diff options
Diffstat (limited to '')
-rw-r--r-- | mysys/crc32/crc_ppc64.h | 664 |
1 files changed, 664 insertions, 0 deletions
diff --git a/mysys/crc32/crc_ppc64.h b/mysys/crc32/crc_ppc64.h new file mode 100644 index 00000000..eb9379ab --- /dev/null +++ b/mysys/crc32/crc_ppc64.h @@ -0,0 +1,664 @@ +/* + * Calculate the checksum of data that is 16 byte aligned and a multiple of + * 16 bytes. + * + * The first step is to reduce it to 1024 bits. We do this in 8 parallel + * chunks in order to mask the latency of the vpmsum instructions. If we + * have more than 32 kB of data to checksum we repeat this step multiple + * times, passing in the previous 1024 bits. + * + * The next step is to reduce the 1024 bits to 64 bits. This step adds + * 32 bits of 0s to the end - this matches what a CRC does. We just + * calculate constants that land the data in this 32 bits. + * + * We then use fixed point Barrett reduction to compute a mod n over GF(2) + * for n = CRC using POWER8 instructions. We use x = 32. + * + * http://en.wikipedia.org/wiki/Barrett_reduction + * + * This code uses gcc vector builtins instead using assembly directly. + * + * Copyright (C) 2017 Rogerio Alves <rogealve@br.ibm.com>, IBM + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of either: + * + * a) the GNU General Public License as published by the Free Software + * Foundation; either version 2 of the License, or (at your option) + * any later version, or + * b) the Apache License, Version 2.0 + */ + +#include <altivec.h> + + +#define VMX_ALIGN 16 +#define VMX_ALIGN_MASK (VMX_ALIGN-1) + +#ifdef REFLECT +static unsigned int crc32_align(unsigned int crc, const unsigned char *p, + unsigned long len) +{ + while (len--) + crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8); + return crc; +} +#else +static unsigned int crc32_align(unsigned int crc, const unsigned char *p, + unsigned long len) +{ + while (len--) + crc = crc_table[((crc >> 24) ^ *p++) & 0xff] ^ (crc << 8); + return crc; +} +#endif + +static unsigned int __attribute__ ((aligned (32))) +__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len); + + +unsigned int CRC32_FUNCTION(unsigned int crc, const unsigned char *p, + unsigned long len) +{ + unsigned int prealign; + unsigned int tail; + +#ifdef CRC_XOR + crc ^= 0xffffffff; +#endif + + if (len < VMX_ALIGN + VMX_ALIGN_MASK) { + crc = crc32_align(crc, p, len); + goto out; + } + + if ((unsigned long)p & VMX_ALIGN_MASK) { + prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK); + crc = crc32_align(crc, p, prealign); + len -= prealign; + p += prealign; + } + + crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK); + + tail = len & VMX_ALIGN_MASK; + if (tail) { + p += len & ~VMX_ALIGN_MASK; + crc = crc32_align(crc, p, tail); + } + +out: +#ifdef CRC_XOR + crc ^= 0xffffffff; +#endif + + return crc; +} + +#if defined (__clang__) +#include "clang_workaround.h" +#else +#define __builtin_pack_vector(a, b) __builtin_pack_vector_int128 ((a), (b)) +#define __builtin_unpack_vector_0(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 0) +#define __builtin_unpack_vector_1(a) __builtin_unpack_vector_int128 ((vector __int128_t)(a), 1) +#endif + +/* When we have a load-store in a single-dispatch group and address overlap + * such that foward is not allowed (load-hit-store) the group must be flushed. + * A group ending NOP prevents the flush. + */ +#define GROUP_ENDING_NOP asm("ori 2,2,0" ::: "memory") + +#if defined(__BIG_ENDIAN__) && defined (REFLECT) +#define BYTESWAP_DATA +#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT) +#define BYTESWAP_DATA +#endif + +#ifdef BYTESWAP_DATA +#define VEC_PERM(vr, va, vb, vc) vr = vec_perm(va, vb,\ + (__vector unsigned char) vc) +#if defined(__LITTLE_ENDIAN__) +/* Byte reverse permute constant LE. */ +static const __vector unsigned long long vperm_const + __attribute__ ((aligned(16))) = { 0x08090A0B0C0D0E0FUL, + 0x0001020304050607UL }; +#else +static const __vector unsigned long long vperm_const + __attribute__ ((aligned(16))) = { 0x0F0E0D0C0B0A0908UL, + 0X0706050403020100UL }; +#endif +#else +#define VEC_PERM(vr, va, vb, vc) +#endif + +static unsigned int __attribute__ ((aligned (32))) +__crc32_vpmsum(unsigned int crc, const void* p, unsigned long len) { + + const __vector unsigned long long vzero = {0,0}; + const __vector unsigned long long vones = {0xffffffffffffffffUL, + 0xffffffffffffffffUL}; + +#ifdef REFLECT + __vector unsigned char vsht_splat; + const __vector unsigned long long vmask_32bit = + (__vector unsigned long long)vec_sld((__vector unsigned char)vzero, + (__vector unsigned char)vones, 4); +#endif + + const __vector unsigned long long vmask_64bit = + (__vector unsigned long long)vec_sld((__vector unsigned char)vzero, + (__vector unsigned char)vones, 8); + + __vector unsigned long long vcrc; + + __vector unsigned long long vconst1, vconst2; + + /* vdata0-vdata7 will contain our data (p). */ + __vector unsigned long long vdata0, vdata1, vdata2, vdata3, vdata4, + vdata5, vdata6, vdata7; + + /* v0-v7 will contain our checksums */ + __vector unsigned long long v0 = {0,0}; + __vector unsigned long long v1 = {0,0}; + __vector unsigned long long v2 = {0,0}; + __vector unsigned long long v3 = {0,0}; + __vector unsigned long long v4 = {0,0}; + __vector unsigned long long v5 = {0,0}; + __vector unsigned long long v6 = {0,0}; + __vector unsigned long long v7 = {0,0}; + + + /* Vector auxiliary variables. */ + __vector unsigned long long va0, va1, va2, va3, va4, va5, va6, va7; + + unsigned int result = 0; + unsigned int offset; /* Constant table offset. */ + + unsigned long i; /* Counter. */ + unsigned long chunks; + + unsigned long block_size; + int next_block = 0; + + /* Align by 128 bits. The last 128 bit block will be processed at end. */ + unsigned long length = len & 0xFFFFFFFFFFFFFF80UL; + +#ifdef REFLECT + vcrc = (__vector unsigned long long)__builtin_pack_vector(0UL, crc); +#else + vcrc = (__vector unsigned long long)__builtin_pack_vector(crc, 0UL); + + /* Shift into top 32 bits */ + vcrc = (__vector unsigned long long)vec_sld((__vector unsigned char)vcrc, + (__vector unsigned char)vzero, 4); +#endif + + /* Short version. */ + if (len < 256) { + /* Calculate where in the constant table we need to start. */ + offset = 256 - len; + + vconst1 = vec_ld(offset, vcrc_short_const); + vdata0 = vec_ld(0, (__vector unsigned long long*) p); + VEC_PERM(vdata0, vdata0, vconst1, vperm_const); + + /* xor initial value*/ + vdata0 = vec_xor(vdata0, vcrc); + + vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw + ((__vector unsigned int)vdata0, (__vector unsigned int)vconst1); + v0 = vec_xor(v0, vdata0); + + for (i = 16; i < len; i += 16) { + vconst1 = vec_ld(offset + i, vcrc_short_const); + vdata0 = vec_ld(i, (__vector unsigned long long*) p); + VEC_PERM(vdata0, vdata0, vconst1, vperm_const); + vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw + ((__vector unsigned int)vdata0, (__vector unsigned int)vconst1); + v0 = vec_xor(v0, vdata0); + } + } else { + + /* Load initial values. */ + vdata0 = vec_ld(0, (__vector unsigned long long*) p); + vdata1 = vec_ld(16, (__vector unsigned long long*) p); + + VEC_PERM(vdata0, vdata0, vdata0, vperm_const); + VEC_PERM(vdata1, vdata1, vdata1, vperm_const); + + vdata2 = vec_ld(32, (__vector unsigned long long*) p); + vdata3 = vec_ld(48, (__vector unsigned long long*) p); + + VEC_PERM(vdata2, vdata2, vdata2, vperm_const); + VEC_PERM(vdata3, vdata3, vdata3, vperm_const); + + vdata4 = vec_ld(64, (__vector unsigned long long*) p); + vdata5 = vec_ld(80, (__vector unsigned long long*) p); + + VEC_PERM(vdata4, vdata4, vdata4, vperm_const); + VEC_PERM(vdata5, vdata5, vdata5, vperm_const); + + vdata6 = vec_ld(96, (__vector unsigned long long*) p); + vdata7 = vec_ld(112, (__vector unsigned long long*) p); + + VEC_PERM(vdata6, vdata6, vdata6, vperm_const); + VEC_PERM(vdata7, vdata7, vdata7, vperm_const); + + /* xor in initial value */ + vdata0 = vec_xor(vdata0, vcrc); + + p = (char *)p + 128; + + do { + /* Checksum in blocks of MAX_SIZE. */ + block_size = length; + if (block_size > MAX_SIZE) { + block_size = MAX_SIZE; + } + + length = length - block_size; + + /* + * Work out the offset into the constants table to start at. Each + * constant is 16 bytes, and it is used against 128 bytes of input + * data - 128 / 16 = 8 + */ + offset = (MAX_SIZE/8) - (block_size/8); + /* We reduce our final 128 bytes in a separate step */ + chunks = (block_size/128)-1; + + vconst1 = vec_ld(offset, vcrc_const); + + va0 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata0, + (__vector unsigned long long)vconst1); + va1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata1, + (__vector unsigned long long)vconst1); + va2 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata2, + (__vector unsigned long long)vconst1); + va3 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata3, + (__vector unsigned long long)vconst1); + va4 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata4, + (__vector unsigned long long)vconst1); + va5 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata5, + (__vector unsigned long long)vconst1); + va6 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata6, + (__vector unsigned long long)vconst1); + va7 = __builtin_crypto_vpmsumd ((__vector unsigned long long)vdata7, + (__vector unsigned long long)vconst1); + + if (chunks > 1) { + offset += 16; + vconst2 = vec_ld(offset, vcrc_const); + GROUP_ENDING_NOP; + + vdata0 = vec_ld(0, (__vector unsigned long long*) p); + VEC_PERM(vdata0, vdata0, vdata0, vperm_const); + + vdata1 = vec_ld(16, (__vector unsigned long long*) p); + VEC_PERM(vdata1, vdata1, vdata1, vperm_const); + + vdata2 = vec_ld(32, (__vector unsigned long long*) p); + VEC_PERM(vdata2, vdata2, vdata2, vperm_const); + + vdata3 = vec_ld(48, (__vector unsigned long long*) p); + VEC_PERM(vdata3, vdata3, vdata3, vperm_const); + + vdata4 = vec_ld(64, (__vector unsigned long long*) p); + VEC_PERM(vdata4, vdata4, vdata4, vperm_const); + + vdata5 = vec_ld(80, (__vector unsigned long long*) p); + VEC_PERM(vdata5, vdata5, vdata5, vperm_const); + + vdata6 = vec_ld(96, (__vector unsigned long long*) p); + VEC_PERM(vdata6, vdata6, vdata6, vperm_const); + + vdata7 = vec_ld(112, (__vector unsigned long long*) p); + VEC_PERM(vdata7, vdata7, vdata7, vperm_const); + + p = (char *)p + 128; + + /* + * main loop. We modulo schedule it such that it takes three + * iterations to complete - first iteration load, second + * iteration vpmsum, third iteration xor. + */ + for (i = 0; i < chunks-2; i++) { + vconst1 = vec_ld(offset, vcrc_const); + offset += 16; + GROUP_ENDING_NOP; + + v0 = vec_xor(v0, va0); + va0 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata0, (__vector unsigned long long)vconst2); + vdata0 = vec_ld(0, (__vector unsigned long long*) p); + VEC_PERM(vdata0, vdata0, vdata0, vperm_const); + GROUP_ENDING_NOP; + + v1 = vec_xor(v1, va1); + va1 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata1, (__vector unsigned long long)vconst2); + vdata1 = vec_ld(16, (__vector unsigned long long*) p); + VEC_PERM(vdata1, vdata1, vdata1, vperm_const); + GROUP_ENDING_NOP; + + v2 = vec_xor(v2, va2); + va2 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata2, (__vector unsigned long long)vconst2); + vdata2 = vec_ld(32, (__vector unsigned long long*) p); + VEC_PERM(vdata2, vdata2, vdata2, vperm_const); + GROUP_ENDING_NOP; + + v3 = vec_xor(v3, va3); + va3 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata3, (__vector unsigned long long)vconst2); + vdata3 = vec_ld(48, (__vector unsigned long long*) p); + VEC_PERM(vdata3, vdata3, vdata3, vperm_const); + + vconst2 = vec_ld(offset, vcrc_const); + GROUP_ENDING_NOP; + + v4 = vec_xor(v4, va4); + va4 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata4, (__vector unsigned long long)vconst1); + vdata4 = vec_ld(64, (__vector unsigned long long*) p); + VEC_PERM(vdata4, vdata4, vdata4, vperm_const); + GROUP_ENDING_NOP; + + v5 = vec_xor(v5, va5); + va5 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata5, (__vector unsigned long long)vconst1); + vdata5 = vec_ld(80, (__vector unsigned long long*) p); + VEC_PERM(vdata5, vdata5, vdata5, vperm_const); + GROUP_ENDING_NOP; + + v6 = vec_xor(v6, va6); + va6 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata6, (__vector unsigned long long)vconst1); + vdata6 = vec_ld(96, (__vector unsigned long long*) p); + VEC_PERM(vdata6, vdata6, vdata6, vperm_const); + GROUP_ENDING_NOP; + + v7 = vec_xor(v7, va7); + va7 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata7, (__vector unsigned long long)vconst1); + vdata7 = vec_ld(112, (__vector unsigned long long*) p); + VEC_PERM(vdata7, vdata7, vdata7, vperm_const); + + p = (char *)p + 128; + } + + /* First cool down*/ + vconst1 = vec_ld(offset, vcrc_const); + offset += 16; + + v0 = vec_xor(v0, va0); + va0 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata0, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v1 = vec_xor(v1, va1); + va1 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata1, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v2 = vec_xor(v2, va2); + va2 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata2, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v3 = vec_xor(v3, va3); + va3 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata3, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v4 = vec_xor(v4, va4); + va4 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata4, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v5 = vec_xor(v5, va5); + va5 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata5, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v6 = vec_xor(v6, va6); + va6 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata6, (__vector unsigned long long)vconst1); + GROUP_ENDING_NOP; + + v7 = vec_xor(v7, va7); + va7 = __builtin_crypto_vpmsumd ((__vector unsigned long + long)vdata7, (__vector unsigned long long)vconst1); + }/* else */ + + /* Second cool down. */ + v0 = vec_xor(v0, va0); + v1 = vec_xor(v1, va1); + v2 = vec_xor(v2, va2); + v3 = vec_xor(v3, va3); + v4 = vec_xor(v4, va4); + v5 = vec_xor(v5, va5); + v6 = vec_xor(v6, va6); + v7 = vec_xor(v7, va7); + +#ifdef REFLECT + /* + * vpmsumd produces a 96 bit result in the least significant bits + * of the register. Since we are bit reflected we have to shift it + * left 32 bits so it occupies the least significant bits in the + * bit reflected domain. + */ + v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0, + (__vector unsigned char)vzero, 4); + v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v1, + (__vector unsigned char)vzero, 4); + v2 = (__vector unsigned long long)vec_sld((__vector unsigned char)v2, + (__vector unsigned char)vzero, 4); + v3 = (__vector unsigned long long)vec_sld((__vector unsigned char)v3, + (__vector unsigned char)vzero, 4); + v4 = (__vector unsigned long long)vec_sld((__vector unsigned char)v4, + (__vector unsigned char)vzero, 4); + v5 = (__vector unsigned long long)vec_sld((__vector unsigned char)v5, + (__vector unsigned char)vzero, 4); + v6 = (__vector unsigned long long)vec_sld((__vector unsigned char)v6, + (__vector unsigned char)vzero, 4); + v7 = (__vector unsigned long long)vec_sld((__vector unsigned char)v7, + (__vector unsigned char)vzero, 4); +#endif + + /* xor with the last 1024 bits. */ + va0 = vec_ld(0, (__vector unsigned long long*) p); + VEC_PERM(va0, va0, va0, vperm_const); + + va1 = vec_ld(16, (__vector unsigned long long*) p); + VEC_PERM(va1, va1, va1, vperm_const); + + va2 = vec_ld(32, (__vector unsigned long long*) p); + VEC_PERM(va2, va2, va2, vperm_const); + + va3 = vec_ld(48, (__vector unsigned long long*) p); + VEC_PERM(va3, va3, va3, vperm_const); + + va4 = vec_ld(64, (__vector unsigned long long*) p); + VEC_PERM(va4, va4, va4, vperm_const); + + va5 = vec_ld(80, (__vector unsigned long long*) p); + VEC_PERM(va5, va5, va5, vperm_const); + + va6 = vec_ld(96, (__vector unsigned long long*) p); + VEC_PERM(va6, va6, va6, vperm_const); + + va7 = vec_ld(112, (__vector unsigned long long*) p); + VEC_PERM(va7, va7, va7, vperm_const); + + p = (char *)p + 128; + + vdata0 = vec_xor(v0, va0); + vdata1 = vec_xor(v1, va1); + vdata2 = vec_xor(v2, va2); + vdata3 = vec_xor(v3, va3); + vdata4 = vec_xor(v4, va4); + vdata5 = vec_xor(v5, va5); + vdata6 = vec_xor(v6, va6); + vdata7 = vec_xor(v7, va7); + + /* Check if we have more blocks to process */ + next_block = 0; + if (length != 0) { + next_block = 1; + + /* zero v0-v7 */ + v0 = vec_xor(v0, v0); + v1 = vec_xor(v1, v1); + v2 = vec_xor(v2, v2); + v3 = vec_xor(v3, v3); + v4 = vec_xor(v4, v4); + v5 = vec_xor(v5, v5); + v6 = vec_xor(v6, v6); + v7 = vec_xor(v7, v7); + } + length = length + 128; + + } while (next_block); + + /* Calculate how many bytes we have left. */ + length = (len & 127); + + /* Calculate where in (short) constant table we need to start. */ + offset = 128 - length; + + v0 = vec_ld(offset, vcrc_short_const); + v1 = vec_ld(offset + 16, vcrc_short_const); + v2 = vec_ld(offset + 32, vcrc_short_const); + v3 = vec_ld(offset + 48, vcrc_short_const); + v4 = vec_ld(offset + 64, vcrc_short_const); + v5 = vec_ld(offset + 80, vcrc_short_const); + v6 = vec_ld(offset + 96, vcrc_short_const); + v7 = vec_ld(offset + 112, vcrc_short_const); + + offset += 128; + + v0 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata0,(__vector unsigned int)v0); + v1 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata1,(__vector unsigned int)v1); + v2 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata2,(__vector unsigned int)v2); + v3 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata3,(__vector unsigned int)v3); + v4 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata4,(__vector unsigned int)v4); + v5 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata5,(__vector unsigned int)v5); + v6 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata6,(__vector unsigned int)v6); + v7 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata7,(__vector unsigned int)v7); + + /* Now reduce the tail (0-112 bytes). */ + for (i = 0; i < length; i+=16) { + vdata0 = vec_ld(i,(__vector unsigned long long*)p); + VEC_PERM(vdata0, vdata0, vdata0, vperm_const); + va0 = vec_ld(offset + i,vcrc_short_const); + va0 = (__vector unsigned long long)__builtin_crypto_vpmsumw ( + (__vector unsigned int)vdata0,(__vector unsigned int)va0); + v0 = vec_xor(v0, va0); + } + + /* xor all parallel chunks together. */ + v0 = vec_xor(v0, v1); + v2 = vec_xor(v2, v3); + v4 = vec_xor(v4, v5); + v6 = vec_xor(v6, v7); + + v0 = vec_xor(v0, v2); + v4 = vec_xor(v4, v6); + + v0 = vec_xor(v0, v4); + } + + /* Barrett Reduction */ + vconst1 = vec_ld(0, v_Barrett_const); + vconst2 = vec_ld(16, v_Barrett_const); + + v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0, + (__vector unsigned char)v0, 8); + v0 = vec_xor(v1,v0); + +#ifdef REFLECT + /* shift left one bit */ + vsht_splat = vec_splat_u8 (1); + v0 = (__vector unsigned long long)vec_sll ((__vector unsigned char)v0, + vsht_splat); +#endif + + v0 = vec_and(v0, vmask_64bit); + +#ifndef REFLECT + + /* + * Now for the actual algorithm. The idea is to calculate q, + * the multiple of our polynomial that we need to subtract. By + * doing the computation 2x bits higher (ie 64 bits) and shifting the + * result back down 2x bits, we round down to the nearest multiple. + */ + + /* ma */ + v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v0, + (__vector unsigned long long)vconst1); + /* q = floor(ma/(2^64)) */ + v1 = (__vector unsigned long long)vec_sld ((__vector unsigned char)vzero, + (__vector unsigned char)v1, 8); + /* qn */ + v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1, + (__vector unsigned long long)vconst2); + /* a - qn, subtraction is xor in GF(2) */ + v0 = vec_xor (v0, v1); + /* + * Get the result into r3. We need to shift it left 8 bytes: + * V0 [ 0 1 2 X ] + * V0 [ 0 X 2 3 ] + */ + result = __builtin_unpack_vector_1 (v0); +#else + + /* + * The reflected version of Barrett reduction. Instead of bit + * reflecting our data (which is expensive to do), we bit reflect our + * constants and our algorithm, which means the intermediate data in + * our vector registers goes from 0-63 instead of 63-0. We can reflect + * the algorithm because we don't carry in mod 2 arithmetic. + */ + + /* bottom 32 bits of a */ + v1 = vec_and(v0, vmask_32bit); + + /* ma */ + v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1, + (__vector unsigned long long)vconst1); + + /* bottom 32bits of ma */ + v1 = vec_and(v1, vmask_32bit); + /* qn */ + v1 = __builtin_crypto_vpmsumd ((__vector unsigned long long)v1, + (__vector unsigned long long)vconst2); + /* a - qn, subtraction is xor in GF(2) */ + v0 = vec_xor (v0, v1); + + /* + * Since we are bit reflected, the result (ie the low 32 bits) is in + * the high 32 bits. We just need to shift it left 4 bytes + * V0 [ 0 1 X 3 ] + * V0 [ 0 X 2 3 ] + */ + + /* shift result into top 64 bits of */ + v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0, + (__vector unsigned char)vzero, 4); + + result = __builtin_unpack_vector_0 (v0); +#endif + + return result; +} |