitioning indexes are never partial.
+ */
+ if (param->using_real_indexes)
+ {
+ const KEY key=
+ param->table->key_info[param->real_keynr[idx]];
+ const KEY_PART_INFO *kpi= key.key_part + new_interval->part;
+
+ if (kpi->key_part_flag & HA_PART_KEY_SEG)
+ new_interval->min_flag= 0;
+ }
+ }
+ }
+ /*
+ The following doesn't try to allocate memory so no need to
+ check for NULL.
+ */
+ tree= tree_or(param, tree, tree2);
+ }
+ }
+
+ if (tree && tree->type != SEL_TREE::IMPOSSIBLE)
+ {
+ /*
+ Get the SEL_TREE for the last "c_last < X < +inf" interval
+ (value_item cotains c_last already)
+ */
+ tree2= get_mm_parts(param, field, Item_func::GT_FUNC, value_item);
+ tree= tree_or(param, tree, tree2);
+ }
+ }
+ else
+ {
+ tree= get_ne_mm_tree(param, field, args[1], args[1]);
+ if (tree)
+ {
+ Item **arg, **end;
+ for (arg= args + 2, end= arg + arg_count - 2; arg < end ; arg++)
+ {
+ tree= tree_and(param, tree, get_ne_mm_tree(param, field,
+ *arg, *arg));
+ }
+ }
+ }
+ }
+ else
+ {
+ tree= get_mm_parts(param, field, Item_func::EQ_FUNC, args[1]);
+ if (tree)
+ {
+ Item **arg, **end;
+ for (arg= args + 2, end= arg + arg_count - 2;
+ arg < end ; arg++)
+ {
+ tree= tree_or(param, tree, get_mm_parts(param, field,
+ Item_func::EQ_FUNC, *arg));
+ }
+ }
+ }
+ DBUG_RETURN(tree);
+}
+
+
+/*
+ The structure Key_col_info is purely auxiliary and is used
+ only in the method Item_func_in::get_func_row_mm_tree
+*/
+struct Key_col_info {
+ Field *field; /* If != NULL the column can be used for keys */
+ cmp_item *comparator; /* If != 0 the column can be evaluated */
+};
+
+/**
+ Build SEL_TREE for the IN predicate whose arguments are rows
+
+ @param param PARAM from SQL_SELECT::test_quick_select
+ @param key_row First operand of the IN predicate
+
+ @note
+ The function builds a SEL_TREE for in IN predicate in the case
+ when the predicate uses row arguments. First the function
+ detects among the components of the key_row (c[1],...,c[n]) taken
+ from in the left part the predicate those that can be usable
+ for building SEL_TREE (c[i1],...,c[ik]). They have to contain
+ items whose real items are field items referring to the current
+ table or equal to the items referring to the current table.
+ For the remaining components of the row it checks whether they
+ can be evaluated. The result of the analysis is put into the
+ array of structures of the type Key_row_col_info.
+
+ After this the function builds the SEL_TREE for the following
+ formula that can be inferred from the given IN predicate:
+ c[i11]=a[1][i11] AND ... AND c[i1k1]=a[1][i1k1]
+ OR
+ ...
+ OR
+ c[im1]=a[m][im1] AND ... AND c[imkm]=a[m][imkm].
+ Here a[1],...,a[m] are all arguments of the IN predicate from
+ the right part and for each j ij1,...,ijkj is a subset of
+ i1,...,ik such that a[j][ij1],...,a[j][ijkj] can be evaluated.
+
+ If for some j there no a[j][i1],...,a[j][ik] can be evaluated
+ then no SEL_TREE can be built for this predicate and the
+ function immediately returns 0.
+
+ If for some j by using evaluated values of key_row it can be
+ proven that c[ij1]=a[j][ij1] AND ... AND c[ijkj]=a[j][ijkj]
+ is always FALSE then this disjunct is omitted.
+
+ @returns
+ the built SEL_TREE if it can be constructed
+ 0 - otherwise.
+*/
+
+SEL_TREE *Item_func_in::get_func_row_mm_tree(RANGE_OPT_PARAM *param,
+ Item_row *key_row)
+{
+ DBUG_ENTER("Item_func_in::get_func_row_mm_tree");
+
+ if (negated)
+ DBUG_RETURN(0);
+
+ SEL_TREE *res_tree= 0;
+ uint used_key_cols= 0;
+ uint col_comparators= 0;
+ table_map param_comp= ~(param->prev_tables | param->read_tables |
+ param->current_table);
+ uint row_cols= key_row->cols();
+ Dynamic_array <Key_col_info> key_cols_info(PSI_INSTRUMENT_MEM,row_cols);
+ cmp_item_row *row_cmp_item;
+
+ if (array)
+ {
+ in_row *row= static_cast<in_row*>(array);
+ row_cmp_item= static_cast<cmp_item_row*>(row->get_cmp_item());
+ }
+ else
+ {
+ DBUG_ASSERT(get_comparator_type_handler(0) == &type_handler_row);
+ row_cmp_item= static_cast<cmp_item_row*>(get_comparator_cmp_item(0));
+ }
+ DBUG_ASSERT(row_cmp_item);
+
+ Item **key_col_ptr= key_row->addr(0);
+ for(uint i= 0; i < row_cols; i++, key_col_ptr++)
+ {
+ Key_col_info key_col_info= {0, NULL};
+ Item *key_col= *key_col_ptr;
+ if (key_col->real_item()->type() == Item::FIELD_ITEM)
+ {
+ /*
+ The i-th component of key_row can be used for key access if
+ key_col->real_item() points to a field of the current table or
+ if it is equal to a field item pointing to such a field.
+ */
+ Item_field *col_field_item= (Item_field *) (key_col->real_item());
+ Field *key_col_field= col_field_item->field;
+ if (key_col_field->table->map != param->current_table)
+ {
+ Item_equal *item_equal= col_field_item->item_equal;
+ if (item_equal)
+ {
+ Item_equal_fields_iterator it(*item_equal);
+ while (it++)
+ {
+ key_col_field= it.get_curr_field();
+ if (key_col_field->table->map == param->current_table)
+ break;
+ }
+ }
+ }
+ if (key_col_field->table->map == param->current_table)
+ {
+ key_col_info.field= key_col_field;
+ used_key_cols++;
+ }
+ }
+ else if (!(key_col->used_tables() & (param_comp | param->current_table))
+ && !key_col->is_expensive())
+ {
+ /* The i-th component of key_row can be evaluated */
+
+ /* See the comment in Item::get_mm_tree_for_const */
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+
+ key_col->bring_value();
+ key_col_info.comparator= row_cmp_item->get_comparator(i);
+ DBUG_ASSERT(key_col_info.comparator);
+ key_col_info.comparator->store_value(key_col);
+ col_comparators++;
+
+ param->thd->mem_root= tmp_root;
+ }
+ key_cols_info.push(key_col_info);
+ }
+
+ if (!used_key_cols)
+ DBUG_RETURN(0);
+
+ uint omitted_tuples= 0;
+ Item **arg_start= arguments() + 1;
+ Item **arg_end= arg_start + argument_count() - 1;
+ for (Item **arg= arg_start ; arg < arg_end; arg++)
+ {
+ uint i;
+
+ /*
+ First check whether the disjunct constructed for *arg
+ is really needed
+ */
+ Item_row *arg_tuple= (Item_row *) (*arg);
+ if (col_comparators)
+ {
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ for (i= 0; i < row_cols; i++)
+ {
+ Key_col_info *key_col_info= &key_cols_info.at(i);
+ if (key_col_info->comparator)
+ {
+ Item *arg_col= arg_tuple->element_index(i);
+ if (!(arg_col->used_tables() & (param_comp | param->current_table)) &&
+ !arg_col->is_expensive() &&
+ key_col_info->comparator->cmp(arg_col))
+ {
+ omitted_tuples++;
+ break;
+ }
+ }
+ }
+ param->thd->mem_root= tmp_root;
+ if (i < row_cols)
+ continue;
+ }
+
+ /* The disjunct for *arg is needed: build it. */
+ SEL_TREE *and_tree= 0;
+ Item **arg_col_ptr= arg_tuple->addr(0);
+ for (uint i= 0; i < row_cols; i++, arg_col_ptr++)
+ {
+ Key_col_info *key_col_info= &key_cols_info.at(i);
+ if (!key_col_info->field)
+ continue;
+ Item *arg_col= *arg_col_ptr;
+ if (!(arg_col->used_tables() & (param_comp | param->current_table)) &&
+ !arg_col->is_expensive())
+ {
+ and_tree= tree_and(param, and_tree,
+ get_mm_parts(param,
+ key_col_info->field,
+ Item_func::EQ_FUNC,
+ arg_col->real_item()));
+ }
+ }
+ if (!and_tree)
+ {
+ res_tree= 0;
+ break;
+ }
+ /* Join the disjunct the the OR tree that is being constructed */
+ res_tree= !res_tree ? and_tree : tree_or(param, res_tree, and_tree);
+ }
+ if (omitted_tuples == argument_count() - 1)
+ {
+ /* It's turned out that all disjuncts are always FALSE */
+ res_tree= new (param->mem_root) SEL_TREE(SEL_TREE::IMPOSSIBLE,
+ param->mem_root, param->keys);
+ }
+ DBUG_RETURN(res_tree);
+}
+
+
+/*
+ Build conjunction of all SEL_TREEs for a simple predicate applying equalities
+
+ SYNOPSIS
+ get_full_func_mm_tree()
+ param PARAM from SQL_SELECT::test_quick_select
+ field_item field in the predicate
+ value constant in the predicate (or a field already read from
+ a table in the case of dynamic range access)
+ (for BETWEEN it contains the number of the field argument,
+ for IN it's always 0)
+ inv TRUE <> NOT cond_func is considered
+ (makes sense only when cond_func is BETWEEN or IN)
+
+ DESCRIPTION
+ For a simple SARGable predicate of the form (f op c), where f is a field and
+ c is a constant, the function builds a conjunction of all SEL_TREES that can
+ be obtained by the substitution of f for all different fields equal to f.
+
+ NOTES
+ If the WHERE condition contains a predicate (fi op c),
+ then not only SELL_TREE for this predicate is built, but
+ the trees for the results of substitution of fi for
+ each fj belonging to the same multiple equality as fi
+ are built as well.
+ E.g. for WHERE t1.a=t2.a AND t2.a > 10
+ a SEL_TREE for t2.a > 10 will be built for quick select from t2
+ and
+ a SEL_TREE for t1.a > 10 will be built for quick select from t1.
+
+ A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
+ in a similar way: we build a conjuction of trees for the results
+ of all substitutions of fi for equal fj.
+ Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
+ differently. It is considered as a conjuction of two SARGable
+ predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
+ is called for each of them separately producing trees for
+ AND j (f1j <=c ) and AND j (f2j <= c)
+ After this these two trees are united in one conjunctive tree.
+ It's easy to see that the same tree is obtained for
+ AND j,k (f1j <=c AND f2k<=c)
+ which is equivalent to
+ AND j,k (c BETWEEN f1j AND f2k).
+ The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
+ which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
+ function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
+ producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
+ trees are united in one OR-tree. The expression
+ (AND j (f1j > c) OR AND j (f2j < c)
+ is equivalent to the expression
+ AND j,k (f1j > c OR f2k < c)
+ which is just a translation of
+ AND j,k (c NOT BETWEEN f1j AND f2k)
+
+ In the cases when one of the items f1, f2 is a constant c1 we do not create
+ a tree for it at all. It works for BETWEEN predicates but does not
+ work for NOT BETWEEN predicates as we have to evaluate the expression
+ with it. If it is TRUE then the other tree can be completely ignored.
+ We do not do it now and no trees are built in these cases for
+ NOT BETWEEN predicates.
+
+ As to IN predicates only ones of the form (f IN (c1,...,cn)),
+ where f1 is a field and c1,...,cn are constant, are considered as
+ SARGable. We never try to narrow the index scan using predicates of
+ the form (c IN (c1,...,f,...,cn)).
+
+ RETURN
+ Pointer to the tree representing the built conjunction of SEL_TREEs
+*/
+
+SEL_TREE *Item_bool_func::get_full_func_mm_tree(RANGE_OPT_PARAM *param,
+ Item_field *field_item,
+ Item *value)
+{
+ DBUG_ENTER("Item_bool_func::get_full_func_mm_tree");
+ SEL_TREE *tree= 0;
+ SEL_TREE *ftree= 0;
+ table_map ref_tables= 0;
+ table_map param_comp= ~(param->prev_tables | param->read_tables |
+ param->current_table);
+
+ for (uint i= 0; i < arg_count; i++)
+ {
+ Item *arg= arguments()[i]->real_item();
+ if (arg != field_item)
+ ref_tables|= arg->used_tables();
+ }
+ Field *field= field_item->field;
+ if (!((ref_tables | field->table->map) & param_comp))
+ ftree= get_func_mm_tree(param, field, value);
+ Item_equal *item_equal= field_item->item_equal;
+ if (item_equal)
+ {
+ Item_equal_fields_iterator it(*item_equal);
+ while (it++)
+ {
+ Field *f= it.get_curr_field();
+ if (field->eq(f))
+ continue;
+ if (!((ref_tables | f->table->map) & param_comp))
+ {
+ tree= get_func_mm_tree(param, f, value);
+ ftree= !ftree ? tree : tree_and(param, ftree, tree);
+ }
+ }
+ }
+
+ DBUG_RETURN(ftree);
+}
+
+
+/*
+ make a select tree of all keys in condition
+
+ @param param Context
+ @param cond INOUT condition to perform range analysis on.
+
+ @detail
+ Range analysis may infer that some conditions are never true.
+ - If the condition is never true, SEL_TREE(type=IMPOSSIBLE) is returned
+ - if parts of condition are never true, the function may remove these parts
+ from the condition 'cond'. Sometimes, this will cause the condition to
+ be substituted for something else.
+
+
+ @return
+ NULL - Could not infer anything from condition cond.
+ SEL_TREE with type=IMPOSSIBLE - condition can never be true.
+*/
+SEL_TREE *Item_cond_and::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item_cond_and::get_mm_tree");
+ SEL_TREE *tree= NULL;
+ List_iterator<Item> li(*argument_list());
+ Item *item;
+ while ((item= li++))
+ {
+ SEL_TREE *new_tree= li.ref()[0]->get_mm_tree(param,li.ref());
+ if (param->statement_should_be_aborted())
+ DBUG_RETURN(NULL);
+ tree= tree_and(param, tree, new_tree);
+ if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ /*
+ Do not remove 'item' from 'cond'. We return a SEL_TREE::IMPOSSIBLE
+ and that is sufficient for the caller to see that the whole
+ condition is never true.
+ */
+ break;
+ }
+ }
+ DBUG_RETURN(tree);
+}
+
+
+SEL_TREE *Item_cond::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item_cond::get_mm_tree");
+ List_iterator<Item> li(*argument_list());
+ bool replace_cond= false;
+ Item *replacement_item= li++;
+ SEL_TREE *tree= li.ref()[0]->get_mm_tree(param, li.ref());
+ if (param->statement_should_be_aborted())
+ DBUG_RETURN(NULL);
+ if (tree)
+ {
+ if (tree->type == SEL_TREE::IMPOSSIBLE &&
+ param->remove_false_where_parts)
+ {
+ /* See the other li.remove() call below */
+ li.remove();
+ if (argument_list()->elements <= 1)
+ replace_cond= true;
+ }
+
+ Item *item;
+ while ((item= li++))
+ {
+ SEL_TREE *new_tree= li.ref()[0]->get_mm_tree(param, li.ref());
+ if (new_tree == NULL || param->statement_should_be_aborted())
+ DBUG_RETURN(NULL);
+ tree= tree_or(param, tree, new_tree);
+ if (tree == NULL || tree->type == SEL_TREE::ALWAYS)
+ {
+ replacement_item= *li.ref();
+ break;
+ }
+
+ if (new_tree && new_tree->type == SEL_TREE::IMPOSSIBLE &&
+ param->remove_false_where_parts)
+ {
+ /*
+ This is a condition in form
+
+ cond = item1 OR ... OR item_i OR ... itemN
+
+ and item_i produces SEL_TREE(IMPOSSIBLE). We should remove item_i
+ from cond. This may cause 'cond' to become a degenerate,
+ one-way OR. In that case, we replace 'cond' with the remaining
+ item_i.
+ */
+ li.remove();
+ if (argument_list()->elements <= 1)
+ replace_cond= true;
+ }
+ else
+ replacement_item= *li.ref();
+ }
+
+ if (replace_cond)
+ *cond_ptr= replacement_item;
+ }
+ DBUG_RETURN(tree);
+}
+
+
+SEL_TREE *Item::get_mm_tree_for_const(RANGE_OPT_PARAM *param)
+{
+ DBUG_ENTER("get_mm_tree_for_const");
+ if (is_expensive())
+ DBUG_RETURN(0);
+ /*
+ During the cond->val_int() evaluation we can come across a subselect
+ item which may allocate memory on the thd->mem_root and assumes
+ all the memory allocated has the same life span as the subselect
+ item itself. So we have to restore the thread's mem_root here.
+ */
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ SEL_TREE *tree;
+
+ const SEL_TREE::Type type= val_int()? SEL_TREE::ALWAYS: SEL_TREE::IMPOSSIBLE;
+ param->thd->mem_root= tmp_root;
+
+ tree= new (tmp_root) SEL_TREE(type, tmp_root, param->keys);
+ DBUG_RETURN(tree);
+}
+
+
+SEL_TREE *Item::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item::get_mm_tree");
+ if (const_item())
+ DBUG_RETURN(get_mm_tree_for_const(param));
+
+ /*
+ Here we have a not-constant non-function Item.
+
+ Item_field should not appear, as normalize_cond() replaces
+ "WHERE field" to "WHERE field<>0".
+
+ Item_exists_subselect is possible, e.g. in this query:
+ SELECT id, st FROM t1
+ WHERE st IN ('GA','FL') AND EXISTS (SELECT 1 FROM t2 WHERE t2.id=t1.id)
+ GROUP BY id;
+ */
+ table_map ref_tables= used_tables();
+ if ((ref_tables & param->current_table) ||
+ (ref_tables & ~(param->prev_tables | param->read_tables)))
+ DBUG_RETURN(0);
+ DBUG_RETURN(new (param->mem_root) SEL_TREE(SEL_TREE::MAYBE, param->mem_root,
+ param->keys));
+}
+
+
+SEL_TREE *
+Item_func_between::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item_func_between::get_mm_tree");
+ if (const_item())
+ DBUG_RETURN(get_mm_tree_for_const(param));
+
+ SEL_TREE *tree= 0;
+ SEL_TREE *ftree= 0;
+
+ if (arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
+ {
+ Item_field *field_item= (Item_field*) (arguments()[0]->real_item());
+ ftree= get_full_func_mm_tree(param, field_item, NULL);
+ }
+
+ /*
+ Concerning the code below see the NOTES section in
+ the comments for the function get_full_func_mm_tree()
+ */
+ for (uint i= 1 ; i < arg_count ; i++)
+ {
+ if (arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
+ {
+ Item_field *field_item= (Item_field*) (arguments()[i]->real_item());
+ SEL_TREE *tmp= get_full_func_mm_tree(param, field_item,
+ (Item*)(intptr) i);
+ if (negated)
+ {
+ tree= !tree ? tmp : tree_or(param, tree, tmp);
+ if (tree == NULL)
+ break;
+ }
+ else
+ tree= tree_and(param, tree, tmp);
+ }
+ else if (negated)
+ {
+ tree= 0;
+ break;
+ }
+ }
+
+ ftree= tree_and(param, ftree, tree);
+ DBUG_RETURN(ftree);
+}
+
+
+SEL_TREE *Item_func_in::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item_func_in::get_mm_tree");
+ if (const_item())
+ DBUG_RETURN(get_mm_tree_for_const(param));
+
+ SEL_TREE *tree= 0;
+ switch (key_item()->real_item()->type()) {
+ case Item::FIELD_ITEM:
+ tree= get_full_func_mm_tree(param,
+ (Item_field*) (key_item()->real_item()),
+ NULL);
+ break;
+ case Item::ROW_ITEM:
+ tree= get_func_row_mm_tree(param,
+ (Item_row *) (key_item()->real_item()));
+ break;
+ default:
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(tree);
+}
+
+
+SEL_TREE *Item_equal::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
+{
+ DBUG_ENTER("Item_equal::get_mm_tree");
+ if (const_item())
+ DBUG_RETURN(get_mm_tree_for_const(param));
+
+ SEL_TREE *tree= 0;
+ SEL_TREE *ftree= 0;
+
+ Item *value;
+ if (!(value= get_const()) || value->is_expensive())
+ DBUG_RETURN(0);
+
+ Item_equal_fields_iterator it(*this);
+ table_map ref_tables= value->used_tables();
+ table_map param_comp= ~(param->prev_tables | param->read_tables |
+ param->current_table);
+ while (it++)
+ {
+ Field *field= it.get_curr_field();
+ if (!((ref_tables | field->table->map) & param_comp))
+ {
+ tree= get_mm_parts(param, field, Item_func::EQ_FUNC, value);
+ ftree= !ftree ? tree : tree_and(param, ftree, tree);
+ }
+ }
+
+ DBUG_RETURN(ftree);
+}
+
+
+/*
+ @brief
+ Check if there is an one-segment unique key that matches the field exactly
+
+ @detail
+ In the future we could also add "almost unique" indexes where any value is
+ present only in a few rows (but necessarily exactly one row)
+*/
+static bool is_field_an_unique_index(Field *field)
+{
+ DBUG_ENTER("is_field_an_unique_index");
+ key_map::Iterator it(field->key_start);
+ uint key_no;
+ while ((key_no= it++) != key_map::Iterator::BITMAP_END)
+ {
+ KEY *key_info= &field->table->key_info[key_no];
+ if (key_info->user_defined_key_parts == 1 &&
+ (key_info->flags & HA_NOSAME))
+ {
+ DBUG_RETURN(true);
+ }
+ }
+ DBUG_RETURN(false);
+}
+
+
+SEL_TREE *
+Item_bool_func::get_mm_parts(RANGE_OPT_PARAM *param, Field *field,
+ Item_func::Functype type, Item *value)
+{
+ DBUG_ENTER("get_mm_parts");
+ if (field->table != param->table)
+ DBUG_RETURN(0);
+
+ KEY_PART *key_part = param->key_parts;
+ KEY_PART *end = param->key_parts_end;
+ SEL_TREE *tree=0;
+ table_map value_used_tables= 0;
+ if (value &&
+ (value_used_tables= value->used_tables()) &
+ ~(param->prev_tables | param->read_tables))
+ DBUG_RETURN(0);
+ for (; key_part != end ; key_part++)
+ {
+ if (field->eq(key_part->field))
+ {
+ SEL_ARG *sel_arg=0;
+ if (!tree && !(tree=new (param->thd->mem_root) SEL_TREE(param->mem_root,
+ param->keys)))
+ DBUG_RETURN(0); // OOM
+ if (!value || !(value_used_tables & ~param->read_tables))
+ {
+ /*
+ We need to restore the runtime mem_root of the thread in this
+ function because it evaluates the value of its argument, while
+ the argument can be any, e.g. a subselect. The subselect
+ items, in turn, assume that all the memory allocated during
+ the evaluation has the same life span as the item itself.
+ TODO: opt_range.cc should not reset thd->mem_root at all.
+ */
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ sel_arg= get_mm_leaf(param, key_part->field, key_part, type, value);
+ param->thd->mem_root= tmp_root;
+
+ if (!sel_arg)
+ continue;
+ if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
+ {
+ tree->type=SEL_TREE::IMPOSSIBLE;
+ DBUG_RETURN(tree);
+ }
+ }
+ else
+ {
+ // This key may be used later
+ if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
+ DBUG_RETURN(0); // OOM
+ }
+ sel_arg->part=(uchar) key_part->part;
+ sel_arg->max_part_no= sel_arg->part+1;
+ tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
+ tree->keys_map.set_bit(key_part->key);
+ }
+ }
+
+ if (tree && tree->merges.is_empty() && tree->keys_map.is_clear_all())
+ tree= NULL;
+ DBUG_RETURN(tree);
+}
+
+
+SEL_ARG *
+Item_func_null_predicate::get_mm_leaf(RANGE_OPT_PARAM *param,
+ Field *field, KEY_PART *key_part,
+ Item_func::Functype type,
+ Item *value)
+{
+ MEM_ROOT *alloc= param->mem_root;
+ DBUG_ENTER("Item_func_null_predicate::get_mm_leaf");
+ DBUG_ASSERT(!value);
+ /*
+ No check for field->table->maybe_null. It's perfecly fine to use range
+ access for cases like
+
+ SELECT * FROM t1 LEFT JOIN t2 ON t2.key IS [NOT] NULL
+
+ ON expression is evaluated before considering NULL-complemented rows, so
+ IS [NOT] NULL has regular semantics.
+ */
+ if (!field->real_maybe_null())
+ DBUG_RETURN(type == ISNULL_FUNC ? &null_element : NULL);
+ SEL_ARG *tree;
+ if (!(tree= new (alloc) SEL_ARG(field, is_null_string, is_null_string)))
+ DBUG_RETURN(0);
+ if (type == Item_func::ISNOTNULL_FUNC)
+ {
+ tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
+ tree->max_flag=NO_MAX_RANGE;
+ }
+ DBUG_RETURN(tree);
+}
+
+
+SEL_ARG *
+Item_func_like::get_mm_leaf(RANGE_OPT_PARAM *param,
+ Field *field, KEY_PART *key_part,
+ Item_func::Functype type, Item *value)
+{
+ DBUG_ENTER("Item_func_like::get_mm_leaf");
+ DBUG_ASSERT(value);
+
+ if (key_part->image_type != Field::itRAW)
+ DBUG_RETURN(0);
+
+ uint keynr= param->real_keynr[key_part->key];
+ if (param->using_real_indexes &&
+ !field->optimize_range(keynr, key_part->part))
+ DBUG_RETURN(0);
+
+ if (field->result_type() == STRING_RESULT &&
+ field->charset() != compare_collation())
+ {
+ if (param->note_unusable_keys)
+ field->raise_note_cannot_use_key_part(param->thd, keynr, key_part->part,
+ func_name_cstring(), value,
+ Data_type_compatibility::
+ INCOMPATIBLE_COLLATION);
+ DBUG_RETURN(0);
+ }
+
+ StringBuffer<MAX_FIELD_WIDTH> tmp(value->collation.collation);
+ String *res;
+
+ if (!(res= value->val_str(&tmp)))
+ DBUG_RETURN(&null_element);
+
+ if (field->cmp_type() != STRING_RESULT ||
+ field->type_handler() == &type_handler_enum ||
+ field->type_handler() == &type_handler_set)
+ {
+ if (param->note_unusable_keys)
+ field->raise_note_cannot_use_key_part(param->thd, keynr, key_part->part,
+ func_name_cstring(), value,
+ Data_type_compatibility::
+ INCOMPATIBLE_DATA_TYPE);
+ DBUG_RETURN(0);
+ }
+
+ /*
+ TODO:
+ Check if this was a function. This should have be optimized away
+ in the sql_select.cc
+ */
+ if (res != &tmp)
+ {
+ tmp.copy(*res); // Get own copy
+ res= &tmp;
+ }
+
+ uint maybe_null= (uint) field->real_maybe_null();
+ size_t field_length= field->pack_length() + maybe_null;
+ size_t offset= maybe_null;
+ size_t length= key_part->store_length;
+
+ if (length != key_part->length + maybe_null)
+ {
+ /* key packed with length prefix */
+ offset+= HA_KEY_BLOB_LENGTH;
+ field_length= length - HA_KEY_BLOB_LENGTH;
+ }
+ else
+ {
+ if (unlikely(length < field_length))
+ {
+ /*
+ This can only happen in a table created with UNIREG where one key
+ overlaps many fields
+ */
+ length= field_length;
+ }
+ else
+ field_length= length;
+ }
+ length+= offset;
+ uchar *min_str,*max_str;
+ if (!(min_str= (uchar*) alloc_root(param->mem_root, length*2)))
+ DBUG_RETURN(0);
+ max_str= min_str + length;
+ if (maybe_null)
+ max_str[0]= min_str[0]=0;
+
+ size_t min_length, max_length;
+ field_length-= maybe_null;
+ if (field->charset()->like_range(res->ptr(), res->length(),
+ escape, wild_one, wild_many,
+ field_length,
+ (char*) min_str + offset,
+ (char*) max_str + offset,
+ &min_length, &max_length))
+ DBUG_RETURN(0); // Can't optimize with LIKE
+
+ if (offset != maybe_null) // BLOB or VARCHAR
+ {
+ int2store(min_str + maybe_null, min_length);
+ int2store(max_str + maybe_null, max_length);
+ }
+ SEL_ARG *tree= new (param->mem_root) SEL_ARG(field, min_str, max_str);
+ DBUG_RETURN(tree);
+}
+
+
+SEL_ARG *
+Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
+ Field *field, KEY_PART *key_part,
+ Item_func::Functype functype, Item *value)
+{
+ DBUG_ENTER("Item_bool_func::get_mm_leaf");
+ DBUG_ASSERT(value); // IS NULL and IS NOT NULL are handled separately
+ if (key_part->image_type != Field::itRAW)
+ DBUG_RETURN(0); // e.g. SPATIAL index
+ DBUG_RETURN(field->get_mm_leaf(param, key_part, this,
+ functype_to_scalar_comparison_op(functype),
+ value));
+}
+
+
+Data_type_compatibility
+Field::can_optimize_scalar_range(const RANGE_OPT_PARAM *param,
+ const KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op,
+ Item *value) const
+{
+ bool is_eq_func= op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL;
+ uint keynr= param->real_keynr[key_part->key];
+ if (param->using_real_indexes &&
+ !optimize_range(keynr, key_part->part) && !is_eq_func)
+ return Data_type_compatibility::INCOMPATIBLE_DATA_TYPE;
+ Data_type_compatibility compat= can_optimize_range(cond, value, is_eq_func);
+ if (compat == Data_type_compatibility::OK)
+ return compat;
+ /*
+ Raise a note that the index part could not be used.
+
+ TODO: Perhaps we also need to raise a similar note when
+ a partition could not be used (when using_real_indexes==false).
+ */
+ if (param->using_real_indexes && param->note_unusable_keys)
+ {
+ DBUG_ASSERT(keynr < table->s->keys);
+ /*
+ Here "cond" can be any sargable predicate, e.g.:
+ 1. field=value (and other scalar comparison predicates: <, <=, <=>, =>, >)
+ 2. field [NOT] BETWEEN value1 AND value2
+ 3. field [NOT] IN (value1, value2...)
+ Don't print the entire "cond" as in case of BETWEEN and IN
+ it would list all values.
+ Let's only print the current field/value pair.
+ */
+ raise_note_cannot_use_key_part(param->thd, keynr, key_part->part,
+ scalar_comparison_op_to_lex_cstring(op),
+ value, compat);
+ }
+ return compat;
+}
+
+
+uchar *Field::make_key_image(MEM_ROOT *mem_root, const KEY_PART *key_part)
+{
+ DBUG_ENTER("Field::make_key_image");
+ uint maybe_null= (uint) real_maybe_null();
+ uchar *str;
+ if (!(str= (uchar*) alloc_root(mem_root, key_part->store_length + 1)))
+ DBUG_RETURN(0);
+ if (maybe_null)
+ *str= (uchar) is_real_null(); // Set to 1 if null
+ get_key_image(str + maybe_null, key_part->length, key_part->image_type);
+ DBUG_RETURN(str);
+}
+
+
+SEL_ARG *Field::stored_field_make_mm_leaf_truncated(RANGE_OPT_PARAM *param,
+ scalar_comparison_op op,
+ Item *value)
+{
+ DBUG_ENTER("Field::stored_field_make_mm_leaf_truncated");
+ if ((op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL) &&
+ value->result_type() == item_cmp_type(result_type(),
+ value->result_type()))
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
+ /*
+ TODO: We should return trees of the type SEL_ARG::IMPOSSIBLE
+ for the cases like int_field > 999999999999999999999999 as well.
+ */
+ DBUG_RETURN(0);
+}
+
+
+SEL_ARG *Field_num::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op, Item *value)
+{
+ DBUG_ENTER("Field_num::get_mm_leaf");
+ if (can_optimize_scalar_range(prm, key_part, cond, op, value) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(0);
+ int err= value->save_in_field_no_warnings(this, 1);
+ if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
+ DBUG_RETURN(&null_element);
+ if (err > 0 && cmp_type() != value->result_type())
+ DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+}
+
+
+SEL_ARG *Field_temporal::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op, Item *value)
+{
+ DBUG_ENTER("Field_temporal::get_mm_leaf");
+ if (can_optimize_scalar_range(prm, key_part, cond, op, value) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(0);
+ int err= value->save_in_field_no_warnings(this, 1);
+ if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
+ DBUG_RETURN(&null_element);
+ if (err > 0)
+ DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+}
+
+
+SEL_ARG *Field_date_common::get_mm_leaf(RANGE_OPT_PARAM *prm,
+ KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op,
+ Item *value)
+{
+ DBUG_ENTER("Field_date_common::get_mm_leaf");
+ if (can_optimize_scalar_range(prm, key_part, cond, op, value) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(0);
+ int err= value->save_in_field_no_warnings(this, 1);
+ if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
+ DBUG_RETURN(&null_element);
+ if (err > 0)
+ {
+ if (err == 3)
+ {
+ /*
+ We were saving DATETIME into a DATE column, the conversion went ok
+ but a non-zero time part was cut off.
+
+ In MySQL's SQL dialect, DATE and DATETIME are compared as datetime
+ values. Index over a DATE column uses DATE comparison. Changing
+ from one comparison to the other is possible:
+
+ datetime(date_col)< '2007-12-10 12:34:55' -> date_col<='2007-12-10'
+ datetime(date_col)<='2007-12-10 12:34:55' -> date_col<='2007-12-10'
+
+ datetime(date_col)> '2007-12-10 12:34:55' -> date_col>='2007-12-10'
+ datetime(date_col)>='2007-12-10 12:34:55' -> date_col>='2007-12-10'
+
+ but we'll need to convert '>' to '>=' and '<' to '<='. This will
+ be done together with other types at the end of this function
+ (grep for stored_field_cmp_to_item)
+ */
+ if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL)
+ DBUG_RETURN(new (prm->mem_root) SEL_ARG_IMPOSSIBLE(this));
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+ }
+ DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
+ }
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+}
+
+
+SEL_ARG *Field_str::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op, Item *value)
+{
+ int err;
+ DBUG_ENTER("Field_str::get_mm_leaf");
+ if (can_optimize_scalar_range(prm, key_part, cond, op, value) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(0);
+
+ {
+ /*
+ Do CharsetNarrowing if necessary
+ This means that we are temporary changing the character set of the
+ current key field to make key lookups possible.
+ This is needed when comparing an utf8mb3 key field with an utf8mb4 value.
+ See cset_narrowing.h for more details.
+ */
+ bool do_narrowing=
+ Utf8_narrow::should_do_narrowing(this, value->collation.collation);
+ Utf8_narrow narrow(this, do_narrowing);
+
+ err= value->save_in_field_no_warnings(this, 1);
+ narrow.stop();
+ }
+
+ if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
+ DBUG_RETURN(&null_element);
+ if (err > 0)
+ {
+ if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL)
+ DBUG_RETURN(new (prm->mem_root) SEL_ARG_IMPOSSIBLE(this));
+ DBUG_RETURN(NULL); /* Cannot infer anything */
+ }
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+}
+
+
+SEL_ARG *Field::get_mm_leaf_int(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
+ const Item_bool_func *cond,
+ scalar_comparison_op op, Item *value,
+ bool unsigned_field)
+{
+ DBUG_ENTER("Field::get_mm_leaf_int");
+ if (can_optimize_scalar_range(prm, key_part, cond, op, value) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(0);
+ int err= value->save_in_field_no_warnings(this, 1);
+ if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
+ DBUG_RETURN(&null_element);
+ if (err > 0)
+ {
+ if (value->result_type() != INT_RESULT)
+ DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
+ else
+ DBUG_RETURN(stored_field_make_mm_leaf_bounded_int(prm, key_part,
+ op, value,
+ unsigned_field));
+ }
+ if (value->result_type() != INT_RESULT)
+ DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
+ DBUG_RETURN(stored_field_make_mm_leaf_exact(prm, key_part, op, value));
+}
+
+
+/*
+ This method is called when:
+ - value->save_in_field_no_warnings() returned err > 0
+ - and both field and "value" are of integer data types
+ If an integer got bounded (e.g. to within 0..255 / -128..127)
+ for < or >, set flags as for <= or >= (no NEAR_MAX / NEAR_MIN)
+*/
+
+SEL_ARG *Field::stored_field_make_mm_leaf_bounded_int(RANGE_OPT_PARAM *param,
+ KEY_PART *key_part,
+ scalar_comparison_op op,
+ Item *value,
+ bool unsigned_field)
+{
+ DBUG_ENTER("Field::stored_field_make_mm_leaf_bounded_int");
+ if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL) // e.g. tinyint = 200
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
+ longlong item_val= value->val_int();
+
+ if (op == SCALAR_CMP_LT && ((item_val > 0)
+ || (value->unsigned_flag && (ulonglong)item_val > 0 )))
+ op= SCALAR_CMP_LE; // e.g. rewrite (tinyint < 200) to (tinyint <= 127)
+ else if (op == SCALAR_CMP_GT && !unsigned_field &&
+ !value->unsigned_flag && item_val < 0)
+ op= SCALAR_CMP_GE; // e.g. rewrite (tinyint > -200) to (tinyint >= -128)
+
+ /*
+ Check if we are comparing an UNSIGNED integer with a negative constant.
+ In this case we know that:
+ (a) (unsigned_int [< | <=] negative_constant) == FALSE
+ (b) (unsigned_int [> | >=] negative_constant) == TRUE
+ In case (a) the condition is false for all values, and in case (b) it
+ is true for all values, so we can avoid unnecessary retrieval and condition
+ testing, and we also get correct comparison of unsinged integers with
+ negative integers (which otherwise fails because at query execution time
+ negative integers are cast to unsigned if compared with unsigned).
+ */
+ if (unsigned_field && !value->unsigned_flag && item_val < 0)
+ {
+ if (op == SCALAR_CMP_LT || op == SCALAR_CMP_LE) // e.g. uint < -1
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
+ if (op == SCALAR_CMP_GT || op == SCALAR_CMP_GE) // e.g. uint > -1
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(stored_field_make_mm_leaf_exact(param, key_part, op, value));
+}
+
+
+SEL_ARG *Field::stored_field_make_mm_leaf(RANGE_OPT_PARAM *param,
+ KEY_PART *key_part,
+ scalar_comparison_op op,
+ Item *value)
+{
+ DBUG_ENTER("Field::stored_field_make_mm_leaf");
+ THD *thd= param->thd;
+ MEM_ROOT *mem_root= param->mem_root;
+ uchar *str;
+ if (!(str= make_key_image(param->mem_root, key_part)))
+ DBUG_RETURN(0);
+
+ switch (op) {
+ case SCALAR_CMP_LE:
+ DBUG_RETURN(new (mem_root) SEL_ARG_LE(str, this));
+ case SCALAR_CMP_LT:
+ DBUG_RETURN(new (mem_root) SEL_ARG_LT(thd, str, key_part, this, value));
+ case SCALAR_CMP_GT:
+ DBUG_RETURN(new (mem_root) SEL_ARG_GT(thd, str, key_part, this, value));
+ case SCALAR_CMP_GE:
+ DBUG_RETURN(new (mem_root) SEL_ARG_GE(thd, str, key_part, this, value));
+ case SCALAR_CMP_EQ:
+ case SCALAR_CMP_EQUAL:
+ DBUG_RETURN(new (mem_root) SEL_ARG(this, str, str));
+ break;
+ }
+ DBUG_ASSERT(0);
+ DBUG_RETURN(NULL);
+}
+
+
+SEL_ARG *Field::stored_field_make_mm_leaf_exact(RANGE_OPT_PARAM *param,
+ KEY_PART *key_part,
+ scalar_comparison_op op,
+ Item *value)
+{
+ DBUG_ENTER("Field::stored_field_make_mm_leaf_exact");
+ uchar *str;
+ if (!(str= make_key_image(param->mem_root, key_part)))
+ DBUG_RETURN(0);
+
+ switch (op) {
+ case SCALAR_CMP_LE:
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_LE(str, this));
+ case SCALAR_CMP_LT:
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_LT(str, key_part, this));
+ case SCALAR_CMP_GT:
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_GT(str, key_part, this));
+ case SCALAR_CMP_GE:
+ DBUG_RETURN(new (param->mem_root) SEL_ARG_GE(str, this));
+ case SCALAR_CMP_EQ:
+ case SCALAR_CMP_EQUAL:
+ DBUG_RETURN(new (param->mem_root) SEL_ARG(this, str, str));
+ break;
+ }
+ DBUG_ASSERT(0);
+ DBUG_RETURN(NULL);
+}
+
+
+/******************************************************************************
+** Tree manipulation functions
+** If tree is 0 it means that the condition can't be tested. It refers
+** to a non existent table or to a field in current table with isn't a key.
+** The different tree flags:
+** IMPOSSIBLE: Condition is never TRUE
+** ALWAYS: Condition is always TRUE
+** MAYBE: Condition may exists when tables are read
+** MAYBE_KEY: Condition refers to a key that may be used in join loop
+** KEY_RANGE: Condition uses a key
+******************************************************************************/
+
+/*
+ Update weights for SEL_ARG graph that is connected only via next_key_part
+ (and not left/right) links
+*/
+static uint update_weight_for_single_arg(SEL_ARG *arg)
+{
+ if (arg->next_key_part)
+ return (arg->weight= 1 + update_weight_for_single_arg(arg->next_key_part));
+ else
+ return (arg->weight= 1);
+}
+
+
+/*
+ Add a new key test to a key when scanning through all keys
+ This will never be called for same key parts.
+*/
+
+static SEL_ARG *
+sel_add(SEL_ARG *key1,SEL_ARG *key2)
+{
+ SEL_ARG *root,**key_link;
+
+ if (!key1)
+ return key2;
+ if (!key2)
+ return key1;
+
+ key_link= &root;
+ while (key1 && key2)
+ {
+ if (key1->part < key2->part)
+ {
+ *key_link= key1;
+ key_link= &key1->next_key_part;
+ key1=key1->next_key_part;
+ }
+ else
+ {
+ *key_link= key2;
+ key_link= &key2->next_key_part;
+ key2=key2->next_key_part;
+ }
+ }
+ *key_link=key1 ? key1 : key2;
+
+ update_weight_for_single_arg(root);
+ return root;
+}
+
+
+/*
+ Build a range tree for the conjunction of the range parts of two trees
+
+ SYNOPSIS
+ and_range_trees()
+ param Context info for the operation
+ tree1 SEL_TREE for the first conjunct
+ tree2 SEL_TREE for the second conjunct
+ result SEL_TREE for the result
+
+ DESCRIPTION
+ This function takes range parts of two trees tree1 and tree2 and builds
+ a range tree for the conjunction of the formulas that these two range parts
+ represent.
+ More exactly:
+ if the range part of tree1 represents the normalized formula
+ R1_1 AND ... AND R1_k,
+ and the range part of tree2 represents the normalized formula
+ R2_1 AND ... AND R2_k,
+ then the range part of the result represents the formula:
+ RT = R_1 AND ... AND R_k, where R_i=(R1_i AND R2_i) for each i from [1..k]
+
+ The function assumes that tree1 is never equal to tree2. At the same
+ time the tree result can be the same as tree1 (but never as tree2).
+ If result==tree1 then rt replaces the range part of tree1 leaving
+ imerges as they are.
+ if result!=tree1 than it is assumed that the SEL_ARG trees in tree1 and
+ tree2 should be preserved. Otherwise they can be destroyed.
+
+ RETURN
+ 1 if the type the result tree is SEL_TREE::IMPOSSIBLE
+ 0 otherwise
+*/
+
+static
+int and_range_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2,
+ SEL_TREE *result)
+{
+ DBUG_ENTER("and_ranges");
+ key_map result_keys;
+ result_keys.clear_all();
+ key_map anded_keys= tree1->keys_map;
+ anded_keys.merge(tree2->keys_map);
+ int key_no;
+ key_map::Iterator it(anded_keys);
+ while ((key_no= it++) != key_map::Iterator::BITMAP_END)
+ {
+ uint flag=0;
+ SEL_ARG *key1= tree1->keys[key_no];
+ SEL_ARG *key2= tree2->keys[key_no];
+ if (key1 && !key1->simple_key())
+ flag|= CLONE_KEY1_MAYBE;
+ if (key2 && !key2->simple_key())
+ flag|=CLONE_KEY2_MAYBE;
+ if (result != tree1)
+ {
+ if (key1)
+ key1->incr_refs();
+ if (key2)
+ key2->incr_refs();
+ }
+ SEL_ARG *key;
+ if ((result->keys[key_no]= key= key_and_with_limit(param, key_no,
+ key1, key2, flag)))
+ {
+ if (key && key->type == SEL_ARG::IMPOSSIBLE)
+ {
+ result->type= SEL_TREE::IMPOSSIBLE;
+ if (param->using_real_indexes)
+ {
+ param->table->with_impossible_ranges.set_bit(param->
+ real_keynr[key_no]);
+ }
+ DBUG_RETURN(1);
+ }
+ result_keys.set_bit(key_no);
+#ifdef EXTRA_DEBUG
+ if (param->alloced_sel_args <
+ param->thd->variables.optimizer_max_sel_args)
+ key->test_use_count(key);
+#endif
+ }
+ }
+ result->keys_map= result_keys;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Build a SEL_TREE for a conjunction out of such trees for the conjuncts
+
+ SYNOPSIS
+ tree_and()
+ param Context info for the operation
+ tree1 SEL_TREE for the first conjunct
+ tree2 SEL_TREE for the second conjunct
+
+ DESCRIPTION
+ This function builds a tree for the formula (A AND B) out of the trees
+ tree1 and tree2 that has been built for the formulas A and B respectively.
+
+ In a general case
+ tree1 represents the formula RT1 AND MT1,
+ where RT1 = R1_1 AND ... AND R1_k1, MT1=M1_1 AND ... AND M1_l1;
+ tree2 represents the formula RT2 AND MT2
+ where RT2 = R2_1 AND ... AND R2_k2, MT2=M2_1 AND ... AND M2_l2.
+
+ The result tree will represent the formula of the the following structure:
+ RT AND RT1MT2 AND RT2MT1, such that
+ rt is a tree obtained by range intersection of trees tree1 and tree2,
+ RT1MT2 = RT1M2_1 AND ... AND RT1M2_l2,
+ RT2MT1 = RT2M1_1 AND ... AND RT2M1_l1,
+ where rt1m2_i (i=1,...,l2) is the result of the pushdown operation
+ of range tree rt1 into imerge m2_i, while rt2m1_j (j=1,...,l1) is the
+ result of the pushdown operation of range tree rt2 into imerge m1_j.
+
+ RT1MT2/RT2MT is empty if MT2/MT1 is empty.
+
+ The range intersection of two range trees is produced by the function
+ and_range_trees. The pushdown of a range tree to a imerge is performed
+ by the function imerge_list_and_tree. This function may produce imerges
+ containing only one range tree. Such trees are intersected with rt and
+ the result of intersection is returned as the range part of the result
+ tree, while the corresponding imerges are removed altogether from its
+ imerge part.
+
+ NOTE
+ The pushdown operation of range trees into imerges is needed to be able
+ to construct valid imerges for the condition like this:
+ key1_p1=c1 AND (key1_p2 BETWEEN c21 AND c22 OR key2 < c2)
+
+ NOTE
+ Currently we do not support intersection between indexes and index merges.
+ When this will be supported the list of imerges for the result tree
+ should include also imerges from M1 and M2. That's why an extra parameter
+ is added to the function imerge_list_and_tree. If we call the function
+ with the last parameter equal to FALSE then MT1 and MT2 will be preserved
+ in the imerge list of the result tree. This can lead to the exponential
+ growth of the imerge list though.
+ Currently the last parameter of imerge_list_and_tree calls is always
+ TRUE.
+
+ RETURN
+ The result tree, if a success
+ 0 - otherwise.
+*/
+
+static
+SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2)
+{
+ DBUG_ENTER("tree_and");
+ if (!tree1)
+ DBUG_RETURN(tree2);
+ if (!tree2)
+ DBUG_RETURN(tree1);
+ if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
+ DBUG_RETURN(tree1);
+ if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
+ DBUG_RETURN(tree2);
+ if (tree1->type == SEL_TREE::MAYBE)
+ {
+ if (tree2->type == SEL_TREE::KEY)
+ tree2->type=SEL_TREE::KEY_SMALLER;
+ DBUG_RETURN(tree2);
+ }
+ if (tree2->type == SEL_TREE::MAYBE)
+ {
+ tree1->type=SEL_TREE::KEY_SMALLER;
+ DBUG_RETURN(tree1);
+ }
+
+ if (!tree1->merges.is_empty())
+ imerge_list_and_tree(param, &tree1->merges, tree2, TRUE);
+ if (!tree2->merges.is_empty())
+ imerge_list_and_tree(param, &tree2->merges, tree1, TRUE);
+ if (and_range_trees(param, tree1, tree2, tree1))
+ DBUG_RETURN(tree1);
+ imerge_list_and_list(&tree1->merges, &tree2->merges);
+ eliminate_single_tree_imerges(param, tree1);
+ DBUG_RETURN(tree1);
+}
+
+
+/*
+ Eliminate single tree imerges in a SEL_TREE objects
+
+ SYNOPSIS
+ eliminate_single_tree_imerges()
+ param Context info for the function
+ tree SEL_TREE where single tree imerges are to be eliminated
+
+ DESCRIPTION
+ For each imerge in 'tree' that contains only one disjunct tree, i.e.
+ for any imerge of the form m=rt, the function performs and operation
+ the range part of tree, replaces rt the with the result of anding and
+ removes imerge m from the the merge part of 'tree'.
+
+ RETURN VALUE
+ none
+*/
+
+static
+void eliminate_single_tree_imerges(RANGE_OPT_PARAM *param, SEL_TREE *tree)
+{
+ SEL_IMERGE *imerge;
+ List<SEL_IMERGE> merges= tree->merges;
+ List_iterator<SEL_IMERGE> it(merges);
+ tree->merges.empty();
+ while ((imerge= it++))
+ {
+ if (imerge->trees+1 == imerge->trees_next)
+ {
+ tree= tree_and(param, tree, *imerge->trees);
+ it.remove();
+ }
+ }
+ tree->merges= merges;
+}
+
+
+/*
+ For two trees check that there are indexes with ranges in both of them
+
+ SYNOPSIS
+ sel_trees_have_common_keys()
+ tree1 SEL_TREE for the first tree
+ tree2 SEL_TREE for the second tree
+ common_keys OUT bitmap of all indexes with ranges in both trees
+
+ DESCRIPTION
+ For two trees tree1 and tree1 the function checks if there are indexes
+ in their range parts such that SEL_ARG trees are defined for them in the
+ range parts of both trees. The function returns the bitmap of such
+ indexes in the parameter common_keys.
+
+ RETURN
+ TRUE if there are such indexes (common_keys is nor empty)
+ FALSE otherwise
+*/
+
+static
+bool sel_trees_have_common_keys(SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map *common_keys)
+{
+ *common_keys= tree1->keys_map;
+ common_keys->intersect(tree2->keys_map);
+ return !common_keys->is_clear_all();
+}
+
+
+/*
+ Check whether range parts of two trees can be ored for some indexes
+
+ SYNOPSIS
+ sel_trees_can_be_ored()
+ param Context info for the function
+ tree1 SEL_TREE for the first tree
+ tree2 SEL_TREE for the second tree
+ common_keys IN/OUT IN: bitmap of all indexes with SEL_ARG in both trees
+ OUT: bitmap of all indexes that can be ored
+
+ DESCRIPTION
+ For two trees tree1 and tree2 and the bitmap common_keys containing
+ bits for indexes that have SEL_ARG trees in range parts of both trees
+ the function checks if there are indexes for which SEL_ARG trees can
+ be ored. Two SEL_ARG trees for the same index can be ored if the most
+ major components of the index used in these trees coincide. If the
+ SEL_ARG trees for an index cannot be ored the function clears the bit
+ for this index in the bitmap common_keys.
+
+ The function does not verify that indexes marked in common_keys really
+ have SEL_ARG trees in both tree1 and tree2. It assumes that this is true.
+
+ NOTE
+ The function sel_trees_can_be_ored is usually used in pair with the
+ function sel_trees_have_common_keys.
+
+ RETURN
+ TRUE if there are indexes for which SEL_ARG trees can be ored
+ FALSE otherwise
+*/
+
+static
+bool sel_trees_can_be_ored(RANGE_OPT_PARAM* param,
+ SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map *common_keys)
+{
+ DBUG_ENTER("sel_trees_can_be_ored");
+ if (!sel_trees_have_common_keys(tree1, tree2, common_keys))
+ DBUG_RETURN(FALSE);
+ int key_no;
+ key_map::Iterator it(*common_keys);
+ while ((key_no= it++) != key_map::Iterator::BITMAP_END)
+ {
+ DBUG_ASSERT(tree1->keys[key_no] && tree2->keys[key_no]);
+ /* Trees have a common key, check if they refer to the same key part */
+ if (tree1->keys[key_no]->part != tree2->keys[key_no]->part)
+ common_keys->clear_bit(key_no);
+ }
+ DBUG_RETURN(!common_keys->is_clear_all());
+}
+
+/*
+ Check whether the key parts inf_init..inf_end-1 of one index can compose
+ an infix for the key parts key_init..key_end-1 of another index
+*/
+
+static
+bool is_key_infix(KEY_PART *key_init, KEY_PART *key_end,
+ KEY_PART *inf_init, KEY_PART *inf_end)
+{
+ KEY_PART *key_part, *inf_part;
+ for (key_part= key_init; key_part < key_end; key_part++)
+ {
+ if (key_part->field->eq(inf_init->field))
+ break;
+ }
+ if (key_part == key_end)
+ return false;
+ for (key_part++, inf_part= inf_init + 1;
+ key_part < key_end && inf_part < inf_end;
+ key_part++, inf_part++)
+ {
+ if (!key_part->field->eq(inf_part->field))
+ return false;
+ }
+ return inf_part == inf_end;
+}
+
+
+/*
+ Check whether range parts of two trees must be ored for some indexes
+
+ SYNOPSIS
+ sel_trees_must_be_ored()
+ param Context info for the function
+ tree1 SEL_TREE for the first tree
+ tree2 SEL_TREE for the second tree
+ ordable_keys bitmap of SEL_ARG trees that can be ored
+
+ DESCRIPTION
+ For two trees tree1 and tree2 the function checks whether they must be
+ ored. The function assumes that the bitmap ordable_keys contains bits for
+ those corresponding pairs of SEL_ARG trees from tree1 and tree2 that can
+ be ored.
+ We believe that tree1 and tree2 must be ored if any pair of SEL_ARG trees
+ r1 and r2, such that r1 is from tree1 and r2 is from tree2 and both
+ of them are marked in ordable_keys, can be merged.
+
+ NOTE
+ The function sel_trees_must_be_ored as a rule is used in pair with the
+ function sel_trees_can_be_ored.
+
+ RETURN
+ TRUE if there are indexes for which SEL_ARG trees must be ored
+ FALSE otherwise
+*/
+
+static
+bool sel_trees_must_be_ored(RANGE_OPT_PARAM* param,
+ SEL_TREE *tree1, SEL_TREE *tree2,
+ key_map oredable_keys)
+{
+ key_map tmp;
+ DBUG_ENTER("sel_trees_must_be_ored");
+
+ tmp= tree1->keys_map;
+ tmp.merge(tree2->keys_map);
+ tmp.subtract(oredable_keys);
+ if (!tmp.is_clear_all())
+ DBUG_RETURN(FALSE);
+
+ int idx1, idx2;
+ key_map::Iterator it1(oredable_keys);
+ while ((idx1= it1++) != key_map::Iterator::BITMAP_END)
+ {
+ KEY_PART *key1_init= param->key[idx1]+tree1->keys[idx1]->part;
+ KEY_PART *key1_end= param->key[idx1]+tree1->keys[idx1]->max_part_no;
+ key_map::Iterator it2(oredable_keys);
+ while ((idx2= it2++) != key_map::Iterator::BITMAP_END)
+ {
+ if (idx2 <= idx1)
+ continue;
+
+ KEY_PART *key2_init= param->key[idx2]+tree2->keys[idx2]->part;
+ KEY_PART *key2_end= param->key[idx2]+tree2->keys[idx2]->max_part_no;
+ if (!is_key_infix(key1_init, key1_end, key2_init, key2_end) &&
+ !is_key_infix(key2_init, key2_end, key1_init, key1_end))
+ DBUG_RETURN(FALSE);
+ }
+ }
+
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Remove the trees that are not suitable for record retrieval
+
+ SYNOPSIS
+ remove_nonrange_trees()
+ param Context info for the function
+ tree Tree to be processed, tree->type is KEY or KEY_SMALLER
+
+ DESCRIPTION
+ This function walks through tree->keys[] and removes the SEL_ARG* trees
+ that are not "maybe" trees (*) and cannot be used to construct quick range
+ selects.
+ (*) - have type MAYBE or MAYBE_KEY. Perhaps we should remove trees of
+ these types here as well.
+
+ A SEL_ARG* tree cannot be used to construct quick select if it has
+ tree->part != 0. (e.g. it could represent "keypart2 < const").
+
+ Normally we allow construction of SEL_TREE objects that have SEL_ARG
+ trees that do not allow quick range select construction.
+ For example:
+ for " keypart1=1 AND keypart2=2 " the execution will proceed as follows:
+ tree1= SEL_TREE { SEL_ARG{keypart1=1} }
+ tree2= SEL_TREE { SEL_ARG{keypart2=2} } -- can't make quick range select
+ from this
+ call tree_and(tree1, tree2) -- this joins SEL_ARGs into a usable SEL_ARG
+ tree.
+
+ Another example:
+ tree3= SEL_TREE { SEL_ARG{key1part1 = 1} }
+ tree4= SEL_TREE { SEL_ARG{key2part2 = 2} } -- can't make quick range select
+ from this
+ call tree_or(tree3, tree4) -- creates a SEL_MERGE ot of which no index
+ merge can be constructed, but it is potentially useful, as anding it with
+ tree5= SEL_TREE { SEL_ARG{key2part1 = 3} } creates an index merge that
+ represents the formula
+ key1part1=1 AND key2part1=3 OR key2part1=3 AND key2part2=2
+ for which an index merge can be built.
+
+ Any final SEL_TREE may contain SEL_ARG trees for which no quick select
+ can be built. Such SEL_ARG trees should be removed from the range part
+ before different range scans are evaluated. Such SEL_ARG trees also should
+ be removed from all range trees of each index merge before different
+ possible index merge plans are evaluated. If after this removal one
+ of the range trees in the index merge becomes empty the whole index merge
+ must be discarded.
+
+ RETURN
+ 0 Ok, some suitable trees left
+ 1 No tree->keys[] left.
+*/
+
+static bool remove_nonrange_trees(PARAM *param, SEL_TREE *tree)
+{
+ bool res= FALSE;
+ for (uint i=0; i < param->keys; i++)
+ {
+ if (tree->keys[i])
+ {
+ if (tree->keys[i]->part)
+ {
+ tree->keys[i]= NULL;
+ /* Mark that records_in_range has not been called */
+ param->quick_rows[param->real_keynr[i]]= HA_POS_ERROR;
+ tree->keys_map.clear_bit(i);
+ }
+ else
+ res= TRUE;
+ }
+ }
+ return !res;
+}
+
+
+/*
+ Restore nonrange trees to their previous state
+*/
+
+static void restore_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree,
+ SEL_ARG **backup_keys)
+{
+ for (uint i=0; i < param->keys; i++)
+ {
+ if (backup_keys[i])
+ {
+ tree->keys[i]= backup_keys[i];
+ tree->keys_map.set_bit(i);
+ }
+ }
+}
+
+/*
+ Build a SEL_TREE for a disjunction out of such trees for the disjuncts
+
+ SYNOPSIS
+ tree_or()
+ param Context info for the operation
+ tree1 SEL_TREE for the first disjunct
+ tree2 SEL_TREE for the second disjunct
+
+ DESCRIPTION
+ This function builds a tree for the formula (A OR B) out of the trees
+ tree1 and tree2 that has been built for the formulas A and B respectively.
+
+ In a general case
+ tree1 represents the formula RT1 AND MT1,
+ where RT1=R1_1 AND ... AND R1_k1, MT1=M1_1 AND ... AND M1_l1;
+ tree2 represents the formula RT2 AND MT2
+ where RT2=R2_1 AND ... AND R2_k2, MT2=M2_1 and ... and M2_l2.
+
+ The function constructs the result tree according the formula
+ (RT1 OR RT2) AND (MT1 OR RT1) AND (MT2 OR RT2) AND (MT1 OR MT2)
+ that is equivalent to the formula (RT1 AND MT1) OR (RT2 AND MT2).
+
+ To limit the number of produced imerges the function considers
+ a weaker formula than the original one:
+ (RT1 AND M1_1) OR (RT2 AND M2_1)
+ that is equivalent to:
+ (RT1 OR RT2) (1)
+ AND
+ (M1_1 OR M2_1) (2)
+ AND
+ (M1_1 OR RT2) (3)
+ AND
+ (M2_1 OR RT1) (4)
+
+ For the first conjunct (1) the function builds a tree with a range part
+ and, possibly, one imerge. For the other conjuncts (2-4)the function
+ produces sets of imerges. All constructed imerges are included into the
+ result tree.
+
+ For the formula (1) the function produces the tree representing a formula
+ of the structure RT [AND M], such that:
+ - the range tree rt contains the result of oring SEL_ARG trees from rt1
+ and rt2
+ - the imerge m consists of two range trees rt1 and rt2.
+ The imerge m is added if it's not true that rt1 and rt2 must be ored
+ If rt1 and rt2 can't be ored rt is empty and only m is produced for (1).
+
+ To produce imerges for the formula (2) the function calls the function
+ imerge_list_or_list passing it the merge parts of tree1 and tree2 as
+ parameters.
+
+ To produce imerges for the formula (3) the function calls the function
+ imerge_list_or_tree passing it the imerge m1_1 and the range tree rt2 as
+ parameters. Similarly, to produce imerges for the formula (4) the function
+ calls the function imerge_list_or_tree passing it the imerge m2_1 and the
+ range tree rt1.
+
+ If rt1 is empty then the trees for (1) and (4) are empty.
+ If rt2 is empty then the trees for (1) and (3) are empty.
+ If mt1 is empty then the trees for (2) and (3) are empty.
+ If mt2 is empty then the trees for (2) and (4) are empty.
+
+ RETURN
+ The result tree for the operation if a success
+ 0 - otherwise
+*/
+
+static SEL_TREE *
+tree_or(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
+{
+ DBUG_ENTER("tree_or");
+ if (!tree1 || !tree2)
+ DBUG_RETURN(0);
+ if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
+ DBUG_RETURN(tree2);
+ if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
+ DBUG_RETURN(tree1);
+ if (tree1->type == SEL_TREE::MAYBE)
+ DBUG_RETURN(tree1); // Can't use this
+ if (tree2->type == SEL_TREE::MAYBE)
+ DBUG_RETURN(tree2);
+
+ SEL_TREE *result= NULL;
+ key_map ored_keys;
+ SEL_TREE *rtree[2]= {NULL,NULL};
+ SEL_IMERGE *imerge[2]= {NULL, NULL};
+ bool no_ranges1= tree1->without_ranges();
+ bool no_ranges2= tree2->without_ranges();
+ bool no_merges1= tree1->without_imerges();
+ bool no_merges2= tree2->without_imerges();
+ if (!no_ranges1 && !no_merges2)
+ {
+ rtree[0]= new SEL_TREE(tree1, TRUE, param);
+ imerge[1]= new SEL_IMERGE(tree2->merges.head(), 0, param);
+ }
+ if (!no_ranges2 && !no_merges1)
+ {
+ rtree[1]= new SEL_TREE(tree2, TRUE, param);
+ imerge[0]= new SEL_IMERGE(tree1->merges.head(), 0, param);
+ }
+ bool no_imerge_from_ranges= FALSE;
+
+ /* Build the range part of the tree for the formula (1) */
+ if (sel_trees_can_be_ored(param, tree1, tree2, &ored_keys))
+ {
+ bool must_be_ored= sel_trees_must_be_ored(param, tree1, tree2, ored_keys);
+ no_imerge_from_ranges= must_be_ored;
+
+ if (no_imerge_from_ranges && no_merges1 && no_merges2)
+ {
+ /*
+ Reuse tree1 as the result in simple cases. This reduces memory usage
+ for e.g. "key IN (c1, ..., cN)" which produces a lot of ranges.
+ */
+ result= tree1;
+ result->keys_map.clear_all();
+ }
+ else
+ {
+ if (!(result= new (param->mem_root) SEL_TREE(param->mem_root,
+ param->keys)))
+ {
+ DBUG_RETURN(result);
+ }
+ }
+
+ key_map::Iterator it(ored_keys);
+ int key_no;
+ while ((key_no= it++) != key_map::Iterator::BITMAP_END)
+ {
+ SEL_ARG *key1= tree1->keys[key_no];
+ SEL_ARG *key2= tree2->keys[key_no];
+ if (!must_be_ored)
+ {
+ key1->incr_refs();
+ key2->incr_refs();
+ }
+ if ((result->keys[key_no]= key_or_with_limit(param, key_no, key1, key2)))
+ result->keys_map.set_bit(key_no);
+ }
+ result->type= tree1->type;
+ }
+ else
+ {
+ if (!result && !(result= new (param->mem_root) SEL_TREE(param->mem_root,
+ param->keys)))
+ DBUG_RETURN(result);
+ }
+
+ if (no_imerge_from_ranges && no_merges1 && no_merges2)
+ {
+ if (result->keys_map.is_clear_all())
+ result->type= SEL_TREE::ALWAYS;
+ DBUG_RETURN(result);
+ }
+
+ SEL_IMERGE *imerge_from_ranges;
+ if (!(imerge_from_ranges= new SEL_IMERGE()))
+ result= NULL;
+ else if (!no_ranges1 && !no_ranges2 && !no_imerge_from_ranges)
+ {
+ /* Build the imerge part of the tree for the formula (1) */
+ SEL_TREE *rt1= tree1;
+ SEL_TREE *rt2= tree2;
+ if (no_merges1)
+ rt1= new SEL_TREE(tree1, TRUE, param);
+ if (no_merges2)
+ rt2= new SEL_TREE(tree2, TRUE, param);
+ if (!rt1 || !rt2 ||
+ result->merges.push_back(imerge_from_ranges) ||
+ imerge_from_ranges->or_sel_tree(param, rt1) ||
+ imerge_from_ranges->or_sel_tree(param, rt2))
+ result= NULL;
+ }
+ if (!result)
+ DBUG_RETURN(result);
+
+ result->type= tree1->type;
+
+ if (!no_merges1 && !no_merges2 &&
+ !imerge_list_or_list(param, &tree1->merges, &tree2->merges))
+ {
+ /* Build the imerges for the formula (2) */
+ imerge_list_and_list(&result->merges, &tree1->merges);
+ }
+
+ /* Build the imerges for the formulas (3) and (4) */
+ for (uint i=0; i < 2; i++)
+ {
+ List<SEL_IMERGE> merges;
+ SEL_TREE *rt= rtree[i];
+ SEL_IMERGE *im= imerge[1-i];
+
+ if (rt && im && !merges.push_back(im) &&
+ !imerge_list_or_tree(param, &merges, rt))
+ imerge_list_and_list(&result->merges, &merges);
+ }
+
+ DBUG_RETURN(result);
+}
+
+
+/* And key trees where key1->part < key2 -> part */
+
+static SEL_ARG *
+and_all_keys(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2,
+ uint clone_flag)
+{
+ SEL_ARG *next;
+ ulong use_count=key1->use_count;
+
+ if (sel_arg_and_weight_heuristic(param, key1, key2))
+ return key1;
+
+ if (key1->elements != 1)
+ {
+ key2->use_count+=key1->elements-1; //psergey: why we don't count that key1 has n-k-p?
+ key2->increment_use_count((int) key1->elements-1);
+ }
+ if (key1->type == SEL_ARG::MAYBE_KEY)
+ {
+ if (key2->type == SEL_ARG::KEY_RANGE)
+ return key2;
+ key1->right= key1->left= &null_element;
+ key1->next= key1->prev= 0;
+ key1->weight= 1 + (key1->next_key_part? key1->next_key_part->weight: 0);
+ }
+
+ for (next=key1->first(); next ; next=next->next)
+ {
+ if (next->next_key_part)
+ {
+ uint old_weight= next->next_key_part->weight;
+ SEL_ARG *tmp= key_and(param, next->next_key_part, key2, clone_flag);
+ if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
+ {
+ key1=key1->tree_delete(next);
+ continue;
+ }
+ next->next_key_part=tmp;
+ key1->weight+= (tmp? tmp->weight: 0) - old_weight;
+ if (use_count)
+ next->increment_use_count(use_count);
+ if (param->alloced_sel_args >
+ param->thd->variables.optimizer_max_sel_args)
+ break;
+ }
+ else
+ {
+ next->next_key_part=key2;
+ key1->weight += key2->weight;
+ }
+ }
+ if (!key1)
+ return &null_element; // Impossible ranges
+ key1->use_count++;
+
+ key1->max_part_no= MY_MAX(key2->max_part_no, key2->part+1);
+ return key1;
+}
+
+
+/*
+ Produce a SEL_ARG graph that represents "key1 AND key2"
+
+ SYNOPSIS
+ key_and()
+ param Range analysis context (needed to track if we have allocated
+ too many SEL_ARGs)
+ key1 First argument, root of its RB-tree
+ key2 Second argument, root of its RB-tree
+
+ RETURN
+ RB-tree root of the resulting SEL_ARG graph.
+ NULL if the result of AND operation is an empty interval {0}.
+*/
+
+static SEL_ARG *
+key_and(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
+{
+ if (!key1)
+ return key2;
+ if (!key2)
+ return key1;
+ if (key1->part != key2->part)
+ {
+ if (key1->part > key2->part)
+ {
+ swap_variables(SEL_ARG *, key1, key2);
+ clone_flag=swap_clone_flag(clone_flag);
+ }
+ // key1->part < key2->part
+
+ if (sel_arg_and_weight_heuristic(param, key1, key2))
+ return key1;
+
+ key1->use_count--;
+ if (key1->use_count > 0)
+ if (!(key1= key1->clone_tree(param)))
+ return 0; // OOM
+ return and_all_keys(param, key1, key2, clone_flag);
+ }
+
+ if (((clone_flag & CLONE_KEY2_MAYBE) &&
+ !(clone_flag & CLONE_KEY1_MAYBE) &&
+ key2->type != SEL_ARG::MAYBE_KEY) ||
+ key1->type == SEL_ARG::MAYBE_KEY)
+ { // Put simple key in key2
+ swap_variables(SEL_ARG *, key1, key2);
+ clone_flag=swap_clone_flag(clone_flag);
+ }
+
+ /* If one of the key is MAYBE_KEY then the found region may be smaller */
+ if (key2->type == SEL_ARG::MAYBE_KEY)
+ {
+ if (key1->use_count > 1)
+ {
+ key1->use_count--;
+ if (!(key1=key1->clone_tree(param)))
+ return 0; // OOM
+ key1->use_count++;
+ }
+ if (key1->type == SEL_ARG::MAYBE_KEY)
+ { // Both are maybe key
+ key1->next_key_part=key_and(param, key1->next_key_part,
+ key2->next_key_part, clone_flag);
+
+ key1->weight= 1 + (key1->next_key_part? key1->next_key_part->weight : 0);
+
+ if (key1->next_key_part &&
+ key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
+ return key1;
+ }
+ else
+ {
+ key1->maybe_smaller();
+ if (key2->next_key_part)
+ {
+ key1->use_count--; // Incremented in and_all_keys
+ return and_all_keys(param, key1, key2->next_key_part, clone_flag);
+ }
+ key2->use_count--; // Key2 doesn't have a tree
+ }
+ return key1;
+ }
+
+ if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
+ {
+ /* TODO: why not leave one of the trees? */
+ key1->free_tree();
+ key2->free_tree();
+ return 0; // Can't optimize this
+ }
+
+ key1->use_count--;
+ key2->use_count--;
+ SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
+ uint max_part_no= MY_MAX(key1->max_part_no, key2->max_part_no);
+
+ while (e1 && e2)
+ {
+ int cmp=e1->cmp_min_to_min(e2);
+ if (cmp < 0)
+ {
+ if (get_range(&e1,&e2,key1))
+ continue;
+ }
+ else if (get_range(&e2,&e1,key2))
+ continue;
+ SEL_ARG *next=key_and(param, e1->next_key_part, e2->next_key_part,
+ clone_flag);
+ e1->incr_refs();
+ e2->incr_refs();
+ if (!next || next->type != SEL_ARG::IMPOSSIBLE)
+ {
+ SEL_ARG *new_arg= e1->clone_and(param->thd, e2);
+ if (!new_arg)
+ return &null_element; // End of memory
+ new_arg->next_key_part=next;
+ if (new_arg->next_key_part)
+ new_arg->weight += new_arg->next_key_part->weight;
+
+ if (!new_tree)
+ {
+ new_tree=new_arg;
+ }
+ else
+ new_tree=new_tree->insert(new_arg);
+ }
+ if (e1->cmp_max_to_max(e2) < 0)
+ e1=e1->next; // e1 can't overlapp next e2
+ else
+ e2=e2->next;
+ }
+ key1->free_tree();
+ key2->free_tree();
+ if (!new_tree)
+ return &null_element; // Impossible range
+ new_tree->max_part_no= max_part_no;
+ return new_tree;
+}
+
+
+static bool
+get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
+{
+ (*e1)=root1->find_range(*e2); // first e1->min < e2->min
+ if ((*e1)->cmp_max_to_min(*e2) < 0)
+ {
+ if (!((*e1)=(*e1)->next))
+ return 1;
+ if ((*e1)->cmp_min_to_max(*e2) > 0)
+ {
+ (*e2)=(*e2)->next;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+#ifndef DBUG_OFF
+/*
+ Verify SEL_TREE's weight.
+
+ Recompute the weight and compare
+*/
+uint SEL_ARG::verify_weight()
+{
+ uint computed_weight= 0;
+ SEL_ARG *first_arg= first();
+
+ if (first_arg)
+ {
+ for (SEL_ARG *arg= first_arg; arg; arg= arg->next)
+ {
+ computed_weight++;
+ if (arg->next_key_part)
+ computed_weight+= arg->next_key_part->verify_weight();
+ }
+ }
+ else
+ {
+ // first()=NULL means this is a special kind of SEL_ARG, e.g.
+ // SEL_ARG with type=MAYBE_KEY
+ computed_weight= 1;
+ if (next_key_part)
+ computed_weight += next_key_part->verify_weight();
+ }
+
+ if (computed_weight != weight)
+ {
+ sql_print_error("SEL_ARG weight mismatch: computed %u have %u\n",
+ computed_weight, weight);
+ DBUG_ASSERT(computed_weight == weight); // Fail an assertion
+ }
+ return computed_weight;
+}
+#endif
+
+static
+SEL_ARG *key_or_with_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *key1, SEL_ARG *key2)
+{
+#ifndef DBUG_OFF
+ if (key1)
+ key1->verify_weight();
+ if (key2)
+ key2->verify_weight();
+#endif
+
+ SEL_ARG *res= key_or(param, key1, key2);
+ res= enforce_sel_arg_weight_limit(param, keyno, res);
+#ifndef DBUG_OFF
+ if (res)
+ res->verify_weight();
+#endif
+ return res;
+}
+
+
+static
+SEL_ARG *key_and_with_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
+{
+#ifndef DBUG_OFF
+ if (key1)
+ key1->verify_weight();
+ if (key2)
+ key2->verify_weight();
+#endif
+ SEL_ARG *res= key_and(param, key1, key2, clone_flag);
+ res= enforce_sel_arg_weight_limit(param, keyno, res);
+#ifndef DBUG_OFF
+ if (res)
+ res->verify_weight();
+#endif
+ return res;
+}
+
+
+/**
+ Combine two range expression under a common OR. On a logical level, the
+ transformation is key_or( expr1, expr2 ) => expr1 OR expr2.
+
+ Both expressions are assumed to be in the SEL_ARG format. In a logic sense,
+ theformat is reminiscent of DNF, since an expression such as the following
+
+ ( 1 < kp1 < 10 AND p1 ) OR ( 10 <= kp2 < 20 AND p2 )
+
+ where there is a key consisting of keyparts ( kp1, kp2, ..., kpn ) and p1
+ and p2 are valid SEL_ARG expressions over keyparts kp2 ... kpn, is a valid
+ SEL_ARG condition. The disjuncts appear ordered by the minimum endpoint of
+ the first range and ranges must not overlap. It follows that they are also
+ ordered by maximum endpoints. Thus
+
+ ( 1 < kp1 <= 2 AND ( kp2 = 2 OR kp2 = 3 ) ) OR kp1 = 3
+
+ Is a a valid SER_ARG expression for a key of at least 2 keyparts.
+
+ For simplicity, we will assume that expr2 is a single range predicate,
+ i.e. on the form ( a < x < b AND ... ). It is easy to generalize to a
+ disjunction of several predicates by subsequently call key_or for each
+ disjunct.
+
+ The algorithm iterates over each disjunct of expr1, and for each disjunct
+ where the first keypart's range overlaps with the first keypart's range in
+ expr2:
+
+ If the predicates are equal for the rest of the keyparts, or if there are
+ no more, the range in expr2 has its endpoints copied in, and the SEL_ARG
+ node in expr2 is deallocated. If more ranges became connected in expr1, the
+ surplus is also dealocated. If they differ, two ranges are created.
+
+ - The range leading up to the overlap. Empty if endpoints are equal.
+
+ - The overlapping sub-range. May be the entire range if they are equal.
+
+ Finally, there may be one more range if expr2's first keypart's range has a
+ greater maximum endpoint than the last range in expr1.
+
+ For the overlapping sub-range, we recursively call key_or. Thus in order to
+ compute key_or of
+
+ (1) ( 1 < kp1 < 10 AND 1 < kp2 < 10 )
+
+ (2) ( 2 < kp1 < 20 AND 4 < kp2 < 20 )
+
+ We create the ranges 1 < kp <= 2, 2 < kp1 < 10, 10 <= kp1 < 20. For the
+ first one, we simply hook on the condition for the second keypart from (1)
+ : 1 < kp2 < 10. For the second range 2 < kp1 < 10, key_or( 1 < kp2 < 10, 4
+ < kp2 < 20 ) is called, yielding 1 < kp2 < 20. For the last range, we reuse
+ the range 4 < kp2 < 20 from (2) for the second keypart. The result is thus
+
+ ( 1 < kp1 <= 2 AND 1 < kp2 < 10 ) OR
+ ( 2 < kp1 < 10 AND 1 < kp2 < 20 ) OR
+ ( 10 <= kp1 < 20 AND 4 < kp2 < 20 )
+*/
+static SEL_ARG *
+key_or(RANGE_OPT_PARAM *param, SEL_ARG *key1,SEL_ARG *key2)
+{
+ if (!key1)
+ {
+ if (key2)
+ {
+ key2->use_count--;
+ key2->free_tree();
+ }
+ return 0;
+ }
+ if (!key2)
+ {
+ key1->use_count--;
+ key1->free_tree();
+ return 0;
+ }
+ key1->use_count--;
+ key2->use_count--;
+
+ if (key1->part != key2->part ||
+ (key1->min_flag | key2->min_flag) & GEOM_FLAG)
+ {
+ key1->free_tree();
+ key2->free_tree();
+ return 0; // Can't optimize this
+ }
+
+ // If one of the key is MAYBE_KEY then the found region may be bigger
+ if (key1->type == SEL_ARG::MAYBE_KEY)
+ {
+ key2->free_tree();
+ key1->use_count++;
+ return key1;
+ }
+ if (key2->type == SEL_ARG::MAYBE_KEY)
+ {
+ key1->free_tree();
+ key2->use_count++;
+ return key2;
+ }
+
+ if (key1->use_count > 0)
+ {
+ if (key2->use_count == 0 || key1->elements > key2->elements)
+ {
+ swap_variables(SEL_ARG *,key1,key2);
+ }
+ if (key1->use_count > 0 && !(key1=key1->clone_tree(param)))
+ return 0; // OOM
+ }
+
+ // Add tree at key2 to tree at key1
+ bool key2_shared=key2->use_count != 0;
+ key1->maybe_flag|=key2->maybe_flag;
+
+ /*
+ Notation for illustrations used in the rest of this function:
+
+ Range: [--------]
+ ^ ^
+ start stop
+
+ Two overlapping ranges:
+ [-----] [----] [--]
+ [---] or [---] or [-------]
+
+ Ambiguity: ***
+ The range starts or stops somewhere in the "***" range.
+ Example: a starts before b and may end before/the same plase/after b
+ a: [----***]
+ b: [---]
+
+ Adjacent ranges:
+ Ranges that meet but do not overlap. Example: a = "x < 3", b = "x >= 3"
+ a: ----]
+ b: [----
+ */
+
+ uint max_part_no= MY_MAX(key1->max_part_no, key2->max_part_no);
+
+ for (key2=key2->first(); ; )
+ {
+ /*
+ key1 consists of one or more ranges. tmp is the range currently
+ being handled.
+
+ initialize tmp to the latest range in key1 that starts the same
+ place or before the range in key2 starts
+
+ key2: [------]
+ key1: [---] [-----] [----]
+ ^
+ tmp
+ */
+ if (key1->min_flag & NO_MIN_RANGE &&
+ key1->max_flag & NO_MAX_RANGE)
+ {
+ if (key1->maybe_flag)
+ return new SEL_ARG(SEL_ARG::MAYBE_KEY);
+ return 0; // Always true OR
+ }
+ if (!key2)
+ break;
+
+ SEL_ARG *tmp=key1->find_range(key2);
+
+ /*
+ Used to describe how two key values are positioned compared to
+ each other. Consider key_value_a.<cmp_func>(key_value_b):
+
+ -2: key_value_a is smaller than key_value_b, and they are adjacent
+ -1: key_value_a is smaller than key_value_b (not adjacent)
+ 0: the key values are equal
+ 1: key_value_a is bigger than key_value_b (not adjacent)
+ -2: key_value_a is bigger than key_value_b, and they are adjacent
+
+ Example: "cmp= tmp->cmp_max_to_min(key2)"
+
+ key2: [-------- (10 <= x ...)
+ tmp: -----] (... x < 10) => cmp==-2
+ tmp: ----] (... x <= 9) => cmp==-1
+ tmp: ------] (... x = 10) => cmp== 0
+ tmp: --------] (... x <= 12) => cmp== 1
+ (cmp == 2 does not make sense for cmp_max_to_min())
+ */
+ int cmp= 0;
+
+ if (!tmp)
+ {
+ /*
+ The range in key2 starts before the first range in key1. Use
+ the first range in key1 as tmp.
+
+ key2: [--------]
+ key1: [****--] [----] [-------]
+ ^
+ tmp
+ */
+ tmp=key1->first();
+ cmp= -1;
+ }
+ else if ((cmp= tmp->cmp_max_to_min(key2)) < 0)
+ {
+ /*
+ This is the case:
+ key2: [-------]
+ tmp: [----**]
+ */
+ SEL_ARG *next=tmp->next;
+ if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
+ {
+ /*
+ Adjacent (cmp==-2) and equal next_key_parts => ranges can be merged
+
+ This is the case:
+ key2: [-------]
+ tmp: [----]
+
+ Result:
+ key2: [-------------] => inserted into key1 below
+ tmp: => deleted
+ */
+ SEL_ARG *key2_next=key2->next;
+ if (key2_shared)
+ {
+ if (!(key2=new SEL_ARG(*key2)))
+ return 0; // out of memory
+ key2->increment_use_count(key1->use_count+1);
+ key2->next=key2_next; // New copy of key2
+ }
+
+ key2->copy_min(tmp);
+ if (!(key1=key1->tree_delete(tmp)))
+ { // Only one key in tree
+ if (key2->min_flag & NO_MIN_RANGE &&
+ key2->max_flag & NO_MAX_RANGE)
+ {
+ if (key2->maybe_flag)
+ return new SEL_ARG(SEL_ARG::MAYBE_KEY);
+ return 0; // Always true OR
+ }
+ key1=key2;
+ key1->make_root();
+ key2=key2_next;
+ break;
+ }
+ }
+ if (!(tmp=next)) // Move to next range in key1. Now tmp.min > key2.min
+ break; // No more ranges in key1. Copy rest of key2
+ }
+
+ if (cmp < 0)
+ {
+ /*
+ This is the case:
+ key2: [--***]
+ tmp: [----]
+ */
+ int tmp_cmp;
+ if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0)
+ {
+ /*
+ This is the case:
+ key2: [------**]
+ tmp: [----]
+ */
+ if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
+ {
+ /*
+ Adjacent ranges with equal next_key_part. Merge like this:
+
+ This is the case:
+ key2: [------]
+ tmp: [-----]
+
+ Result:
+ key2: [------]
+ tmp: [-------------]
+
+ Then move on to next key2 range.
+ */
+ tmp->copy_min_to_min(key2);
+ key1->merge_flags(key2);
+ if (tmp->min_flag & NO_MIN_RANGE &&
+ tmp->max_flag & NO_MAX_RANGE)
+ {
+ if (key1->maybe_flag)
+ return new SEL_ARG(SEL_ARG::MAYBE_KEY);
+ return 0;
+ }
+ key2->increment_use_count(-1); // Free not used tree
+ key2=key2->next;
+ continue;
+ }
+ else
+ {
+ /*
+ key2 not adjacent to tmp or has different next_key_part.
+ Insert into key1 and move to next range in key2
+
+ This is the case:
+ key2: [------**]
+ tmp: [----]
+
+ Result:
+ key1_ [------**][----]
+ ^ ^
+ insert tmp
+ */
+ SEL_ARG *next=key2->next;
+ if (key2_shared)
+ {
+ SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy
+ if (!cpy)
+ return 0; // OOM
+ key1=key1->insert(cpy);
+ key2->increment_use_count(key1->use_count+1);
+ }
+ else
+ key1=key1->insert(key2); // Will destroy key2_root
+ key2=next;
+ continue;
+ }
+ }
+ }
+
+ /*
+ The ranges in tmp and key2 are overlapping:
+
+ key2: [----------]
+ tmp: [*****-----*****]
+
+ Corollary: tmp.min <= key2.max
+ */
+ if (eq_tree(tmp->next_key_part,key2->next_key_part))
+ {
+ // Merge overlapping ranges with equal next_key_part
+ if (tmp->is_same(key2))
+ {
+ /*
+ Found exact match of key2 inside key1.
+ Use the relevant range in key1.
+ */
+ tmp->merge_flags(key2); // Copy maybe flags
+ key2->increment_use_count(-1); // Free not used tree
+ }
+ else
+ {
+ SEL_ARG *last= tmp;
+ SEL_ARG *first= tmp;
+
+ /*
+ Find the last range in key1 that overlaps key2 and
+ where all ranges first...last have the same next_key_part as
+ key2.
+
+ key2: [****----------------------*******]
+ key1: [--] [----] [---] [-----] [xxxx]
+ ^ ^ ^
+ first last different next_key_part
+
+ Since key2 covers them, the ranges between first and last
+ are merged into one range by deleting first...last-1 from
+ the key1 tree. In the figure, this applies to first and the
+ two consecutive ranges. The range of last is then extended:
+ * last.min: Set to MY_MIN(key2.min, first.min)
+ * last.max: If there is a last->next that overlaps key2 (i.e.,
+ last->next has a different next_key_part):
+ Set adjacent to last->next.min
+ Otherwise: Set to MY_MAX(key2.max, last.max)
+
+ Result:
+ key2: [****----------------------*******]
+ [--] [----] [---] => deleted from key1
+ key1: [**------------------------***][xxxx]
+ ^ ^
+ tmp=last different next_key_part
+ */
+ while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
+ eq_tree(last->next->next_key_part,key2->next_key_part))
+ {
+ /*
+ last->next is covered by key2 and has same next_key_part.
+ last can be deleted
+ */
+ SEL_ARG *save=last;
+ last=last->next;
+ key1=key1->tree_delete(save);
+ }
+ // Redirect tmp to last which will cover the entire range
+ tmp= last;
+
+ /*
+ We need the minimum endpoint of first so we can compare it
+ with the minimum endpoint of the enclosing key2 range.
+ */
+ last->copy_min(first);
+ bool full_range= last->copy_min(key2);
+ if (!full_range)
+ {
+ if (last->next && key2->cmp_max_to_min(last->next) >= 0)
+ {
+ /*
+ This is the case:
+ key2: [-------------]
+ key1: [***------] [xxxx]
+ ^ ^
+ last different next_key_part
+
+ Extend range of last up to last->next:
+ key2: [-------------]
+ key1: [***--------][xxxx]
+ */
+ last->copy_min_to_max(last->next);
+ }
+ else
+ /*
+ This is the case:
+ key2: [--------*****]
+ key1: [***---------] [xxxx]
+ ^ ^
+ last different next_key_part
+
+ Extend range of last up to MY_MAX(last.max, key2.max):
+ key2: [--------*****]
+ key1: [***----------**] [xxxx]
+ */
+ full_range= last->copy_max(key2);
+ }
+ if (full_range)
+ { // Full range
+ key1->free_tree();
+ for (; key2 ; key2=key2->next)
+ key2->increment_use_count(-1); // Free not used tree
+ if (key1->maybe_flag)
+ return new SEL_ARG(SEL_ARG::MAYBE_KEY);
+ return 0;
+ }
+ }
+ }
+
+ if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
+ {
+ /*
+ This is the case ("cmp>=0" means that tmp.max >= key2.min):
+ key2: [----]
+ tmp: [------------*****]
+ */
+
+ if (!tmp->next_key_part)
+ {
+ SEL_ARG *key2_next= key2->next;
+ if (key2_shared)
+ {
+ SEL_ARG *key2_cpy= new SEL_ARG(*key2);
+ if (!key2_cpy)
+ return 0;
+ key2= key2_cpy;
+ }
+ /*
+ tmp->next_key_part is empty: cut the range that is covered
+ by tmp from key2.
+ Reason: (key2->next_key_part OR tmp->next_key_part) will be
+ empty and therefore equal to tmp->next_key_part. Thus, this
+ part of the key2 range is completely covered by tmp.
+ */
+ if (tmp->cmp_max_to_max(key2) >= 0)
+ {
+ /*
+ tmp covers the entire range in key2.
+ key2: [----]
+ tmp: [-----------------]
+
+ Move on to next range in key2
+ */
+ key2->increment_use_count(-1); // Free not used tree
+ key2= key2_next;
+ }
+ else
+ {
+ /*
+ This is the case:
+ key2: [-------]
+ tmp: [---------]
+
+ Result:
+ key2: [---]
+ tmp: [---------]
+ */
+ key2->copy_max_to_min(tmp);
+ key2->next= key2_next; // In case of key2_shared
+ }
+ continue;
+ }
+
+ /*
+ The ranges are overlapping but have not been merged because
+ next_key_part of tmp and key2 differ.
+ key2: [----]
+ tmp: [------------*****]
+
+ Split tmp in two where key2 starts:
+ key2: [----]
+ key1: [--------][--*****]
+ ^ ^
+ insert tmp
+ */
+ SEL_ARG *new_arg=tmp->clone_first(key2);
+ if (!new_arg)
+ return 0; // OOM
+ if ((new_arg->next_key_part= tmp->next_key_part))
+ new_arg->increment_use_count(key1->use_count+1);
+ tmp->copy_min_to_min(key2);
+ key1=key1->insert(new_arg);
+ } // tmp.min >= key2.min due to this if()
+
+ /*
+ Now key2.min <= tmp.min <= key2.max:
+ key2: [---------]
+ tmp: [****---*****]
+ */
+ SEL_ARG key2_cpy(*key2); // Get copy we can modify
+ for (;;)
+ {
+ if (tmp->cmp_min_to_min(&key2_cpy) > 0)
+ {
+ /*
+ This is the case:
+ key2_cpy: [------------]
+ key1: [-*****]
+ ^
+ tmp
+
+ Result:
+ key2_cpy: [---]
+ key1: [-------][-*****]
+ ^ ^
+ insert tmp
+ */
+ SEL_ARG *new_arg=key2_cpy.clone_first(tmp);
+ if (!new_arg)
+ return 0; // OOM
+ if ((new_arg->next_key_part=key2_cpy.next_key_part))
+ new_arg->increment_use_count(key1->use_count+1);
+ key1=key1->insert(new_arg);
+ key2_cpy.copy_min_to_min(tmp);
+ }
+ // Now key2_cpy.min == tmp.min
+
+ if ((cmp= tmp->cmp_max_to_max(&key2_cpy)) <= 0)
+ {
+ /*
+ tmp.max <= key2_cpy.max:
+ key2_cpy: a) [-------] or b) [----]
+ tmp: [----] [----]
+
+ Steps:
+ 1) Update next_key_part of tmp: OR it with key2_cpy->next_key_part.
+ 2) If case a: Insert range [tmp.max, key2_cpy.max] into key1 using
+ next_key_part of key2_cpy
+
+ Result:
+ key1: a) [----][-] or b) [----]
+ */
+ tmp->maybe_flag|= key2_cpy.maybe_flag;
+ key2_cpy.increment_use_count(key1->use_count+1);
+
+ uint old_weight= tmp->next_key_part? tmp->next_key_part->weight: 0;
+
+ tmp->next_key_part= key_or(param, tmp->next_key_part,
+ key2_cpy.next_key_part);
+
+ uint new_weight= tmp->next_key_part? tmp->next_key_part->weight: 0;
+ key1->weight += (new_weight - old_weight);
+
+ if (!cmp)
+ break; // case b: done with this key2 range
+
+ // Make key2_cpy the range [tmp.max, key2_cpy.max]
+ key2_cpy.copy_max_to_min(tmp);
+ if (!(tmp=tmp->next))
+ {
+ /*
+ No more ranges in key1. Insert key2_cpy and go to "end"
+ label to insert remaining ranges in key2 if any.
+ */
+ SEL_ARG *tmp2= new SEL_ARG(key2_cpy);
+ if (!tmp2)
+ return 0; // OOM
+ key1=key1->insert(tmp2);
+ key2=key2->next;
+ goto end;
+ }
+ if (tmp->cmp_min_to_max(&key2_cpy) > 0)
+ {
+ /*
+ The next range in key1 does not overlap with key2_cpy.
+ Insert this range into key1 and move on to the next range
+ in key2.
+ */
+ SEL_ARG *tmp2= new SEL_ARG(key2_cpy);
+ if (!tmp2)
+ return 0; // OOM
+ key1=key1->insert(tmp2);
+ break;
+ }
+ /*
+ key2_cpy overlaps with the next range in key1 and the case
+ is now "key2.min <= tmp.min <= key2.max". Go back to for(;;)
+ to handle this situation.
+ */
+ continue;
+ }
+ else
+ {
+ /*
+ This is the case:
+ key2_cpy: [-------]
+ tmp: [------------]
+
+ Result:
+ key1: [-------][---]
+ ^ ^
+ new_arg tmp
+ Steps:
+ 0) If tmp->next_key_part is empty: do nothing. Reason:
+ (key2_cpy->next_key_part OR tmp->next_key_part) will be
+ empty and therefore equal to tmp->next_key_part. Thus,
+ the range in key2_cpy is completely covered by tmp
+ 1) Make new_arg with range [tmp.min, key2_cpy.max].
+ new_arg->next_key_part is OR between next_key_part
+ of tmp and key2_cpy
+ 2) Make tmp the range [key2.max, tmp.max]
+ 3) Insert new_arg into key1
+ */
+ if (!tmp->next_key_part) // Step 0
+ {
+ key2_cpy.increment_use_count(-1); // Free not used tree
+ break;
+ }
+ SEL_ARG *new_arg=tmp->clone_last(&key2_cpy);
+ if (!new_arg)
+ return 0; // OOM
+ tmp->copy_max_to_min(&key2_cpy);
+ tmp->increment_use_count(key1->use_count+1);
+ /* Increment key count as it may be used for next loop */
+ key2_cpy.increment_use_count(1);
+ new_arg->next_key_part= key_or(param, tmp->next_key_part,
+ key2_cpy.next_key_part);
+ key1=key1->insert(new_arg);
+ break;
+ }
+ }
+ // Move on to next range in key2
+ key2=key2->next;
+ }
+
+end:
+ /*
+ Add key2 ranges that are non-overlapping with and higher than the
+ highest range in key1.
+ */
+ while (key2)
+ {
+ SEL_ARG *next=key2->next;
+ if (key2_shared)
+ {
+ SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy
+ if (!tmp)
+ return 0;
+ key2->increment_use_count(key1->use_count+1);
+ key1=key1->insert(tmp);
+ }
+ else
+ key1=key1->insert(key2); // Will destroy key2_root
+ key2=next;
+ }
+ key1->use_count++;
+
+ key1->max_part_no= max_part_no;
+ return key1;
+}
+
+
+/* Compare if two trees are equal */
+
+static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
+{
+ if (a == b)
+ return 1;
+ if (!a || !b || !a->is_same(b))
+ return 0;
+ if (a->left != &null_element && b->left != &null_element)
+ {
+ if (!eq_tree(a->left,b->left))
+ return 0;
+ }
+ else if (a->left != &null_element || b->left != &null_element)
+ return 0;
+ if (a->right != &null_element && b->right != &null_element)
+ {
+ if (!eq_tree(a->right,b->right))
+ return 0;
+ }
+ else if (a->right != &null_element || b->right != &null_element)
+ return 0;
+ if (a->next_key_part != b->next_key_part)
+ { // Sub range
+ if (!a->next_key_part != !b->next_key_part ||
+ !eq_tree(a->next_key_part, b->next_key_part))
+ return 0;
+ }
+ return 1;
+}
+
+
+/*
+ Compute the MAX(key part) in this SEL_ARG graph.
+*/
+uint SEL_ARG::get_max_key_part() const
+{
+ const SEL_ARG *cur;
+ uint max_part= part;
+ for (cur= first(); cur ; cur=cur->next)
+ {
+ if (cur->next_key_part)
+ {
+ uint mp= cur->next_key_part->get_max_key_part();
+ max_part= MY_MAX(part, mp);
+ }
+ }
+ return max_part;
+}
+
+
+/*
+ Remove the SEL_ARG graph elements which have part > max_part.
+
+ @detail
+ Also update weight for the graph and any modified subgraphs.
+*/
+
+void prune_sel_arg_graph(SEL_ARG *sel_arg, uint max_part)
+{
+ SEL_ARG *cur;
+ DBUG_ASSERT(max_part >= sel_arg->part);
+
+ for (cur= sel_arg->first(); cur ; cur=cur->next)
+ {
+ if (cur->next_key_part)
+ {
+ if (cur->next_key_part->part > max_part)
+ {
+ // Remove cur->next_key_part.
+ sel_arg->weight -= cur->next_key_part->weight;
+ cur->next_key_part= NULL;
+ }
+ else
+ {
+ uint old_weight= cur->next_key_part->weight;
+ prune_sel_arg_graph(cur->next_key_part, max_part);
+ sel_arg->weight -= (old_weight - cur->next_key_part->weight);
+ }
+ }
+ }
+}
+
+
+/*
+ @brief
+ Make sure the passed SEL_ARG graph's weight is below SEL_ARG::MAX_WEIGHT,
+ by cutting off branches if necessary.
+
+ @detail
+ @see declaration of SEL_ARG::weight for definition of weight.
+
+ This function attempts to reduce the graph's weight by cutting off
+ SEL_ARG::next_key_part connections if necessary.
+
+ We start with maximum used keypart and then remove one keypart after
+ another until the graph's weight is within the limit.
+
+ @seealso
+ sel_arg_and_weight_heuristic();
+
+ @return
+ tree pointer The tree after processing,
+ NULL If it was not possible to reduce the weight of the tree below the
+ limit.
+*/
+
+SEL_ARG *enforce_sel_arg_weight_limit(RANGE_OPT_PARAM *param, uint keyno,
+ SEL_ARG *sel_arg)
+{
+ if (!sel_arg || sel_arg->type != SEL_ARG::KEY_RANGE ||
+ !param->thd->variables.optimizer_max_sel_arg_weight)
+ return sel_arg;
+
+ Field *field= sel_arg->field;
+ uint weight1= sel_arg->weight;
+
+ while (1)
+ {
+ if (likely(sel_arg->weight <= param->thd->variables.
+ optimizer_max_sel_arg_weight))
+ break;
+
+ uint max_part= sel_arg->get_max_key_part();
+ if (max_part == sel_arg->part)
+ {
+ /*
+ We don't return NULL right away as we want to have the information
+ about the changed tree in the optimizer trace.
+ */
+ sel_arg= NULL;
+ break;
+ }
+
+ max_part--;
+ prune_sel_arg_graph(sel_arg, max_part);
+ }
+
+ uint weight2= sel_arg? sel_arg->weight : 0;
+
+ if (weight2 != weight1)
+ {
+ Json_writer_object wrapper(param->thd);
+ Json_writer_object obj(param->thd, "enforce_sel_arg_weight_limit");
+ if (param->using_real_indexes)
+ obj.add("index", param->table->key_info[param->real_keynr[keyno]].name);
+ else
+ obj.add("pseudo_index", field->field_name);
+
+ obj.add("old_weight", (longlong)weight1);
+ obj.add("new_weight", (longlong)weight2);
+ }
+ return sel_arg;
+}
+
+
+/*
+ @detail
+ Do not combine the trees if their total weight is likely to exceed the
+ MAX_WEIGHT.
+ (It is possible that key1 has next_key_part that has empty overlap with
+ key2. In this case, the combined tree will have a smaller weight than we
+ predict. We assume this is rare.)
+*/
+
+static
+bool sel_arg_and_weight_heuristic(RANGE_OPT_PARAM *param, SEL_ARG *key1,
+ SEL_ARG *key2)
+{
+ DBUG_ASSERT(key1->part < key2->part);
+
+ ulong max_weight= param->thd->variables.optimizer_max_sel_arg_weight;
+ if (max_weight && key1->weight + key1->elements*key2->weight > max_weight)
+ {
+ Json_writer_object wrapper(param->thd);
+ Json_writer_object obj(param->thd, "sel_arg_weight_heuristic");
+ obj.add("key1_field", key1->field->field_name);
+ obj.add("key2_field", key2->field->field_name);
+ obj.add("key1_weight", (longlong)key1->weight);
+ obj.add("key2_weight", (longlong)key2->weight);
+ return true; // Discard key2
+ }
+ return false;
+}
+
+
+SEL_ARG *
+SEL_ARG::insert(SEL_ARG *key)
+{
+ SEL_ARG *element,**UNINIT_VAR(par),*UNINIT_VAR(last_element);
+
+ for (element= this; element != &null_element ; )
+ {
+ last_element=element;
+ if (key->cmp_min_to_min(element) > 0)
+ {
+ par= &element->right; element= element->right;
+ }
+ else
+ {
+ par = &element->left; element= element->left;
+ }
+ }
+ *par=key;
+ key->parent=last_element;
+ /* Link in list */
+ if (par == &last_element->left)
+ {
+ key->next=last_element;
+ if ((key->prev=last_element->prev))
+ key->prev->next=key;
+ last_element->prev=key;
+ }
+ else
+ {
+ if ((key->next=last_element->next))
+ key->next->prev=key;
+ key->prev=last_element;
+ last_element->next=key;
+ }
+ key->left=key->right= &null_element;
+ SEL_ARG *root=rb_insert(key); // rebalance tree
+ root->use_count=this->use_count; // copy root info
+ root->elements= this->elements+1;
+ /*
+ The new weight is:
+ old root's weight
+ +1 for the weight of the added element
+ + next_key_part's weight of the added element
+ */
+ root->weight = weight + 1 + (key->next_key_part? key->next_key_part->weight: 0);
+ root->maybe_flag=this->maybe_flag;
+ return root;
+}
+
+
+/*
+** Find best key with min <= given key
+** Because the call context this should never return 0 to get_range
+*/
+
+SEL_ARG *
+SEL_ARG::find_range(SEL_ARG *key)
+{
+ SEL_ARG *element=this,*found=0;
+
+ for (;;)
+ {
+ if (element == &null_element)
+ return found;
+ int cmp=element->cmp_min_to_min(key);
+ if (cmp == 0)
+ return element;
+ if (cmp < 0)
+ {
+ found=element;
+ element=element->right;
+ }
+ else
+ element=element->left;
+ }
+}
+
+
+/*
+ Remove a element from the tree
+
+ SYNOPSIS
+ tree_delete()
+ key Key that is to be deleted from tree (this)
+
+ NOTE
+ This also frees all sub trees that is used by the element
+
+ RETURN
+ root of new tree (with key deleted)
+*/
+
+SEL_ARG *
+SEL_ARG::tree_delete(SEL_ARG *key)
+{
+ enum leaf_color remove_color;
+ SEL_ARG *root,*nod,**par,*fix_par;
+ DBUG_ENTER("tree_delete");
+
+ root=this;
+ this->parent= 0;
+
+ /*
+ Compute the weight the tree will have after the element is removed.
+ We remove the element itself (weight=1)
+ and the sub-graph connected to its next_key_part.
+ */
+ uint new_weight= root->weight - (1 + (key->next_key_part?
+ key->next_key_part->weight : 0));
+
+ DBUG_ASSERT(root->weight >= (1 + (key->next_key_part ?
+ key->next_key_part->weight : 0)));
+
+ /* Unlink from list */
+ if (key->prev)
+ key->prev->next=key->next;
+ if (key->next)
+ key->next->prev=key->prev;
+ key->increment_use_count(-1);
+ if (!key->parent)
+ par= &root;
+ else
+ par=key->parent_ptr();
+
+ if (key->left == &null_element)
+ {
+ *par=nod=key->right;
+ fix_par=key->parent;
+ if (nod != &null_element)
+ nod->parent=fix_par;
+ remove_color= key->color;
+ }
+ else if (key->right == &null_element)
+ {
+ *par= nod=key->left;
+ nod->parent=fix_par=key->parent;
+ remove_color= key->color;
+ }
+ else
+ {
+ SEL_ARG *tmp=key->next; // next bigger key (exist!)
+ nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
+ fix_par=tmp->parent;
+ if (nod != &null_element)
+ nod->parent=fix_par;
+ remove_color= tmp->color;
+
+ tmp->parent=key->parent; // Move node in place of key
+ (tmp->left=key->left)->parent=tmp;
+ if ((tmp->right=key->right) != &null_element)
+ tmp->right->parent=tmp;
+ tmp->color=key->color;
+ *par=tmp;
+ if (fix_par == key) // key->right == key->next
+ fix_par=tmp; // new parent of nod
+ }
+
+ if (root == &null_element)
+ DBUG_RETURN(0); // Maybe root later
+ if (remove_color == BLACK)
+ root=rb_delete_fixup(root,nod,fix_par);
+ test_rb_tree(root,root->parent);
+
+ root->use_count=this->use_count; // Fix root counters
+ root->weight= new_weight;
+ root->elements=this->elements-1;
+ root->maybe_flag=this->maybe_flag;
+ DBUG_RETURN(root);
+}
+
+
+ /* Functions to fix up the tree after insert and delete */
+
+static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
+{
+ SEL_ARG *y=leaf->right;
+ leaf->right=y->left;
+ if (y->left != &null_element)
+ y->left->parent=leaf;
+ if (!(y->parent=leaf->parent))
+ *root=y;
+ else
+ *leaf->parent_ptr()=y;
+ y->left=leaf;
+ leaf->parent=y;
+}
+
+static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
+{
+ SEL_ARG *y=leaf->left;
+ leaf->left=y->right;
+ if (y->right != &null_element)
+ y->right->parent=leaf;
+ if (!(y->parent=leaf->parent))
+ *root=y;
+ else
+ *leaf->parent_ptr()=y;
+ y->right=leaf;
+ leaf->parent=y;
+}
+
+
+SEL_ARG *
+SEL_ARG::rb_insert(SEL_ARG *leaf)
+{
+ SEL_ARG *y,*par,*par2,*root;
+ root= this; root->parent= 0;
+
+ leaf->color=RED;
+ while (leaf != root && (par= leaf->parent)->color == RED)
+ { // This can't be root or 1 level under
+ if (par == (par2= leaf->parent->parent)->left)
+ {
+ y= par2->right;
+ if (y->color == RED)
+ {
+ par->color=BLACK;
+ y->color=BLACK;
+ leaf=par2;
+ leaf->color=RED; /* And the loop continues */
+ }
+ else
+ {
+ if (leaf == par->right)
+ {
+ left_rotate(&root,leaf->parent);
+ par=leaf; /* leaf is now parent to old leaf */
+ }
+ par->color=BLACK;
+ par2->color=RED;
+ right_rotate(&root,par2);
+ break;
+ }
+ }
+ else
+ {
+ y= par2->left;
+ if (y->color == RED)
+ {
+ par->color=BLACK;
+ y->color=BLACK;
+ leaf=par2;
+ leaf->color=RED; /* And the loop continues */
+ }
+ else
+ {
+ if (leaf == par->left)
+ {
+ right_rotate(&root,par);
+ par=leaf;
+ }
+ par->color=BLACK;
+ par2->color=RED;
+ left_rotate(&root,par2);
+ break;
+ }
+ }
+ }
+ root->color=BLACK;
+ test_rb_tree(root,root->parent);
+ return root;
+}
+
+
+SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
+{
+ SEL_ARG *x,*w;
+ root->parent=0;
+
+ x= key;
+ while (x != root && x->color == SEL_ARG::BLACK)
+ {
+ if (x == par->left)
+ {
+ w=par->right;
+ if (w->color == SEL_ARG::RED)
+ {
+ w->color=SEL_ARG::BLACK;
+ par->color=SEL_ARG::RED;
+ left_rotate(&root,par);
+ w=par->right;
+ }
+ if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
+ {
+ w->color=SEL_ARG::RED;
+ x=par;
+ }
+ else
+ {
+ if (w->right->color == SEL_ARG::BLACK)
+ {
+ w->left->color=SEL_ARG::BLACK;
+ w->color=SEL_ARG::RED;
+ right_rotate(&root,w);
+ w=par->right;
+ }
+ w->color=par->color;
+ par->color=SEL_ARG::BLACK;
+ w->right->color=SEL_ARG::BLACK;
+ left_rotate(&root,par);
+ x=root;
+ break;
+ }
+ }
+ else
+ {
+ w=par->left;
+ if (w->color == SEL_ARG::RED)
+ {
+ w->color=SEL_ARG::BLACK;
+ par->color=SEL_ARG::RED;
+ right_rotate(&root,par);
+ w=par->left;
+ }
+ if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
+ {
+ w->color=SEL_ARG::RED;
+ x=par;
+ }
+ else
+ {
+ if (w->left->color == SEL_ARG::BLACK)
+ {
+ w->right->color=SEL_ARG::BLACK;
+ w->color=SEL_ARG::RED;
+ left_rotate(&root,w);
+ w=par->left;
+ }
+ w->color=par->color;
+ par->color=SEL_ARG::BLACK;
+ w->left->color=SEL_ARG::BLACK;
+ right_rotate(&root,par);
+ x=root;
+ break;
+ }
+ }
+ par=x->parent;
+ }
+ x->color=SEL_ARG::BLACK;
+ return root;
+}
+
+
+ /* Test that the properties for a red-black tree hold */
+
+#ifdef EXTRA_DEBUG
+int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
+{
+ int count_l,count_r;
+
+ if (element == &null_element)
+ return 0; // Found end of tree
+ if (element->parent != parent)
+ {
+ sql_print_error("Wrong tree: Parent doesn't point at parent");
+ return -1;
+ }
+ if (element->color == SEL_ARG::RED &&
+ (element->left->color == SEL_ARG::RED ||
+ element->right->color == SEL_ARG::RED))
+ {
+ sql_print_error("Wrong tree: Found two red in a row");
+ return -1;
+ }
+ if (element->left == element->right && element->left != &null_element)
+ { // Dummy test
+ sql_print_error("Wrong tree: Found right == left");
+ return -1;
+ }
+ count_l=test_rb_tree(element->left,element);
+ count_r=test_rb_tree(element->right,element);
+ if (count_l >= 0 && count_r >= 0)
+ {
+ if (count_l == count_r)
+ return count_l+(element->color == SEL_ARG::BLACK);
+ sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
+ count_l,count_r);
+ }
+ return -1; // Error, no more warnings
+}
+
+
+/**
+ Count how many times SEL_ARG graph "root" refers to its part "key" via
+ transitive closure.
+
+ @param root An RB-Root node in a SEL_ARG graph.
+ @param key Another RB-Root node in that SEL_ARG graph.
+
+ The passed "root" node may refer to "key" node via root->next_key_part,
+ root->next->n
+
+ This function counts how many times the node "key" is referred (via
+ SEL_ARG::next_key_part) by
+ - intervals of RB-tree pointed by "root",
+ - intervals of RB-trees that are pointed by SEL_ARG::next_key_part from
+ intervals of RB-tree pointed by "root",
+ - and so on.
+
+ Here is an example (horizontal links represent next_key_part pointers,
+ vertical links - next/prev prev pointers):
+
+ +----+ $
+ |root|-----------------+
+ +----+ $ |
+ | $ |
+ | $ |
+ +----+ +---+ $ | +---+ Here the return value
+ | |- ... -| |---$-+--+->|key| will be 4.
+ +----+ +---+ $ | | +---+
+ | $ | |
+ ... $ | |
+ | $ | |
+ +----+ +---+ $ | |
+ | |---| |---------+ |
+ +----+ +---+ $ |
+ | | $ |
+ ... +---+ $ |
+ | |------------+
+ +---+ $
+ @return
+ Number of links to "key" from nodes reachable from "root".
+*/
+
+static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
+{
+ ulong count= 0;
+ for (root=root->first(); root ; root=root->next)
+ {
+ if (root->next_key_part)
+ {
+ if (root->next_key_part == key)
+ count++;
+ if (root->next_key_part->part < key->part)
+ count+=count_key_part_usage(root->next_key_part,key);
+ }
+ }
+ return count;
+}
+
+
+/*
+ Check if SEL_ARG::use_count value is correct
+
+ SYNOPSIS
+ SEL_ARG::test_use_count()
+ root The root node of the SEL_ARG graph (an RB-tree root node that
+ has the least value of sel_arg->part in the entire graph, and
+ thus is the "origin" of the graph)
+
+ DESCRIPTION
+ Check if SEL_ARG::use_count value is correct. See the definition of
+ use_count for what is "correct".
+*/
+
+void SEL_ARG::test_use_count(SEL_ARG *root)
+{
+ uint e_count=0;
+
+ if (this->type != SEL_ARG::KEY_RANGE)
+ return;
+ for (SEL_ARG *pos=first(); pos ; pos=pos->next)
+ {
+ e_count++;
+ if (pos->next_key_part)
+ {
+ ulong count=count_key_part_usage(root,pos->next_key_part);
+ if (count > pos->next_key_part->use_count)
+ {
+ sql_print_information("Use_count: Wrong count for key at %p: %lu "
+ "should be %lu", pos,
+ pos->next_key_part->use_count, count);
+ return;
+ }
+ pos->next_key_part->test_use_count(root);
+ }
+ }
+ if (e_count != elements)
+ sql_print_warning("Wrong use count: %u (should be %u) for tree at %p",
+ e_count, elements, this);
+}
+#endif
+
+/*
+ Calculate cost and E(#rows) for a given index and intervals tree
+
+ SYNOPSIS
+ check_quick_select()
+ param Parameter from test_quick_select
+ idx Number of index to use in PARAM::key SEL_TREE::key
+ index_only TRUE - assume only index tuples will be accessed
+ FALSE - assume full table rows will be read
+ tree Transformed selection condition, tree->key[idx] holds
+ the intervals for the given index.
+ update_tbl_stats TRUE <=> update table->quick_* with information
+ about range scan we've evaluated.
+ mrr_flags INOUT MRR access flags
+ cost OUT Scan cost
+ is_ror_scan is set to reflect if the key scan is a ROR (see
+ is_key_scan_ror function for more info)
+
+ NOTES
+ param->table->opt_range*, param->range_count (and maybe others) are
+ updated with data of given key scan, see quick_range_seq_next for details.
+
+ RETURN
+ Estimate # of records to be retrieved.
+ HA_POS_ERROR if estimate calculation failed due to table handler problems.
+*/
+
+static
+ha_rows check_quick_select(PARAM *param, uint idx, bool index_only,
+ SEL_ARG *tree, bool update_tbl_stats,
+ uint *mrr_flags, uint *bufsize, Cost_estimate *cost,
+ bool *is_ror_scan)
+{
+ SEL_ARG_RANGE_SEQ seq;
+ RANGE_SEQ_IF seq_if = {NULL, sel_arg_range_seq_init, sel_arg_range_seq_next, 0, 0};
+ handler *file= param->table->file;
+ ha_rows rows= HA_POS_ERROR;
+ uint keynr= param->real_keynr[idx];
+ DBUG_ENTER("check_quick_select");
+
+ /* Range not calculated yet */
+ param->quick_rows[keynr]= HA_POS_ERROR;
+
+ /* Handle cases when we don't have a valid non-empty list of range */
+ if (!tree)
+ DBUG_RETURN(HA_POS_ERROR);
+ if (tree->type == SEL_ARG::IMPOSSIBLE)
+ DBUG_RETURN(0L);
+ if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
+ DBUG_RETURN(HA_POS_ERROR);
+
+ seq.keyno= idx;
+ seq.real_keyno= keynr;
+ seq.key_parts= param->key[idx];
+ seq.param= param;
+ seq.start= tree;
+
+ param->range_count=0;
+ param->max_key_parts=0;
+
+ seq.is_ror_scan= TRUE;
+ if (file->index_flags(keynr, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
+ seq.is_ror_scan= FALSE;
+
+ *mrr_flags= param->force_default_mrr? HA_MRR_USE_DEFAULT_IMPL: 0;
+ /*
+ Pass HA_MRR_SORTED to see if MRR implementation can handle sorting.
+ */
+ *mrr_flags|= HA_MRR_NO_ASSOCIATION | HA_MRR_SORTED;
+
+ // TODO: param->max_key_parts holds 0 now, and not the #keyparts used.
+ // Passing wrong second argument to index_flags() makes no difference for
+ // most storage engines but might be an issue for MyRocks with certain
+ // datatypes.
+ if (index_only &&
+ (file->index_flags(keynr, param->max_key_parts, 1) & HA_KEYREAD_ONLY) &&
+ !(file->index_flags(keynr, param->max_key_parts, 1) & HA_CLUSTERED_INDEX))
+ *mrr_flags |= HA_MRR_INDEX_ONLY;
+
+ if (param->thd->lex->sql_command != SQLCOM_SELECT)
+ *mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
+
+ *bufsize= param->thd->variables.mrr_buff_size;
+ /*
+ Skip materialized derived table/view result table from MRR check as
+ they aren't contain any data yet.
+ */
+ if (param->table->pos_in_table_list->is_non_derived())
+ rows= file->multi_range_read_info_const(keynr, &seq_if, (void*)&seq, 0,
+ bufsize, mrr_flags, cost);
+ param->quick_rows[keynr]= rows;
+ if (rows != HA_POS_ERROR)
+ {
+ ha_rows table_records= param->table->stat_records();
+ if (rows > table_records)
+ {
+ /*
+ For any index the total number of records within all ranges
+ cannot be be bigger than the number of records in the table.
+ This check is needed as sometimes that table statistics or range
+ estimates may be slightly out of sync.
+ */
+ rows= table_records;
+ set_if_bigger(rows, 1);
+ param->quick_rows[keynr]= rows;
+ }
+ param->possible_keys.set_bit(keynr);
+ if (update_tbl_stats)
+ {
+ param->table->opt_range_keys.set_bit(keynr);
+ param->table->opt_range[keynr].key_parts= param->max_key_parts;
+ param->table->opt_range[keynr].ranges= param->range_count;
+ param->table->opt_range_condition_rows=
+ MY_MIN(param->table->opt_range_condition_rows, rows);
+ param->table->opt_range[keynr].rows= rows;
+ param->table->opt_range[keynr].cost= cost->total_cost();
+ if (param->table->file->is_clustering_key(keynr))
+ param->table->opt_range[keynr].index_only_cost= 0;
+ else
+ param->table->opt_range[keynr].index_only_cost= cost->index_only_cost();
+ }
+ }
+
+ /* Figure out if the key scan is ROR (returns rows in ROWID order) or not */
+ enum ha_key_alg key_alg= param->table->key_info[seq.real_keyno].algorithm;
+ if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
+ {
+ /*
+ All scans are non-ROR scans for those index types.
+ TODO: Don't have this logic here, make table engines return
+ appropriate flags instead.
+ */
+ seq.is_ror_scan= FALSE;
+ }
+ else if (param->table->file->is_clustering_key(keynr))
+ {
+ /* Clustered PK scan is always a ROR scan (TODO: same as above) */
+ seq.is_ror_scan= TRUE;
+ }
+ else if (param->range_count > 1)
+ {
+ /*
+ Scaning multiple key values in the index: the records are ROR
+ for each value, but not between values. E.g, "SELECT ... x IN
+ (1,3)" returns ROR order for all records with x=1, then ROR
+ order for records with x=3
+ */
+ seq.is_ror_scan= FALSE;
+ }
+ *is_ror_scan= seq.is_ror_scan;
+
+ DBUG_PRINT("exit", ("Records: %lu", (ulong) rows));
+ DBUG_RETURN(rows); //psergey-merge:todo: maintain first_null_comp.
+}
+
+
+/*
+ Check if key scan on given index with equality conditions on first n key
+ parts is a ROR scan.
+
+ SYNOPSIS
+ is_key_scan_ror()
+ param Parameter from test_quick_select
+ keynr Number of key in the table. The key must not be a clustered
+ primary key.
+ nparts Number of first key parts for which equality conditions
+ are present.
+
+ NOTES
+ ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
+ ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
+
+ This function is needed to handle a practically-important special case:
+ an index scan is a ROR scan if it is done using a condition in form
+
+ "key1_1=c_1 AND ... AND key1_n=c_n"
+
+ where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])
+
+ and the table has a clustered Primary Key defined as
+ PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k)
+
+ i.e. the first key parts of it are identical to uncovered parts ot the
+ key being scanned. This function assumes that the index flags do not
+ include HA_KEY_SCAN_NOT_ROR flag (that is checked elsewhere).
+
+ Check (1) is made in quick_range_seq_next()
+
+ RETURN
+ TRUE The scan is ROR-scan
+ FALSE Otherwise
+*/
+
+static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
+{
+ KEY *table_key= param->table->key_info + keynr;
+ KEY_PART_INFO *key_part= table_key->key_part + nparts;
+ KEY_PART_INFO *key_part_end= (table_key->key_part +
+ table_key->user_defined_key_parts);
+ uint pk_number;
+
+ if (param->table->file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
+ return false;
+
+ for (KEY_PART_INFO *kp= table_key->key_part; kp < key_part; kp++)
+ {
+ field_index_t fieldnr= (param->table->key_info[keynr].
+ key_part[kp - table_key->key_part].fieldnr - 1);
+ if (param->table->field[fieldnr]->key_length() != kp->length)
+ return FALSE;
+ }
+
+ /*
+ If there are equalities for all key parts, it is a ROR scan. If there are
+ equalities all keyparts and even some of key parts from "Extended Key"
+ index suffix, it is a ROR-scan, too.
+ */
+ if (key_part >= key_part_end)
+ return TRUE;
+
+ key_part= table_key->key_part + nparts;
+ pk_number= param->table->s->primary_key;
+ if (!param->table->file->pk_is_clustering_key(pk_number))
+ return FALSE;
+
+ KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
+ KEY_PART_INFO *pk_part_end= pk_part +
+ param->table->key_info[pk_number].user_defined_key_parts;
+ for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
+ ++key_part, ++pk_part)
+ {
+ if ((key_part->field != pk_part->field) ||
+ (key_part->length != pk_part->length))
+ return FALSE;
+ }
+ return (key_part == key_part_end);
+}
+
+
+/*
+ Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
+
+ SYNOPSIS
+ get_quick_select()
+ param
+ idx Index of used key in param->key.
+ key_tree SEL_ARG tree for the used key
+ mrr_flags MRR parameter for quick select
+ mrr_buf_size MRR parameter for quick select
+ parent_alloc If not NULL, use it to allocate memory for
+ quick select data. Otherwise use quick->alloc.
+ NOTES
+ The caller must call QUICK_SELECT::init for returned quick select.
+
+ CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
+ deallocated when the returned quick select is deleted.
+
+ RETURN
+ NULL on error
+ otherwise created quick select
+*/
+
+QUICK_RANGE_SELECT *
+get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree, uint mrr_flags,
+ uint mrr_buf_size, MEM_ROOT *parent_alloc)
+{
+ QUICK_RANGE_SELECT *quick;
+ bool create_err= FALSE;
+ DBUG_ENTER("get_quick_select");
+
+ if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
+ quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
+ param->real_keynr[idx],
+ MY_TEST(parent_alloc),
+ parent_alloc, &create_err);
+ else
+ quick=new QUICK_RANGE_SELECT(param->thd, param->table,
+ param->real_keynr[idx],
+ MY_TEST(parent_alloc), NULL, &create_err);
+
+ if (quick)
+ {
+ if (create_err ||
+ get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
+ param->max_key,0))
+ {
+ delete quick;
+ quick=0;
+ }
+ else
+ {
+ KEY *keyinfo= param->table->key_info+param->real_keynr[idx];
+ quick->mrr_flags= mrr_flags;
+ quick->mrr_buf_size= mrr_buf_size;
+ quick->key_parts=(KEY_PART*)
+ memdup_root(parent_alloc? parent_alloc : &quick->alloc,
+ (char*) param->key[idx],
+ sizeof(KEY_PART)*
+ param->table->actual_n_key_parts(keyinfo));
+ }
+ }
+ DBUG_RETURN(quick);
+}
+
+
+void SEL_ARG::store_next_min_max_keys(KEY_PART *key,
+ uchar **cur_min_key, uint *cur_min_flag,
+ uchar **cur_max_key, uint *cur_max_flag,
+ int *min_part, int *max_part)
+{
+ DBUG_ASSERT(next_key_part);
+ const bool asc = !(key[next_key_part->part].flag & HA_REVERSE_SORT);
+
+ if (!get_min_flag(key))
+ {
+ if (asc)
+ {
+ *min_part += next_key_part->store_min_key(key, cur_min_key,
+ cur_min_flag, MAX_KEY, true);
+ }
+ else
+ {
+ uint tmp_flag = invert_min_flag(*cur_min_flag);
+ *min_part += next_key_part->store_max_key(key, cur_min_key, &tmp_flag,
+ MAX_KEY, true);
+ *cur_min_flag = invert_max_flag(tmp_flag);
+ }
+ }
+ if (!get_max_flag(key))
+ {
+ if (asc)
+ {
+ *max_part += next_key_part->store_max_key(key, cur_max_key,
+ cur_max_flag, MAX_KEY, false);
+ }
+ else
+ {
+ uint tmp_flag = invert_max_flag(*cur_max_flag);
+ *max_part += next_key_part->store_min_key(key, cur_max_key, &tmp_flag,
+ MAX_KEY, false);
+ *cur_max_flag = invert_min_flag(tmp_flag);
+ }
+ }
+}
+
+/*
+** Fix this to get all possible sub_ranges
+*/
+bool
+get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
+ SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
+ uchar *max_key, uint max_key_flag)
+{
+ QUICK_RANGE *range;
+ uint flag;
+ int min_part= key_tree->part-1, // # of keypart values in min_key buffer
+ max_part= key_tree->part-1; // # of keypart values in max_key buffer
+
+ const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
+ SEL_ARG *next_tree = asc ? key_tree->left : key_tree->right;
+ if (next_tree != &null_element)
+ {
+ if (get_quick_keys(param,quick,key,next_tree,
+ min_key,min_key_flag, max_key, max_key_flag))
+ return 1;
+ }
+ uchar *tmp_min_key=min_key,*tmp_max_key=max_key;
+
+ key_tree->store_min_max(key, key[key_tree->part].store_length,
+ &tmp_min_key, min_key_flag,
+ &tmp_max_key, max_key_flag,
+ &min_part, &max_part);
+
+ if (key_tree->next_key_part &&
+ key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
+ key_tree->next_key_part->part == key_tree->part+1)
+ { // const key as prefix
+ if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
+ memcmp(min_key, max_key, (uint)(tmp_max_key - max_key))==0 &&
+ key_tree->min_flag==0 && key_tree->max_flag==0)
+ {
+ // psergey-note: simplified the parameters below as follows:
+ // min_key_flag | key_tree->min_flag -> min_key_flag
+ // max_key_flag | key_tree->max_flag -> max_key_flag
+ if (get_quick_keys(param,quick,key,key_tree->next_key_part,
+ tmp_min_key, min_key_flag,
+ tmp_max_key, max_key_flag))
+ return 1;
+ goto end; // Ugly, but efficient
+ }
+ {
+ uint tmp_min_flag= key_tree->get_min_flag(key);
+ uint tmp_max_flag= key_tree->get_max_flag(key);
+
+ key_tree->store_next_min_max_keys(key,
+ &tmp_min_key, &tmp_min_flag,
+ &tmp_max_key, &tmp_max_flag,
+ &min_part, &max_part);
+ flag=tmp_min_flag | tmp_max_flag;
+ }
+ }
+ else
+ {
+ if (asc)
+ {
+ flag= (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag:
+ (key_tree->min_flag |
+ key_tree->max_flag);
+ }
+ else
+ {
+ // Invert flags for DESC keypart
+ flag= invert_min_flag(key_tree->min_flag) |
+ invert_max_flag(key_tree->max_flag);
+ }
+ }
+
+ /*
+ Ensure that some part of min_key and max_key are used. If not,
+ regard this as no lower/upper range
+ */
+ if ((flag & GEOM_FLAG) == 0)
+ {
+ if (tmp_min_key != param->min_key)
+ flag&= ~NO_MIN_RANGE;
+ else
+ flag|= NO_MIN_RANGE;
+ if (tmp_max_key != param->max_key)
+ flag&= ~NO_MAX_RANGE;
+ else
+ flag|= NO_MAX_RANGE;
+ }
+ if (flag == 0)
+ {
+ uint length= (uint) (tmp_min_key - param->min_key);
+ if (length == (uint) (tmp_max_key - param->max_key) &&
+ !memcmp(param->min_key,param->max_key,length))
+ {
+ KEY *table_key=quick->head->key_info+quick->index;
+ flag=EQ_RANGE;
+ if ((table_key->flags & HA_NOSAME) &&
+ min_part == key_tree->part &&
+ key_tree->part == table_key->user_defined_key_parts-1)
+ {
+ DBUG_ASSERT(min_part == max_part);
+ if ((table_key->flags & HA_NULL_PART_KEY) &&
+ null_part_in_key(key,
+ param->min_key,
+ (uint) (tmp_min_key - param->min_key)))
+ flag|= NULL_RANGE;
+ else
+ flag|= UNIQUE_RANGE;
+ }
+ }
+ }
+
+ /* Get range for retrieving rows in QUICK_SELECT::get_next */
+ if (!(range= new (param->thd->mem_root) QUICK_RANGE(
+ param->thd,
+ param->min_key,
+ (uint) (tmp_min_key - param->min_key),
+ min_part >=0 ? make_keypart_map(min_part) : 0,
+ param->max_key,
+ (uint) (tmp_max_key - param->max_key),
+ max_part >=0 ? make_keypart_map(max_part) : 0,
+ flag)))
+ return 1; // out of memory
+
+ set_if_bigger(quick->max_used_key_length, range->min_length);
+ set_if_bigger(quick->max_used_key_length, range->max_length);
+ set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
+ if (insert_dynamic(&quick->ranges, (uchar*) &range))
+ return 1;
+
+ end:
+ next_tree= asc ? key_tree->right : key_tree->left;
+ if (next_tree != &null_element)
+ return get_quick_keys(param,quick,key,next_tree,
+ min_key,min_key_flag,
+ max_key,max_key_flag);
+ return 0;
+}
+
+/*
+ Return 1 if there is only one range and this uses the whole unique key
+*/
+
+bool QUICK_RANGE_SELECT::unique_key_range()
+{
+ if (ranges.elements == 1)
+ {
+ QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
+ if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
+ {
+ KEY *key=head->key_info+index;
+ return (key->flags & HA_NOSAME) && key->key_length == tmp->min_length;
+ }
+ }
+ return 0;
+}
+
+
+
+/*
+ Return TRUE if any part of the key is NULL
+
+ SYNOPSIS
+ null_part_in_key()
+ key_part Array of key parts (index description)
+ key Key values tuple
+ length Length of key values tuple in bytes.
+
+ RETURN
+ TRUE The tuple has at least one "keypartX is NULL"
+ FALSE Otherwise
+*/
+
+static bool null_part_in_key(KEY_PART *key_part, const uchar *key, uint length)
+{
+ for (const uchar *end=key+length ;
+ key < end;
+ key+= key_part++->store_length)
+ {
+ if (key_part->null_bit && *key)
+ return 1;
+ }
+ return 0;
+}
+
+
+bool QUICK_SELECT_I::is_keys_used(const MY_BITMAP *fields)
+{
+ return is_key_used(head, index, fields);
+}
+
+bool QUICK_INDEX_SORT_SELECT::is_keys_used(const MY_BITMAP *fields)
+{
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (is_key_used(head, quick->index, fields))
+ return 1;
+ }
+ return 0;
+}
+
+bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(const MY_BITMAP *fields)
+{
+ QUICK_SELECT_WITH_RECORD *qr;
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+ while ((qr= it++))
+ {
+ if (is_key_used(head, qr->quick->index, fields))
+ return 1;
+ }
+ return 0;
+}
+
+bool QUICK_ROR_UNION_SELECT::is_keys_used(const MY_BITMAP *fields)
+{
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (quick->is_keys_used(fields))
+ return 1;
+ }
+ return 0;
+}
+
+
+FT_SELECT *get_ft_select(THD *thd, TABLE *table, uint key)
+{
+ bool create_err= FALSE;
+ FT_SELECT *fts= new FT_SELECT(thd, table, key, &create_err);
+ if (create_err)
+ {
+ delete fts;
+ return NULL;
+ }
+ else
+ return fts;
+}
+
+/*
+ Create quick select from ref/ref_or_null scan.
+
+ SYNOPSIS
+ get_quick_select_for_ref()
+ thd Thread handle
+ table Table to access
+ ref ref[_or_null] scan parameters
+ records Estimate of number of records (needed only to construct
+ quick select)
+ NOTES
+ This allocates things in a new memory root, as this may be called many
+ times during a query.
+
+ RETURN
+ Quick select that retrieves the same rows as passed ref scan
+ NULL on error.
+*/
+
+QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
+ TABLE_REF *ref, ha_rows records)
+{
+ MEM_ROOT *old_root, *alloc;
+ QUICK_RANGE_SELECT *quick;
+ KEY *key_info = &table->key_info[ref->key];
+ KEY_PART *key_part;
+ QUICK_RANGE *range;
+ uint part;
+ bool create_err= FALSE;
+ Cost_estimate cost;
+ uint max_used_key_len;
+
+ old_root= thd->mem_root;
+ /* The following call may change thd->mem_root */
+ quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0, 0, &create_err);
+ /* save mem_root set by QUICK_RANGE_SELECT constructor */
+ alloc= thd->mem_root;
+ /*
+ return back default mem_root (thd->mem_root) changed by
+ QUICK_RANGE_SELECT constructor
+ */
+ thd->mem_root= old_root;
+
+ if (!quick || create_err || quick->init())
+ goto err;
+ quick->records= records;
+
+ if ((cp_buffer_from_ref(thd, table, ref) &&
+ unlikely(thd->is_fatal_error)) ||
+ unlikely(!(range= new(alloc) QUICK_RANGE())))
+ goto err; // out of memory
+
+ range->min_key= range->max_key= ref->key_buff;
+ range->min_length= range->max_length= ref->key_length;
+ range->min_keypart_map= range->max_keypart_map=
+ make_prev_keypart_map(ref->key_parts);
+ range->flag= EQ_RANGE;
+
+ if (unlikely(!(quick->key_parts=key_part=(KEY_PART *)
+ alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts))))
+ goto err;
+
+ max_used_key_len=0;
+ for (part=0 ; part < ref->key_parts ;part++,key_part++)
+ {
+ key_part->part=part;
+ key_part->field= key_info->key_part[part].field;
+ key_part->length= key_info->key_part[part].length;
+ key_part->store_length= key_info->key_part[part].store_length;
+ key_part->null_bit= key_info->key_part[part].null_bit;
+ key_part->flag= (uint8) key_info->key_part[part].key_part_flag;
+
+ max_used_key_len +=key_info->key_part[part].store_length;
+ }
+
+ quick->max_used_key_length= max_used_key_len;
+
+ if (insert_dynamic(&quick->ranges,(uchar*)&range))
+ goto err;
+
+ /*
+ Add a NULL range if REF_OR_NULL optimization is used.
+ For example:
+ if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
+ and have ref->null_ref_key set. Will create a new NULL range here.
+ */
+ if (ref->null_ref_key)
+ {
+ QUICK_RANGE *null_range;
+
+ *ref->null_ref_key= 1; // Set null byte then create a range
+ if (!(null_range= new (alloc)
+ QUICK_RANGE(thd, ref->key_buff, ref->key_length,
+ make_prev_keypart_map(ref->key_parts),
+ ref->key_buff, ref->key_length,
+ make_prev_keypart_map(ref->key_parts), EQ_RANGE)))
+ goto err;
+ *ref->null_ref_key= 0; // Clear null byte
+ if (insert_dynamic(&quick->ranges,(uchar*)&null_range))
+ goto err;
+ }
+
+ /* Call multi_range_read_info() to get the MRR flags and buffer size */
+ quick->mrr_flags= HA_MRR_NO_ASSOCIATION |
+ (table->file->keyread_enabled() ? HA_MRR_INDEX_ONLY : 0);
+ if (thd->lex->sql_command != SQLCOM_SELECT)
+ quick->mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
+
+ quick->mrr_buf_size= thd->variables.mrr_buff_size;
+ if (table->file->multi_range_read_info(quick->index, 1, (uint)records,
+ ~0,
+ &quick->mrr_buf_size,
+ &quick->mrr_flags, &cost))
+ goto err;
+
+ return quick;
+err:
+ delete quick;
+ return 0;
+}
+
+
+/*
+ Perform key scans for all used indexes (except CPK), get rowids and merge
+ them into an ordered non-recurrent sequence of rowids.
+
+ The merge/duplicate removal is performed using Unique class. We put all
+ rowids into Unique, get the sorted sequence and destroy the Unique.
+
+ If table has a clustered primary key that covers all rows (TRUE for bdb
+ and innodb currently) and one of the index_merge scans is a scan on PK,
+ then rows that will be retrieved by PK scan are not put into Unique and
+ primary key scan is not performed here, it is performed later separately.
+
+ RETURN
+ 0 OK
+ other error
+*/
+
+int read_keys_and_merge_scans(THD *thd,
+ TABLE *head,
+ List<QUICK_RANGE_SELECT> quick_selects,
+ QUICK_RANGE_SELECT *pk_quick_select,
+ READ_RECORD *read_record,
+ bool intersection,
+ key_map *filtered_scans,
+ Unique **unique_ptr)
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
+ QUICK_RANGE_SELECT* cur_quick;
+ int result;
+ Unique *unique= *unique_ptr;
+ handler *file= head->file;
+ bool with_cpk_filter= pk_quick_select != NULL;
+ DBUG_ENTER("read_keys_and_merge");
+
+ /* We're going to just read rowids. */
+ head->prepare_for_position();
+
+ cur_quick_it.rewind();
+ cur_quick= cur_quick_it++;
+ bool first_quick= TRUE;
+ DBUG_ASSERT(cur_quick != 0);
+ head->file->ha_start_keyread(cur_quick->index);
+
+ /*
+ We reuse the same instance of handler so we need to call both init and
+ reset here.
+ */
+ if (cur_quick->init() || cur_quick->reset())
+ goto err;
+
+ if (unique == NULL)
+ {
+ DBUG_EXECUTE_IF("index_merge_may_not_create_a_Unique", DBUG_SUICIDE(); );
+ DBUG_EXECUTE_IF("only_one_Unique_may_be_created",
+ DBUG_SET("+d,index_merge_may_not_create_a_Unique"); );
+
+ unique= new Unique(refpos_order_cmp, (void *)file,
+ file->ref_length,
+ (size_t)thd->variables.sortbuff_size,
+ intersection ? quick_selects.elements : 0);
+ if (!unique)
+ goto err;
+ *unique_ptr= unique;
+ }
+ else
+ {
+ unique->reset();
+ }
+
+ DBUG_ASSERT(file->ref_length == unique->get_size());
+ DBUG_ASSERT(thd->variables.sortbuff_size == unique->get_max_in_memory_size());
+
+ for (;;)
+ {
+ while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
+ {
+ if (intersection)
+ with_cpk_filter= filtered_scans->is_set(cur_quick->index);
+ if (first_quick)
+ {
+ first_quick= FALSE;
+ if (intersection && unique->is_in_memory())
+ unique->close_for_expansion();
+ }
+ cur_quick->range_end();
+ cur_quick= cur_quick_it++;
+ if (!cur_quick)
+ break;
+
+ if (cur_quick->file->inited != handler::NONE)
+ cur_quick->file->ha_index_end();
+ if (cur_quick->init() || cur_quick->reset())
+ goto err;
+ }
+
+ if (result)
+ {
+ if (result != HA_ERR_END_OF_FILE)
+ {
+ cur_quick->range_end();
+ goto err;
+ }
+ break;
+ }
+
+ if (thd->killed)
+ goto err;
+
+ if (with_cpk_filter &&
+ pk_quick_select->row_in_ranges() != intersection )
+ continue;
+
+ cur_quick->file->position(cur_quick->record);
+ if (unique->unique_add((char*)cur_quick->file->ref))
+ goto err;
+ }
+
+ /*
+ Ok all rowids are in the Unique now. The next call will initialize
+ the unique structure so it can be used to iterate through the rowids
+ sequence.
+ */
+ result= unique->get(head);
+ /*
+ index merge currently doesn't support "using index" at all
+ */
+ head->file->ha_end_keyread();
+ if (init_read_record(read_record, thd, head, (SQL_SELECT*) 0,
+ &unique->sort, 1 , 1, TRUE))
+ result= 1;
+ DBUG_RETURN(result);
+
+err:
+ head->file->ha_end_keyread();
+ DBUG_RETURN(1);
+}
+
+
+int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
+
+{
+ int result;
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::read_keys_and_merge");
+ result= read_keys_and_merge_scans(thd, head, quick_selects, pk_quick_select,
+ &read_record, FALSE, NULL, &unique);
+ doing_pk_scan= FALSE;
+ DBUG_RETURN(result);
+}
+
+/*
+ Get next row for index_merge.
+ NOTES
+ The rows are read from
+ 1. rowids stored in Unique.
+ 2. QUICK_RANGE_SELECT with clustered primary key (if any).
+ The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
+*/
+
+int QUICK_INDEX_MERGE_SELECT::get_next()
+{
+ int result;
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
+
+ if (doing_pk_scan)
+ DBUG_RETURN(pk_quick_select->get_next());
+
+ if ((result= read_record.read_record()) == -1)
+ {
+ result= HA_ERR_END_OF_FILE;
+ end_read_record(&read_record);
+ // Free things used by sort early. Shouldn't be strictly necessary
+ unique->sort.reset();
+ /* All rows from Unique have been retrieved, do a clustered PK scan */
+ if (pk_quick_select)
+ {
+ doing_pk_scan= TRUE;
+ if ((result= pk_quick_select->init()) ||
+ (result= pk_quick_select->reset()))
+ DBUG_RETURN(result);
+ DBUG_RETURN(pk_quick_select->get_next());
+ }
+ }
+
+ DBUG_RETURN(result);
+}
+
+int QUICK_INDEX_INTERSECT_SELECT::read_keys_and_merge()
+
+{
+ int result;
+ DBUG_ENTER("QUICK_INDEX_INTERSECT_SELECT::read_keys_and_merge");
+ result= read_keys_and_merge_scans(thd, head, quick_selects, pk_quick_select,
+ &read_record, TRUE, &filtered_scans,
+ &unique);
+ DBUG_RETURN(result);
+}
+
+int QUICK_INDEX_INTERSECT_SELECT::get_next()
+{
+ int result;
+ DBUG_ENTER("QUICK_INDEX_INTERSECT_SELECT::get_next");
+
+ if ((result= read_record.read_record()) == -1)
+ {
+ result= HA_ERR_END_OF_FILE;
+ end_read_record(&read_record);
+ unique->sort.reset(); // Free things early
+ }
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve next record.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::get_next()
+
+ NOTES
+ Invariant on enter/exit: all intersected selects have retrieved all index
+ records with rowid <= some_rowid_val and no intersected select has
+ retrieved any index records with rowid > some_rowid_val.
+ We start fresh and loop until we have retrieved the same rowid in each of
+ the key scans or we got an error.
+
+ If a Clustered PK scan is present, it is used only to check if row
+ satisfies its condition (and never used for row retrieval).
+
+ Locking: to ensure that exclusive locks are only set on records that
+ are included in the final result we must release the lock
+ on all rows we read but do not include in the final result. This
+ must be done on each index that reads the record and the lock
+ must be released using the same handler (the same quick object) as
+ used when reading the record.
+
+ RETURN
+ 0 - Ok
+ other - Error code if any error occurred.
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::get_next()
+{
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> quick_it(quick_selects);
+ QUICK_SELECT_WITH_RECORD *qr;
+ QUICK_RANGE_SELECT* quick;
+
+ /* quick that reads the given rowid first. This is needed in order
+ to be able to unlock the row using the same handler object that locked
+ it */
+ QUICK_RANGE_SELECT* quick_with_last_rowid;
+
+ int error, cmp;
+ uint last_rowid_count=0;
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
+
+ /* Get a rowid for first quick and save it as a 'candidate' */
+ qr= quick_it++;
+ quick= qr->quick;
+ error= quick->get_next();
+ if (cpk_quick)
+ {
+ while (!error && !cpk_quick->row_in_ranges())
+ {
+ quick->file->unlock_row(); /* row not in range; unlock */
+ error= quick->get_next();
+ }
+ }
+ if (unlikely(error))
+ DBUG_RETURN(error);
+
+ /* Save the read key tuple */
+ key_copy(qr->key_tuple, record, head->key_info + quick->index,
+ quick->max_used_key_length);
+
+ quick->file->position(quick->record);
+ memcpy(last_rowid, quick->file->ref, head->file->ref_length);
+ last_rowid_count= 1;
+ quick_with_last_rowid= quick;
+
+ while (last_rowid_count < quick_selects.elements)
+ {
+ if (!(qr= quick_it++))
+ {
+ quick_it.rewind();
+ qr= quick_it++;
+ }
+ quick= qr->quick;
+
+ do
+ {
+ DBUG_EXECUTE_IF("innodb_quick_report_deadlock",
+ DBUG_SET("+d,innodb_report_deadlock"););
+ if (unlikely((error= quick->get_next())))
+ {
+ /* On certain errors like deadlock, trx might be rolled back.*/
+ if (!thd->transaction_rollback_request)
+ quick_with_last_rowid->file->unlock_row();
+ DBUG_RETURN(error);
+ }
+ quick->file->position(quick->record);
+ cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
+ if (cmp < 0)
+ {
+ /* This row is being skipped. Release lock on it. */
+ quick->file->unlock_row();
+ }
+ } while (cmp < 0);
+
+ key_copy(qr->key_tuple, record, head->key_info + quick->index,
+ quick->max_used_key_length);
+
+ /* Ok, current select 'caught up' and returned ref >= cur_ref */
+ if (cmp > 0)
+ {
+ /* Found a row with ref > cur_ref. Make it a new 'candidate' */
+ if (cpk_quick)
+ {
+ while (!cpk_quick->row_in_ranges())
+ {
+ quick->file->unlock_row(); /* row not in range; unlock */
+ if (unlikely((error= quick->get_next())))
+ {
+ /* On certain errors like deadlock, trx might be rolled back.*/
+ if (!thd->transaction_rollback_request)
+ quick_with_last_rowid->file->unlock_row();
+ DBUG_RETURN(error);
+ }
+ }
+ quick->file->position(quick->record);
+ }
+ memcpy(last_rowid, quick->file->ref, head->file->ref_length);
+ quick_with_last_rowid->file->unlock_row();
+ last_rowid_count= 1;
+ quick_with_last_rowid= quick;
+
+ //save the fields here
+ key_copy(qr->key_tuple, record, head->key_info + quick->index,
+ quick->max_used_key_length);
+ }
+ else
+ {
+ /* current 'candidate' row confirmed by this select */
+ last_rowid_count++;
+ }
+ }
+
+ /* We get here if we got the same row ref in all scans. */
+ if (need_to_fetch_row)
+ error= head->file->ha_rnd_pos(head->record[0], last_rowid);
+
+ if (!need_to_fetch_row)
+ {
+ /* Restore the columns we've read/saved with other quick selects */
+ quick_it.rewind();
+ while ((qr= quick_it++))
+ {
+ if (qr->quick != quick)
+ {
+ key_restore(record, qr->key_tuple, head->key_info + qr->quick->index,
+ qr->quick->max_used_key_length);
+ }
+ }
+ }
+
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Retrieve next record.
+ SYNOPSIS
+ QUICK_ROR_UNION_SELECT::get_next()
+
+ NOTES
+ Enter/exit invariant:
+ For each quick select in the queue a {key,rowid} tuple has been
+ retrieved but the corresponding row hasn't been passed to output.
+
+ RETURN
+ 0 - Ok
+ other - Error code if any error occurred.
+*/
+
+int QUICK_ROR_UNION_SELECT::get_next()
+{
+ int error, dup_row;
+ QUICK_SELECT_I *quick;
+ uchar *tmp;
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
+
+ do
+ {
+ if (!queue.elements)
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ /* Ok, we have a queue with >= 1 scans */
+
+ quick= (QUICK_SELECT_I*)queue_top(&queue);
+ memcpy(cur_rowid, quick->last_rowid, rowid_length);
+
+ /* put into queue rowid from the same stream as top element */
+ if ((error= quick->get_next()))
+ {
+ if (error != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(error);
+ queue_remove_top(&queue);
+ }
+ else
+ {
+ quick->save_last_pos();
+ queue_replace_top(&queue);
+ }
+
+ if (!have_prev_rowid)
+ {
+ /* No rows have been returned yet */
+ dup_row= FALSE;
+ have_prev_rowid= TRUE;
+ }
+ else
+ dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
+ } while (dup_row);
+
+ tmp= cur_rowid;
+ cur_rowid= prev_rowid;
+ prev_rowid= tmp;
+
+ error= head->file->ha_rnd_pos(quick->record, prev_rowid);
+ DBUG_RETURN(error);
+}
+
+
+int QUICK_RANGE_SELECT::reset()
+{
+ uint buf_size;
+ uchar *mrange_buff;
+ int error;
+ HANDLER_BUFFER empty_buf;
+ MY_BITMAP * const save_read_set= head->read_set;
+ MY_BITMAP * const save_write_set= head->write_set;
+ DBUG_ENTER("QUICK_RANGE_SELECT::reset");
+ last_range= NULL;
+ cur_range= (QUICK_RANGE**) ranges.buffer;
+ RANGE_SEQ_IF seq_funcs= {NULL, quick_range_seq_init, quick_range_seq_next, 0, 0};
+
+ if (file->inited == handler::RND)
+ {
+ /* Handler could be left in this state by MRR */
+ if (unlikely((error= file->ha_rnd_end())))
+ DBUG_RETURN(error);
+ }
+
+ if (in_ror_merged_scan)
+ head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
+
+ if (file->inited == handler::NONE)
+ {
+ DBUG_EXECUTE_IF("bug14365043_2",
+ DBUG_SET("+d,ha_index_init_fail"););
+ if (unlikely((error= file->ha_index_init(index,1))))
+ {
+ file->print_error(error, MYF(0));
+ goto err;
+ }
+ }
+
+ /* Allocate buffer if we need one but haven't allocated it yet */
+ if (mrr_buf_size && !mrr_buf_desc)
+ {
+ buf_size= mrr_buf_size;
+ while (buf_size && !my_multi_malloc(key_memory_QUICK_RANGE_SELECT_mrr_buf_desc,
+ MYF(MY_WME),
+ &mrr_buf_desc, sizeof(*mrr_buf_desc),
+ &mrange_buff, buf_size,
+ NullS))
+ {
+ /* Try to shrink the buffers until both are 0. */
+ buf_size/= 2;
+ }
+ if (!mrr_buf_desc)
+ {
+ error= HA_ERR_OUT_OF_MEM;
+ goto err;
+ }
+
+ /* Initialize the handler buffer. */
+ mrr_buf_desc->buffer= mrange_buff;
+ mrr_buf_desc->buffer_end= mrange_buff + buf_size;
+ mrr_buf_desc->end_of_used_area= mrange_buff;
+ }
+
+ if (!mrr_buf_desc)
+ empty_buf.buffer= empty_buf.buffer_end= empty_buf.end_of_used_area= NULL;
+
+ error= file->multi_range_read_init(&seq_funcs, (void*)this,
+ (uint)ranges.elements, mrr_flags,
+ mrr_buf_desc? mrr_buf_desc: &empty_buf);
+err:
+ /* Restore bitmaps set on entry */
+ if (in_ror_merged_scan)
+ head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Get next possible record using quick-struct.
+
+ SYNOPSIS
+ QUICK_RANGE_SELECT::get_next()
+
+ NOTES
+ Record is read into table->record[0]
+
+ RETURN
+ 0 Found row
+ HA_ERR_END_OF_FILE No (more) rows in range
+ # Error code
+*/
+
+int QUICK_RANGE_SELECT::get_next()
+{
+ range_id_t dummy;
+ int result;
+ DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
+
+ if (!in_ror_merged_scan)
+ DBUG_RETURN(file->multi_range_read_next(&dummy));
+
+ MY_BITMAP * const save_read_set= head->read_set;
+ MY_BITMAP * const save_write_set= head->write_set;
+ /*
+ We don't need to signal the bitmap change as the bitmap is always the
+ same for this head->file
+ */
+ head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
+ result= file->multi_range_read_next(&dummy);
+ head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Get the next record with a different prefix.
+
+ @param prefix_length length of cur_prefix
+ @param group_key_parts The number of key parts in the group prefix
+ @param cur_prefix prefix of a key to be searched for
+
+ Each subsequent call to the method retrieves the first record that has a
+ prefix with length prefix_length and which is different from cur_prefix,
+ such that the record with the new prefix is within the ranges described by
+ this->ranges. The record found is stored into the buffer pointed by
+ this->record. The method is useful for GROUP-BY queries with range
+ conditions to discover the prefix of the next group that satisfies the range
+ conditions.
+
+ @todo
+
+ This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
+ methods should be unified into a more general one to reduce code
+ duplication.
+
+ @retval 0 on success
+ @retval HA_ERR_END_OF_FILE if returned all keys
+ @retval other if some error occurred
+*/
+
+int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
+ uint group_key_parts,
+ uchar *cur_prefix)
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");
+ const key_part_map keypart_map= make_prev_keypart_map(group_key_parts);
+
+ for (;;)
+ {
+ int result;
+ if (last_range)
+ {
+ /* Read the next record in the same range with prefix after cur_prefix. */
+ DBUG_ASSERT(cur_prefix != NULL);
+ result= file->ha_index_read_map(record, cur_prefix, keypart_map,
+ HA_READ_AFTER_KEY);
+ if (result || last_range->max_keypart_map == 0) {
+ /*
+ Only return if actual failure occurred. For HA_ERR_KEY_NOT_FOUND
+ or HA_ERR_END_OF_FILE, we just want to continue to reach the next
+ set of ranges. It is possible for the storage engine to return
+ HA_ERR_KEY_NOT_FOUND/HA_ERR_END_OF_FILE even when there are more
+ keys if it respects the end range set by the read_range_first call
+ below.
+ */
+ if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ } else {
+ /*
+ For storage engines that don't respect end range, check if we've
+ moved past the current range.
+ */
+ key_range previous_endpoint;
+ last_range->make_max_endpoint(&previous_endpoint, prefix_length,
+ keypart_map);
+ if (file->compare_key(&previous_endpoint) <= 0)
+ DBUG_RETURN(0);
+ }
+ }
+
+ size_t count= ranges.elements - (size_t)(cur_range - (QUICK_RANGE**) ranges.buffer);
+ if (count == 0)
+ {
+ /* Ranges have already been used up before. None is left for read. */
+ last_range= 0;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ last_range= *(cur_range++);
+
+ key_range start_key, end_key;
+ last_range->make_min_endpoint(&start_key, prefix_length, keypart_map);
+ last_range->make_max_endpoint(&end_key, prefix_length, keypart_map);
+
+ result= file->read_range_first(last_range->min_keypart_map ? &start_key : 0,
+ last_range->max_keypart_map ? &end_key : 0,
+ MY_TEST(last_range->flag & EQ_RANGE),
+ TRUE);
+ if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
+ last_range= 0; // Stop searching
+
+ if (result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ last_range= 0; // No matching rows; go to next range
+ }
+}
+
+
+/* Get next for geometrical indexes */
+
+int QUICK_RANGE_SELECT_GEOM::get_next()
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
+
+ for (;;)
+ {
+ int result;
+ if (last_range)
+ {
+ // Already read through key
+ result= file->ha_index_next_same(record, last_range->min_key,
+ last_range->min_length);
+ if (result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ }
+
+ size_t count= ranges.elements - (size_t)(cur_range - (QUICK_RANGE**) ranges.buffer);
+ if (count == 0)
+ {
+ /* Ranges have already been used up before. None is left for read. */
+ last_range= 0;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ last_range= *(cur_range++);
+
+ result= file->ha_index_read_map(record, last_range->min_key,
+ last_range->min_keypart_map,
+ (ha_rkey_function)(last_range->flag ^
+ GEOM_FLAG));
+ if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ last_range= 0; // Not found, to next range
+ }
+}
+
+
+/*
+ Check if current row will be retrieved by this QUICK_RANGE_SELECT
+
+ NOTES
+ It is assumed that currently a scan is being done on another index
+ which reads all necessary parts of the index that is scanned by this
+ quick select.
+ The implementation does a binary search on sorted array of disjoint
+ ranges, without taking size of range into account.
+
+ This function is used to filter out clustered PK scan rows in
+ index_merge quick select.
+
+ RETURN
+ TRUE if current row will be retrieved by this quick select
+ FALSE if not
+*/
+
+bool QUICK_RANGE_SELECT::row_in_ranges()
+{
+ QUICK_RANGE *res;
+ size_t min= 0;
+ size_t max= ranges.elements - 1;
+ size_t mid= (max + min)/2;
+
+ while (min != max)
+ {
+ if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
+ {
+ /* current row value > mid->max */
+ min= mid + 1;
+ }
+ else
+ max= mid;
+ mid= (min + max) / 2;
+ }
+ res= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
+ return (!cmp_next(res) && !cmp_prev(res));
+}
+
+/*
+ This is a hack: we inherit from QUICK_RANGE_SELECT so that we can use the
+ get_next() interface, but we have to hold a pointer to the original
+ QUICK_RANGE_SELECT because its data are used all over the place. What
+ should be done is to factor out the data that is needed into a base
+ class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
+ which handle the ranges and implement the get_next() function. But
+ for now, this seems to work right at least.
+ */
+
+QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
+ uint used_key_parts_arg)
+ :QUICK_RANGE_SELECT(*q), rev_it(rev_ranges),
+ used_key_parts (used_key_parts_arg)
+{
+ QUICK_RANGE *r;
+ /*
+ Use default MRR implementation for reverse scans. No table engine
+ currently can do an MRR scan with output in reverse index order.
+ */
+ mrr_buf_desc= NULL;
+ mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
+ mrr_buf_size= 0;
+
+ QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
+ QUICK_RANGE **end_range= pr + ranges.elements;
+ for (; pr!=end_range; pr++)
+ rev_ranges.push_front(*pr);
+
+ /* Remove EQ_RANGE flag for keys that are not using the full key */
+ for (r = rev_it++; r; r = rev_it++)
+ {
+ if ((r->flag & EQ_RANGE) &&
+ head->key_info[index].key_length != r->max_length)
+ r->flag&= ~EQ_RANGE;
+ }
+ rev_it.rewind();
+ q->dont_free=1; // Don't free shared mem
+}
+
+
+int QUICK_SELECT_DESC::get_next()
+{
+ DBUG_ENTER("QUICK_SELECT_DESC::get_next");
+
+ /* The max key is handled as follows:
+ * - if there is NO_MAX_RANGE, start at the end and move backwards
+ * - if it is an EQ_RANGE, which means that max key covers the entire
+ * key, go directly to the key and read through it (sorting backwards is
+ * same as sorting forwards)
+ * - if it is NEAR_MAX, go to the key or next, step back once, and
+ * move backwards
+ * - otherwise (not NEAR_MAX == include the key), go after the key,
+ * step back once, and move backwards
+ */
+
+ for (;;)
+ {
+ int result;
+ if (last_range)
+ { // Already read through key
+ result = ((last_range->flag & EQ_RANGE &&
+ used_key_parts <= head->key_info[index].user_defined_key_parts) ?
+ file->ha_index_next_same(record, last_range->min_key,
+ last_range->min_length) :
+ file->ha_index_prev(record));
+ if (!result)
+ {
+ if (cmp_prev(*rev_it.ref()) == 0)
+ DBUG_RETURN(0);
+ }
+ else if (result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ }
+
+ if (!(last_range= rev_it++))
+ DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
+
+ key_range start_key;
+ start_key.key= (const uchar*) last_range->min_key;
+ start_key.length= last_range->min_length;
+ start_key.flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
+ (last_range->flag & EQ_RANGE) ?
+ HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
+ start_key.keypart_map= last_range->min_keypart_map;
+ key_range end_key;
+ end_key.key= (const uchar*) last_range->max_key;
+ end_key.length= last_range->max_length;
+ end_key.flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
+ HA_READ_AFTER_KEY);
+ end_key.keypart_map= last_range->max_keypart_map;
+ result= file->prepare_range_scan((last_range->flag & NO_MIN_RANGE) ? NULL : &start_key,
+ (last_range->flag & NO_MAX_RANGE) ? NULL : &end_key);
+ if (result)
+ {
+ DBUG_RETURN(result);
+ }
+
+ if (last_range->flag & NO_MAX_RANGE) // Read last record
+ {
+ int local_error;
+ if (unlikely((local_error= file->ha_index_last(record))))
+ DBUG_RETURN(local_error); // Empty table
+ if (cmp_prev(last_range) == 0)
+ DBUG_RETURN(0);
+ last_range= 0; // No match; go to next range
+ continue;
+ }
+
+ if (last_range->flag & EQ_RANGE &&
+ used_key_parts <= head->key_info[index].user_defined_key_parts)
+
+ {
+ result= file->ha_index_read_map(record, last_range->max_key,
+ last_range->max_keypart_map,
+ HA_READ_KEY_EXACT);
+ }
+ else
+ {
+ DBUG_ASSERT(last_range->flag & NEAR_MAX ||
+ (last_range->flag & EQ_RANGE &&
+ used_key_parts > head->key_info[index].user_defined_key_parts) ||
+ range_reads_after_key(last_range));
+ result= file->ha_index_read_map(record, last_range->max_key,
+ last_range->max_keypart_map,
+ ((last_range->flag & NEAR_MAX) ?
+ HA_READ_BEFORE_KEY :
+ HA_READ_PREFIX_LAST_OR_PREV));
+ }
+ if (result)
+ {
+ if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(result);
+ last_range= 0; // Not found, to next range
+ continue;
+ }
+ if (cmp_prev(last_range) == 0)
+ {
+ if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
+ last_range= 0; // Stop searching
+ DBUG_RETURN(0); // Found key is in range
+ }
+ last_range= 0; // To next range
+ }
+}
+
+
+/**
+ Create a compatible quick select with the result ordered in an opposite way
+
+ @param used_key_parts_arg Number of used key parts
+
+ @retval NULL in case of errors (OOM etc)
+ @retval pointer to a newly created QUICK_SELECT_DESC if success
+*/
+
+QUICK_SELECT_I *QUICK_RANGE_SELECT::make_reverse(uint used_key_parts_arg)
+{
+ QUICK_SELECT_DESC *new_quick= new QUICK_SELECT_DESC(this, used_key_parts_arg);
+ if (new_quick == NULL)
+ {
+ delete new_quick;
+ return NULL;
+ }
+ return new_quick;
+}
+
+
+/*
+ Compare if found key is over max-value
+ Returns 0 if key <= range->max_key
+ TODO: Figure out why can't this function be as simple as cmp_prev().
+*/
+
+int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
+{
+ if (range_arg->flag & NO_MAX_RANGE)
+ return 0; /* key can't be to large */
+
+ KEY_PART *key_part=key_parts;
+ uint store_length;
+
+ for (uchar *key=range_arg->max_key, *end=key+range_arg->max_length;
+ key < end;
+ key+= store_length, key_part++)
+ {
+ int cmp;
+ bool reverse= MY_TEST(key_part->flag & HA_REVERSE_SORT);
+ store_length= key_part->store_length;
+ if (key_part->null_bit)
+ {
+ if (*key)
+ {
+ if (!key_part->field->is_null())
+ return reverse ? 0 : 1;
+ continue;
+ }
+ else if (key_part->field->is_null())
+ return reverse ? 1 : 0;
+ key++; // Skip null byte
+ store_length--;
+ }
+ if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
+ return reverse ? 1 : 0;
+ if (cmp > 0)
+ return reverse ? 0 : 1;
+ }
+ return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
+}
+
+
+/*
+ Returns 0 if found key is inside range (found key >= range->min_key).
+*/
+
+int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
+{
+ int cmp;
+ if (range_arg->flag & NO_MIN_RANGE)
+ return 0; /* key can't be to small */
+
+ cmp= key_cmp(key_part_info, range_arg->min_key,
+ range_arg->min_length);
+ if (cmp > 0 || (cmp == 0 && !(range_arg->flag & NEAR_MIN)))
+ return 0;
+ return 1; // outside of range
+}
+
+
+/*
+ * TRUE if this range will require using HA_READ_AFTER_KEY
+ See comment in get_next() about this
+ */
+
+bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
+{
+ return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
+ !(range_arg->flag & EQ_RANGE) ||
+ head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
+}
+
+
+void QUICK_SELECT_I::add_key_name(String *str, bool *first)
+{
+ KEY *key_info= head->key_info + index;
+
+ if (*first)
+ *first= FALSE;
+ else
+ str->append(',');
+ str->append(&key_info->name);
+}
+
+
+Explain_quick_select* QUICK_RANGE_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ if ((res= new (local_alloc) Explain_quick_select(QS_TYPE_RANGE)))
+ res->range.set(local_alloc, &head->key_info[index], max_used_key_length);
+ return res;
+}
+
+
+Explain_quick_select*
+QUICK_GROUP_MIN_MAX_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ if ((res= new (local_alloc) Explain_quick_select(QS_TYPE_GROUP_MIN_MAX)))
+ res->range.set(local_alloc, &head->key_info[index], max_used_key_length);
+ return res;
+}
+
+
+Explain_quick_select*
+QUICK_INDEX_SORT_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ if (!(res= new (local_alloc) Explain_quick_select(get_type())))
+ return NULL;
+
+ QUICK_RANGE_SELECT *quick;
+ Explain_quick_select *child_explain;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if ((child_explain= quick->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+
+ if (pk_quick_select)
+ {
+ if ((child_explain= pk_quick_select->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+ return res;
+}
+
+
+/*
+ Same as QUICK_INDEX_SORT_SELECT::get_explain(), but primary key is printed
+ first
+*/
+
+Explain_quick_select*
+QUICK_INDEX_INTERSECT_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ Explain_quick_select *child_explain;
+
+ if (!(res= new (local_alloc) Explain_quick_select(get_type())))
+ return NULL;
+
+ if (pk_quick_select)
+ {
+ if ((child_explain= pk_quick_select->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if ((child_explain= quick->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+ return res;
+}
+
+
+Explain_quick_select*
+QUICK_ROR_INTERSECT_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ Explain_quick_select *child_explain;
+
+ if (!(res= new (local_alloc) Explain_quick_select(get_type())))
+ return NULL;
+
+ QUICK_SELECT_WITH_RECORD *qr;
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+ while ((qr= it++))
+ {
+ if ((child_explain= qr->quick->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+
+ if (cpk_quick)
+ {
+ if ((child_explain= cpk_quick->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+ return res;
+}
+
+
+Explain_quick_select*
+QUICK_ROR_UNION_SELECT::get_explain(MEM_ROOT *local_alloc)
+{
+ Explain_quick_select *res;
+ Explain_quick_select *child_explain;
+
+ if (!(res= new (local_alloc) Explain_quick_select(get_type())))
+ return NULL;
+
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if ((child_explain= quick->get_explain(local_alloc)))
+ res->children.push_back(child_explain);
+ else
+ return NULL;
+ }
+
+ return res;
+}
+
+
+void QUICK_SELECT_I::add_key_and_length(String *key_names,
+ String *used_lengths,
+ bool *first)
+{
+ char buf[64];
+ size_t length;
+ KEY *key_info= head->key_info + index;
+
+ if (*first)
+ *first= FALSE;
+ else
+ {
+ key_names->append(',');
+ used_lengths->append(',');
+ }
+ key_names->append(&key_info->name);
+ length= longlong10_to_str(max_used_key_length, buf, 10) - buf;
+ used_lengths->append(buf, length);
+}
+
+
+void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ bool first= TRUE;
+
+ add_key_and_length(key_names, used_lengths, &first);
+}
+
+void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ QUICK_RANGE_SELECT *quick;
+ bool first= TRUE;
+
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+
+ while ((quick= it++))
+ {
+ quick->add_key_and_length(key_names, used_lengths, &first);
+ }
+
+ if (pk_quick_select)
+ pk_quick_select->add_key_and_length(key_names, used_lengths, &first);
+}
+
+
+void QUICK_INDEX_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ QUICK_RANGE_SELECT *quick;
+ bool first= TRUE;
+
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+
+ if (pk_quick_select)
+ pk_quick_select->add_key_and_length(key_names, used_lengths, &first);
+
+ while ((quick= it++))
+ {
+ quick->add_key_and_length(key_names, used_lengths, &first);
+ }
+}
+
+void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ QUICK_SELECT_WITH_RECORD *qr;
+ bool first= TRUE;
+
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+
+ while ((qr= it++))
+ {
+ qr->quick->add_key_and_length(key_names, used_lengths, &first);
+ }
+ if (cpk_quick)
+ cpk_quick->add_key_and_length(key_names, used_lengths, &first);
+}
+
+void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ QUICK_SELECT_I *quick;
+ bool first= TRUE;
+
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+
+ while ((quick= it++))
+ {
+ if (first)
+ first= FALSE;
+ else
+ {
+ used_lengths->append(',');
+ key_names->append(',');
+ }
+ quick->add_keys_and_lengths(key_names, used_lengths);
+ }
+}
+
+
+void QUICK_RANGE_SELECT::add_used_key_part_to_set()
+{
+ uint key_len;
+ KEY_PART *part= key_parts;
+ for (key_len=0; key_len < max_used_key_length;
+ key_len += (part++)->store_length)
+ {
+ /*
+ We have to use field_index instead of part->field
+ as for partial fields, part->field points to
+ a temporary field that is only part of the original
+ field. field_index always points to the original field
+ */
+ Field *field= head->field[part->field->field_index];
+ field->register_field_in_read_map();
+ }
+}
+
+
+void QUICK_GROUP_MIN_MAX_SELECT::add_used_key_part_to_set()
+{
+ uint key_len;
+ KEY_PART_INFO *part= index_info->key_part;
+ for (key_len=0; key_len < max_used_key_length;
+ key_len += (part++)->store_length)
+ {
+ /*
+ We have to use field_index instead of part->field
+ as for partial fields, part->field points to
+ a temporary field that is only part of the original
+ field. field_index always points to the original field
+ */
+ Field *field= head->field[part->field->field_index];
+ field->register_field_in_read_map();
+ }
+}
+
+
+void QUICK_ROR_INTERSECT_SELECT::add_used_key_part_to_set()
+{
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+ QUICK_SELECT_WITH_RECORD *quick;
+ while ((quick= it++))
+ {
+ quick->quick->add_used_key_part_to_set();
+ }
+}
+
+
+void QUICK_INDEX_SORT_SELECT::add_used_key_part_to_set()
+{
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ quick->add_used_key_part_to_set();
+ }
+ if (pk_quick_select)
+ pk_quick_select->add_used_key_part_to_set();
+}
+
+
+void QUICK_ROR_UNION_SELECT::add_used_key_part_to_set()
+{
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+
+ while ((quick= it++))
+ {
+ quick->add_used_key_part_to_set();
+ }
+}
+
+
+/*******************************************************************************
+* Implementation of QUICK_GROUP_MIN_MAX_SELECT
+*******************************************************************************/
+
+static inline uint get_field_keypart(KEY *index, Field *field);
+static bool get_sel_arg_for_keypart(Field *field, SEL_ARG *index_range_tree,
+ SEL_ARG **cur_range);
+static bool get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
+ KEY_PART_INFO *first_non_group_part,
+ KEY_PART_INFO *min_max_arg_part,
+ KEY_PART_INFO *last_part, THD *thd,
+ uchar *key_infix, uint *key_infix_len,
+ KEY_PART_INFO **first_non_infix_part);
+static bool
+check_group_min_max_predicates(Item *cond, Item_field *min_max_arg_item,
+ Field::imagetype image_type,
+ bool *has_min_max_fld, bool *has_other_fld);
+
+static void
+cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
+ uint group_key_parts, SEL_TREE *range_tree,
+ SEL_ARG *index_tree, ha_rows quick_prefix_records,
+ bool have_min, bool have_max,
+ double *read_cost, ha_rows *records);
+
+
+/**
+ Test if this access method is applicable to a GROUP query with MIN/MAX
+ functions, and if so, construct a new TRP object.
+
+ DESCRIPTION
+ Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
+ Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
+ following conditions:
+ A) Table T has at least one compound index I of the form:
+ I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
+ B) Query conditions:
+ B0. Q is over a single table T.
+ B1. The attributes referenced by Q are a subset of the attributes of I.
+ B2. All attributes QA in Q can be divided into 3 overlapping groups:
+ - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
+ referenced by any number of MIN and/or MAX functions if present.
+ - WA = {W_1, ..., W_p} - from the WHERE clause
+ - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
+ = SA - if Q is a DISTINCT query (based on the
+ equivalence of DISTINCT and GROUP queries.
+ - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
+ GROUP BY and not referenced by MIN/MAX functions.
+ with the following properties specified below.
+ B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not
+ applicable.
+
+ SA1. There is at most one attribute in SA referenced by any number of
+ MIN and/or MAX functions which, which if present, is denoted as C.
+ SA2. The position of the C attribute in the index is after the last A_k.
+ SA3. The attribute C can be referenced in the WHERE clause only in
+ predicates of the forms:
+ - (C {< | <= | > | >= | =} const)
+ - (const {< | <= | > | >= | =} C)
+ - (C between const_i and const_j)
+ - C IS NULL
+ - C IS NOT NULL
+ - C != const (unless C is the primary key)
+ SA4. If Q has a GROUP BY clause, there are no other aggregate functions
+ except MIN and MAX. For queries with DISTINCT, aggregate functions
+ are allowed.
+ SA5. The select list in DISTINCT queries should not contain expressions.
+ SA6. Clustered index can not be used by GROUP_MIN_MAX quick select
+ for AGG_FUNC(DISTINCT ...) optimization because cursor position is
+ never stored after a unique key lookup in the clustered index and
+ furhter index_next/prev calls can not be used. So loose index scan
+ optimization can not be used in this case.
+ SA7. If Q has both AGG_FUNC(DISTINCT ...) and MIN/MAX() functions then this
+ access method is not used.
+ For above queries MIN/MAX() aggregation has to be done at
+ nested_loops_join (end_send_group). But with current design MIN/MAX()
+ is always set as part of loose index scan. Because of this mismatch
+ MIN() and MAX() values will be set incorrectly. For such queries to
+ work we need a new interface for loose index scan. This new interface
+ should only fetch records with min and max values and let
+ end_send_group to do aggregation. Until then do not use
+ loose_index_scan.
+ GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
+ G_i = A_j => i = j.
+ GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
+ forms a prefix of I. This permutation is used as the GROUP clause
+ when the DISTINCT query is converted to a GROUP query.
+ GA3. The attributes in GA may participate in arbitrary predicates, divided
+ into two groups:
+ - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
+ attributes of a prefix of GA
+ - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
+ of GA. Since P is applied to only GROUP attributes it filters some
+ groups, and thus can be applied after the grouping.
+ GA4. There are no expressions among G_i, just direct column references.
+ NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
+ and the MIN/MAX attribute C, then NGA must consist of exactly the
+ index attributes that constitute the gap. As a result there is a
+ permutation of NGA, BA=<B_1,...,B_m>, that coincides with the gap
+ in the index.
+ NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
+ equality conditions for all NG_i of the form (NG_i = const) or
+ (const = NG_i), such that each NG_i is referenced in exactly one
+ conjunct. Informally, the predicates provide constants to fill the
+ gap in the index.
+ NGA3.If BA <> {}, there can only be one range. TODO: This is a code
+ limitation and is not strictly needed. See BUG#15947433
+ WA1. There are no other attributes in the WHERE clause except the ones
+ referenced in predicates RNG, PA, PC, EQ defined above. Therefore
+ WA is subset of (GA union NGA union C) for GA,NGA,C that pass the
+ above tests. By transitivity then it also follows that each WA_i
+ participates in the index I (if this was already tested for GA, NGA
+ and C).
+ WA2. If there is a predicate on C, then it must be in conjunction
+ to all predicates on all earlier keyparts in I.
+
+ C) Overall query form:
+ SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
+ FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND EQ(B_1,...,B_m)]
+ [AND PC(C)]
+ [AND PA(A_i1,...,A_iq)]
+ GROUP BY A_1,...,A_k
+ [HAVING PH(A_1, ..., B_1,..., C)]
+ where EXPR(...) is an arbitrary expression over some or all SELECT fields,
+ or:
+ SELECT DISTINCT A_i1,...,A_ik
+ FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND PA(A_i1,...,A_iq)];
+
+ NOTES
+ If the current query satisfies the conditions above, and if
+ (mem_root! = NULL), then the function constructs and returns a new TRP
+ object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
+ If (mem_root == NULL), then the function only tests whether the current
+ query satisfies the conditions above, and, if so, sets
+ is_applicable = TRUE.
+
+ Queries with DISTINCT for which index access can be used are transformed
+ into equivalent group-by queries of the form:
+
+ SELECT A_1,...,A_k FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND PA(A_i1,...,A_iq)]
+ GROUP BY A_1,...,A_k;
+
+ The group-by list is a permutation of the select attributes, according
+ to their order in the index.
+
+ TODO
+ - What happens if the query groups by the MIN/MAX field, and there is no
+ other field as in: "select MY_MIN(a) from t1 group by a" ?
+ - We assume that the general correctness of the GROUP-BY query was checked
+ before this point. Is this correct, or do we have to check it completely?
+ - Lift the limitation in condition (B3), that is, make this access method
+ applicable to ROLLUP queries.
+
+ @param param Parameter from test_quick_select
+ @param sel_tree Range tree generated by get_mm_tree
+ @param read_time Best read time so far of table or index scan time
+ @return table read plan
+ @retval NULL Loose index scan not applicable or mem_root == NULL
+ @retval !NULL Loose index scan table read plan
+*/
+
+static TRP_GROUP_MIN_MAX *
+get_best_group_min_max(PARAM *param, SEL_TREE *tree, double read_time)
+{
+ THD *thd= param->thd;
+ JOIN *join= thd->lex->current_select->join;
+ TABLE *table= param->table;
+ bool have_min= FALSE; /* TRUE if there is a MIN function. */
+ bool have_max= FALSE; /* TRUE if there is a MAX function. */
+ Item_field *min_max_arg_item= NULL; // The argument of all MIN/MAX functions
+ KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
+ uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
+ KEY *index_info= NULL; /* The index chosen for data access. */
+ uint index= 0; /* The id of the chosen index. */
+ uint group_key_parts= 0; // Number of index key parts in the group prefix.
+ uint used_key_parts= 0; /* Number of index key parts used for access. */
+ uchar key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
+ uint key_infix_len= 0; /* Length of key_infix. */
+ TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
+ uint key_part_nr;
+ uint elements_in_group;
+ ORDER *tmp_group;
+ Item *item;
+ Item_field *item_field;
+ bool is_agg_distinct;
+ List<Item_field> agg_distinct_flds;
+ DBUG_ENTER("get_best_group_min_max");
+
+ Json_writer_object trace_group(thd, "group_index_range");
+ const char* cause= NULL;
+
+ /* Perform few 'cheap' tests whether this access method is applicable. */
+ if (!join) /* This is not a select statement. */
+ cause= "no join";
+ else if (join->table_count != 1) /* The query must reference one table. */
+ cause= "not single_table";
+ else if (join->select_lex->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
+ cause= "rollup";
+ else if (table->s->keys == 0) /* There are no indexes to use. */
+ cause= "no index";
+ else if (join->conds && join->conds->used_tables()
+ & OUTER_REF_TABLE_BIT) /* Cannot execute with correlated conditions. */
+ cause= "correlated conditions";
+
+ if (cause)
+ {
+ trace_group.add("chosen", false).add("cause", cause);
+ DBUG_RETURN(NULL);
+ }
+
+ is_agg_distinct = is_indexed_agg_distinct(join, &agg_distinct_flds);
+
+ if ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
+ (!join->select_distinct) &&
+ !is_agg_distinct)
+ {
+ trace_group.add("chosen", false).add("cause","no group by or distinct");
+ DBUG_RETURN(NULL);
+ }
+ /* Analyze the query in more detail. */
+
+ /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
+ List_iterator<Item> select_items_it(join->fields_list);
+
+ if (join->sum_funcs[0])
+ {
+ Item_sum *min_max_item;
+ Item_sum **func_ptr= join->sum_funcs;
+ while ((min_max_item= *(func_ptr++)))
+ {
+ if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
+ have_min= TRUE;
+ else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
+ have_max= TRUE;
+ else if (is_agg_distinct &&
+ (min_max_item->sum_func() == Item_sum::COUNT_DISTINCT_FUNC ||
+ min_max_item->sum_func() == Item_sum::SUM_DISTINCT_FUNC ||
+ min_max_item->sum_func() == Item_sum::AVG_DISTINCT_FUNC))
+ continue;
+ else
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "not applicable aggregate function");
+ DBUG_RETURN(NULL);
+ }
+
+ /* The argument of MIN/MAX. */
+ Item *expr= min_max_item->get_arg(0)->real_item();
+ if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
+ {
+ if (! min_max_arg_item)
+ min_max_arg_item= (Item_field*) expr;
+ else if (! min_max_arg_item->eq(expr, 1))
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "arguments different in min max function");
+ DBUG_RETURN(NULL);
+ }
+ }
+ else
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "no field item in min max function");
+ DBUG_RETURN(NULL);
+ }
+ }
+ }
+
+ /* Check (SA7). */
+ if (is_agg_distinct && (have_max || have_min))
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "have both agg distinct and min max");
+ DBUG_RETURN(NULL);
+ }
+
+ /* Check (SA5). */
+ if (join->select_distinct)
+ {
+ trace_group.add("distinct_query", true);
+ while ((item= select_items_it++))
+ {
+ if (item->real_item()->type() != Item::FIELD_ITEM)
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "distinct field is expression");
+ DBUG_RETURN(NULL);
+ }
+ }
+ }
+
+ /* Check (GA4) - that there are no expressions among the group attributes. */
+ elements_in_group= 0;
+ for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
+ {
+ if ((*tmp_group->item)->real_item()->type() != Item::FIELD_ITEM)
+ {
+ trace_group.add("chosen", false)
+ .add("cause", "group field is expression");
+ DBUG_RETURN(NULL);
+ }
+ elements_in_group++;
+ }
+
+ /*
+ Check that table has at least one compound index such that the conditions
+ (GA1,GA2) are all TRUE. If there is more than one such index, select the
+ first one. Here we set the variables: group_prefix_len and index_info.
+ */
+ /* Cost-related variables for the best index so far. */
+ double best_read_cost= DBL_MAX;
+ ha_rows best_records= 0;
+ SEL_ARG *best_index_tree= NULL;
+ ha_rows best_quick_prefix_records= 0;
+ uint best_param_idx= 0;
+
+ const uint pk= param->table->s->primary_key;
+ uint max_key_part;
+ SEL_ARG *cur_index_tree= NULL;
+ ha_rows cur_quick_prefix_records= 0;
+
+ // We go through allowed indexes
+ Json_writer_array trace_indexes(thd, "potential_group_range_indexes");
+
+ for (uint cur_param_idx= 0; cur_param_idx < param->keys ; ++cur_param_idx)
+ {
+ const uint cur_index= param->real_keynr[cur_param_idx];
+ KEY *const cur_index_info= &table->key_info[cur_index];
+
+ Json_writer_object trace_idx(thd);
+ trace_idx.add("index", cur_index_info->name);
+
+ KEY_PART_INFO *cur_part;
+ KEY_PART_INFO *end_part; /* Last part for loops. */
+ /* Last index part. */
+ KEY_PART_INFO *last_part;
+ KEY_PART_INFO *first_non_group_part;
+ KEY_PART_INFO *first_non_infix_part;
+ uint key_parts;
+ uint key_infix_parts;
+ uint cur_group_key_parts= 0;
+ uint cur_group_prefix_len= 0;
+ double cur_read_cost;
+ ha_rows cur_records;
+ key_map used_key_parts_map;
+ uint cur_key_infix_len= 0;
+ uchar cur_key_infix[MAX_KEY_LENGTH];
+ uint cur_used_key_parts;
+
+ /*
+ Check (B1) - if current index is covering.
+ (was also: "Exclude UNIQUE indexes ..." but this was removed because
+ there are cases Loose Scan over a multi-part index is useful).
+ */
+ if (!table->covering_keys.is_set(cur_index) ||
+ !table->keys_in_use_for_group_by.is_set(cur_index))
+ {
+ cause= "not covering";
+ goto next_index;
+ }
+
+ {
+ for (uint i= 0; i < table->actual_n_key_parts(cur_index_info); i++)
+ {
+ if (cur_index_info->key_part[i].key_part_flag & HA_REVERSE_SORT)
+ {
+ cause="Reverse-ordered (not supported yet)";
+ goto next_index;
+ }
+ }
+ }
+
+ /*
+ This function is called on the precondition that the index is covering.
+ Therefore if the GROUP BY list contains more elements than the index,
+ these are duplicates. The GROUP BY list cannot be a prefix of the index.
+ */
+ if (elements_in_group > table->actual_n_key_parts(cur_index_info))
+ {
+ cause= "group key parts greater than index key parts";
+ goto next_index;
+ }
+
+ /*
+ Unless extended keys can be used for cur_index:
+ If the current storage manager is such that it appends the primary key to
+ each index, then the above condition is insufficient to check if the
+ index is covering. In such cases it may happen that some fields are
+ covered by the PK index, but not by the current index. Since we can't
+ use the concatenation of both indexes for index lookup, such an index
+ does not qualify as covering in our case. If this is the case, below
+ we check that all query fields are indeed covered by 'cur_index'.
+ */
+ if (cur_index_info->user_defined_key_parts == table->actual_n_key_parts(cur_index_info)
+ && pk < MAX_KEY && cur_index != pk &&
+ (table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
+ {
+ /* For each table field */
+ for (uint i= 0; i < table->s->fields; i++)
+ {
+ Field *cur_field= table->field[i];
+ /*
+ If the field is used in the current query ensure that it's
+ part of 'cur_index'
+ */
+ if (bitmap_is_set(table->read_set, cur_field->field_index) &&
+ !cur_field->part_of_key_not_clustered.is_set(cur_index))
+ {
+ cause= "not covering";
+ goto next_index; // Field was not part of key
+ }
+ }
+ }
+
+ trace_idx.add("covering", true);
+
+ max_key_part= 0;
+ used_key_parts_map.clear_all();
+
+ /*
+ Check (GA1) for GROUP BY queries.
+ */
+ if (join->group_list)
+ {
+ cur_part= cur_index_info->key_part;
+ end_part= cur_part + table->actual_n_key_parts(cur_index_info);
+ /* Iterate in parallel over the GROUP list and the index parts. */
+ for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
+ tmp_group= tmp_group->next, cur_part++)
+ {
+ /*
+ TODO:
+ tmp_group::item is an array of Item, is it OK to consider only the
+ first Item? If so, then why? What is the array for?
+ */
+ /* Above we already checked that all group items are fields. */
+ DBUG_ASSERT((*tmp_group->item)->real_item()->type() == Item::FIELD_ITEM);
+ Item_field *group_field= (Item_field *) (*tmp_group->item)->real_item();
+ if (group_field->field->eq(cur_part->field))
+ {
+ cur_group_prefix_len+= cur_part->store_length;
+ ++cur_group_key_parts;
+ max_key_part= (uint)(cur_part - cur_index_info->key_part) + 1;
+ used_key_parts_map.set_bit(max_key_part);
+ }
+ else
+ {
+ cause= "group attribute not prefix in index";
+ goto next_index;
+ }
+ }
+ }
+ /*
+ Check (GA2) if this is a DISTINCT query.
+ If GA2, then Store a new ORDER object in group_fields_array at the
+ position of the key part of item_field->field. Thus we get the ORDER
+ objects for each field ordered as the corresponding key parts.
+ Later group_fields_array of ORDER objects is used to convert the query
+ to a GROUP query.
+ */
+ if ((!join->group && join->select_distinct) ||
+ is_agg_distinct)
+ {
+ if (!is_agg_distinct)
+ {
+ select_items_it.rewind();
+ }
+
+ List_iterator<Item_field> agg_distinct_flds_it (agg_distinct_flds);
+ while (NULL != (item = (is_agg_distinct ?
+ (Item *) agg_distinct_flds_it++ : select_items_it++)))
+ {
+ /* (SA5) already checked above. */
+ item_field= (Item_field*) item->real_item();
+ DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
+
+ /* not doing loose index scan for derived tables */
+ if (!item_field->field)
+ {
+ cause= "derived table";
+ goto next_index;
+ }
+
+ /* Find the order of the key part in the index. */
+ key_part_nr= get_field_keypart(cur_index_info, item_field->field);
+ /*
+ Check if this attribute was already present in the select list.
+ If it was present, then its corresponding key part was alredy used.
+ */
+ if (used_key_parts_map.is_set(key_part_nr))
+ continue;
+ if (key_part_nr < 1 ||
+ (!is_agg_distinct && key_part_nr > join->fields_list.elements))
+ {
+ cause= "select attribute not prefix in index";
+ goto next_index;
+ }
+ cur_part= cur_index_info->key_part + key_part_nr - 1;
+ cur_group_prefix_len+= cur_part->store_length;
+ used_key_parts_map.set_bit(key_part_nr);
+ ++cur_group_key_parts;
+ max_key_part= MY_MAX(max_key_part,key_part_nr);
+ }
+ /*
+ Check that used key parts forms a prefix of the index.
+ To check this we compare bits in all_parts and cur_parts.
+ all_parts have all bits set from 0 to (max_key_part-1).
+ cur_parts have bits set for only used keyparts.
+ */
+ ulonglong all_parts, cur_parts;
+ all_parts= (1ULL << max_key_part) - 1;
+ cur_parts= used_key_parts_map.to_ulonglong() >> 1;
+ if (all_parts != cur_parts)
+ goto next_index;
+ }
+
+ /* Check (SA2). */
+ if (min_max_arg_item)
+ {
+ key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
+ if (key_part_nr <= cur_group_key_parts)
+ {
+ cause= "aggregate column not suffix in idx";
+ goto next_index;
+ }
+ min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
+ }
+
+ /*
+ Aplly a heuristic: there is no point to use loose index scan when we're
+ using the whole unique index.
+ */
+ if (cur_index_info->flags & HA_NOSAME &&
+ cur_group_key_parts == cur_index_info->user_defined_key_parts)
+ {
+ cause= "using unique index";
+ goto next_index;
+ }
+
+ /*
+ Check (NGA1, NGA2) and extract a sequence of constants to be used as part
+ of all search keys.
+ */
+
+ /*
+ If there is MIN/MAX, each keypart between the last group part and the
+ MIN/MAX part must participate in one equality with constants, and all
+ keyparts after the MIN/MAX part must not be referenced in the query.
+
+ If there is no MIN/MAX, the keyparts after the last group part can be
+ referenced only in equalities with constants, and the referenced keyparts
+ must form a sequence without any gaps that starts immediately after the
+ last group keypart.
+ */
+ key_parts= table->actual_n_key_parts(cur_index_info);
+ last_part= cur_index_info->key_part + key_parts;
+ first_non_group_part= (cur_group_key_parts < key_parts) ?
+ cur_index_info->key_part + cur_group_key_parts :
+ NULL;
+ first_non_infix_part= min_max_arg_part ?
+ (min_max_arg_part < last_part) ?
+ min_max_arg_part :
+ NULL :
+ NULL;
+ if (first_non_group_part &&
+ (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
+ {
+ if (tree)
+ {
+ SEL_ARG *index_range_tree= tree->keys[cur_param_idx];
+ if (!get_constant_key_infix(cur_index_info, index_range_tree,
+ first_non_group_part, min_max_arg_part,
+ last_part, thd, cur_key_infix,
+ &cur_key_infix_len,
+ &first_non_infix_part))
+ {
+ cause= "nonconst equality gap attribute";
+ goto next_index;
+ }
+ }
+ else if (min_max_arg_part &&
+ (min_max_arg_part - first_non_group_part > 0))
+ {
+ /*
+ There is a gap but no range tree, thus no predicates at all for the
+ non-group keyparts.
+ */
+ cause= "no nongroup keypart predicate";
+ goto next_index;
+ }
+ else if (first_non_group_part && join->conds)
+ {
+ /*
+ If there is no MIN/MAX function in the query, but some index
+ key part is referenced in the WHERE clause, then this index
+ cannot be used because the WHERE condition over the keypart's
+ field cannot be 'pushed' to the index (because there is no
+ range 'tree'), and the WHERE clause must be evaluated before
+ GROUP BY/DISTINCT.
+ */
+ /*
+ Store the first and last keyparts that need to be analyzed
+ into one array that can be passed as parameter.
+ */
+ KEY_PART_INFO *key_part_range[2];
+ key_part_range[0]= first_non_group_part;
+ key_part_range[1]= last_part;
+
+ /* Check if cur_part is referenced in the WHERE clause. */
+ if (join->conds->walk(&Item::find_item_in_field_list_processor, true,
+ key_part_range))
+ {
+ cause= "keypart reference from where clause";
+ goto next_index;
+ }
+ }
+ }
+
+ /*
+ Test (WA1) partially - that no other keypart after the last infix part is
+ referenced in the query.
+ */
+ if (first_non_infix_part)
+ {
+ cur_part= first_non_infix_part +
+ (min_max_arg_part && (min_max_arg_part < last_part));
+ for (; cur_part != last_part; cur_part++)
+ {
+ if (bitmap_is_set(table->read_set, cur_part->field->field_index))
+ {
+ cause= "keypart after infix in query";
+ goto next_index;
+ }
+ }
+ }
+
+ /**
+ Test WA2:If there are conditions on a column C participating in
+ MIN/MAX, those conditions must be conjunctions to all earlier
+ keyparts. Otherwise, Loose Index Scan cannot be used.
+ */
+ if (tree && min_max_arg_item)
+ {
+ SEL_ARG *index_range_tree= tree->keys[cur_param_idx];
+ SEL_ARG *cur_range= NULL;
+ if (get_sel_arg_for_keypart(min_max_arg_part->field,
+ index_range_tree, &cur_range) ||
+ (cur_range && cur_range->type != SEL_ARG::KEY_RANGE))
+ {
+ cause= "minmax keypart in disjunctive query";
+ goto next_index;
+ }
+ }
+
+ /* If we got to this point, cur_index_info passes the test. */
+ key_infix_parts= cur_key_infix_len ? (uint)
+ (first_non_infix_part - first_non_group_part) : 0;
+ cur_used_key_parts= cur_group_key_parts + key_infix_parts;
+
+ /* Compute the cost of using this index. */
+ if (tree)
+ {
+ if ((cur_index_tree= tree->keys[cur_param_idx]))
+ {
+ cur_quick_prefix_records= param->quick_rows[cur_index];
+ if (unlikely(cur_index_tree && thd->trace_started()))
+ {
+ Json_writer_array trace_range(thd, "ranges");
+ trace_ranges(&trace_range, param, cur_param_idx,
+ cur_index_tree, cur_index_info->key_part);
+ }
+ }
+ else
+ cur_quick_prefix_records= HA_POS_ERROR;
+ }
+ cost_group_min_max(table, cur_index_info, cur_used_key_parts,
+ cur_group_key_parts, tree, cur_index_tree,
+ cur_quick_prefix_records, have_min, have_max,
+ &cur_read_cost, &cur_records);
+ /*
+ If cur_read_cost is lower than best_read_cost use cur_index.
+ Do not compare doubles directly because they may have different
+ representations (64 vs. 80 bits).
+ */
+ trace_idx.add("rows", cur_records).add("cost", cur_read_cost);
+
+ if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
+ {
+ index_info= cur_index_info;
+ index= cur_index;
+ best_read_cost= cur_read_cost;
+ best_records= cur_records;
+ best_index_tree= cur_index_tree;
+ best_quick_prefix_records= cur_quick_prefix_records;
+ best_param_idx= cur_param_idx;
+ group_key_parts= cur_group_key_parts;
+ group_prefix_len= cur_group_prefix_len;
+ key_infix_len= cur_key_infix_len;
+ if (key_infix_len)
+ memcpy (key_infix, cur_key_infix, sizeof (key_infix));
+ used_key_parts= cur_used_key_parts;
+ }
+
+ next_index:
+ if (cause)
+ {
+ trace_idx.add("usable", false).add("cause", cause);
+ cause= NULL;
+ }
+ }
+
+ trace_indexes.end();
+
+ if (!index_info) /* No usable index found. */
+ DBUG_RETURN(NULL);
+
+ /* Check (SA3) for the where clause. */
+ bool has_min_max_fld= false, has_other_fld= false;
+ if (join->conds && min_max_arg_item &&
+ !check_group_min_max_predicates(join->conds, min_max_arg_item,
+ (index_info->flags & HA_SPATIAL) ?
+ Field::itMBR : Field::itRAW,
+ &has_min_max_fld, &has_other_fld))
+ {
+ trace_group.add("usable", false)
+ .add("cause", "unsupported predicate on agg attribute");
+ DBUG_RETURN(NULL);
+ }
+
+ /*
+ Check (SA6) if clustered key is used
+ */
+ if (is_agg_distinct && table->file->is_clustering_key(index))
+ {
+ trace_group.add("usable", false)
+ .add("cause", "index is clustered");
+ DBUG_RETURN(NULL);
+ }
+
+ /* The query passes all tests, so construct a new TRP object. */
+ read_plan= new (param->mem_root)
+ TRP_GROUP_MIN_MAX(have_min, have_max, is_agg_distinct,
+ min_max_arg_part,
+ group_prefix_len, used_key_parts,
+ group_key_parts, index_info, index,
+ key_infix_len,
+ (key_infix_len > 0) ? key_infix : NULL,
+ tree, best_index_tree, best_param_idx,
+ best_quick_prefix_records);
+ if (read_plan)
+ {
+ if (tree && read_plan->quick_prefix_records == 0)
+ DBUG_RETURN(NULL);
+
+ read_plan->read_cost= best_read_cost;
+ read_plan->records= best_records;
+ if (read_time < best_read_cost && is_agg_distinct)
+ {
+ trace_group.add("index_scan", true);
+ read_plan->read_cost= 0;
+ read_plan->use_index_scan();
+ }
+
+ DBUG_PRINT("info",
+ ("Returning group min/max plan: cost: %g, records: %lu",
+ read_plan->read_cost, (ulong) read_plan->records));
+ }
+
+ DBUG_RETURN(read_plan);
+}
+
+
+/*
+ Check that the MIN/MAX attribute participates only in range predicates
+ with constants.
+
+ SYNOPSIS
+ check_group_min_max_predicates()
+ cond [in] the expression tree being analyzed
+ min_max_arg [in] the field referenced by the MIN/MAX function(s)
+ image_type [in]
+ has_min_max_arg [out] true if the subtree being analyzed references
+ min_max_arg
+ has_other_arg [out] true if the subtree being analyzed references a
+ column other min_max_arg
+
+ DESCRIPTION
+ The function walks recursively over the cond tree representing a WHERE
+ clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
+ aggregate function, it is referenced only by one of the following
+ predicates $FUNC$:
+ {=, !=, <, <=, >, >=, between, is [not] null, multiple equal}.
+ In addition the function checks that the WHERE condition is equivalent to
+ "cond1 AND cond2" where :
+ cond1 - does not use min_max_column at all.
+ cond2 - is an AND/OR tree with leaves in form
+ "$FUNC$(min_max_column[, const])".
+
+ RETURN
+ TRUE if cond passes the test
+ FALSE o/w
+*/
+
+static bool
+check_group_min_max_predicates(Item *cond, Item_field *min_max_arg_item,
+ Field::imagetype image_type,
+ bool *has_min_max_arg, bool *has_other_arg)
+{
+ DBUG_ENTER("check_group_min_max_predicates");
+ DBUG_ASSERT(cond && min_max_arg_item);
+
+ cond= cond->real_item();
+ Item::Type cond_type= cond->real_type();
+ if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
+ {
+ DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *and_or_arg;
+ Item_func::Functype func_type= ((Item_cond*) cond)->functype();
+ bool has_min_max= false, has_other= false;
+ while ((and_or_arg= li++))
+ {
+ /*
+ The WHERE clause doesn't pass the condition if:
+ (1) any subtree doesn't pass the condition or
+ (2) the subtree passes the test, but it is an OR and it references both
+ the min/max argument and other columns.
+ */
+ if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item, //1
+ image_type,
+ &has_min_max, &has_other) ||
+ (func_type == Item_func::COND_OR_FUNC && has_min_max && has_other))//2
+ DBUG_RETURN(FALSE);
+ }
+ *has_min_max_arg= has_min_max || *has_min_max_arg;
+ *has_other_arg= has_other || *has_other_arg;
+ DBUG_RETURN(TRUE);
+ }
+
+ /*
+ Disallow loose index scan if the MIN/MAX argument field is referenced by
+ a subquery in the WHERE clause.
+ */
+
+ if (unlikely(cond_type == Item::SUBSELECT_ITEM))
+ {
+ Item_subselect *subs_cond= (Item_subselect*) cond;
+ if (subs_cond->is_correlated)
+ {
+ DBUG_ASSERT(subs_cond->upper_refs.elements > 0);
+ List_iterator_fast<Item_subselect::Ref_to_outside>
+ li(subs_cond->upper_refs);
+ Item_subselect::Ref_to_outside *dep;
+ while ((dep= li++))
+ {
+ if (dep->item->eq(min_max_arg_item, FALSE))
+ DBUG_RETURN(FALSE);
+ }
+ }
+ DBUG_RETURN(TRUE);
+ }
+ /*
+ Subquery with IS [NOT] NULL
+ TODO: Look into the cache_item and optimize it like we do for
+ subselect's above
+ */
+ if (unlikely(cond_type == Item::CACHE_ITEM))
+ DBUG_RETURN(cond->const_item());
+
+ /*
+ Condition of the form 'field' is equivalent to 'field <> 0' and thus
+ satisfies the SA3 condition.
+ */
+ if (cond_type == Item::FIELD_ITEM)
+ {
+ DBUG_PRINT("info", ("Analyzing: %s", cond->full_name()));
+ if (min_max_arg_item->eq((Item_field*)cond, 1))
+ *has_min_max_arg= true;
+ else
+ *has_other_arg= true;
+ DBUG_RETURN(TRUE);
+ }
+
+ /* We presume that at this point there are no other Items than functions. */
+ DBUG_ASSERT(cond_type == Item::FUNC_ITEM);
+ if (unlikely(cond_type != Item::FUNC_ITEM)) /* Safety */
+ DBUG_RETURN(FALSE);
+
+ /* Test if cond references only group-by or non-group fields. */
+ Item_func *pred= (Item_func*) cond;
+ Item_func::Functype pred_type= pred->functype();
+ DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
+ if (pred_type == Item_func::MULT_EQUAL_FUNC)
+ {
+ /*
+ Check that each field in a multiple equality is either a constant or
+ it is a reference to the min/max argument, or it doesn't contain the
+ min/max argument at all.
+ */
+ Item_equal_fields_iterator eq_it(*((Item_equal*)pred));
+ Item *eq_item;
+ bool has_min_max= false, has_other= false;
+ while ((eq_item= eq_it++))
+ {
+ if (min_max_arg_item->eq(eq_item->real_item(), 1))
+ has_min_max= true;
+ else
+ has_other= true;
+ }
+ *has_min_max_arg= has_min_max || *has_min_max_arg;
+ *has_other_arg= has_other || *has_other_arg;
+ DBUG_RETURN(!(has_min_max && has_other));
+ }
+
+ Item **arguments= pred->arguments();
+ Item *cur_arg;
+ bool has_min_max= false, has_other= false;
+ for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
+ {
+ cur_arg= arguments[arg_idx]->real_item();
+ DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
+ if (cur_arg->type() == Item::FIELD_ITEM)
+ {
+ if (min_max_arg_item->eq(cur_arg, 1))
+ {
+ has_min_max= true;
+ /*
+ If pred references the MIN/MAX argument, check whether pred is a range
+ condition that compares the MIN/MAX argument with a constant.
+ */
+ if (pred_type != Item_func::EQUAL_FUNC &&
+ pred_type != Item_func::LT_FUNC &&
+ pred_type != Item_func::LE_FUNC &&
+ pred_type != Item_func::GT_FUNC &&
+ pred_type != Item_func::GE_FUNC &&
+ pred_type != Item_func::BETWEEN &&
+ pred_type != Item_func::ISNULL_FUNC &&
+ pred_type != Item_func::ISNOTNULL_FUNC &&
+ pred_type != Item_func::EQ_FUNC &&
+ pred_type != Item_func::NE_FUNC)
+ DBUG_RETURN(FALSE);
+
+ /* Check that pred compares min_max_arg_item with a constant. */
+ Item *args[3];
+ bzero(args, 3 * sizeof(Item*));
+ bool inv;
+ /* Test if this is a comparison of a field and a constant. */
+ if (!simple_pred(pred, args, &inv))
+ DBUG_RETURN(FALSE);
+
+ /*
+ Follow the logic in Item_func_ne::get_func_mm_tree(): condition
+ in form "tbl.primary_key <> const" is not used to produce intervals.
+
+ If the condition doesn't have an equivalent interval, this means we
+ fail LooseScan's condition SA3. Return FALSE to indicate this.
+ */
+ if (pred_type == Item_func::NE_FUNC &&
+ is_field_an_unique_index(min_max_arg_item->field))
+ DBUG_RETURN(FALSE);
+
+ if (args[0] && args[1]) // this is a binary function or BETWEEN
+ {
+ DBUG_ASSERT(pred->fixed_type_handler());
+ DBUG_ASSERT(pred->fixed_type_handler()->is_bool_type());
+ Item_bool_func *bool_func= (Item_bool_func*) pred;
+ Field *field= min_max_arg_item->field;
+ if (!args[2]) // this is a binary function
+ {
+ if (field->can_optimize_group_min_max(bool_func, args[1]) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(FALSE);
+ }
+ else // this is BETWEEN
+ {
+ if (field->can_optimize_group_min_max(bool_func, args[1]) !=
+ Data_type_compatibility::OK ||
+ field->can_optimize_group_min_max(bool_func, args[2]) !=
+ Data_type_compatibility::OK)
+ DBUG_RETURN(FALSE);
+ }
+ }
+ }
+ else
+ has_other= true;
+ }
+ else if (cur_arg->type() == Item::FUNC_ITEM)
+ {
+ if (!check_group_min_max_predicates(cur_arg, min_max_arg_item, image_type,
+ &has_min_max, &has_other))
+ DBUG_RETURN(FALSE);
+ }
+ else if (cur_arg->can_eval_in_optimize())
+ {
+ /*
+ For predicates of the form "const OP expr" we also have to check 'expr'
+ to make a decision.
+ */
+ continue;
+ }
+ else
+ DBUG_RETURN(FALSE);
+ if(has_min_max && has_other)
+ DBUG_RETURN(FALSE);
+ }
+ *has_min_max_arg= has_min_max || *has_min_max_arg;
+ *has_other_arg= has_other || *has_other_arg;
+
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Get the SEL_ARG tree 'tree' for the keypart covering 'field', if
+ any. 'tree' must be a unique conjunction to ALL predicates in earlier
+ keyparts of 'keypart_tree'.
+
+ E.g., if 'keypart_tree' is for a composite index (kp1,kp2) and kp2
+ covers 'field', all these conditions satisfies the requirement:
+
+ 1. "(kp1=2 OR kp1=3) AND kp2=10" => returns "kp2=10"
+ 2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=10)" => returns "kp2=10"
+ 3. "(kp1=2 AND (kp2=10 OR kp2=11)) OR (kp1=3 AND (kp2=10 OR kp2=11))"
+ => returns "kp2=10 OR kp2=11"
+
+ whereas these do not
+ 1. "(kp1=2 AND kp2=10) OR kp1=3"
+ 2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=11)"
+ 3. "(kp1=2 AND kp2=10) OR (kp1=3 AND (kp2=10 OR kp2=11))"
+
+ This function effectively tests requirement WA2. In combination with
+ a test that the returned tree has no more than one range it is also
+ a test of NGA3.
+
+ @param[in] field The field we want the SEL_ARG tree for
+ @param[in] keypart_tree Root node of the SEL_ARG* tree for the index
+ @param[out] cur_range The SEL_ARG tree, if any, for the keypart
+ covering field 'keypart_field'
+ @retval true 'keypart_tree' contained a predicate for 'field' that
+ is not conjunction to all predicates on earlier keyparts
+ @retval false otherwise
+*/
+
+static bool
+get_sel_arg_for_keypart(Field *field,
+ SEL_ARG *keypart_tree,
+ SEL_ARG **cur_range)
+{
+ if (keypart_tree == NULL)
+ return false;
+ if (keypart_tree->field->eq(field))
+ {
+ *cur_range= keypart_tree;
+ return false;
+ }
+
+ SEL_ARG *tree_first_range= NULL;
+ SEL_ARG *first_kp= keypart_tree->first();
+
+ for (SEL_ARG *cur_kp= first_kp; cur_kp; cur_kp= cur_kp->next)
+ {
+ SEL_ARG *curr_tree= NULL;
+ if (cur_kp->next_key_part)
+ {
+ if (get_sel_arg_for_keypart(field,
+ cur_kp->next_key_part,
+ &curr_tree))
+ return true;
+ }
+ /*
+ Check if the SEL_ARG tree for 'field' is identical for all ranges in
+ 'keypart_tree
+ */
+ if (cur_kp == first_kp)
+ tree_first_range= curr_tree;
+ else if (!all_same(tree_first_range, curr_tree))
+ return true;
+ }
+ *cur_range= tree_first_range;
+ return false;
+}
+
+/*
+ Extract a sequence of constants from a conjunction of equality predicates.
+
+ SYNOPSIS
+ get_constant_key_infix()
+ index_info [in] Descriptor of the chosen index.
+ index_range_tree [in] Range tree for the chosen index
+ first_non_group_part [in] First index part after group attribute parts
+ min_max_arg_part [in] The keypart of the MIN/MAX argument if any
+ last_part [in] Last keypart of the index
+ thd [in] Current thread
+ key_infix [out] Infix of constants to be used for index lookup
+ key_infix_len [out] Length of the infix
+ first_non_infix_part [out] The first keypart after the infix (if any)
+
+ DESCRIPTION
+ Test conditions (NGA1, NGA2, NGA3) from get_best_group_min_max(). Namely,
+ for each keypart field NG_i not in GROUP-BY, check that there is exactly one
+ constant equality predicate among conds with the form (NG_i = const_ci) or
+ (const_ci = NG_i).. In addition, there can only be one range when there is
+ such a gap.
+ Thus all the NGF_i attributes must fill the 'gap' between the last group-by
+ attribute and the MIN/MAX attribute in the index (if present). Also ensure
+ that there is only a single range on NGF_i (NGA3). If these
+ conditions hold, copy each constant from its corresponding predicate into
+ key_infix, in the order its NG_i attribute appears in the index, and update
+ key_infix_len with the total length of the key parts in key_infix.
+
+ RETURN
+ TRUE if the index passes the test
+ FALSE o/w
+*/
+static bool
+get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
+ KEY_PART_INFO *first_non_group_part,
+ KEY_PART_INFO *min_max_arg_part,
+ KEY_PART_INFO *last_part, THD *thd,
+ uchar *key_infix, uint *key_infix_len,
+ KEY_PART_INFO **first_non_infix_part)
+{
+ KEY_PART_INFO *cur_part;
+ /* End part for the first loop below. */
+ KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
+
+ *key_infix_len= 0;
+ uchar *key_ptr= key_infix;
+ for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
+ {
+ SEL_ARG *cur_range= NULL;
+ /*
+ Check NGA3:
+ 1. get_sel_arg_for_keypart gets the range tree for the 'field' and also
+ checks for a unique conjunction of this tree with all the predicates
+ on the earlier keyparts in the index.
+ 2. Check for multiple ranges on the found keypart tree.
+
+ We assume that index_range_tree points to the leftmost keypart in
+ the index.
+ */
+ if (get_sel_arg_for_keypart(cur_part->field, index_range_tree,
+ &cur_range))
+ return false;
+
+ if (cur_range && cur_range->elements > 1)
+ return false;
+
+ if (!cur_range || cur_range->type != SEL_ARG::KEY_RANGE)
+ {
+ if (min_max_arg_part)
+ return false; /* The current keypart has no range predicates at all. */
+ else
+ {
+ *first_non_infix_part= cur_part;
+ return true;
+ }
+ }
+
+ if ((cur_range->min_flag & NO_MIN_RANGE) ||
+ (cur_range->max_flag & NO_MAX_RANGE) ||
+ (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
+ return false;
+
+ uint field_length= cur_part->store_length;
+ if (cur_range->maybe_null &&
+ cur_range->min_value[0] && cur_range->max_value[0])
+ {
+ /*
+ cur_range specifies 'IS NULL'. In this case the argument points
+ to a "null value" (is_null_string) that may not always be long
+ enough for a direct memcpy to a field.
+ */
+ DBUG_ASSERT (field_length > 0);
+ *key_ptr= 1;
+ bzero(key_ptr+1,field_length-1);
+ key_ptr+= field_length;
+ *key_infix_len+= field_length;
+ }
+ else if (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0)
+ { /* cur_range specifies an equality condition. */
+ memcpy(key_ptr, cur_range->min_value, field_length);
+ key_ptr+= field_length;
+ *key_infix_len+= field_length;
+ }
+ else
+ return false;
+ }
+
+ if (!min_max_arg_part && (cur_part == last_part))
+ *first_non_infix_part= last_part;
+
+ return TRUE;
+}
+
+
+/*
+ Find the key part referenced by a field.
+
+ SYNOPSIS
+ get_field_keypart()
+ index descriptor of an index
+ field field that possibly references some key part in index
+
+ NOTES
+ The return value can be used to get a KEY_PART_INFO pointer by
+ part= index->key_part + get_field_keypart(...) - 1;
+
+ RETURN
+ Positive number which is the consecutive number of the key part, or
+ 0 if field does not reference any index field.
+*/
+
+static inline uint
+get_field_keypart(KEY *index, Field *field)
+{
+ KEY_PART_INFO *part, *end;
+
+ for (part= index->key_part,
+ end= part + field->table->actual_n_key_parts(index);
+ part < end; part++)
+ {
+ if (field->eq(part->field))
+ return (uint)(part - index->key_part + 1);
+ }
+ return 0;
+}
+
+
+/*
+ Compute the cost of a quick_group_min_max_select for a particular index.
+
+ SYNOPSIS
+ cost_group_min_max()
+ table [in] The table being accessed
+ index_info [in] The index used to access the table
+ used_key_parts [in] Number of key parts used to access the index
+ group_key_parts [in] Number of index key parts in the group prefix
+ range_tree [in] Tree of ranges for all indexes
+ index_tree [in] The range tree for the current index
+ quick_prefix_records [in] Number of records retrieved by the internally
+ used quick range select if any
+ have_min [in] True if there is a MIN function
+ have_max [in] True if there is a MAX function
+ read_cost [out] The cost to retrieve rows via this quick select
+ records [out] The number of rows retrieved
+
+ DESCRIPTION
+ This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
+ the number of rows returned.
+
+ NOTES
+ The cost computation distinguishes several cases:
+ 1) No equality predicates over non-group attributes (thus no key_infix).
+ If groups are bigger than blocks on the average, then we assume that it
+ is very unlikely that block ends are aligned with group ends, thus even
+ if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
+ keys, except for the first MIN and the last MAX keys, will be in the
+ same block. If groups are smaller than blocks, then we are going to
+ read all blocks.
+ 2) There are equality predicates over non-group attributes.
+ In this case the group prefix is extended by additional constants, and
+ as a result the min/max values are inside sub-groups of the original
+ groups. The number of blocks that will be read depends on whether the
+ ends of these sub-groups will be contained in the same or in different
+ blocks. We compute the probability for the two ends of a subgroup to be
+ in two different blocks as the ratio of:
+ - the number of positions of the left-end of a subgroup inside a group,
+ such that the right end of the subgroup is past the end of the buffer
+ containing the left-end, and
+ - the total number of possible positions for the left-end of the
+ subgroup, which is the number of keys in the containing group.
+ We assume it is very unlikely that two ends of subsequent subgroups are
+ in the same block.
+ 3) The are range predicates over the group attributes.
+ Then some groups may be filtered by the range predicates. We use the
+ selectivity of the range predicates to decide how many groups will be
+ filtered.
+
+ TODO
+ - Take into account the optional range predicates over the MIN/MAX
+ argument.
+ - Check if we have a PK index and we use all cols - then each key is a
+ group, and it will be better to use an index scan.
+
+ RETURN
+ None
+*/
+
+void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
+ uint group_key_parts, SEL_TREE *range_tree,
+ SEL_ARG *index_tree, ha_rows quick_prefix_records,
+ bool have_min, bool have_max,
+ double *read_cost, ha_rows *records)
+{
+ ha_rows table_records;
+ ha_rows num_groups;
+ ha_rows num_blocks;
+ uint keys_per_block;
+ ha_rows keys_per_group;
+ ha_rows keys_per_subgroup; /* Average number of keys in sub-groups */
+ /* formed by a key infix. */
+ double p_overlap; /* Probability that a sub-group overlaps two blocks. */
+ double quick_prefix_selectivity;
+ double io_cost;
+ DBUG_ENTER("cost_group_min_max");
+
+ table_records= table->stat_records();
+ /* Assume block is 75 % full */
+ keys_per_block= (uint) (table->file->stats.block_size * 3 / 4 /
+ (index_info->key_length + table->file->ref_length)
+ + 1);
+ num_blocks= (ha_rows)(table_records / keys_per_block) + 1;
+
+ /* Compute the number of keys in a group. */
+ if (!group_key_parts)
+ {
+ /* Summary over the whole table */
+ keys_per_group= table_records;
+ }
+ else
+ {
+ keys_per_group= (ha_rows) index_info->actual_rec_per_key(group_key_parts -
+ 1);
+ }
+
+ if (keys_per_group == 0) /* If there is no statistics try to guess */
+ /* each group contains 10% of all records */
+ keys_per_group= (table_records / 10) + 1;
+ num_groups= (table_records / keys_per_group) + 1;
+
+ /* Apply the selectivity of the quick select for group prefixes. */
+ if (range_tree && (quick_prefix_records != HA_POS_ERROR))
+ {
+ quick_prefix_selectivity= (double) quick_prefix_records /
+ (double) table_records;
+ num_groups= (ha_rows) rint(num_groups * quick_prefix_selectivity);
+ set_if_bigger(num_groups, 1);
+ }
+
+ if (used_key_parts > group_key_parts)
+ { /*
+ Compute the probability that two ends of a subgroup are inside
+ different blocks.
+ */
+ keys_per_subgroup= (ha_rows) index_info->actual_rec_per_key(used_key_parts - 1);
+ if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
+ p_overlap= 1.0; /* a block, it will overlap at least two blocks. */
+ else
+ {
+ double blocks_per_group= (double) num_blocks / (double) num_groups;
+ p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
+ p_overlap= MY_MIN(p_overlap, 1.0);
+ }
+ io_cost= (double) MY_MIN(num_groups * (1 + p_overlap), num_blocks);
+ }
+ else
+ io_cost= (keys_per_group > keys_per_block) ?
+ (have_min && have_max) ? (double) (num_groups + 1) :
+ (double) num_groups :
+ (double) num_blocks;
+
+ /*
+ CPU cost must be comparable to that of an index scan as computed
+ in SQL_SELECT::test_quick_select(). When the groups are small,
+ e.g. for a unique index, using index scan will be cheaper since it
+ reads the next record without having to re-position to it on every
+ group. To make the CPU cost reflect this, we estimate the CPU cost
+ as the sum of:
+ 1. Cost for evaluating the condition (similarly as for index scan).
+ 2. Cost for navigating the index structure (assuming a b-tree).
+ Note: We only add the cost for one comparision per block. For a
+ b-tree the number of comparisons will be larger.
+ TODO: This cost should be provided by the storage engine.
+ */
+ const double tree_traversal_cost=
+ ceil(log(static_cast<double>(table_records))/
+ log(static_cast<double>(keys_per_block))) *
+ 1/(2*TIME_FOR_COMPARE);
+
+ const double cpu_cost= num_groups *
+ (tree_traversal_cost + 1/TIME_FOR_COMPARE_IDX);
+
+ *read_cost= io_cost + cpu_cost;
+ *records= num_groups;
+
+ DBUG_PRINT("info",
+ ("table rows: %lu keys/block: %u keys/group: %lu "
+ "result rows: %lu blocks: %lu",
+ (ulong) table_records, keys_per_block, (ulong) keys_per_group,
+ (ulong) *records, (ulong) num_blocks));
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Construct a new quick select object for queries with group by with min/max.
+
+ SYNOPSIS
+ TRP_GROUP_MIN_MAX::make_quick()
+ param Parameter from test_quick_select
+ retrieve_full_rows ignored
+ parent_alloc Memory pool to use, if any.
+
+ NOTES
+ Make_quick ignores the retrieve_full_rows parameter because
+ QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
+ The other parameter are ignored as well because all necessary
+ data to create the QUICK object is computed at this TRP creation
+ time.
+
+ RETURN
+ New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
+ NULL otherwise.
+*/
+
+QUICK_SELECT_I *
+TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_GROUP_MIN_MAX_SELECT *quick;
+ DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");
+
+ quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
+ param->thd->lex->current_select->join,
+ have_min, have_max,
+ have_agg_distinct, min_max_arg_part,
+ group_prefix_len, group_key_parts,
+ used_key_parts, index_info, index,
+ read_cost, records, key_infix_len,
+ key_infix, parent_alloc, is_index_scan);
+ if (!quick)
+ DBUG_RETURN(NULL);
+
+ if (quick->init())
+ {
+ delete quick;
+ DBUG_RETURN(NULL);
+ }
+
+ if (range_tree)
+ {
+ DBUG_ASSERT(quick_prefix_records > 0);
+ if (quick_prefix_records == HA_POS_ERROR)
+ quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
+ else
+ /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
+ quick->quick_prefix_select= get_quick_select(param, param_idx,
+ index_tree,
+ HA_MRR_USE_DEFAULT_IMPL, 0,
+ &quick->alloc);
+
+ /*
+ Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
+ attribute, and create an array of QUICK_RANGES to be used by the
+ new quick select.
+ */
+ if (min_max_arg_part)
+ {
+ SEL_ARG *min_max_range= index_tree;
+ while (min_max_range) /* Find the tree for the MIN/MAX key part. */
+ {
+ if (min_max_range->field->eq(min_max_arg_part->field))
+ break;
+ min_max_range= min_max_range->next_key_part;
+ }
+ /* Scroll to the leftmost interval for the MIN/MAX argument. */
+ while (min_max_range && min_max_range->prev)
+ min_max_range= min_max_range->prev;
+ /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
+ while (min_max_range)
+ {
+ if (quick->add_range(min_max_range))
+ {
+ delete quick;
+ quick= NULL;
+ DBUG_RETURN(NULL);
+ }
+ min_max_range= min_max_range->next;
+ }
+ }
+ }
+ else
+ quick->quick_prefix_select= NULL;
+
+ quick->update_key_stat();
+ quick->adjust_prefix_ranges();
+
+ DBUG_RETURN(quick);
+}
+
+
+/*
+ Construct new quick select for group queries with min/max.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
+ table The table being accessed
+ join Descriptor of the current query
+ have_min TRUE if the query selects a MIN function
+ have_max TRUE if the query selects a MAX function
+ min_max_arg_part The only argument field of all MIN/MAX functions
+ group_prefix_len Length of all key parts in the group prefix
+ prefix_key_parts All key parts in the group prefix
+ index_info The index chosen for data access
+ use_index The id of index_info
+ read_cost Cost of this access method
+ records Number of records returned
+ key_infix_len Length of the key infix appended to the group prefix
+ key_infix Infix of constants from equality predicates
+ parent_alloc Memory pool for this and quick_prefix_select data
+ is_index_scan get the next different key not by jumping on it via
+ index read, but by scanning until the end of the
+ rows with equal key value.
+
+ RETURN
+ None
+*/
+
+QUICK_GROUP_MIN_MAX_SELECT::
+QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
+ bool have_max_arg, bool have_agg_distinct_arg,
+ KEY_PART_INFO *min_max_arg_part_arg,
+ uint group_prefix_len_arg, uint group_key_parts_arg,
+ uint used_key_parts_arg, KEY *index_info_arg,
+ uint use_index, double read_cost_arg,
+ ha_rows records_arg, uint key_infix_len_arg,
+ uchar *key_infix_arg, MEM_ROOT *parent_alloc,
+ bool is_index_scan_arg)
+ :file(table->file), join(join_arg), index_info(index_info_arg),
+ group_prefix_len(group_prefix_len_arg),
+ group_key_parts(group_key_parts_arg), have_min(have_min_arg),
+ have_max(have_max_arg), have_agg_distinct(have_agg_distinct_arg),
+ seen_first_key(FALSE), min_max_arg_part(min_max_arg_part_arg),
+ key_infix(key_infix_arg), key_infix_len(key_infix_len_arg),
+ min_functions_it(NULL), max_functions_it(NULL),
+ is_index_scan(is_index_scan_arg)
+{
+ head= table;
+ index= use_index;
+ record= head->record[0];
+ tmp_record= head->record[1];
+ read_time= read_cost_arg;
+ records= records_arg;
+ used_key_parts= used_key_parts_arg;
+ real_key_parts= used_key_parts_arg;
+ real_prefix_len= group_prefix_len + key_infix_len;
+ group_prefix= NULL;
+ min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
+
+ /*
+ We can't have parent_alloc set as the init function can't handle this case
+ yet.
+ */
+ DBUG_ASSERT(!parent_alloc);
+ if (!parent_alloc)
+ {
+ THD *thd= join->thd;
+ init_sql_alloc(key_memory_quick_range_select_root, &alloc,
+ thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
+ thd->mem_root= &alloc;
+ }
+ else
+ bzero(&alloc, sizeof(MEM_ROOT)); // ensure that it's not used
+}
+
+
+/*
+ Do post-constructor initialization.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::init()
+
+ DESCRIPTION
+ The method performs initialization that cannot be done in the constructor
+ such as memory allocations that may fail. It allocates memory for the
+ group prefix and inifix buffers, and for the lists of MIN/MAX item to be
+ updated during execution.
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::init()
+{
+ if (group_prefix) /* Already initialized. */
+ return 0;
+
+ /*
+ We allocate one byte more to serve the case when the last field in
+ the buffer is compared using uint3korr (e.g. a Field_newdate field)
+ */
+ if (!(last_prefix= (uchar*) alloc_root(&alloc, group_prefix_len+1)))
+ return 1;
+ /*
+ We may use group_prefix to store keys with all select fields, so allocate
+ enough space for it.
+ We allocate one byte more to serve the case when the last field in
+ the buffer is compared using uint3korr (e.g. a Field_newdate field)
+ */
+ if (!(group_prefix= (uchar*) alloc_root(&alloc,
+ real_prefix_len+min_max_arg_len+1)))
+ return 1;
+
+ if (key_infix_len > 0)
+ {
+ /*
+ The memory location pointed to by key_infix will be deleted soon, so
+ allocate a new buffer and copy the key_infix into it.
+ */
+ uchar *tmp_key_infix= (uchar*) alloc_root(&alloc, key_infix_len);
+ if (!tmp_key_infix)
+ return 1;
+ memcpy(tmp_key_infix, this->key_infix, key_infix_len);
+ this->key_infix= tmp_key_infix;
+ }
+
+ if (min_max_arg_part)
+ {
+ if (my_init_dynamic_array(PSI_INSTRUMENT_ME, &min_max_ranges,
+ sizeof(QUICK_RANGE*), 16, 16,
+ MYF(MY_THREAD_SPECIFIC)))
+ return 1;
+
+ if (have_min)
+ {
+ if (!(min_functions= new List<Item_sum>))
+ return 1;
+ }
+ else
+ min_functions= NULL;
+ if (have_max)
+ {
+ if (!(max_functions= new List<Item_sum>))
+ return 1;
+ }
+ else
+ max_functions= NULL;
+
+ Item_sum *min_max_item;
+ Item_sum **func_ptr= join->sum_funcs;
+ while ((min_max_item= *(func_ptr++)))
+ {
+ if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
+ min_functions->push_back(min_max_item);
+ else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
+ max_functions->push_back(min_max_item);
+ }
+
+ if (have_min)
+ {
+ if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
+ return 1;
+ }
+
+ if (have_max)
+ {
+ if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
+ return 1;
+ }
+ }
+ else
+ min_max_ranges.elements= 0;
+
+ return 0;
+}
+
+
+QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
+{
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
+ if (file->inited != handler::NONE)
+ {
+ DBUG_ASSERT(file == head->file);
+ head->file->ha_end_keyread();
+ /*
+ There may be a code path when the same table was first accessed by index,
+ then the index is closed, and the table is scanned (order by + loose scan).
+ */
+ file->ha_index_or_rnd_end();
+ }
+ if (min_max_arg_part)
+ delete_dynamic(&min_max_ranges);
+ free_root(&alloc,MYF(0));
+ delete min_functions_it;
+ delete max_functions_it;
+ delete quick_prefix_select;
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Eventually create and add a new quick range object.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::add_range()
+ sel_range Range object from which a
+
+ NOTES
+ Construct a new QUICK_RANGE object from a SEL_ARG object, and
+ add it to the array min_max_ranges. If sel_arg is an infinite
+ range, e.g. (x < 5 or x > 4), then skip it and do not construct
+ a quick range.
+
+ RETURN
+ FALSE on success
+ TRUE otherwise
+*/
+
+bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
+{
+ QUICK_RANGE *range;
+ uint range_flag= sel_range->min_flag | sel_range->max_flag;
+
+ /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
+ if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
+ return FALSE;
+
+ if (!(sel_range->min_flag & NO_MIN_RANGE) &&
+ !(sel_range->max_flag & NO_MAX_RANGE))
+ {
+ if (sel_range->maybe_null &&
+ sel_range->min_value[0] && sel_range->max_value[0])
+ range_flag|= NULL_RANGE; /* IS NULL condition */
+ else if (memcmp(sel_range->min_value, sel_range->max_value,
+ min_max_arg_len) == 0)
+ range_flag|= EQ_RANGE; /* equality condition */
+ }
+ range= new QUICK_RANGE(join->thd, sel_range->min_value, min_max_arg_len,
+ make_keypart_map(sel_range->part),
+ sel_range->max_value, min_max_arg_len,
+ make_keypart_map(sel_range->part),
+ range_flag);
+ if (!range)
+ return TRUE;
+ if (insert_dynamic(&min_max_ranges, (uchar*)&range))
+ return TRUE;
+ return FALSE;
+}
+
+
+/*
+ Opens the ranges if there are more conditions in quick_prefix_select than
+ the ones used for jumping through the prefixes.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges()
+
+ NOTES
+ quick_prefix_select is made over the conditions on the whole key.
+ It defines a number of ranges of length x.
+ However when jumping through the prefixes we use only the the first
+ few most significant keyparts in the range key. However if there
+ are more keyparts to follow the ones we are using we must make the
+ condition on the key inclusive (because x < "ab" means
+ x[0] < 'a' OR (x[0] == 'a' AND x[1] < 'b').
+ To achive the above we must turn off the NEAR_MIN/NEAR_MAX
+*/
+void QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges ()
+{
+ if (quick_prefix_select &&
+ group_prefix_len < quick_prefix_select->max_used_key_length)
+ {
+ DYNAMIC_ARRAY *arr;
+ uint inx;
+
+ for (inx= 0, arr= &quick_prefix_select->ranges; inx < arr->elements; inx++)
+ {
+ QUICK_RANGE *range;
+
+ get_dynamic(arr, (uchar*)&range, inx);
+ range->flag &= ~(NEAR_MIN | NEAR_MAX);
+ }
+ }
+}
+
+
+/*
+ Determine the total number and length of the keys that will be used for
+ index lookup.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
+
+ DESCRIPTION
+ The total length of the keys used for index lookup depends on whether
+ there are any predicates referencing the min/max argument, and/or if
+ the min/max argument field can be NULL.
+ This function does an optimistic analysis whether the search key might
+ be extended by a constant for the min/max keypart. It is 'optimistic'
+ because during actual execution it may happen that a particular range
+ is skipped, and then a shorter key will be used. However this is data
+ dependent and can't be easily estimated here.
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
+{
+ max_used_key_length= real_prefix_len;
+ if (min_max_ranges.elements > 0)
+ {
+ QUICK_RANGE *cur_range;
+ if (have_min)
+ { /* Check if the right-most range has a lower boundary. */
+ get_dynamic(&min_max_ranges, (uchar*)&cur_range,
+ min_max_ranges.elements - 1);
+ if (!(cur_range->flag & NO_MIN_RANGE))
+ {
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ return;
+ }
+ }
+ if (have_max)
+ { /* Check if the left-most range has an upper boundary. */
+ get_dynamic(&min_max_ranges, (uchar*)&cur_range, 0);
+ if (!(cur_range->flag & NO_MAX_RANGE))
+ {
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ return;
+ }
+ }
+ }
+ else if (have_min && min_max_arg_part &&
+ min_max_arg_part->field->real_maybe_null())
+ {
+ /*
+ If a MIN/MAX argument value is NULL, we can quickly determine
+ that we're in the beginning of the next group, because NULLs
+ are always < any other value. This allows us to quickly
+ determine the end of the current group and jump to the next
+ group (see next_min()) and thus effectively increases the
+ usable key length.
+ */
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ }
+}
+
+
+/*
+ Initialize a quick group min/max select for key retrieval.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::reset()
+
+ DESCRIPTION
+ Initialize the index chosen for access and find and store the prefix
+ of the last group. The method is expensive since it performs disk access.
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
+{
+ int result;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");
+
+ seen_first_key= FALSE;
+ head->file->ha_start_keyread(index); /* We need only the key attributes */
+
+ if ((result= file->ha_index_init(index,1)))
+ {
+ head->file->print_error(result, MYF(0));
+ DBUG_RETURN(result);
+ }
+ if (quick_prefix_select && quick_prefix_select->reset())
+ DBUG_RETURN(1);
+ result= file->ha_index_last(record);
+ if (result == HA_ERR_END_OF_FILE)
+ DBUG_RETURN(0);
+ /* Save the prefix of the last group. */
+ key_copy(last_prefix, record, index_info, group_prefix_len);
+
+ DBUG_RETURN(0);
+}
+
+
+
+/*
+ Get the next key containing the MIN and/or MAX key for the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::get_next()
+
+ DESCRIPTION
+ The method finds the next subsequent group of records that satisfies the
+ query conditions and finds the keys that contain the MIN/MAX values for
+ the key part referenced by the MIN/MAX function(s). Once a group and its
+ MIN/MAX values are found, store these values in the Item_sum objects for
+ the MIN/MAX functions. The rest of the values in the result row are stored
+ in the Item_field::result_field of each select field. If the query does
+ not contain MIN and/or MAX functions, then the function only finds the
+ group prefix, which is a query answer itself.
+
+ NOTES
+ If both MIN and MAX are computed, then we use the fact that if there is
+ no MIN key, there can't be a MAX key as well, so we can skip looking
+ for a MAX key in this case.
+
+ RETURN
+ 0 on success
+ HA_ERR_END_OF_FILE if returned all keys
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::get_next()
+{
+ int min_res= 0;
+ int max_res= 0;
+#ifdef HPUX11
+ /*
+ volatile is required by a bug in the HP compiler due to which the
+ last test of result fails.
+ */
+ volatile int result;
+#else
+ int result;
+#endif
+ int is_last_prefix= 0;
+
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");
+
+ /*
+ Loop until a group is found that satisfies all query conditions or the last
+ group is reached.
+ */
+ do
+ {
+ result= next_prefix();
+ /*
+ Check if this is the last group prefix. Notice that at this point
+ this->record contains the current prefix in record format.
+ */
+ if (!result)
+ {
+ is_last_prefix= key_cmp(index_info->key_part, last_prefix,
+ group_prefix_len);
+ DBUG_ASSERT(is_last_prefix <= 0);
+ }
+ else
+ {
+ if (result == HA_ERR_KEY_NOT_FOUND)
+ continue;
+ break;
+ }
+
+ if (have_min)
+ {
+ min_res= next_min();
+ if (min_res == 0)
+ update_min_result();
+ }
+ /* If there is no MIN in the group, there is no MAX either. */
+ if ((have_max && !have_min) ||
+ (have_max && have_min && (min_res == 0)))
+ {
+ max_res= next_max();
+ if (max_res == 0)
+ update_max_result();
+ /* If a MIN was found, a MAX must have been found as well. */
+ DBUG_ASSERT((have_max && !have_min) ||
+ (have_max && have_min && (max_res == 0)));
+ }
+ /*
+ If this is just a GROUP BY or DISTINCT without MIN or MAX and there
+ are equality predicates for the key parts after the group, find the
+ first sub-group with the extended prefix.
+ */
+ if (!have_min && !have_max && key_infix_len > 0)
+ result= file->ha_index_read_map(record, group_prefix,
+ make_prev_keypart_map(real_key_parts),
+ HA_READ_KEY_EXACT);
+
+ result= have_min ? min_res : have_max ? max_res : result;
+ } while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
+ is_last_prefix != 0);
+
+ if (result == HA_ERR_KEY_NOT_FOUND)
+ result= HA_ERR_END_OF_FILE;
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve the minimal key in the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_min()
+
+ DESCRIPTION
+ Find the minimal key within this group such that the key satisfies the query
+ conditions and NULL semantics. The found key is loaded into this->record.
+
+ IMPLEMENTATION
+ Depending on the values of min_max_ranges.elements, key_infix_len, and
+ whether there is a NULL in the MIN field, this function may directly
+ return without any data access. In this case we use the key loaded into
+ this->record by the call to this->next_prefix() just before this call.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
+ HA_ERR_END_OF_FILE - "" -
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_min()
+{
+ int result= 0;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");
+
+ /* Find the MIN key using the eventually extended group prefix. */
+ if (min_max_ranges.elements > 0)
+ {
+ if ((result= next_min_in_range()))
+ DBUG_RETURN(result);
+ }
+ else
+ {
+ /* Apply the constant equality conditions to the non-group select fields */
+ if (key_infix_len > 0)
+ {
+ if ((result=
+ file->ha_index_read_map(record, group_prefix,
+ make_prev_keypart_map(real_key_parts),
+ HA_READ_KEY_EXACT)))
+ DBUG_RETURN(result);
+ }
+
+ /*
+ If the min/max argument field is NULL, skip subsequent rows in the same
+ group with NULL in it. Notice that:
+ - if the first row in a group doesn't have a NULL in the field, no row
+ in the same group has (because NULL < any other value),
+ - min_max_arg_part->field->ptr points to some place in 'record'.
+ */
+ if (min_max_arg_part && min_max_arg_part->field->is_null())
+ {
+ uchar *tmp_key_buff= (uchar*)my_alloca(max_used_key_length);
+ /* Find the first subsequent record without NULL in the MIN/MAX field. */
+ key_copy(tmp_key_buff, record, index_info, max_used_key_length);
+ result= file->ha_index_read_map(record, tmp_key_buff,
+ make_keypart_map(real_key_parts),
+ HA_READ_AFTER_KEY);
+ /*
+ Check if the new record belongs to the current group by comparing its
+ prefix with the group's prefix. If it is from the next group, then the
+ whole group has NULLs in the MIN/MAX field, so use the first record in
+ the group as a result.
+ TODO:
+ It is possible to reuse this new record as the result candidate for the
+ next call to next_min(), and to save one lookup in the next call. For
+ this add a new member 'this->next_group_prefix'.
+ */
+ if (!result)
+ {
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ key_restore(record, tmp_key_buff, index_info, 0);
+ }
+ else if (result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE)
+ result= 0; /* There is a result in any case. */
+ my_afree(tmp_key_buff);
+ }
+ }
+
+ /*
+ If the MIN attribute is non-nullable, this->record already contains the
+ MIN key in the group, so just return.
+ */
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve the maximal key in the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_max()
+
+ DESCRIPTION
+ Lookup the maximal key of the group, and store it into this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
+ HA_ERR_END_OF_FILE - "" -
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_max()
+{
+ int result;
+
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");
+
+ /* Get the last key in the (possibly extended) group. */
+ if (min_max_ranges.elements > 0)
+ result= next_max_in_range();
+ else
+ result= file->ha_index_read_map(record, group_prefix,
+ make_prev_keypart_map(real_key_parts),
+ HA_READ_PREFIX_LAST);
+ DBUG_RETURN(result);
+}
+
+
+/**
+ Find the next different key value by skiping all the rows with the same key
+ value.
+
+ Implements a specialized loose index access method for queries
+ containing aggregate functions with distinct of the form:
+ SELECT [SUM|COUNT|AVG](DISTINCT a,...) FROM t
+ This method comes to replace the index scan + Unique class
+ (distinct selection) for loose index scan that visits all the rows of a
+ covering index instead of jumping in the beginning of each group.
+ TODO: Placeholder function. To be replaced by a handler API call
+
+ @param is_index_scan hint to use index scan instead of random index read
+ to find the next different value.
+ @param file table handler
+ @param key_part group key to compare
+ @param record row data
+ @param group_prefix current key prefix data
+ @param group_prefix_len length of the current key prefix data
+ @param group_key_parts number of the current key prefix columns
+ @return status
+ @retval 0 success
+ @retval !0 failure
+*/
+
+static int index_next_different (bool is_index_scan, handler *file,
+ KEY_PART_INFO *key_part, uchar * record,
+ const uchar * group_prefix,
+ uint group_prefix_len,
+ uint group_key_parts)
+{
+ if (is_index_scan)
+ {
+ int result= 0;
+
+ while (!key_cmp (key_part, group_prefix, group_prefix_len))
+ {
+ result= file->ha_index_next(record);
+ if (result)
+ return(result);
+ }
+ return result;
+ }
+ else
+ return file->ha_index_read_map(record, group_prefix,
+ make_prev_keypart_map(group_key_parts),
+ HA_READ_AFTER_KEY);
+}
+
+
+/*
+ Determine the prefix of the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
+
+ DESCRIPTION
+ Determine the prefix of the next group that satisfies the query conditions.
+ If there is a range condition referencing the group attributes, use a
+ QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
+ condition. If there is a key infix of constants, append this infix
+ immediately after the group attributes. The possibly extended prefix is
+ stored in this->group_prefix. The first key of the found group is stored in
+ this->record, on which relies this->next_min().
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
+ HA_ERR_END_OF_FILE if there are no more keys
+ other if some error occurred
+*/
+int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
+{
+ int result;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");
+
+ if (quick_prefix_select)
+ {
+ uchar *cur_prefix= seen_first_key ? group_prefix : NULL;
+ if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
+ group_key_parts,
+ cur_prefix)))
+ DBUG_RETURN(result);
+ seen_first_key= TRUE;
+ }
+ else
+ {
+ if (!seen_first_key)
+ {
+ result= file->ha_index_first(record);
+ if (result)
+ DBUG_RETURN(result);
+ seen_first_key= TRUE;
+ }
+ else
+ {
+ /* Load the first key in this group into record. */
+ result= index_next_different (is_index_scan, file, index_info->key_part,
+ record, group_prefix, group_prefix_len,
+ group_key_parts);
+ if (result)
+ DBUG_RETURN(result);
+ }
+ }
+
+ /* Save the prefix of this group for subsequent calls. */
+ key_copy(group_prefix, record, index_info, group_prefix_len);
+ /* Append key_infix to group_prefix. */
+ if (key_infix_len > 0)
+ memcpy(group_prefix + group_prefix_len,
+ key_infix, key_infix_len);
+
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Allocate a temporary buffer, populate the buffer using the group prefix key
+ and the min/max field key, and compare the result to the current key pointed
+ by index_info.
+
+ @param key - the min or max field key
+ @param length - length of "key"
+*/
+int
+QUICK_GROUP_MIN_MAX_SELECT::cmp_min_max_key(const uchar *key, uint16 length)
+{
+ /*
+ Allocate a buffer.
+ Note, we allocate one extra byte, because some of Field_xxx::cmp(),
+ e.g. Field_newdate::cmp(), use uint3korr() which actually read four bytes
+ and then bit-and the read value with 0xFFFFFF.
+ See "MDEV-7920 main.group_min_max fails ... with valgrind" for details.
+ */
+ uchar *buffer= (uchar*) my_alloca(real_prefix_len + min_max_arg_len + 1);
+ /* Concatenate the group prefix key and the min/max field key */
+ memcpy(buffer, group_prefix, real_prefix_len);
+ memcpy(buffer + real_prefix_len, key, length);
+ /* Compare the key pointed by key_info to the created key */
+ int cmp_res= key_cmp(index_info->key_part, buffer,
+ real_prefix_len + min_max_arg_len);
+ my_afree(buffer);
+ return cmp_res;
+}
+
+
+/*
+ Find the minimal key in a group that satisfies some range conditions for the
+ min/max argument field.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
+
+ DESCRIPTION
+ Given the sequence of ranges min_max_ranges, find the minimal key that is
+ in the left-most possible range. If there is no such key, then the current
+ group does not have a MIN key that satisfies the WHERE clause. If a key is
+ found, its value is stored in this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
+ the ranges
+ HA_ERR_END_OF_FILE - "" -
+ other if some error
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
+{
+ ha_rkey_function find_flag;
+ key_part_map keypart_map;
+ QUICK_RANGE *cur_range;
+ bool found_null= FALSE;
+ int result= HA_ERR_KEY_NOT_FOUND;
+
+ DBUG_ASSERT(min_max_ranges.elements > 0);
+
+ for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
+ { /* Search from the left-most range to the right. */
+ get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx);
+
+ /*
+ If the current value for the min/max argument is bigger than the right
+ boundary of cur_range, there is no need to check this range.
+ */
+ if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
+ (key_cmp(min_max_arg_part, (const uchar*) cur_range->max_key,
+ min_max_arg_len) == 1))
+ continue;
+
+ if (cur_range->flag & NO_MIN_RANGE)
+ {
+ keypart_map= make_prev_keypart_map(real_key_parts);
+ find_flag= HA_READ_KEY_EXACT;
+ }
+ else
+ {
+ /* Extend the search key with the lower boundary for this range. */
+ memcpy(group_prefix + real_prefix_len, cur_range->min_key,
+ cur_range->min_length);
+ keypart_map= make_keypart_map(real_key_parts);
+ find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
+ HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
+ HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
+ }
+
+ result= file->ha_index_read_map(record, group_prefix, keypart_map,
+ find_flag);
+ if (result)
+ {
+ if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
+ (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
+ continue; /* Check the next range. */
+
+ /*
+ In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
+ HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
+ range, it can't succeed for any other subsequent range.
+ */
+ break;
+ }
+
+ /* A key was found. */
+ if (cur_range->flag & EQ_RANGE)
+ break; /* No need to perform the checks below for equal keys. */
+
+ if (cur_range->flag & NULL_RANGE)
+ {
+ /*
+ Remember this key, and continue looking for a non-NULL key that
+ satisfies some other condition.
+ */
+ memcpy(tmp_record, record, head->s->rec_buff_length);
+ found_null= TRUE;
+ continue;
+ }
+
+ /* Check if record belongs to the current group. */
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ {
+ result= HA_ERR_KEY_NOT_FOUND;
+ continue;
+ }
+
+ /* If there is an upper limit, check if the found key is in the range. */
+ if ( !(cur_range->flag & NO_MAX_RANGE) )
+ {
+ int cmp_res= cmp_min_max_key(cur_range->max_key, cur_range->max_length);
+ /*
+ The key is outside of the range if:
+ the interval is open and the key is equal to the maximum boundry
+ or
+ the key is greater than the maximum
+ */
+ if (((cur_range->flag & NEAR_MAX) && cmp_res == 0) ||
+ cmp_res > 0)
+ {
+ result= HA_ERR_KEY_NOT_FOUND;
+ continue;
+ }
+ }
+ /* If we got to this point, the current key qualifies as MIN. */
+ DBUG_ASSERT(result == 0);
+ break;
+ }
+ /*
+ If there was a key with NULL in the MIN/MAX field, and there was no other
+ key without NULL from the same group that satisfies some other condition,
+ then use the key with the NULL.
+ */
+ if (found_null && result)
+ {
+ memcpy(record, tmp_record, head->s->rec_buff_length);
+ result= 0;
+ }
+ return result;
+}
+
+
+/*
+ Find the maximal key in a group that satisfies some range conditions for the
+ min/max argument field.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
+
+ DESCRIPTION
+ Given the sequence of ranges min_max_ranges, find the maximal key that is
+ in the right-most possible range. If there is no such key, then the current
+ group does not have a MAX key that satisfies the WHERE clause. If a key is
+ found, its value is stored in this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
+ the ranges
+ HA_ERR_END_OF_FILE - "" -
+ other if some error
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
+{
+ ha_rkey_function find_flag;
+ key_part_map keypart_map;
+ QUICK_RANGE *cur_range;
+ int result;
+
+ DBUG_ASSERT(min_max_ranges.elements > 0);
+
+ for (size_t range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
+ { /* Search from the right-most range to the left. */
+ get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx - 1);
+
+ /*
+ If the current value for the min/max argument is smaller than the left
+ boundary of cur_range, there is no need to check this range.
+ */
+ if (range_idx != min_max_ranges.elements &&
+ !(cur_range->flag & NO_MIN_RANGE) &&
+ (key_cmp(min_max_arg_part, (const uchar*) cur_range->min_key,
+ min_max_arg_len) == -1))
+ continue;
+
+ if (cur_range->flag & NO_MAX_RANGE)
+ {
+ keypart_map= make_prev_keypart_map(real_key_parts);
+ find_flag= HA_READ_PREFIX_LAST;
+ }
+ else
+ {
+ /* Extend the search key with the upper boundary for this range. */
+ memcpy(group_prefix + real_prefix_len, cur_range->max_key,
+ cur_range->max_length);
+ keypart_map= make_keypart_map(real_key_parts);
+ find_flag= (cur_range->flag & EQ_RANGE) ?
+ HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
+ HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
+ }
+
+ result= file->ha_index_read_map(record, group_prefix, keypart_map,
+ find_flag);
+
+ if (result)
+ {
+ if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
+ (cur_range->flag & EQ_RANGE))
+ continue; /* Check the next range. */
+
+ /*
+ In no key was found with this upper bound, there certainly are no keys
+ in the ranges to the left.
+ */
+ return result;
+ }
+ /* A key was found. */
+ if (cur_range->flag & EQ_RANGE)
+ return 0; /* No need to perform the checks below for equal keys. */
+
+ /* Check if record belongs to the current group. */
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ continue; // Row not found
+
+ /* If there is a lower limit, check if the found key is in the range. */
+ if ( !(cur_range->flag & NO_MIN_RANGE) )
+ {
+ int cmp_res= cmp_min_max_key(cur_range->min_key, cur_range->min_length);
+ /*
+ The key is outside of the range if:
+ the interval is open and the key is equal to the minimum boundry
+ or
+ the key is less than the minimum
+ */
+ if (((cur_range->flag & NEAR_MIN) && cmp_res == 0) ||
+ cmp_res < 0)
+ continue;
+ }
+ /* If we got to this point, the current key qualifies as MAX. */
+ return result;
+ }
+ return HA_ERR_KEY_NOT_FOUND;
+}
+
+
+/*
+ Update all MIN function results with the newly found value.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
+
+ DESCRIPTION
+ The method iterates through all MIN functions and updates the result value
+ of each function by calling Item_sum::reset(), which in turn picks the new
+ result value from this->head->record[0], previously updated by
+ next_min(). The updated value is stored in a member variable of each of the
+ Item_sum objects, depending on the value type.
+
+ IMPLEMENTATION
+ The update must be done separately for MIN and MAX, immediately after
+ next_min() was called and before next_max() is called, because both MIN and
+ MAX take their result value from the same buffer this->head->record[0]
+ (i.e. this->record).
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
+{
+ Item_sum *min_func;
+
+ min_functions_it->rewind();
+ while ((min_func= (*min_functions_it)++))
+ min_func->reset_and_add();
+}
+
+
+/*
+ Update all MAX function results with the newly found value.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
+
+ DESCRIPTION
+ The method iterates through all MAX functions and updates the result value
+ of each function by calling Item_sum::reset(), which in turn picks the new
+ result value from this->head->record[0], previously updated by
+ next_max(). The updated value is stored in a member variable of each of the
+ Item_sum objects, depending on the value type.
+
+ IMPLEMENTATION
+ The update must be done separately for MIN and MAX, immediately after
+ next_max() was called, because both MIN and MAX take their result value
+ from the same buffer this->head->record[0] (i.e. this->record).
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
+{
+ Item_sum *max_func;
+
+ max_functions_it->rewind();
+ while ((max_func= (*max_functions_it)++))
+ max_func->reset_and_add();
+}
+
+
+/*
+ Append comma-separated list of keys this quick select uses to key_names;
+ append comma-separated list of corresponding used lengths to used_lengths.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
+ key_names [out] Names of used indexes
+ used_lengths [out] Corresponding lengths of the index names
+
+ DESCRIPTION
+ This method is used by select_describe to extract the names of the
+ indexes used by a quick select.
+
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ bool first= TRUE;
+
+ add_key_and_length(key_names, used_lengths, &first);
+}
+
+
+/* Check whether the number for equality ranges exceeds the set threshold */
+
+bool eq_ranges_exceeds_limit(RANGE_SEQ_IF *seq, void *seq_init_param,
+ uint limit)
+{
+ KEY_MULTI_RANGE range;
+ range_seq_t seq_it;
+ uint count = 0;
+
+ if (limit == 0)
+ {
+ /* 'Statistics instead of index dives' feature is turned off */
+ return false;
+ }
+ seq_it= seq->init(seq_init_param, 0, 0);
+ while (!seq->next(seq_it, &range))
+ {
+ if ((range.range_flag & EQ_RANGE) && !(range.range_flag & NULL_RANGE))
+ {
+ if (++count >= limit)
+ return true;
+ }
+ }
+ return false;
+}
+
+#ifndef DBUG_OFF
+
+static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
+ const char *msg)
+{
+ char buff[1024];
+ DBUG_ENTER("print_sel_tree");
+
+ String tmp(buff,sizeof(buff),&my_charset_bin);
+ tmp.length(0);
+ for (uint idx= 0; idx < param->keys; idx++)
+ {
+ if (tree_map->is_set(idx))
+ {
+ uint keynr= param->real_keynr[idx];
+ if (tmp.length())
+ tmp.append(',');
+ tmp.append(&param->table->key_info[keynr].name);
+ }
+ }
+ if (!tmp.length())
+ tmp.append(STRING_WITH_LEN("(empty)"));
+
+ DBUG_PRINT("info", ("SEL_TREE: %p (%s) scans: %s", tree, msg,
+ tmp.c_ptr_safe()));
+
+ DBUG_VOID_RETURN;
+}
+
+
+static void print_ror_scans_arr(TABLE *table, const char *msg,
+ struct st_ror_scan_info **start,
+ struct st_ror_scan_info **end)
+{
+ DBUG_ENTER("print_ror_scans_arr");
+
+ char buff[1024];
+ String tmp(buff,sizeof(buff),&my_charset_bin);
+ tmp.length(0);
+ for (;start != end; start++)
+ {
+ if (tmp.length())
+ tmp.append(',');
+ tmp.append(&table->key_info[(*start)->keynr].name);
+ }
+ if (!tmp.length())
+ tmp.append(STRING_WITH_LEN("(empty)"));
+ DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.c_ptr()));
+ DBUG_VOID_RETURN;
+}
+
+static String dbug_print_sel_arg_buf;
+
+static void
+print_sel_arg_key(Field *field, const uchar *key, String *out)
+{
+ TABLE *table= field->table;
+ MY_BITMAP *old_sets[2];
+ dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
+
+ if (field->real_maybe_null())
+ {
+ if (*key)
+ {
+ out->append(STRING_WITH_LEN("NULL"));
+ goto end;
+ }
+ key++; // Skip null byte
+ }
+
+ field->set_key_image(key, field->pack_length());
+
+ if (field->type() == MYSQL_TYPE_BIT)
+ (void) field->val_int_as_str(out, 1);
+ else
+ field->val_str(out);
+
+end:
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+}
+
+
+/*
+ @brief
+ Produce a string representation of an individual SEL_ARG and return pointer
+ to it
+
+ @detail
+ Intended usage:
+
+ (gdb) p dbug_print_sel_arg(ptr)
+*/
+
+const char *dbug_print_sel_arg(SEL_ARG *sel_arg)
+{
+ StringBuffer<64> buf;
+ String &out= dbug_print_sel_arg_buf;
+ LEX_CSTRING tmp;
+ out.length(0);
+
+ if (!sel_arg)
+ {
+ out.append(STRING_WITH_LEN("NULL"));
+ goto end;
+ }
+
+ out.append(STRING_WITH_LEN("SEL_ARG("));
+
+ const char *stype;
+ switch(sel_arg->type) {
+ case SEL_ARG::IMPOSSIBLE:
+ stype="IMPOSSIBLE";
+ break;
+ case SEL_ARG::MAYBE:
+ stype="MAYBE";
+ break;
+ case SEL_ARG::MAYBE_KEY:
+ stype="MAYBE_KEY";
+ break;
+ case SEL_ARG::KEY_RANGE:
+ default:
+ stype= NULL;
+ }
+
+ if (stype)
+ {
+ out.append(STRING_WITH_LEN("type="));
+ out.append(stype, strlen(stype));
+ goto end;
+ }
+
+ if (sel_arg->min_flag & NO_MIN_RANGE)
+ out.append(STRING_WITH_LEN("-inf"));
+ else
+ {
+ print_sel_arg_key(sel_arg->field, sel_arg->min_value, &buf);
+ out.append(buf);
+ }
+
+ if (sel_arg->min_flag & NEAR_MIN)
+ lex_string_set3(&tmp, "<", 1);
+ else
+ lex_string_set3(&tmp, "<=", 2);
+ out.append(&tmp);
+
+ out.append(sel_arg->field->field_name);
+
+ if (sel_arg->min_flag & NEAR_MAX)
+ lex_string_set3(&tmp, "<", 1);
+ else
+ lex_string_set3(&tmp, "<=", 2);
+ out.append(&tmp);
+
+ if (sel_arg->max_flag & NO_MAX_RANGE)
+ out.append(STRING_WITH_LEN("+inf"));
+ else
+ {
+ buf.length(0);
+ print_sel_arg_key(sel_arg->field, sel_arg->max_value, &buf);
+ out.append(buf);
+ }
+
+ out.append(')');
+
+end:
+ return dbug_print_sel_arg_buf.c_ptr_safe();
+}
+
+
+/*****************************************************************************
+** Print a quick range for debugging
+** TODO:
+** This should be changed to use a String to store each row instead
+** of locking the DEBUG stream !
+*****************************************************************************/
+
+static void
+print_key(KEY_PART *key_part, const uchar *key, uint used_length)
+{
+ char buff[1024];
+ const uchar *key_end= key+used_length;
+ uint store_length;
+ TABLE *table= key_part->field->table;
+ MY_BITMAP *old_sets[2];
+
+ dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
+
+ for (; key < key_end; key+=store_length, key_part++)
+ {
+ String tmp(buff,sizeof(buff),&my_charset_bin);
+ Field *field= key_part->field;
+ store_length= key_part->store_length;
+
+ if (field->real_maybe_null())
+ {
+ if (*key)
+ {
+ fwrite("NULL",sizeof(char),4,DBUG_FILE);
+ continue;
+ }
+ key++; // Skip null byte
+ store_length--;
+ }
+ field->set_key_image(key, key_part->length);
+ if (field->type() == MYSQL_TYPE_BIT)
+ (void) field->val_int_as_str(&tmp, 1);
+ else
+ field->val_str(&tmp);
+ fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
+ if (key+store_length < key_end)
+ fputc('/',DBUG_FILE);
+ }
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+}
+
+
+static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
+{
+ char buf[MAX_KEY/8+1];
+ TABLE *table;
+ MY_BITMAP *old_sets[2];
+ DBUG_ENTER("print_quick");
+ if (!quick)
+ DBUG_VOID_RETURN;
+ DBUG_LOCK_FILE;
+
+ table= quick->head;
+ dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
+ quick->dbug_dump(0, TRUE);
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+
+ fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
+
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+
+void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
+{
+ /* purecov: begin inspected */
+ fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
+ indent, "", head->key_info[index].name.str, max_used_key_length);
+
+ if (verbose)
+ {
+ QUICK_RANGE *range;
+ QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
+ QUICK_RANGE **end_range= pr + ranges.elements;
+ for (; pr != end_range; ++pr)
+ {
+ fprintf(DBUG_FILE, "%*s", indent + 2, "");
+ range= *pr;
+ if (!(range->flag & NO_MIN_RANGE))
+ {
+ print_key(key_parts, range->min_key, range->min_length);
+ if (range->flag & NEAR_MIN)
+ fputs(" < ",DBUG_FILE);
+ else
+ fputs(" <= ",DBUG_FILE);
+ }
+ fputs("X",DBUG_FILE);
+
+ if (!(range->flag & NO_MAX_RANGE))
+ {
+ if (range->flag & NEAR_MAX)
+ fputs(" < ",DBUG_FILE);
+ else
+ fputs(" <= ",DBUG_FILE);
+ print_key(key_parts, range->max_key, range->max_length);
+ }
+ fputs("\n",DBUG_FILE);
+ }
+ }
+ /* purecov: end */
+}
+
+void QUICK_INDEX_SORT_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ QUICK_RANGE_SELECT *quick;
+ fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((quick= it++))
+ quick->dbug_dump(indent+2, verbose);
+ if (pk_quick_select)
+ {
+ fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
+ pk_quick_select->dbug_dump(indent+2, verbose);
+ }
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
+ QUICK_SELECT_WITH_RECORD *qr;
+ fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
+ indent, "", need_to_fetch_row? "":"non-");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((qr= it++))
+ qr->quick->dbug_dump(indent+2, verbose);
+ if (cpk_quick)
+ {
+ fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
+ cpk_quick->dbug_dump(indent+2, verbose);
+ }
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ QUICK_SELECT_I *quick;
+ fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((quick= it++))
+ quick->dbug_dump(indent+2, verbose);
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+
+/*
+ Print quick select information to DBUG_FILE.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
+ indent Indentation offset
+ verbose If TRUE show more detailed output.
+
+ DESCRIPTION
+ Print the contents of this quick select to DBUG_FILE. The method also
+ calls dbug_dump() for the used quick select if any.
+
+ IMPLEMENTATION
+ Caller is responsible for locking DBUG_FILE before this call and unlocking
+ it afterwards.
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
+{
+ fprintf(DBUG_FILE,
+ "%*squick_group_min_max_select: index %s (%d), length: %d\n",
+ indent, "", index_info->name.str, index, max_used_key_length);
+ if (key_infix_len > 0)
+ {
+ fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
+ indent, "", key_infix_len);
+ }
+ if (quick_prefix_select)
+ {
+ fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
+ quick_prefix_select->dbug_dump(indent + 2, verbose);
+ }
+ if (min_max_ranges.elements > 0)
+ {
+ fprintf(DBUG_FILE, "%*susing %zu quick_ranges for MIN/MAX:\n",
+ indent, "", min_max_ranges.elements);
+ }
+}
+
+#endif /* !DBUG_OFF */
+
+
+/*
+ @brief Print the comparison operator for the min range
+*/
+
+static void print_min_range_operator(String *out, const ha_rkey_function flag)
+{
+ if (flag == HA_READ_AFTER_KEY)
+ out->append(STRING_WITH_LEN(" < "));
+ else if (flag == HA_READ_KEY_EXACT || flag == HA_READ_KEY_OR_NEXT)
+ out->append(STRING_WITH_LEN(" <= "));
+ else
+ out->append(STRING_WITH_LEN(" ? "));
+}
+
+
+/*
+ @brief Print the comparison operator for the max range
+*/
+
+static void print_max_range_operator(String *out, const ha_rkey_function flag)
+{
+ if (flag == HA_READ_BEFORE_KEY)
+ out->append(STRING_WITH_LEN(" < "));
+ else if (flag == HA_READ_AFTER_KEY)
+ out->append(STRING_WITH_LEN(" <= "));
+ else
+ out->append(STRING_WITH_LEN(" ? "));
+}
+
+
+static
+void print_range(String *out, const KEY_PART_INFO *key_part,
+ KEY_MULTI_RANGE *range, uint n_key_parts)
+{
+ uint flag= range->range_flag;
+ String key_name;
+ key_name.set_charset(system_charset_info);
+ key_part_map keypart_map= range->start_key.keypart_map |
+ range->end_key.keypart_map;
+
+ if (flag & GEOM_FLAG)
+ {
+ /*
+ The flags of GEOM ranges do not work the same way as for other
+ range types, so printing "col < some_geom" doesn't make sense.
+ Just print the column name, not operator.
+ */
+ print_keyparts_name(out, key_part, n_key_parts, keypart_map);
+ out->append(STRING_WITH_LEN(" "));
+ print_key_value(out, key_part, range->start_key.key,
+ range->start_key.length);
+ return;
+ }
+
+ if (range->start_key.length)
+ {
+ print_key_value(out, key_part, range->start_key.key,
+ range->start_key.length);
+ print_min_range_operator(out, range->start_key.flag);
+ }
+
+ print_keyparts_name(out, key_part, n_key_parts, keypart_map);
+
+ if (range->end_key.length)
+ {
+ print_max_range_operator(out, range->end_key.flag);
+ print_key_value(out, key_part, range->end_key.key,
+ range->end_key.length);
+ }
+}
+
+
+/*
+ @brief Print range created for non-indexed columns
+
+ @param
+ out output string
+ field field for which the range is printed
+ range range for the field
+*/
+
+static
+void print_range_for_non_indexed_field(String *out, Field *field,
+ KEY_MULTI_RANGE *range)
+{
+ TABLE *table= field->table;
+ MY_BITMAP *old_sets[2];
+ dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
+
+ if (range->start_key.length)
+ {
+ field->print_key_part_value(out, range->start_key.key, field->key_length());
+ print_min_range_operator(out, range->start_key.flag);
+ }
+
+ out->append(field->field_name);
+
+ if (range->end_key.length)
+ {
+ print_max_range_operator(out, range->end_key.flag);
+ field->print_key_part_value(out, range->end_key.key, field->key_length());
+ }
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+}
+
+
+
+/*
+
+ Add ranges to the trace
+ For ex:
+ lets say we have an index a_b(a,b)
+ query: select * from t1 where a=2 and b=4 ;
+ so we create a range:
+ (2,4) <= (a,b) <= (2,4)
+ this is added to the trace
+*/
+
+static void trace_ranges(Json_writer_array *range_trace,
+ PARAM *param, uint idx,
+ SEL_ARG *keypart,
+ const KEY_PART_INFO *key_parts)
+{
+ SEL_ARG_RANGE_SEQ seq;
+ KEY_MULTI_RANGE range;
+ range_seq_t seq_it;
+ uint flags= 0;
+ RANGE_SEQ_IF seq_if = {NULL, sel_arg_range_seq_init,
+ sel_arg_range_seq_next, 0, 0};
+ KEY *keyinfo= param->table->key_info + param->real_keynr[idx];
+ uint n_key_parts= param->table->actual_n_key_parts(keyinfo);
+ DBUG_ASSERT(range_trace->trace_started());
+ seq.keyno= idx;
+ seq.key_parts= param->key[idx];
+ seq.real_keyno= param->real_keynr[idx];
+ seq.param= param;
+ seq.start= keypart;
+ /*
+ is_ror_scan is set to FALSE here, because we are only interested
+ in iterating over all the ranges and printing them.
+ */
+ seq.is_ror_scan= FALSE;
+ const KEY_PART_INFO *cur_key_part= key_parts + keypart->part;
+ seq_it= seq_if.init((void *) &seq, 0, flags);
+
+ while (!seq_if.next(seq_it, &range))
+ {
+ StringBuffer<128> range_info(system_charset_info);
+ print_range(&range_info, cur_key_part, &range, n_key_parts);
+ range_trace->add(range_info.c_ptr_safe(), range_info.length());
+ }
+}
+
+/**
+ Print a key to a string
+
+ @param[out] out String the key is appended to
+ @param[in] key_part Index components description
+ @param[in] key Key tuple
+ @param[in] used_length length of the key tuple
+*/
+
+static void print_key_value(String *out, const KEY_PART_INFO *key_part,
+ const uchar* key, uint used_length)
+{
+ out->append(STRING_WITH_LEN("("));
+ Field *field= key_part->field;
+ StringBuffer<128> tmp(system_charset_info);
+ TABLE *table= field->table;
+ uint store_length;
+ MY_BITMAP *old_sets[2];
+ dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
+ const uchar *key_end= key+used_length;
+
+ for (; key < key_end; key+=store_length, key_part++)
+ {
+ field= key_part->field;
+ store_length= key_part->store_length;
+
+ field->print_key_part_value(out, key, key_part->length);
+
+ if (key + store_length < key_end)
+ out->append(STRING_WITH_LEN(","));
+ }
+ dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
+ out->append(STRING_WITH_LEN(")"));
+}
+
+/**
+ Print key parts involed in a range
+ @param[out] out String the key is appended to
+ @param[in] key_part Index components description
+ @param[in] n_keypart Number of keyparts in index
+ @param[in] keypart_map map for keyparts involved in the range
+*/
+
+void print_keyparts_name(String *out, const KEY_PART_INFO *key_part,
+ uint n_keypart, key_part_map keypart_map)
+{
+ uint i;
+ out->append(STRING_WITH_LEN("("));
+ bool first_keypart= TRUE;
+ for (i=0; i < n_keypart; key_part++, i++)
+ {
+ if (keypart_map & (1 << i))
+ {
+ if (first_keypart)
+ first_keypart= FALSE;
+ else
+ out->append(STRING_WITH_LEN(","));
+ out->append(key_part->field->field_name);
+ if (key_part->key_part_flag & HA_REVERSE_SORT)
+ out->append(STRING_WITH_LEN(" DESC"));
+ }
+ else
+ break;
+ }
+ out->append(STRING_WITH_LEN(")"));
+}