summaryrefslogtreecommitdiffstats
path: root/sql/item_sum.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--sql/item_sum.cc4600
1 files changed, 4600 insertions, 0 deletions
diff --git a/sql/item_sum.cc b/sql/item_sum.cc
new file mode 100644
index 00000000..bbd09a59
--- /dev/null
+++ b/sql/item_sum.cc
@@ -0,0 +1,4600 @@
+/* Copyright (c) 2000, 2015, Oracle and/or its affiliates.
+ Copyright (c) 2008, 2022, MariaDB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
+
+
+/**
+ @file
+
+ @brief
+ Sum functions (COUNT, MIN...)
+*/
+
+#ifdef USE_PRAGMA_IMPLEMENTATION
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include "mariadb.h"
+#include "sql_priv.h"
+#include "sql_select.h"
+#include "uniques.h"
+#include "sp_rcontext.h"
+#include "sp.h"
+#include "sql_parse.h"
+#include "sp_head.h"
+
+/**
+ Calculate the affordable RAM limit for structures like TREE or Unique
+ used in Item_sum_*
+*/
+
+size_t Item_sum::ram_limitation(THD *thd)
+{
+ return MY_MAX(1024,
+ (size_t)MY_MIN(thd->variables.tmp_memory_table_size,
+ thd->variables.max_heap_table_size));
+}
+
+
+/*
+ Force create_tmp_table() to convert BIT columns to BIGINT.
+ This is needed because BIT fields store parts of their data in table's
+ null bits, and we don't have methods to compare two table records with
+ bit fields.
+*/
+
+static void store_bit_fields_as_bigint_in_tempory_table(List<Item> *list)
+{
+ List_iterator_fast<Item> li(*list);
+ Item *item;
+ while ((item= li++))
+ {
+ if (item->type() == Item::FIELD_ITEM &&
+ ((Item_field*) item)->field->type() == FIELD_TYPE_BIT)
+ item->marker= MARKER_NULL_KEY;
+ }
+}
+
+/**
+ Prepare an aggregate function item for checking context conditions.
+
+ The function initializes the members of the Item_sum object created
+ for a set function that are used to check validity of the set function
+ occurrence.
+ If the set function is not allowed in any subquery where it occurs
+ an error is reported immediately.
+
+ @param thd reference to the thread context info
+
+ @note
+ This function is to be called for any item created for a set function
+ object when the traversal of trees built for expressions used in the query
+ is performed at the phase of context analysis. This function is to
+ be invoked at the descent of this traversal.
+ @retval
+ TRUE if an error is reported
+ @retval
+ FALSE otherwise
+*/
+
+bool Item_sum::init_sum_func_check(THD *thd)
+{
+ SELECT_LEX *curr_sel= thd->lex->current_select;
+ if (curr_sel && curr_sel->name_visibility_map.is_clear_all())
+ {
+ for (SELECT_LEX *sl= curr_sel; sl; sl= sl->context.outer_select())
+ {
+ curr_sel->name_visibility_map.set_bit(sl->nest_level);
+ }
+ }
+ if (!curr_sel ||
+ !(thd->lex->allow_sum_func.is_overlapping(curr_sel->name_visibility_map)))
+ {
+ my_message(ER_INVALID_GROUP_FUNC_USE, ER_THD(thd, ER_INVALID_GROUP_FUNC_USE),
+ MYF(0));
+ return TRUE;
+ }
+ /* Set a reference to the nesting set function if there is any */
+ in_sum_func= thd->lex->in_sum_func;
+ /* Save a pointer to object to be used in items for nested set functions */
+ thd->lex->in_sum_func= this;
+ nest_level= thd->lex->current_select->nest_level;
+ ref_by= 0;
+ aggr_level= -1;
+ aggr_sel= NULL;
+ max_arg_level= -1;
+ max_sum_func_level= -1;
+ outer_fields.empty();
+ return FALSE;
+}
+
+/**
+ Check constraints imposed on a usage of a set function.
+
+ The method verifies whether context conditions imposed on a usage
+ of any set function are met for this occurrence.
+
+ The function first checks if we are using any window functions as
+ arguments to the set function. In that case it returns an error.
+
+ Afterwards, it checks whether the set function occurs in the position where it
+ can be aggregated and, when it happens to occur in argument of another
+ set function, the method checks that these two functions are aggregated in
+ different subqueries.
+ If the context conditions are not met the method reports an error.
+ If the set function is aggregated in some outer subquery the method
+ adds it to the chain of items for such set functions that is attached
+ to the the st_select_lex structure for this subquery.
+
+ A number of designated members of the object are used to check the
+ conditions. They are specified in the comment before the Item_sum
+ class declaration.
+ Additionally a bitmap variable called allow_sum_func is employed.
+ It is included into the thd->lex structure.
+ The bitmap contains 1 at n-th position if the set function happens
+ to occur under a construct of the n-th level subquery where usage
+ of set functions are allowed (i.e either in the SELECT list or
+ in the HAVING clause of the corresponding subquery)
+ Consider the query:
+ @code
+ SELECT SUM(t1.b) FROM t1 GROUP BY t1.a
+ HAVING t1.a IN (SELECT t2.c FROM t2 WHERE AVG(t1.b) > 20) AND
+ t1.a > (SELECT MIN(t2.d) FROM t2);
+ @endcode
+ allow_sum_func will contain:
+ - for SUM(t1.b) - 1 at the first position
+ - for AVG(t1.b) - 1 at the first position, 0 at the second position
+ - for MIN(t2.d) - 1 at the first position, 1 at the second position.
+
+ @param thd reference to the thread context info
+ @param ref location of the pointer to this item in the embedding expression
+
+ @note
+ This function is to be called for any item created for a set function
+ object when the traversal of trees built for expressions used in the query
+ is performed at the phase of context analysis. This function is to
+ be invoked at the ascent of this traversal.
+
+ @retval
+ TRUE if an error is reported
+ @retval
+ FALSE otherwise
+*/
+
+bool Item_sum::check_sum_func(THD *thd, Item **ref)
+{
+ SELECT_LEX *curr_sel= thd->lex->current_select;
+ nesting_map allow_sum_func(thd->lex->allow_sum_func);
+ allow_sum_func.intersect(curr_sel->name_visibility_map);
+ bool invalid= FALSE;
+ // should be set already
+ DBUG_ASSERT(!curr_sel->name_visibility_map.is_clear_all());
+
+ /*
+ Window functions can not be used as arguments to sum functions.
+ Aggregation happes before window function computation, so there
+ are no values to aggregate over.
+ */
+ if (with_window_func())
+ {
+ my_message(ER_SUM_FUNC_WITH_WINDOW_FUNC_AS_ARG,
+ ER_THD(thd, ER_SUM_FUNC_WITH_WINDOW_FUNC_AS_ARG),
+ MYF(0));
+ return TRUE;
+ }
+
+ if (window_func_sum_expr_flag)
+ return false;
+ /*
+ The value of max_arg_level is updated if an argument of the set function
+ contains a column reference resolved against a subquery whose level is
+ greater than the current value of max_arg_level.
+ max_arg_level cannot be greater than nest level.
+ nest level is always >= 0
+ */
+ if (nest_level == max_arg_level)
+ {
+ /*
+ The function must be aggregated in the current subquery,
+ If it is there under a construct where it is not allowed
+ we report an error.
+ */
+ invalid= !(allow_sum_func.is_set(max_arg_level));
+ }
+ else if (max_arg_level >= 0 ||
+ !(allow_sum_func.is_set(nest_level)))
+ {
+ /*
+ The set function can be aggregated only in outer subqueries.
+ Try to find a subquery where it can be aggregated;
+ If we fail to find such a subquery report an error.
+ */
+ if (register_sum_func(thd, ref))
+ return TRUE;
+ invalid= aggr_level < 0 &&
+ !(allow_sum_func.is_set(nest_level));
+ if (!invalid && thd->variables.sql_mode & MODE_ANSI)
+ invalid= aggr_level < 0 && max_arg_level < nest_level;
+ }
+ if (!invalid && aggr_level < 0)
+ {
+ aggr_level= nest_level;
+ aggr_sel= curr_sel;
+ }
+ /*
+ By this moment we either found a subquery where the set function is
+ to be aggregated and assigned a value that is >= 0 to aggr_level,
+ or set the value of 'invalid' to TRUE to report later an error.
+ */
+ /*
+ Additionally we have to check whether possible nested set functions
+ are acceptable here: they are not, if the level of aggregation of
+ some of them is less than aggr_level.
+ */
+ if (!invalid)
+ invalid= aggr_level <= max_sum_func_level;
+ if (invalid)
+ {
+ my_message(ER_INVALID_GROUP_FUNC_USE,
+ ER_THD(thd, ER_INVALID_GROUP_FUNC_USE),
+ MYF(0));
+ return TRUE;
+ }
+
+ if (in_sum_func)
+ {
+ /*
+ If the set function is nested adjust the value of
+ max_sum_func_level for the nesting set function.
+ We take into account only enclosed set functions that are to be
+ aggregated on the same level or above of the nest level of
+ the enclosing set function.
+ But we must always pass up the max_sum_func_level because it is
+ the maximum nested level of all directly and indirectly enclosed
+ set functions. We must do that even for set functions that are
+ aggregated inside of their enclosing set function's nest level
+ because the enclosing function may contain another enclosing
+ function that is to be aggregated outside or on the same level
+ as its parent's nest level.
+ */
+ if (in_sum_func->nest_level >= aggr_level)
+ set_if_bigger(in_sum_func->max_sum_func_level, aggr_level);
+ set_if_bigger(in_sum_func->max_sum_func_level, max_sum_func_level);
+ }
+
+ /*
+ Check that non-aggregated fields and sum functions aren't mixed in the
+ same select in the ONLY_FULL_GROUP_BY mode.
+ */
+ if (outer_fields.elements)
+ {
+ Item_field *field;
+ /*
+ Here we compare the nesting level of the select to which an outer field
+ belongs to with the aggregation level of the sum function. All fields in
+ the outer_fields list are checked.
+
+ If the nesting level is equal to the aggregation level then the field is
+ aggregated by this sum function.
+ If the nesting level is less than the aggregation level then the field
+ belongs to an outer select. In this case if there is an embedding sum
+ function add current field to functions outer_fields list. If there is
+ no embedding function then the current field treated as non aggregated
+ and the select it belongs to is marked accordingly.
+ If the nesting level is greater than the aggregation level then it means
+ that this field was added by an inner sum function.
+ Consider an example:
+
+ select avg ( <-- we are here, checking outer.f1
+ select (
+ select sum(outer.f1 + inner.f1) from inner
+ ) from outer)
+ from most_outer;
+
+ In this case we check that no aggregate functions are used in the
+ select the field belongs to. If there are some then an error is
+ raised.
+ */
+ List_iterator<Item_field> of(outer_fields);
+ while ((field= of++))
+ {
+ SELECT_LEX *sel= field->field->table->pos_in_table_list->select_lex;
+ if (sel->nest_level < aggr_level)
+ {
+ if (in_sum_func)
+ {
+ /*
+ Let upper function decide whether this field is a non
+ aggregated one.
+ */
+ in_sum_func->outer_fields.push_back(field, thd->mem_root);
+ }
+ else
+ sel->set_non_agg_field_used(true);
+ }
+ if (sel->nest_level > aggr_level &&
+ (sel->agg_func_used()) &&
+ !sel->group_list.elements)
+ {
+ my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
+ ER_THD(thd, ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
+ return TRUE;
+ }
+ }
+ }
+ aggr_sel->set_agg_func_used(true);
+ if (sum_func() == SP_AGGREGATE_FUNC)
+ aggr_sel->set_custom_agg_func_used(true);
+ update_used_tables();
+ thd->lex->in_sum_func= in_sum_func;
+ return FALSE;
+}
+
+/**
+ Attach a set function to the subquery where it must be aggregated.
+
+ The function looks for an outer subquery where the set function must be
+ aggregated. If it finds such a subquery then aggr_level is set to
+ the nest level of this subquery and the item for the set function
+ is added to the list of set functions used in nested subqueries
+ inner_sum_func_list defined for each subquery. When the item is placed
+ there the field 'ref_by' is set to ref.
+
+ @note
+ Now we 'register' only set functions that are aggregated in outer
+ subqueries. Actually it makes sense to link all set function for
+ a subquery in one chain. It would simplify the process of 'splitting'
+ for set functions.
+
+ @param thd reference to the thread context info
+ @param ref location of the pointer to this item in the embedding expression
+
+ @retval
+ FALSE if the executes without failures (currently always)
+ @retval
+ TRUE otherwise
+*/
+
+bool Item_sum::register_sum_func(THD *thd, Item **ref)
+{
+ SELECT_LEX *sl;
+ nesting_map allow_sum_func= thd->lex->allow_sum_func;
+ for (sl= thd->lex->current_select->context.outer_select() ;
+ sl && sl->nest_level > max_arg_level;
+ sl= sl->context.outer_select())
+ {
+ if (aggr_level < 0 &&
+ (allow_sum_func.is_set(sl->nest_level)))
+ {
+ /* Found the most nested subquery where the function can be aggregated */
+ aggr_level= sl->nest_level;
+ aggr_sel= sl;
+ }
+ }
+ if (sl && (allow_sum_func.is_set(sl->nest_level)))
+ {
+ /*
+ We reached the subquery of level max_arg_level and checked
+ that the function can be aggregated here.
+ The set function will be aggregated in this subquery.
+ */
+ aggr_level= sl->nest_level;
+ aggr_sel= sl;
+
+ }
+ if (aggr_level >= 0)
+ {
+ ref_by= ref;
+ /* Add the object to the list of registered objects assigned to aggr_sel */
+ if (!aggr_sel->inner_sum_func_list)
+ next= this;
+ else
+ {
+ next= aggr_sel->inner_sum_func_list->next;
+ aggr_sel->inner_sum_func_list->next= this;
+ }
+ aggr_sel->inner_sum_func_list= this;
+ aggr_sel->with_sum_func= 1;
+
+ /*
+ Mark Item_subselect(s) as containing aggregate function all the way up
+ to aggregate function's calculation context.
+ Note that we must not mark the Item of calculation context itself
+ because with_sum_func on the calculation context st_select_lex is
+ already set above.
+
+ with_sum_func being set for an Item means that this Item refers
+ (somewhere in it, e.g. one of its arguments if it's a function) directly
+ or through intermediate items to an aggregate function that is calculated
+ in a context "outside" of the Item (e.g. in the current or outer select).
+
+ with_sum_func being set for an st_select_lex means that this st_select_lex
+ has aggregate functions directly referenced (i.e. not through a sub-select).
+ */
+ for (sl= thd->lex->current_select;
+ sl && sl != aggr_sel && sl->master_unit()->item;
+ sl= sl->master_unit()->outer_select() )
+ sl->master_unit()->item->with_flags|= item_with_t::SUM_FUNC;
+ }
+ if (aggr_sel)
+ thd->lex->current_select->mark_as_dependent(thd, aggr_sel, NULL);
+
+ if ((thd->lex->describe & DESCRIBE_EXTENDED) && aggr_sel)
+ {
+ push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
+ ER_WARN_AGGFUNC_DEPENDENCE,
+ ER_THD(thd, ER_WARN_AGGFUNC_DEPENDENCE),
+ func_name(),
+ thd->lex->current_select->select_number,
+ aggr_sel->select_number);
+ }
+ return FALSE;
+}
+
+
+bool Item_sum::collect_outer_ref_processor(void *param)
+{
+ Collect_deps_prm *prm= (Collect_deps_prm *)param;
+ SELECT_LEX *ds;
+ if ((ds= depended_from()) &&
+ ds->nest_level_base == prm->nest_level_base &&
+ ds->nest_level < prm->nest_level)
+ {
+ if (prm->collect)
+ prm->parameters->add_unique(this, &cmp_items);
+ else
+ prm->count++;
+ }
+ return FALSE;
+}
+
+
+Item_sum::Item_sum(THD *thd, List<Item> &list): Item_func_or_sum(thd, list)
+{
+ if (!(orig_args= (Item **) thd->alloc(sizeof(Item *) * arg_count)))
+ {
+ args= NULL;
+ }
+ mark_as_sum_func();
+ init_aggregator();
+ list.empty(); // Fields are used
+}
+
+
+/**
+ Constructor used in processing select with temporary tebles.
+*/
+
+Item_sum::Item_sum(THD *thd, Item_sum *item):
+ Item_func_or_sum(thd, item),
+ aggr_sel(item->aggr_sel),
+ nest_level(item->nest_level), aggr_level(item->aggr_level),
+ quick_group(item->quick_group),
+ orig_args(NULL)
+{
+ if (arg_count <= 2)
+ {
+ orig_args=tmp_orig_args;
+ }
+ else
+ {
+ if (!(orig_args= (Item**) thd->alloc(sizeof(Item*)*arg_count)))
+ return;
+ }
+ if (arg_count)
+ memcpy(orig_args, item->orig_args, sizeof(Item*)*arg_count);
+ init_aggregator();
+ with_distinct= item->with_distinct;
+ if (item->aggr)
+ set_aggregator(thd, item->aggr->Aggrtype());
+}
+
+
+void Item_sum::mark_as_sum_func()
+{
+ SELECT_LEX *cur_select= current_thd->lex->current_select;
+ cur_select->n_sum_items++;
+ cur_select->with_sum_func= 1;
+ const_item_cache= false;
+ with_flags= (with_flags | item_with_t::SUM_FUNC) & ~item_with_t::FIELD;
+ window_func_sum_expr_flag= false;
+}
+
+
+void Item_sum::print(String *str, enum_query_type query_type)
+{
+ /* orig_args is not filled with valid values until fix_fields() */
+ Item **pargs= fixed() ? orig_args : args;
+ str->append(func_name_cstring());
+ /*
+ TODO:
+ The fact that func_name() may return a name with an extra '('
+ is really annoying. This shoud be fixed.
+ */
+ if (!is_aggr_sum_func())
+ str->append('(');
+ for (uint i=0 ; i < arg_count ; i++)
+ {
+ if (i)
+ str->append(',');
+ pargs[i]->print(str, query_type);
+ }
+ str->append(')');
+}
+
+void Item_sum::fix_num_length_and_dec()
+{
+ decimals=0;
+ for (uint i=0 ; i < arg_count ; i++)
+ set_if_bigger(decimals,args[i]->decimals);
+ max_length=float_length(decimals);
+}
+
+Item *Item_sum::get_tmp_table_item(THD *thd)
+{
+ Item_sum* sum_item= (Item_sum *) copy_or_same(thd);
+ if (sum_item && sum_item->result_field) // If not a const sum func
+ {
+ Field *result_field_tmp= sum_item->result_field;
+ for (uint i=0 ; i < sum_item->arg_count ; i++)
+ {
+ Item *arg= sum_item->args[i];
+ if (!arg->const_item())
+ {
+ if (arg->type() == Item::FIELD_ITEM)
+ {
+ ((Item_field*) arg)->field= result_field_tmp++;
+ }
+ else
+ {
+ auto item_field=
+ new (thd->mem_root) Item_field(thd, result_field_tmp++);
+ if (item_field)
+ item_field->set_refers_to_temp_table();
+ sum_item->args[i]= item_field;
+ }
+ }
+ }
+ }
+ return sum_item;
+}
+
+
+void Item_sum::update_used_tables ()
+{
+ if (!Item_sum::const_item())
+ {
+ used_tables_cache= 0;
+ for (uint i=0 ; i < arg_count ; i++)
+ {
+ args[i]->update_used_tables();
+ used_tables_cache|= args[i]->used_tables();
+ }
+ /*
+ MariaDB: don't run the following {
+
+ used_tables_cache&= PSEUDO_TABLE_BITS;
+
+ // the aggregate function is aggregated into its local context
+ used_tables_cache|= ((table_map)1 << aggr_sel->join->tables) - 1;
+
+ } because if we do it, table elimination will assume that
+ - constructs like "COUNT(*)" use columns from all tables
+ - so, it is not possible to eliminate any table
+ our solution for COUNT(*) is that it has
+ item->used_tables() == 0 && !item->const_item()
+ */
+ }
+}
+
+
+Item *Item_sum::set_arg(uint i, THD *thd, Item *new_val)
+{
+ thd->change_item_tree(args + i, new_val);
+ return new_val;
+}
+
+
+int Item_sum::set_aggregator(THD *thd, Aggregator::Aggregator_type aggregator)
+{
+ /*
+ Dependent subselects may be executed multiple times, making
+ set_aggregator to be called multiple times. The aggregator type
+ will be the same, but it needs to be reset so that it is
+ reevaluated with the new dependent data.
+ This function may also be called multiple times during query optimization.
+ In this case, the type may change, so we delete the old aggregator,
+ and create a new one.
+ */
+ if (aggr && aggregator == aggr->Aggrtype())
+ {
+ aggr->clear();
+ return FALSE;
+ }
+
+ delete aggr;
+ switch (aggregator)
+ {
+ case Aggregator::DISTINCT_AGGREGATOR:
+ aggr= new (thd->mem_root) Aggregator_distinct(this);
+ break;
+ case Aggregator::SIMPLE_AGGREGATOR:
+ aggr= new (thd->mem_root) Aggregator_simple(this);
+ break;
+ };
+ return aggr ? FALSE : TRUE;
+}
+
+
+void Item_sum::cleanup()
+{
+ if (aggr)
+ {
+ delete aggr;
+ aggr= NULL;
+ }
+ Item_result_field::cleanup();
+ const_item_cache= false;
+}
+
+Item *Item_sum::result_item(THD *thd, Field *field)
+{
+ return new (thd->mem_root) Item_field(thd, field);
+}
+
+bool Item_sum::check_vcol_func_processor(void *arg)
+{
+ return mark_unsupported_function(func_name(),
+ is_aggr_sum_func() ? ")" : "()",
+ arg, VCOL_IMPOSSIBLE);
+}
+
+
+/**
+ Compare keys consisting of single field that cannot be compared as binary.
+
+ Used by the Unique class to compare keys. Will do correct comparisons
+ for all field types.
+
+ @param arg Pointer to the relevant Field class instance
+ @param key1 left key image
+ @param key2 right key image
+ @return comparison result
+ @retval < 0 if key1 < key2
+ @retval = 0 if key1 = key2
+ @retval > 0 if key1 > key2
+*/
+
+int simple_str_key_cmp(void* arg, uchar* key1, uchar* key2)
+{
+ Field *f= (Field*) arg;
+ return f->cmp(key1, key2);
+}
+
+
+C_MODE_START
+
+int count_distinct_walk(void *elem, element_count count, void *arg)
+{
+ (*((ulonglong*)arg))++;
+ return 0;
+}
+
+C_MODE_END
+
+
+/**
+ Correctly compare composite keys.
+
+ Used by the Unique class to compare keys. Will do correct comparisons
+ for composite keys with various field types.
+
+ @param arg Pointer to the relevant Aggregator_distinct instance
+ @param key1 left key image
+ @param key2 right key image
+ @return comparison result
+ @retval <0 if key1 < key2
+ @retval =0 if key1 = key2
+ @retval >0 if key1 > key2
+*/
+
+int Aggregator_distinct::composite_key_cmp(void* arg, uchar* key1, uchar* key2)
+{
+ Aggregator_distinct *aggr= (Aggregator_distinct *) arg;
+ Field **field = aggr->table->field;
+ Field **field_end= field + aggr->table->s->fields;
+ uint32 *lengths=aggr->field_lengths;
+ for (; field < field_end; ++field)
+ {
+ Field* f = *field;
+ int len = *lengths++;
+ int res = f->cmp(key1, key2);
+ if (res)
+ return res;
+ key1 += len;
+ key2 += len;
+ }
+ return 0;
+}
+
+
+/***************************************************************************/
+
+C_MODE_START
+
+/* Declarations for auxiliary C-callbacks */
+
+int simple_raw_key_cmp(void* arg, const void* key1, const void* key2)
+{
+ return memcmp(key1, key2, *(uint *) arg);
+}
+
+
+static int item_sum_distinct_walk_for_count(void *element,
+ element_count num_of_dups,
+ void *item)
+{
+ return ((Aggregator_distinct*) (item))->unique_walk_function_for_count(element);
+}
+
+
+static int item_sum_distinct_walk(void *element, element_count num_of_dups,
+ void *item)
+{
+ return ((Aggregator_distinct*) (item))->unique_walk_function(element);
+}
+
+C_MODE_END
+
+/***************************************************************************/
+/**
+ Called before feeding the first row. Used to allocate/setup
+ the internal structures used for aggregation.
+
+ @param thd Thread descriptor
+ @return status
+ @retval FALSE success
+ @retval TRUE failure
+
+ Prepares Aggregator_distinct to process the incoming stream.
+ Creates the temporary table and the Unique class if needed.
+ Called by Item_sum::aggregator_setup()
+*/
+
+bool Aggregator_distinct::setup(THD *thd)
+{
+ endup_done= FALSE;
+ /*
+ Setup can be called twice for ROLLUP items. This is a bug.
+ Please add DBUG_ASSERT(tree == 0) here when it's fixed.
+ */
+ if (tree || table || tmp_table_param)
+ return FALSE;
+
+ if (item_sum->setup(thd))
+ return TRUE;
+ if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
+ item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
+ {
+ List<Item> list;
+ SELECT_LEX *select_lex= thd->lex->current_select;
+
+ if (!(tmp_table_param= new (thd->mem_root) TMP_TABLE_PARAM))
+ return TRUE;
+
+ /* Create a table with an unique key over all parameters */
+ for (uint i=0; i < item_sum->get_arg_count() ; i++)
+ {
+ Item *item=item_sum->get_arg(i);
+ if (list.push_back(item, thd->mem_root))
+ return TRUE; // End of memory
+ if (item->const_item() && item->is_null())
+ always_null= true;
+ }
+ if (always_null)
+ return FALSE;
+ count_field_types(select_lex, tmp_table_param, list, 0);
+ tmp_table_param->force_copy_fields= item_sum->has_force_copy_fields();
+ DBUG_ASSERT(table == 0);
+ /*
+ Convert bit fields to bigint's in temporary table.
+ Needed by Unique which is used when HEAP table is used.
+ */
+ store_bit_fields_as_bigint_in_tempory_table(&list);
+
+ if (!(table= create_tmp_table(thd, tmp_table_param, list, (ORDER*) 0, 1,
+ 0,
+ (select_lex->options |
+ thd->variables.option_bits),
+ HA_POS_ERROR, &empty_clex_str)))
+ return TRUE;
+ table->file->extra(HA_EXTRA_NO_ROWS); // Don't update rows
+ table->no_rows=1;
+
+ if (table->s->db_type() == heap_hton)
+ {
+ /*
+ No blobs, otherwise it would have been MyISAM: set up a compare
+ function and its arguments to use with Unique.
+ */
+ qsort_cmp2 compare_key;
+ void* cmp_arg;
+ Field **field= table->field;
+ Field **field_end= field + table->s->fields;
+ bool all_binary= TRUE;
+
+ for (tree_key_length= 0; field < field_end; ++field)
+ {
+ Field *f= *field;
+ enum enum_field_types type= f->type();
+ tree_key_length+= f->pack_length();
+ if ((type == MYSQL_TYPE_VARCHAR) ||
+ (!f->binary() && (type == MYSQL_TYPE_STRING ||
+ type == MYSQL_TYPE_VAR_STRING)))
+ {
+ all_binary= FALSE;
+ break;
+ }
+ }
+ if (all_binary)
+ {
+ cmp_arg= (void*) &tree_key_length;
+ compare_key= (qsort_cmp2) simple_raw_key_cmp;
+ }
+ else
+ {
+ if (table->s->fields == 1)
+ {
+ /*
+ If we have only one field, which is the most common use of
+ count(distinct), it is much faster to use a simpler key
+ compare method that can take advantage of not having to worry
+ about other fields.
+ */
+ compare_key= (qsort_cmp2) simple_str_key_cmp;
+ cmp_arg= (void*) table->field[0];
+ /* tree_key_length has been set already */
+ }
+ else
+ {
+ uint32 *length;
+ compare_key= (qsort_cmp2) composite_key_cmp;
+ cmp_arg= (void*) this;
+ field_lengths= (uint32*) thd->alloc(table->s->fields * sizeof(uint32));
+ for (tree_key_length= 0, length= field_lengths, field= table->field;
+ field < field_end; ++field, ++length)
+ {
+ *length= (*field)->pack_length();
+ tree_key_length+= *length;
+ }
+ }
+ }
+ DBUG_ASSERT(tree == 0);
+ tree= (new (thd->mem_root)
+ Unique(compare_key, cmp_arg, tree_key_length,
+ item_sum->ram_limitation(thd)));
+ /*
+ The only time tree_key_length could be 0 is if someone does
+ count(distinct) on a char(0) field - stupid thing to do,
+ but this has to be handled - otherwise someone can crash
+ the server with a DoS attack
+ */
+ if (! tree)
+ return TRUE;
+ }
+ return FALSE;
+ }
+ else
+ {
+ Item *arg;
+ DBUG_ENTER("Aggregator_distinct::setup");
+ /* It's legal to call setup() more than once when in a subquery */
+ if (tree)
+ DBUG_RETURN(FALSE);
+
+ /*
+ Virtual table and the tree are created anew on each re-execution of
+ PS/SP. Hence all further allocations are performed in the runtime
+ mem_root.
+ */
+
+ item_sum->null_value= 1;
+ item_sum->set_maybe_null();
+ item_sum->quick_group= 0;
+
+ DBUG_ASSERT(item_sum->get_arg(0)->fixed());
+
+ arg= item_sum->get_arg(0);
+ if (arg->const_item())
+ {
+ (void) arg->is_null();
+ if (arg->null_value)
+ always_null= true;
+ }
+
+ if (always_null)
+ DBUG_RETURN(FALSE);
+
+ Field *field= arg->type_handler()->
+ make_num_distinct_aggregator_field(thd->mem_root, arg);
+ if (!field || !(table= create_virtual_tmp_table(thd, field)))
+ DBUG_RETURN(TRUE);
+
+ /* XXX: check that the case of CHAR(0) works OK */
+ tree_key_length= table->s->reclength - table->s->null_bytes;
+
+ /*
+ Unique handles all unique elements in a tree until they can't fit
+ in. Then the tree is dumped to the temporary file. We can use
+ simple_raw_key_cmp because the table contains numbers only; decimals
+ are converted to binary representation as well.
+ */
+ tree= (new (thd->mem_root)
+ Unique(simple_raw_key_cmp, &tree_key_length, tree_key_length,
+ item_sum->ram_limitation(thd)));
+
+ DBUG_RETURN(tree == 0);
+ }
+}
+
+
+/**
+ Invalidate calculated value and clear the distinct rows.
+
+ Frees space used by the internal data structures.
+ Removes the accumulated distinct rows. Invalidates the calculated result.
+*/
+
+void Aggregator_distinct::clear()
+{
+ endup_done= FALSE;
+ item_sum->clear();
+ if (tree)
+ tree->reset();
+ /* tree and table can be both null only if always_null */
+ if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
+ item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
+ {
+ if (!tree && table)
+ {
+ table->file->extra(HA_EXTRA_NO_CACHE);
+ table->file->ha_delete_all_rows();
+ table->file->extra(HA_EXTRA_WRITE_CACHE);
+ }
+ }
+ else
+ {
+ item_sum->null_value= 1;
+ }
+}
+
+
+/**
+ Process incoming row.
+
+ Add it to Unique/temp hash table if it's unique. Skip the row if
+ not unique.
+ Prepare Aggregator_distinct to process the incoming stream.
+ Create the temporary table and the Unique class if needed.
+ Called by Item_sum::aggregator_add().
+ To actually get the result value in item_sum's buffers
+ Aggregator_distinct::endup() must be called.
+
+ @return status
+ @retval FALSE success
+ @retval TRUE failure
+*/
+
+bool Aggregator_distinct::add()
+{
+ if (always_null)
+ return 0;
+
+ if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
+ item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
+ {
+ int error;
+ copy_fields(tmp_table_param);
+ if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
+ return TRUE;
+
+ for (Field **field=table->field ; *field ; field++)
+ if ((*field)->is_real_null(0))
+ return 0; // Don't count NULL
+
+ if (tree)
+ {
+ /*
+ The first few bytes of record (at least one) are just markers
+ for deleted and NULLs. We want to skip them since they will
+ bloat the tree without providing any valuable info. Besides,
+ key_length used to initialize the tree didn't include space for them.
+ */
+ return tree->unique_add(table->record[0] + table->s->null_bytes);
+ }
+ if (unlikely((error= table->file->ha_write_tmp_row(table->record[0]))) &&
+ table->file->is_fatal_error(error, HA_CHECK_DUP))
+ return TRUE;
+ return FALSE;
+ }
+ else
+ {
+ item_sum->get_arg(0)->save_in_field(table->field[0], FALSE);
+ if (table->field[0]->is_null())
+ return 0;
+ DBUG_ASSERT(tree);
+ item_sum->null_value= 0;
+ /*
+ '0' values are also stored in the tree. This doesn't matter
+ for SUM(DISTINCT), but is important for AVG(DISTINCT)
+ */
+ return tree->unique_add(table->field[0]->ptr);
+ }
+}
+
+
+/**
+ Calculate the aggregate function value.
+
+ Since Distinct_aggregator::add() just collects the distinct rows,
+ we must go over the distinct rows and feed them to the aggregation
+ function before returning its value.
+ This is what endup () does. It also sets the result validity flag
+ endup_done to TRUE so it will not recalculate the aggregate value
+ again if the Item_sum hasn't been reset.
+*/
+
+void Aggregator_distinct::endup()
+{
+ /* prevent consecutive recalculations */
+ if (endup_done)
+ return;
+
+ /* we are going to calculate the aggregate value afresh */
+ item_sum->clear();
+
+ /* The result will definitely be null : no more calculations needed */
+ if (always_null)
+ return;
+
+ if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
+ item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
+ {
+ DBUG_ASSERT(item_sum->fixed());
+ Item_sum_count *sum= (Item_sum_count *)item_sum;
+ if (tree && tree->elements == 0)
+ {
+ /* everything fits in memory */
+ sum->count= (longlong) tree->elements_in_tree();
+ endup_done= TRUE;
+ }
+ if (!tree)
+ {
+ /* there were blobs */
+ table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
+ sum->count= table->file->stats.records;
+ endup_done= TRUE;
+ }
+ }
+
+ /*
+ We don't have a tree only if 'setup()' hasn't been called;
+ this is the case of sql_executor.cc:return_zero_rows.
+ */
+ if (tree && !endup_done)
+ {
+ /*
+ All tree's values are not NULL.
+ Note that value of field is changed as we walk the tree, in
+ Aggregator_distinct::unique_walk_function, but it's always not NULL.
+ */
+ table->field[0]->set_notnull();
+ /* go over the tree of distinct keys and calculate the aggregate value */
+ use_distinct_values= TRUE;
+ tree_walk_action func;
+ if (item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
+ func= item_sum_distinct_walk_for_count;
+ else
+ func= item_sum_distinct_walk;
+ tree->walk(table, func, (void*) this);
+ use_distinct_values= FALSE;
+ }
+ /* prevent consecutive recalculations */
+ endup_done= TRUE;
+}
+
+
+String *
+Item_sum_int::val_str(String *str)
+{
+ return val_string_from_int(str);
+}
+
+
+my_decimal *Item_sum_int::val_decimal(my_decimal *decimal_value)
+{
+ return val_decimal_from_int(decimal_value);
+}
+
+
+bool
+Item_sum_num::fix_fields(THD *thd, Item **ref)
+{
+ DBUG_ASSERT(fixed() == 0);
+
+ if (init_sum_func_check(thd))
+ return TRUE;
+
+ decimals=0;
+ set_maybe_null(sum_func() != COUNT_FUNC);
+ for (uint i=0 ; i < arg_count ; i++)
+ {
+ if (args[i]->fix_fields_if_needed_for_scalar(thd, &args[i]))
+ return TRUE;
+ set_if_bigger(decimals, args[i]->decimals);
+ /* We should ignore FIELD's in arguments to sum functions */
+ with_flags|= (args[i]->with_flags & ~item_with_t::FIELD);
+ }
+ result_field=0;
+ max_length=float_length(decimals);
+ null_value=1;
+ if (fix_length_and_dec(thd) ||
+ check_sum_func(thd, ref))
+ return TRUE;
+
+ if (arg_count)
+ memcpy (orig_args, args, sizeof (Item *) * arg_count);
+ base_flags|= item_base_t::FIXED;
+ return FALSE;
+}
+
+
+bool
+Item_sum_min_max::fix_fields(THD *thd, Item **ref)
+{
+ DBUG_ENTER("Item_sum_min_max::fix_fields");
+ DBUG_ASSERT(fixed() == 0);
+
+ if (init_sum_func_check(thd))
+ DBUG_RETURN(TRUE);
+
+ // 'item' can be changed during fix_fields
+ if (args[0]->fix_fields_if_needed_for_scalar(thd, &args[0]))
+ DBUG_RETURN(TRUE);
+
+ /* We should ignore FIELD's in arguments to sum functions */
+ with_flags|= (args[0]->with_flags & ~item_with_t::FIELD);
+ if (fix_length_and_dec(thd))
+ DBUG_RETURN(TRUE);
+
+ if (!is_window_func_sum_expr())
+ setup_hybrid(thd, args[0], NULL);
+ result_field=0;
+
+ if (check_sum_func(thd, ref))
+ DBUG_RETURN(TRUE);
+
+ orig_args[0]= args[0];
+ base_flags|= item_base_t::FIXED;
+ DBUG_RETURN(FALSE);
+}
+
+
+bool Item_sum_hybrid::fix_length_and_dec_generic()
+{
+ Item *item= arguments()[0];
+ Type_std_attributes::set(item);
+ set_handler(item->type_handler());
+ return false;
+}
+
+
+/**
+ MAX/MIN for the traditional numeric types preserve the exact data type
+ from Fields, but do not preserve the exact type from Items:
+ MAX(float_field) -> FLOAT
+ MAX(smallint_field) -> LONGLONG
+ MAX(COALESCE(float_field)) -> DOUBLE
+ MAX(COALESCE(smallint_field)) -> LONGLONG
+ QQ: Items should probably be fixed to preserve the exact type.
+*/
+bool Item_sum_hybrid::fix_length_and_dec_numeric(const Type_handler *handler)
+{
+ Item *item= arguments()[0];
+ Item *item2= item->real_item();
+ Type_std_attributes::set(item);
+ if (item2->type() == Item::FIELD_ITEM)
+ set_handler(item2->type_handler());
+ else
+ set_handler(handler);
+ return false;
+}
+
+
+/**
+ MAX(str_field) converts ENUM/SET to CHAR, and preserve all other types
+ for Fields.
+ QQ: This works differently from UNION, which preserve the exact data
+ type for ENUM/SET if the joined ENUM/SET fields are equally defined.
+ Perhaps should be fixed.
+ MAX(str_item) chooses the best suitable string type.
+*/
+bool Item_sum_hybrid::fix_length_and_dec_string()
+{
+ Item *item= arguments()[0];
+ Item *item2= item->real_item();
+ Type_std_attributes::set(item);
+ if (item2->type() == Item::FIELD_ITEM)
+ {
+ // Fields: convert ENUM/SET to CHAR, preserve the type otherwise.
+ set_handler(item->type_handler());
+ }
+ else
+ {
+ // Items: choose VARCHAR/BLOB/MEDIUMBLOB/LONGBLOB, depending on length.
+ set_handler(type_handler_varchar.
+ type_handler_adjusted_to_max_octet_length(max_length,
+ collation.collation));
+ }
+ return false;
+}
+
+
+bool Item_sum_min_max::fix_length_and_dec(THD *thd)
+{
+ DBUG_ASSERT(args[0]->field_type() == args[0]->real_item()->field_type());
+ DBUG_ASSERT(args[0]->result_type() == args[0]->real_item()->result_type());
+ /* MIN/MAX can return NULL for empty set indepedent of the used column */
+ set_maybe_null();
+ null_value= true;
+ return args[0]->type_handler()->Item_sum_hybrid_fix_length_and_dec(this);
+}
+
+
+/**
+ MIN/MAX function setup.
+
+ @param item argument of MIN/MAX function
+ @param value_arg calculated value of MIN/MAX function
+
+ @details
+ Setup cache/comparator of MIN/MAX functions. When called by the
+ copy_or_same function value_arg parameter contains calculated value
+ of the original MIN/MAX object and it is saved in this object's cache.
+
+ We mark the value and arg_cache with 'RAND_TABLE_BIT' to ensure
+ that Arg_comparator::compare_datetime() doesn't allocate new
+ item inside of Arg_comparator. This would cause compare_datetime()
+ and Item_sum_min::add() to use different values!
+*/
+
+void Item_sum_min_max::setup_hybrid(THD *thd, Item *item, Item *value_arg)
+{
+ DBUG_ENTER("Item_sum_min_max::setup_hybrid");
+ if (!(value= item->get_cache(thd)))
+ DBUG_VOID_RETURN;
+ value->setup(thd, item);
+ value->store(value_arg);
+ /* Don't cache value, as it will change */
+ if (!item->const_item())
+ value->set_used_tables(RAND_TABLE_BIT);
+ if (!(arg_cache= item->get_cache(thd)))
+ DBUG_VOID_RETURN;
+ arg_cache->setup(thd, item);
+ /* Don't cache value, as it will change */
+ if (!item->const_item())
+ arg_cache->set_used_tables(RAND_TABLE_BIT);
+ cmp= new (thd->mem_root) Arg_comparator();
+ if (cmp)
+ cmp->set_cmp_func(thd, this, (Item**)&arg_cache, (Item**)&value, FALSE);
+ DBUG_VOID_RETURN;
+}
+
+
+Field *Item_sum_min_max::create_tmp_field(MEM_ROOT *root,
+ bool group, TABLE *table)
+{
+ DBUG_ENTER("Item_sum_min_max::create_tmp_field");
+
+ if (args[0]->type() == Item::FIELD_ITEM)
+ {
+ Field *field= ((Item_field*) args[0])->field;
+ if ((field= field->create_tmp_field(root, table, true)))
+ {
+ DBUG_ASSERT((field->flags & NOT_NULL_FLAG) == 0);
+ field->field_name= name;
+ }
+ DBUG_RETURN(field);
+ }
+ DBUG_RETURN(tmp_table_field_from_field_type(root, table));
+}
+
+/***********************************************************************
+** Item_sum_sp class
+***********************************************************************/
+
+Item_sum_sp::Item_sum_sp(THD *thd, Name_resolution_context *context_arg,
+ sp_name *name_arg, sp_head *sp, List<Item> &list)
+ :Item_sum(thd, list), Item_sp(thd, context_arg, name_arg)
+{
+ set_maybe_null();
+ quick_group= 0;
+ m_sp= sp;
+}
+
+Item_sum_sp::Item_sum_sp(THD *thd, Name_resolution_context *context_arg,
+ sp_name *name_arg, sp_head *sp)
+ :Item_sum(thd), Item_sp(thd, context_arg, name_arg)
+{
+ set_maybe_null();
+ quick_group= 0;
+ m_sp= sp;
+}
+
+Item_sum_sp::Item_sum_sp(THD *thd, Item_sum_sp *item):
+ Item_sum(thd, item), Item_sp(thd, item)
+{
+ base_flags|= (item->base_flags & item_base_t::MAYBE_NULL);
+ quick_group= item->quick_group;
+}
+
+bool
+Item_sum_sp::fix_fields(THD *thd, Item **ref)
+{
+ DBUG_ASSERT(fixed() == 0);
+ if (init_sum_func_check(thd))
+ return TRUE;
+ decimals= 0;
+
+ m_sp= m_sp ? m_sp : sp_handler_function.sp_find_routine(thd, m_name, true);
+
+ if (!m_sp)
+ {
+ my_missing_function_error(m_name->m_name, ErrConvDQName(m_name).ptr());
+ process_error(thd);
+ return TRUE;
+ }
+
+ if (init_result_field(thd, max_length, maybe_null(), &null_value, &name))
+ return TRUE;
+
+ for (uint i= 0 ; i < arg_count ; i++)
+ {
+ if (args[i]->fix_fields_if_needed_for_scalar(thd, &args[i]))
+ return TRUE;
+ set_if_bigger(decimals, args[i]->decimals);
+ /* We should ignore FIELD's in arguments to sum functions */
+ with_flags|= (args[i]->with_flags & ~item_with_t::FIELD);
+ }
+ result_field= NULL;
+ max_length= float_length(decimals);
+ null_value= 1;
+ if (fix_length_and_dec(thd))
+ return TRUE;
+
+ if (check_sum_func(thd, ref))
+ return TRUE;
+
+ if (arg_count)
+ memcpy(orig_args, args, sizeof(Item *) * arg_count);
+ base_flags|= item_base_t::FIXED;
+ return FALSE;
+}
+
+/**
+ Execute function to store value in result field.
+ This is called when we need the value to be returned for the function.
+ Here we send a signal in form of the server status that all rows have been
+ fetched and now we have to exit from the function with the return value.
+ @return Function returns error status.
+ @retval FALSE on success.
+ @retval TRUE if an error occurred.
+*/
+
+bool
+Item_sum_sp::execute()
+{
+ THD *thd= current_thd;
+ bool res;
+ uint old_server_status= thd->server_status;
+
+ /*
+ We set server status so we can send a signal to exit from the
+ function with the return value.
+ */
+
+ thd->server_status|= SERVER_STATUS_LAST_ROW_SENT;
+ res= Item_sp::execute(thd, &null_value, args, arg_count);
+ thd->server_status= old_server_status;
+ return res;
+}
+
+/**
+ Handles the aggregation of the values.
+ @note: See class description for more details on how and why this is done.
+ @return The error state.
+ @retval FALSE on success.
+ @retval TRUE if an error occurred.
+*/
+
+bool
+Item_sum_sp::add()
+{
+ return execute_impl(current_thd, args, arg_count);
+}
+
+
+void
+Item_sum_sp::clear()
+{
+ delete func_ctx;
+ func_ctx= NULL;
+ sp_query_arena->free_items();
+ free_root(&sp_mem_root, MYF(0));
+}
+
+const Type_handler *Item_sum_sp::type_handler() const
+{
+ DBUG_ENTER("Item_sum_sp::type_handler");
+ DBUG_PRINT("info", ("m_sp = %p", (void *) m_sp));
+ DBUG_ASSERT(sp_result_field);
+ // This converts ENUM/SET to STRING
+ const Type_handler *handler= sp_result_field->type_handler();
+ DBUG_RETURN(handler->type_handler_for_item_field());
+}
+
+void
+Item_sum_sp::cleanup()
+{
+ Item_sp::cleanup();
+ Item_sum::cleanup();
+}
+
+/**
+ Initialize local members with values from the Field interface.
+ @note called from Item::fix_fields.
+*/
+
+bool
+Item_sum_sp::fix_length_and_dec(THD *thd)
+{
+ DBUG_ENTER("Item_sum_sp::fix_length_and_dec");
+ DBUG_ASSERT(sp_result_field);
+ Type_std_attributes::set(sp_result_field->type_std_attributes());
+ bool res= Item_sum::fix_length_and_dec(thd);
+ DBUG_RETURN(res);
+}
+
+LEX_CSTRING Item_sum_sp::func_name_cstring() const
+{
+ return Item_sp::func_name_cstring(current_thd, false);
+}
+
+Item* Item_sum_sp::copy_or_same(THD *thd)
+{
+ Item_sum_sp *copy_item= new (thd->mem_root) Item_sum_sp(thd, this);
+ copy_item->init_result_field(thd, max_length, maybe_null(),
+ &copy_item->null_value, &copy_item->name);
+ return copy_item;
+}
+
+/***********************************************************************
+** reset and add of sum_func
+***********************************************************************/
+
+/**
+ @todo
+ check if the following assignments are really needed
+*/
+Item_sum_sum::Item_sum_sum(THD *thd, Item_sum_sum *item)
+ :Item_sum_num(thd, item),
+ Type_handler_hybrid_field_type(item),
+ direct_added(FALSE), direct_reseted_field(FALSE),
+ curr_dec_buff(item->curr_dec_buff),
+ count(item->count)
+{
+ /* TODO: check if the following assignments are really needed */
+ if (result_type() == DECIMAL_RESULT)
+ {
+ my_decimal2decimal(item->dec_buffs, dec_buffs);
+ my_decimal2decimal(item->dec_buffs + 1, dec_buffs + 1);
+ }
+ else
+ sum= item->sum;
+}
+
+Item *Item_sum_sum::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_sum(thd, this);
+}
+
+
+void Item_sum_sum::cleanup()
+{
+ DBUG_ENTER("Item_sum_sum::cleanup");
+ direct_added= direct_reseted_field= FALSE;
+ Item_sum_num::cleanup();
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_sum::clear()
+{
+ DBUG_ENTER("Item_sum_sum::clear");
+ null_value=1;
+ count= 0;
+ if (result_type() == DECIMAL_RESULT)
+ {
+ curr_dec_buff= 0;
+ my_decimal_set_zero(dec_buffs);
+ }
+ else
+ sum= 0.0;
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_sum::fix_length_and_dec_double()
+{
+ set_handler(&type_handler_double); // Change FLOAT to DOUBLE
+ decimals= args[0]->decimals;
+ sum= 0.0;
+}
+
+
+void Item_sum_sum::fix_length_and_dec_decimal()
+{
+ set_handler(&type_handler_newdecimal); // Change temporal to new DECIMAL
+ decimals= args[0]->decimals;
+ /* SUM result can't be longer than length(arg) + length(MAX_ROWS) */
+ int precision= args[0]->decimal_precision() + DECIMAL_LONGLONG_DIGITS;
+ decimals= MY_MIN(decimals, DECIMAL_MAX_SCALE);
+ precision= MY_MIN(precision, DECIMAL_MAX_PRECISION);
+ max_length= my_decimal_precision_to_length_no_truncation(precision,
+ decimals,
+ unsigned_flag);
+ curr_dec_buff= 0;
+ my_decimal_set_zero(dec_buffs);
+}
+
+
+bool Item_sum_sum::fix_length_and_dec(THD *thd)
+{
+ DBUG_ENTER("Item_sum_sum::fix_length_and_dec");
+ set_maybe_null();
+ null_value=1;
+ if (args[0]->cast_to_int_type_handler()->
+ Item_sum_sum_fix_length_and_dec(this))
+ DBUG_RETURN(TRUE);
+ DBUG_PRINT("info", ("Type: %s (%d, %d)", type_handler()->name().ptr(),
+ max_length, (int) decimals));
+ DBUG_RETURN(FALSE);
+}
+
+
+void Item_sum_sum::direct_add(my_decimal *add_sum_decimal)
+{
+ DBUG_ENTER("Item_sum_sum::direct_add");
+ DBUG_PRINT("info", ("add_sum_decimal: %p", add_sum_decimal));
+ direct_added= TRUE;
+ direct_reseted_field= FALSE;
+ if (add_sum_decimal)
+ {
+ direct_sum_is_null= FALSE;
+ direct_sum_decimal= *add_sum_decimal;
+ }
+ else
+ {
+ direct_sum_is_null= TRUE;
+ direct_sum_decimal= decimal_zero;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_sum::direct_add(double add_sum_real, bool add_sum_is_null)
+{
+ DBUG_ENTER("Item_sum_sum::direct_add");
+ DBUG_PRINT("info", ("add_sum_real: %f", add_sum_real));
+ direct_added= TRUE;
+ direct_reseted_field= FALSE;
+ direct_sum_is_null= add_sum_is_null;
+ direct_sum_real= add_sum_real;
+ DBUG_VOID_RETURN;
+}
+
+
+bool Item_sum_sum::add()
+{
+ DBUG_ENTER("Item_sum_sum::add");
+ add_helper(false);
+ DBUG_RETURN(0);
+}
+
+void Item_sum_sum::add_helper(bool perform_removal)
+{
+ DBUG_ENTER("Item_sum_sum::add_helper");
+
+ if (result_type() == DECIMAL_RESULT)
+ {
+ if (unlikely(direct_added))
+ {
+ /* Add value stored by Item_sum_sum::direct_add */
+ DBUG_ASSERT(!perform_removal);
+
+ direct_added= FALSE;
+ if (likely(!direct_sum_is_null))
+ {
+ my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff^1),
+ &direct_sum_decimal, dec_buffs + curr_dec_buff);
+ curr_dec_buff^= 1;
+ null_value= 0;
+ }
+ }
+ else
+ {
+ direct_reseted_field= FALSE;
+ my_decimal value;
+ const my_decimal *val= aggr->arg_val_decimal(&value);
+ if (!aggr->arg_is_null(true))
+ {
+ if (perform_removal)
+ {
+ if (count > 0)
+ {
+ my_decimal_sub(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff ^ 1),
+ dec_buffs + curr_dec_buff, val);
+ count--;
+ }
+ else
+ DBUG_VOID_RETURN;
+ }
+ else
+ {
+ count++;
+ my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff ^ 1),
+ val, dec_buffs + curr_dec_buff);
+ }
+ curr_dec_buff^= 1;
+ null_value= (count > 0) ? 0 : 1;
+ }
+ }
+ }
+ else
+ {
+ if (unlikely(direct_added))
+ {
+ /* Add value stored by Item_sum_sum::direct_add */
+ DBUG_ASSERT(!perform_removal);
+
+ direct_added= FALSE;
+ if (!direct_sum_is_null)
+ {
+ sum+= direct_sum_real;
+ null_value= 0;
+ }
+ }
+ else
+ {
+ direct_reseted_field= FALSE;
+ if (perform_removal && count > 0)
+ sum-= aggr->arg_val_real();
+ else
+ sum+= aggr->arg_val_real();
+ if (!aggr->arg_is_null(true))
+ {
+ if (perform_removal)
+ {
+ if (count > 0)
+ {
+ count--;
+ }
+ }
+ else
+ count++;
+
+ null_value= (count > 0) ? 0 : 1;
+ }
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+longlong Item_sum_sum::val_int()
+{
+ DBUG_ASSERT(fixed());
+ if (aggr)
+ aggr->endup();
+ if (result_type() == DECIMAL_RESULT)
+ return dec_buffs[curr_dec_buff].to_longlong(unsigned_flag);
+ return val_int_from_real();
+}
+
+
+double Item_sum_sum::val_real()
+{
+ DBUG_ASSERT(fixed());
+ if (aggr)
+ aggr->endup();
+ if (result_type() == DECIMAL_RESULT)
+ sum= dec_buffs[curr_dec_buff].to_double();
+ return sum;
+}
+
+
+String *Item_sum_sum::val_str(String *str)
+{
+ if (aggr)
+ aggr->endup();
+ if (result_type() == DECIMAL_RESULT)
+ return VDec(this).to_string_round(str, decimals);
+ return val_string_from_real(str);
+}
+
+
+my_decimal *Item_sum_sum::val_decimal(my_decimal *val)
+{
+ if (aggr)
+ aggr->endup();
+ if (result_type() == DECIMAL_RESULT)
+ return null_value ? NULL : (dec_buffs + curr_dec_buff);
+ return val_decimal_from_real(val);
+}
+
+void Item_sum_sum::remove()
+{
+ DBUG_ENTER("Item_sum_sum::remove");
+ add_helper(true);
+ DBUG_VOID_RETURN;
+}
+
+/**
+ Aggregate a distinct row from the distinct hash table.
+
+ Called for each row into the hash table 'Aggregator_distinct::table'.
+ Includes the current distinct row into the calculation of the
+ aggregate value. Uses the Field classes to get the value from the row.
+ This function is used for AVG/SUM(DISTINCT). For COUNT(DISTINCT)
+ it's called only when there are no blob arguments and the data don't
+ fit into memory (so Unique makes persisted trees on disk).
+
+ @param element pointer to the row data.
+
+ @return status
+ @retval FALSE success
+ @retval TRUE failure
+*/
+
+bool Aggregator_distinct::unique_walk_function(void *element)
+{
+ memcpy(table->field[0]->ptr, element, tree_key_length);
+ item_sum->add();
+ return 0;
+}
+
+
+/*
+ A variant of unique_walk_function() that is to be used with Item_sum_count.
+
+ COUNT is a special aggregate function: it doesn't need the values, it only
+ needs to count them. COUNT needs to know the values are not NULLs, but NULL
+ values are not put into the Unique, so we don't need to check for NULLs here.
+*/
+
+bool Aggregator_distinct::unique_walk_function_for_count(void *element)
+{
+ Item_sum_count *sum= (Item_sum_count *)item_sum;
+ sum->count++;
+ return 0;
+}
+
+
+Aggregator_distinct::~Aggregator_distinct()
+{
+ if (tree)
+ {
+ delete tree;
+ tree= NULL;
+ }
+ if (table)
+ {
+ free_tmp_table(table->in_use, table);
+ table=NULL;
+ }
+ if (tmp_table_param)
+ {
+ delete tmp_table_param;
+ tmp_table_param= NULL;
+ }
+}
+
+
+my_decimal *Aggregator_simple::arg_val_decimal(my_decimal *value)
+{
+ return item_sum->args[0]->val_decimal(value);
+}
+
+
+double Aggregator_simple::arg_val_real()
+{
+ return item_sum->args[0]->val_real();
+}
+
+
+bool Aggregator_simple::arg_is_null(bool use_null_value)
+{
+ Item **item= item_sum->args;
+ const uint item_count= item_sum->arg_count;
+ if (use_null_value)
+ {
+ for (uint i= 0; i < item_count; i++)
+ {
+ if (item[i]->null_value)
+ return true;
+ }
+ }
+ else
+ {
+ for (uint i= 0; i < item_count; i++)
+ {
+ if (item[i]->maybe_null() && item[i]->is_null())
+ return true;
+ }
+ }
+ return false;
+}
+
+
+my_decimal *Aggregator_distinct::arg_val_decimal(my_decimal * value)
+{
+ return use_distinct_values ? table->field[0]->val_decimal(value) :
+ item_sum->args[0]->val_decimal(value);
+}
+
+
+double Aggregator_distinct::arg_val_real()
+{
+ return use_distinct_values ? table->field[0]->val_real() :
+ item_sum->args[0]->val_real();
+}
+
+
+bool Aggregator_distinct::arg_is_null(bool use_null_value)
+{
+ if (use_distinct_values)
+ {
+ const bool rc= table->field[0]->is_null();
+ DBUG_ASSERT(!rc); // NULLs are never stored in 'tree'
+ return rc;
+ }
+ return use_null_value ?
+ item_sum->args[0]->null_value :
+ (item_sum->args[0]->maybe_null() && item_sum->args[0]->is_null());
+}
+
+
+Item *Item_sum_count::copy_or_same(THD* thd)
+{
+ DBUG_ENTER("Item_sum_count::copy_or_same");
+ DBUG_RETURN(new (thd->mem_root) Item_sum_count(thd, this));
+}
+
+
+void Item_sum_count::direct_add(longlong add_count)
+{
+ DBUG_ENTER("Item_sum_count::direct_add");
+ DBUG_PRINT("info", ("add_count: %lld", add_count));
+ direct_counted= TRUE;
+ direct_reseted_field= FALSE;
+ direct_count= add_count;
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_count::clear()
+{
+ DBUG_ENTER("Item_sum_count::clear");
+ count= 0;
+ DBUG_VOID_RETURN;
+}
+
+
+bool Item_sum_count::add()
+{
+ DBUG_ENTER("Item_sum_count::add");
+ if (direct_counted)
+ {
+ direct_counted= FALSE;
+ count+= direct_count;
+ }
+ else
+ {
+ direct_reseted_field= FALSE;
+ if (aggr->arg_is_null(false))
+ DBUG_RETURN(0);
+ count++;
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Remove a row. This is used by window functions.
+*/
+
+void Item_sum_count::remove()
+{
+ DBUG_ASSERT(aggr->Aggrtype() == Aggregator::SIMPLE_AGGREGATOR);
+ if (aggr->arg_is_null(false))
+ return;
+ if (count > 0)
+ count--;
+}
+
+longlong Item_sum_count::val_int()
+{
+ DBUG_ENTER("Item_sum_count::val_int");
+ DBUG_ASSERT(fixed());
+ if (aggr)
+ aggr->endup();
+ DBUG_RETURN((longlong)count);
+}
+
+
+void Item_sum_count::cleanup()
+{
+ DBUG_ENTER("Item_sum_count::cleanup");
+ count= 0;
+ direct_counted= FALSE;
+ direct_reseted_field= FALSE;
+ Item_sum_int::cleanup();
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Average
+*/
+
+void Item_sum_avg::fix_length_and_dec_decimal()
+{
+ Item_sum_sum::fix_length_and_dec_decimal();
+ int precision= args[0]->decimal_precision() + prec_increment;
+ decimals= MY_MIN(args[0]->decimal_scale() + prec_increment, DECIMAL_MAX_SCALE);
+ max_length= my_decimal_precision_to_length_no_truncation(precision,
+ decimals,
+ unsigned_flag);
+ f_precision= MY_MIN(precision+DECIMAL_LONGLONG_DIGITS, DECIMAL_MAX_PRECISION);
+ f_scale= args[0]->decimal_scale();
+ dec_bin_size= my_decimal_get_binary_size(f_precision, f_scale);
+}
+
+
+void Item_sum_avg::fix_length_and_dec_double()
+{
+ Item_sum_sum::fix_length_and_dec_double();
+ decimals= MY_MIN(args[0]->decimals + prec_increment,
+ FLOATING_POINT_DECIMALS);
+ max_length= MY_MIN(args[0]->max_length + prec_increment, float_length(decimals));
+}
+
+
+bool Item_sum_avg::fix_length_and_dec(THD *thd)
+{
+ DBUG_ENTER("Item_sum_avg::fix_length_and_dec");
+ prec_increment= current_thd->variables.div_precincrement;
+ set_maybe_null();
+ null_value=1;
+ if (args[0]->cast_to_int_type_handler()->
+ Item_sum_avg_fix_length_and_dec(this))
+ DBUG_RETURN(TRUE);
+ DBUG_PRINT("info", ("Type: %s (%d, %d)", type_handler()->name().ptr(),
+ max_length, (int) decimals));
+ DBUG_RETURN(FALSE);
+}
+
+
+Item *Item_sum_avg::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_avg(thd, this);
+}
+
+
+Field *Item_sum_avg::create_tmp_field(MEM_ROOT *root, bool group, TABLE *table)
+{
+
+ if (group)
+ {
+ /*
+ We must store both value and counter in the temporary table in one field.
+ The easiest way is to do this is to store both value in a string
+ and unpack on access.
+ */
+ Field *field= new (root)
+ Field_string(((result_type() == DECIMAL_RESULT) ?
+ dec_bin_size : sizeof(double)) + sizeof(longlong),
+ 0, &name, &my_charset_bin);
+ if (field)
+ field->init(table);
+ return field;
+ }
+ return tmp_table_field_from_field_type(root, table);
+}
+
+
+void Item_sum_avg::clear()
+{
+ Item_sum_sum::clear();
+ count=0;
+}
+
+
+bool Item_sum_avg::add()
+{
+ if (Item_sum_sum::add())
+ return TRUE;
+ if (!aggr->arg_is_null(true))
+ count++;
+ return FALSE;
+}
+
+void Item_sum_avg::remove()
+{
+ Item_sum_sum::remove();
+ if (!aggr->arg_is_null(true))
+ {
+ if (count > 0)
+ count--;
+ }
+}
+
+double Item_sum_avg::val_real()
+{
+ DBUG_ASSERT(fixed());
+ if (aggr)
+ aggr->endup();
+ if (!count)
+ {
+ null_value=1;
+ return 0.0;
+ }
+ return Item_sum_sum::val_real() / ulonglong2double(count);
+}
+
+
+my_decimal *Item_sum_avg::val_decimal(my_decimal *val)
+{
+ my_decimal cnt;
+ const my_decimal *sum_dec;
+ DBUG_ASSERT(fixed());
+ if (aggr)
+ aggr->endup();
+ if (!count)
+ {
+ null_value=1;
+ return NULL;
+ }
+
+ /*
+ For non-DECIMAL result_type() the division will be done in
+ Item_sum_avg::val_real().
+ */
+ if (result_type() != DECIMAL_RESULT)
+ return val_decimal_from_real(val);
+
+ sum_dec= dec_buffs + curr_dec_buff;
+ int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &cnt);
+ my_decimal_div(E_DEC_FATAL_ERROR, val, sum_dec, &cnt, prec_increment);
+ return val;
+}
+
+
+String *Item_sum_avg::val_str(String *str)
+{
+ if (aggr)
+ aggr->endup();
+ if (result_type() == DECIMAL_RESULT)
+ return VDec(this).to_string_round(str, decimals);
+ return val_string_from_real(str);
+}
+
+
+/*
+ Standard deviation
+*/
+
+double Item_sum_std::val_real()
+{
+ DBUG_ASSERT(fixed());
+ double nr= Item_sum_variance::val_real();
+ if (std::isnan(nr))
+ {
+ /*
+ variance_fp_recurrence_next() can overflow in some cases and return "nan":
+
+ CREATE OR REPLACE TABLE t1 (a DOUBLE);
+ INSERT INTO t1 VALUES (1.7e+308), (-1.7e+308), (0);
+ SELECT STDDEV_SAMP(a) FROM t1;
+ */
+ null_value= true; // Convert "nan" to NULL
+ return 0;
+ }
+ if (std::isinf(nr))
+ return DBL_MAX;
+ DBUG_ASSERT(nr >= 0.0);
+ return sqrt(nr);
+}
+
+Item *Item_sum_std::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_std(thd, this);
+}
+
+
+Item *Item_sum_std::result_item(THD *thd, Field *field)
+{
+ return new (thd->mem_root) Item_std_field(thd, this);
+}
+
+
+/*
+ Variance
+*/
+
+
+/**
+ Variance implementation for floating-point implementations, without
+ catastrophic cancellation, from Knuth's _TAoCP_, 3rd ed, volume 2, pg232.
+ This alters the value at m, s, and increments count.
+*/
+
+/*
+ These two functions are used by the Item_sum_variance and the
+ Item_variance_field classes, which are unrelated, and each need to calculate
+ variance. The difference between the two classes is that the first is used
+ for a mundane SELECT, while the latter is used in a GROUPing SELECT.
+*/
+void Stddev::recurrence_next(double nr)
+{
+ if (!m_count++)
+ {
+ DBUG_ASSERT(m_m == 0);
+ DBUG_ASSERT(m_s == 0);
+ m_m= nr;
+ }
+ else
+ {
+ double m_kminusone= m_m;
+ volatile double diff= nr - m_kminusone;
+ m_m= m_kminusone + diff / (double) m_count;
+ m_s= m_s + diff * (nr - m_m);
+ }
+}
+
+
+double Stddev::result(bool is_sample_variance)
+{
+ if (m_count == 1)
+ return 0.0;
+
+ if (is_sample_variance)
+ return m_s / (m_count - 1);
+
+ /* else, is a population variance */
+ return m_s / m_count;
+}
+
+
+Item_sum_variance::Item_sum_variance(THD *thd, Item_sum_variance *item):
+ Item_sum_double(thd, item),
+ m_stddev(item->m_stddev), sample(item->sample),
+ prec_increment(item->prec_increment)
+{ }
+
+
+void Item_sum_variance::fix_length_and_dec_double()
+{
+ DBUG_ASSERT(Item_sum_variance::type_handler() == &type_handler_double);
+ decimals= MY_MIN(args[0]->decimals + 4, FLOATING_POINT_DECIMALS);
+}
+
+
+void Item_sum_variance::fix_length_and_dec_decimal()
+{
+ DBUG_ASSERT(Item_sum_variance::type_handler() == &type_handler_double);
+ int precision= args[0]->decimal_precision() * 2 + prec_increment;
+ decimals= MY_MIN(args[0]->decimals + prec_increment,
+ FLOATING_POINT_DECIMALS - 1);
+ max_length= my_decimal_precision_to_length_no_truncation(precision,
+ decimals,
+ unsigned_flag);
+}
+
+
+bool Item_sum_variance::fix_length_and_dec(THD *thd)
+{
+ DBUG_ENTER("Item_sum_variance::fix_length_and_dec");
+ set_maybe_null();
+ null_value= 1;
+ prec_increment= current_thd->variables.div_precincrement;
+
+ /*
+ According to the SQL2003 standard (Part 2, Foundations; sec 10.9,
+ aggregate function; paragraph 7h of Syntax Rules), "the declared
+ type of the result is an implementation-defined approximate numeric
+ type.
+ */
+ if (args[0]->type_handler()->Item_sum_variance_fix_length_and_dec(this))
+ DBUG_RETURN(TRUE);
+ DBUG_PRINT("info", ("Type: %s (%d, %d)", type_handler()->name().ptr(),
+ max_length, (int)decimals));
+ DBUG_RETURN(FALSE);
+}
+
+
+Item *Item_sum_variance::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_variance(thd, this);
+}
+
+
+/**
+ Create a new field to match the type of value we're expected to yield.
+ If we're grouping, then we need some space to serialize variables into, to
+ pass around.
+*/
+Field *Item_sum_variance::create_tmp_field(MEM_ROOT *root,
+ bool group, TABLE *table)
+{
+ Field *field;
+ if (group)
+ {
+ /*
+ We must store both value and counter in the temporary table in one field.
+ The easiest way is to do this is to store both value in a string
+ and unpack on access.
+ */
+ field= new (root) Field_string(Stddev::binary_size(), 0,
+ &name, &my_charset_bin);
+ }
+ else
+ field= new (root) Field_double(max_length, maybe_null(), &name, decimals,
+ TRUE);
+
+ if (field != NULL)
+ field->init(table);
+
+ return field;
+}
+
+
+void Item_sum_variance::clear()
+{
+ m_stddev= Stddev();
+}
+
+bool Item_sum_variance::add()
+{
+ /*
+ Why use a temporary variable? We don't know if it is null until we
+ evaluate it, which has the side-effect of setting null_value .
+ */
+ double nr= args[0]->val_real();
+
+ if (!args[0]->null_value)
+ m_stddev.recurrence_next(nr);
+ return 0;
+}
+
+double Item_sum_variance::val_real()
+{
+ DBUG_ASSERT(fixed());
+
+ /*
+ 'sample' is a 1/0 boolean value. If it is 1/true, id est this is a sample
+ variance call, then we should set nullness when the count of the items
+ is one or zero. If it's zero, i.e. a population variance, then we only
+ set nullness when the count is zero.
+
+ Another way to read it is that 'sample' is the numerical threshold, at and
+ below which a 'count' number of items is called NULL.
+ */
+ DBUG_ASSERT((sample == 0) || (sample == 1));
+ if (m_stddev.count() <= sample)
+ {
+ null_value=1;
+ return 0.0;
+ }
+
+ null_value=0;
+ return m_stddev.result(sample);
+}
+
+
+void Item_sum_variance::reset_field()
+{
+ double nr;
+ uchar *res= result_field->ptr;
+
+ nr= args[0]->val_real(); /* sets null_value as side-effect */
+
+ if (args[0]->null_value)
+ bzero(res,Stddev::binary_size());
+ else
+ Stddev(nr).to_binary(res);
+}
+
+
+Stddev::Stddev(const uchar *ptr)
+{
+ float8get(m_m, ptr);
+ float8get(m_s, ptr + sizeof(double));
+ m_count= sint8korr(ptr + sizeof(double) * 2);
+}
+
+
+void Stddev::to_binary(uchar *ptr) const
+{
+ /* Serialize format is (double)m, (double)s, (longlong)count */
+ float8store(ptr, m_m);
+ float8store(ptr + sizeof(double), m_s);
+ ptr+= sizeof(double)*2;
+ int8store(ptr, m_count);
+}
+
+
+void Item_sum_variance::update_field()
+{
+ uchar *res=result_field->ptr;
+
+ double nr= args[0]->val_real(); /* sets null_value as side-effect */
+
+ if (args[0]->null_value)
+ return;
+
+ /* Serialize format is (double)m, (double)s, (longlong)count */
+ Stddev field_stddev(res);
+ field_stddev.recurrence_next(nr);
+ field_stddev.to_binary(res);
+}
+
+
+Item *Item_sum_variance::result_item(THD *thd, Field *field)
+{
+ return new (thd->mem_root) Item_variance_field(thd, this);
+}
+
+/* min & max */
+
+void Item_sum_min_max::clear()
+{
+ DBUG_ENTER("Item_sum_min_max::clear");
+ /*
+ We should not clear const items (from SELECT MIN(key) from t1) as then we would loose the
+ value cached in opt_sum_query() where we replace MIN/MAX/COUNT with constants.
+ */
+ if (!const_item())
+ {
+ value->clear();
+ null_value= 1;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+bool
+Item_sum_min_max::get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
+{
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ return true;
+ bool retval= value->get_date(thd, ltime, fuzzydate);
+ if ((null_value= value->null_value))
+ DBUG_ASSERT(retval == true);
+ return retval;
+}
+
+
+void Item_sum_min_max::direct_add(Item *item)
+{
+ DBUG_ENTER("Item_sum_min_max::direct_add");
+ DBUG_PRINT("info", ("item: %p", item));
+ direct_added= TRUE;
+ direct_item= item;
+ DBUG_VOID_RETURN;
+}
+
+
+double Item_sum_min_max::val_real()
+{
+ DBUG_ENTER("Item_sum_min_max::val_real");
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ DBUG_RETURN(0.0);
+ double retval= value->val_real();
+ if ((null_value= value->null_value))
+ DBUG_ASSERT(retval == 0.0);
+ DBUG_RETURN(retval);
+}
+
+longlong Item_sum_min_max::val_int()
+{
+ DBUG_ENTER("Item_sum_min_max::val_int");
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ DBUG_RETURN(0);
+ longlong retval= value->val_int();
+ if ((null_value= value->null_value))
+ DBUG_ASSERT(retval == 0);
+ DBUG_RETURN(retval);
+}
+
+
+my_decimal *Item_sum_min_max::val_decimal(my_decimal *val)
+{
+ DBUG_ENTER("Item_sum_min_max::val_decimal");
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ DBUG_RETURN(0);
+ my_decimal *retval= value->val_decimal(val);
+ if ((null_value= value->null_value))
+ DBUG_ASSERT(retval == NULL);
+ DBUG_RETURN(retval);
+}
+
+
+String *
+Item_sum_min_max::val_str(String *str)
+{
+ DBUG_ENTER("Item_sum_min_max::val_str");
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ DBUG_RETURN(0);
+ String *retval= value->val_str(str);
+ if ((null_value= value->null_value))
+ DBUG_ASSERT(retval == NULL);
+ DBUG_RETURN(retval);
+}
+
+
+bool Item_sum_min_max::val_native(THD *thd, Native *to)
+{
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ return true;
+ return val_native_from_item(thd, value, to);
+}
+
+
+void Item_sum_min_max::cleanup()
+{
+ DBUG_ENTER("Item_sum_min_max::cleanup");
+ Item_sum::cleanup();
+ if (cmp)
+ delete cmp;
+ cmp= 0;
+ /*
+ by default it is TRUE to avoid TRUE reporting by
+ Item_func_not_all/Item_func_nop_all if this item was never called.
+
+ no_rows_in_result() set it to FALSE if was not results found.
+ If some results found it will be left unchanged.
+ */
+ was_values= TRUE;
+ DBUG_VOID_RETURN;
+}
+
+void Item_sum_min_max::no_rows_in_result()
+{
+ DBUG_ENTER("Item_sum_min_max::no_rows_in_result");
+ /* We may be called here twice in case of ref field in function */
+ if (was_values)
+ {
+ bool org_const_item_cache= const_item_cache;
+ was_values= FALSE;
+ was_null_value= value->null_value;
+ const_item_cache= 0; // Ensure that clear works on const items
+ clear();
+ const_item_cache= org_const_item_cache;
+ }
+ DBUG_VOID_RETURN;
+}
+
+void Item_sum_min_max::restore_to_before_no_rows_in_result()
+{
+ if (!was_values)
+ {
+ was_values= TRUE;
+ null_value= value->null_value= was_null_value;
+ }
+}
+
+
+Item *Item_sum_min::copy_or_same(THD* thd)
+{
+ DBUG_ENTER("Item_sum_min::copy_or_same");
+ Item_sum_min *item= new (thd->mem_root) Item_sum_min(thd, this);
+ item->setup_hybrid(thd, args[0], value);
+ DBUG_RETURN(item);
+}
+
+
+bool Item_sum_min::add()
+{
+ Item *UNINIT_VAR(tmp_item);
+ DBUG_ENTER("Item_sum_min::add");
+ DBUG_PRINT("enter", ("this: %p", this));
+
+ if (unlikely(direct_added))
+ {
+ /* Change to use direct_item */
+ tmp_item= arg_cache->get_item();
+ arg_cache->store(direct_item);
+ }
+ DBUG_PRINT("info", ("null_value: %s", null_value ? "TRUE" : "FALSE"));
+ /* args[0] < value */
+ arg_cache->cache_value();
+ if (!arg_cache->null_value &&
+ (null_value || cmp->compare() < 0))
+ {
+ value->store(arg_cache);
+ value->cache_value();
+ null_value= 0;
+ }
+ if (unlikely(direct_added))
+ {
+ /* Restore original item */
+ direct_added= FALSE;
+ arg_cache->store(tmp_item);
+ }
+ DBUG_RETURN(0);
+}
+
+
+Item *Item_sum_max::copy_or_same(THD* thd)
+{
+ Item_sum_max *item= new (thd->mem_root) Item_sum_max(thd, this);
+ item->setup_hybrid(thd, args[0], value);
+ return item;
+}
+
+
+bool Item_sum_max::add()
+{
+ Item * UNINIT_VAR(tmp_item);
+ DBUG_ENTER("Item_sum_max::add");
+ DBUG_PRINT("enter", ("this: %p", this));
+
+ if (unlikely(direct_added))
+ {
+ /* Change to use direct_item */
+ tmp_item= arg_cache->get_item();
+ arg_cache->store(direct_item);
+ }
+ /* args[0] > value */
+ arg_cache->cache_value();
+ DBUG_PRINT("info", ("null_value: %s", null_value ? "TRUE" : "FALSE"));
+ if (!arg_cache->null_value &&
+ (null_value || cmp->compare() > 0))
+ {
+ value->store(arg_cache);
+ value->cache_value();
+ null_value= 0;
+ }
+ if (unlikely(direct_added))
+ {
+ /* Restore original item */
+ direct_added= FALSE;
+ arg_cache->store(tmp_item);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/* bit_or and bit_and */
+
+longlong Item_sum_bit::val_int()
+{
+ DBUG_ASSERT(fixed());
+ return (longlong) bits;
+}
+
+
+void Item_sum_bit::clear()
+{
+ bits= reset_bits;
+ if (as_window_function)
+ clear_as_window();
+}
+
+Item *Item_sum_or::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_or(thd, this);
+}
+
+bool Item_sum_bit::clear_as_window()
+{
+ memset(bit_counters, 0, sizeof(bit_counters));
+ num_values_added= 0;
+ set_bits_from_counters();
+ return 0;
+}
+
+bool Item_sum_bit::remove_as_window(ulonglong value)
+{
+ DBUG_ASSERT(as_window_function);
+ if (num_values_added == 0)
+ return 0; // Nothing to remove.
+
+ for (int i= 0; i < NUM_BIT_COUNTERS; i++)
+ {
+ if (!bit_counters[i])
+ {
+ // Don't attempt to remove values that were never added.
+ DBUG_ASSERT((value & (1ULL << i)) == 0);
+ continue;
+ }
+ bit_counters[i]-= (value & (1ULL << i)) ? 1 : 0;
+ }
+
+ // Prevent overflow;
+ num_values_added = MY_MIN(num_values_added, num_values_added - 1);
+ set_bits_from_counters();
+ return 0;
+}
+
+bool Item_sum_bit::add_as_window(ulonglong value)
+{
+ DBUG_ASSERT(as_window_function);
+ for (int i= 0; i < NUM_BIT_COUNTERS; i++)
+ {
+ bit_counters[i]+= (value & (1ULL << i)) ? 1 : 0;
+ }
+ // Prevent overflow;
+ num_values_added = MY_MAX(num_values_added, num_values_added + 1);
+ set_bits_from_counters();
+ return 0;
+}
+
+void Item_sum_or::set_bits_from_counters()
+{
+ ulonglong value= 0;
+ for (uint i= 0; i < NUM_BIT_COUNTERS; i++)
+ {
+ value|= bit_counters[i] > 0 ? (1ULL << i) : 0ULL;
+ }
+ bits= value | reset_bits;
+}
+
+bool Item_sum_or::add()
+{
+ ulonglong value= (ulonglong) args[0]->val_int();
+ if (!args[0]->null_value)
+ {
+ if (as_window_function)
+ return add_as_window(value);
+ bits|=value;
+ }
+ return 0;
+}
+
+void Item_sum_xor::set_bits_from_counters()
+{
+ ulonglong value= 0;
+ for (int i= 0; i < NUM_BIT_COUNTERS; i++)
+ {
+ value|= (bit_counters[i] % 2) ? (1 << i) : 0;
+ }
+ bits= value ^ reset_bits;
+}
+
+Item *Item_sum_xor::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_xor(thd, this);
+}
+
+
+bool Item_sum_xor::add()
+{
+ ulonglong value= (ulonglong) args[0]->val_int();
+ if (!args[0]->null_value)
+ {
+ if (as_window_function)
+ return add_as_window(value);
+ bits^=value;
+ }
+ return 0;
+}
+
+void Item_sum_and::set_bits_from_counters()
+{
+ ulonglong value= 0;
+ if (!num_values_added)
+ {
+ bits= reset_bits;
+ return;
+ }
+
+ for (int i= 0; i < NUM_BIT_COUNTERS; i++)
+ {
+ // We've only added values of 1 for this bit.
+ if (bit_counters[i] == num_values_added)
+ value|= (1ULL << i);
+ }
+ bits= value & reset_bits;
+}
+Item *Item_sum_and::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_and(thd, this);
+}
+
+
+bool Item_sum_and::add()
+{
+ ulonglong value= (ulonglong) args[0]->val_int();
+ if (!args[0]->null_value)
+ {
+ if (as_window_function)
+ return add_as_window(value);
+ bits&=value;
+ }
+ return 0;
+}
+
+/************************************************************************
+** reset result of a Item_sum with is saved in a tmp_table
+*************************************************************************/
+
+void Item_sum_min_max::reset_field()
+{
+ Item *UNINIT_VAR(tmp_item), *arg0;
+ DBUG_ENTER("Item_sum_min_max::reset_field");
+
+ arg0= args[0];
+ if (unlikely(direct_added))
+ {
+ /* Switch to use direct item */
+ tmp_item= value->get_item();
+ value->store(direct_item);
+ arg0= direct_item;
+ }
+
+ switch(result_type()) {
+ case STRING_RESULT:
+ {
+ char buff[MAX_FIELD_WIDTH];
+ String tmp(buff,sizeof(buff),result_field->charset()),*res;
+
+ res= arg0->val_str(&tmp);
+ if (arg0->null_value)
+ {
+ result_field->set_null();
+ result_field->reset();
+ }
+ else
+ {
+ result_field->set_notnull();
+ result_field->store(res->ptr(),res->length(),tmp.charset());
+ }
+ break;
+ }
+ case INT_RESULT:
+ {
+ longlong nr= arg0->val_int();
+
+ if (maybe_null())
+ {
+ if (arg0->null_value)
+ {
+ nr=0;
+ result_field->set_null();
+ }
+ else
+ result_field->set_notnull();
+ }
+ DBUG_PRINT("info", ("nr: %lld", nr));
+ result_field->store(nr, unsigned_flag);
+ break;
+ }
+ case REAL_RESULT:
+ {
+ double nr= arg0->val_real();
+
+ if (maybe_null())
+ {
+ if (arg0->null_value)
+ {
+ nr=0.0;
+ result_field->set_null();
+ }
+ else
+ result_field->set_notnull();
+ }
+ result_field->store(nr);
+ break;
+ }
+ case DECIMAL_RESULT:
+ {
+ VDec arg_dec(arg0);
+
+ if (maybe_null())
+ {
+ if (arg_dec.is_null())
+ result_field->set_null();
+ else
+ result_field->set_notnull();
+ }
+ /*
+ We must store zero in the field as we will use the field value in
+ add()
+ */
+ result_field->store_decimal(arg_dec.ptr_or(&decimal_zero));
+ break;
+ }
+ case ROW_RESULT:
+ case TIME_RESULT:
+ DBUG_ASSERT(0);
+ }
+
+ if (unlikely(direct_added))
+ {
+ direct_added= FALSE;
+ value->store(tmp_item);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_sum::reset_field()
+{
+ my_bool null_flag;
+ DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
+ if (result_type() == DECIMAL_RESULT)
+ {
+ if (unlikely(direct_added))
+ result_field->store_decimal(&direct_sum_decimal);
+ else
+ result_field->store_decimal(VDec(args[0]).ptr_or(&decimal_zero));
+ }
+ else
+ {
+ DBUG_ASSERT(result_type() == REAL_RESULT);
+ double nr= likely(!direct_added) ? args[0]->val_real() : direct_sum_real;
+ float8store(result_field->ptr, nr);
+ }
+
+ if (unlikely(direct_added))
+ {
+ direct_added= FALSE;
+ direct_reseted_field= TRUE;
+ null_flag= direct_sum_is_null;
+ }
+ else
+ null_flag= args[0]->null_value;
+
+ if (null_flag)
+ result_field->set_null();
+ else
+ result_field->set_notnull();
+}
+
+
+void Item_sum_count::reset_field()
+{
+ DBUG_ENTER("Item_sum_count::reset_field");
+ uchar *res=result_field->ptr;
+ longlong nr=0;
+ DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
+
+ if (unlikely(direct_counted))
+ {
+ nr= direct_count;
+ direct_counted= FALSE;
+ direct_reseted_field= TRUE;
+ }
+ else if (!args[0]->maybe_null() || !args[0]->is_null())
+ nr= 1;
+ DBUG_PRINT("info", ("nr: %lld", nr));
+ int8store(res,nr);
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_avg::reset_field()
+{
+ uchar *res=result_field->ptr;
+ DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
+ if (result_type() == DECIMAL_RESULT)
+ {
+ longlong tmp;
+ VDec value(args[0]);
+ tmp= value.is_null() ? 0 : 1;
+ value.to_binary(res, f_precision, f_scale);
+ res+= dec_bin_size;
+ int8store(res, tmp);
+ }
+ else
+ {
+ double nr= args[0]->val_real();
+
+ if (args[0]->null_value)
+ bzero(res,sizeof(double)+sizeof(longlong));
+ else
+ {
+ longlong tmp= 1;
+ float8store(res,nr);
+ res+=sizeof(double);
+ int8store(res,tmp);
+ }
+ }
+}
+
+
+void Item_sum_bit::reset_field()
+{
+ reset_and_add();
+ int8store(result_field->ptr, bits);
+}
+
+void Item_sum_bit::update_field()
+{
+ // We never call update_field when computing the function as a window
+ // function. Setting bits to a random value invalidates the bits counters and
+ // the result of the bit function becomes erroneous.
+ DBUG_ASSERT(!as_window_function);
+ uchar *res=result_field->ptr;
+ bits= uint8korr(res);
+ add();
+ int8store(res, bits);
+}
+
+
+/**
+ calc next value and merge it with field_value.
+*/
+
+void Item_sum_sum::update_field()
+{
+ DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
+ if (result_type() == DECIMAL_RESULT)
+ {
+ my_decimal value, *arg_val;
+ my_bool null_flag;
+ if (unlikely(direct_added || direct_reseted_field))
+ {
+ direct_added= direct_reseted_field= FALSE;
+ arg_val= &direct_sum_decimal;
+ null_flag= direct_sum_is_null;
+ }
+ else
+ {
+ arg_val= args[0]->val_decimal(&value);
+ null_flag= args[0]->null_value;
+ }
+
+ if (!null_flag)
+ {
+ if (!result_field->is_null())
+ {
+ my_decimal field_value(result_field);
+ my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, &field_value);
+ result_field->store_decimal(dec_buffs);
+ }
+ else
+ {
+ result_field->store_decimal(arg_val);
+ result_field->set_notnull();
+ }
+ }
+ }
+ else
+ {
+ double old_nr,nr;
+ uchar *res= result_field->ptr;
+ my_bool null_flag;
+
+ float8get(old_nr,res);
+ if (unlikely(direct_added || direct_reseted_field))
+ {
+ direct_added= direct_reseted_field= FALSE;
+ null_flag= direct_sum_is_null;
+ nr= direct_sum_real;
+ }
+ else
+ {
+ nr= args[0]->val_real();
+ null_flag= args[0]->null_value;
+ }
+ if (!null_flag)
+ {
+ old_nr+=nr;
+ result_field->set_notnull();
+ }
+ float8store(res,old_nr);
+ }
+}
+
+
+void Item_sum_count::update_field()
+{
+ DBUG_ENTER("Item_sum_count::update_field");
+ longlong nr;
+ uchar *res=result_field->ptr;
+
+ nr=sint8korr(res);
+ if (unlikely(direct_counted || direct_reseted_field))
+ {
+ direct_counted= direct_reseted_field= FALSE;
+ nr+= direct_count;
+ }
+ else if (!args[0]->maybe_null() || !args[0]->is_null())
+ nr++;
+ DBUG_PRINT("info", ("nr: %lld", nr));
+ int8store(res,nr);
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_sum_avg::update_field()
+{
+ longlong field_count;
+ uchar *res=result_field->ptr;
+
+ DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
+
+ if (result_type() == DECIMAL_RESULT)
+ {
+ VDec tmp(args[0]);
+ if (!tmp.is_null())
+ {
+ binary2my_decimal(E_DEC_FATAL_ERROR, res,
+ dec_buffs + 1, f_precision, f_scale);
+ field_count= sint8korr(res + dec_bin_size);
+ my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, tmp.ptr(), dec_buffs + 1);
+ dec_buffs->to_binary(res, f_precision, f_scale);
+ res+= dec_bin_size;
+ field_count++;
+ int8store(res, field_count);
+ }
+ }
+ else
+ {
+ double nr;
+
+ nr= args[0]->val_real();
+ if (!args[0]->null_value)
+ {
+ double old_nr;
+ float8get(old_nr, res);
+ field_count= sint8korr(res + sizeof(double));
+ old_nr+= nr;
+ float8store(res,old_nr);
+ res+= sizeof(double);
+ field_count++;
+ int8store(res, field_count);
+ }
+ }
+}
+
+
+Item *Item_sum_avg::result_item(THD *thd, Field *field)
+{
+ return
+ result_type() == DECIMAL_RESULT ?
+ (Item_avg_field*) new (thd->mem_root) Item_avg_field_decimal(thd, this) :
+ (Item_avg_field*) new (thd->mem_root) Item_avg_field_double(thd, this);
+}
+
+
+void Item_sum_min_max::update_field()
+{
+ DBUG_ENTER("Item_sum_min_max::update_field");
+ Item *UNINIT_VAR(tmp_item);
+ if (unlikely(direct_added))
+ {
+ tmp_item= args[0];
+ args[0]= direct_item;
+ }
+ if (Item_sum_min_max::type_handler()->is_val_native_ready())
+ {
+ /*
+ TODO-10.5: change Item_sum_min_max to use val_native() for all data types
+ - make all type handlers val_native() ready
+ - use min_max_update_native_field() for all data types
+ - remove Item_sum_min_max::min_max_update_{str|real|int|decimal}_field()
+ */
+ min_max_update_native_field();
+ }
+ else
+ {
+ switch (Item_sum_min_max::type_handler()->cmp_type()) {
+ case STRING_RESULT:
+ case TIME_RESULT:
+ min_max_update_str_field();
+ break;
+ case INT_RESULT:
+ min_max_update_int_field();
+ break;
+ case DECIMAL_RESULT:
+ min_max_update_decimal_field();
+ break;
+ default:
+ min_max_update_real_field();
+ }
+ }
+ if (unlikely(direct_added))
+ {
+ direct_added= FALSE;
+ args[0]= tmp_item;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+void Arg_comparator::min_max_update_field_native(THD *thd,
+ Field *field,
+ Item *item,
+ int cmp_sign)
+{
+ DBUG_ENTER("Arg_comparator::min_max_update_field_native");
+ if (!item->val_native(current_thd, &m_native2))
+ {
+ if (field->is_null())
+ field->store_native(m_native2); // The first non-null value
+ else
+ {
+ field->val_native(&m_native1);
+ if ((cmp_sign * m_compare_handler->cmp_native(m_native2, m_native1)) < 0)
+ field->store_native(m_native2);
+ }
+ field->set_notnull();
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+void
+Item_sum_min_max::min_max_update_native_field()
+{
+ DBUG_ENTER("Item_sum_min_max::min_max_update_native_field");
+ DBUG_ASSERT(cmp);
+ DBUG_ASSERT(type_handler_for_comparison() == cmp->compare_type_handler());
+ THD *thd= current_thd;
+ cmp->min_max_update_field_native(thd, result_field, args[0], cmp_sign);
+ DBUG_VOID_RETURN;
+}
+
+
+void
+Item_sum_min_max::min_max_update_str_field()
+{
+ DBUG_ENTER("Item_sum_min_max::min_max_update_str_field");
+ DBUG_ASSERT(cmp);
+ String *res_str=args[0]->val_str(&cmp->value1);
+
+ if (!args[0]->null_value)
+ {
+ if (result_field->is_null())
+ result_field->store(res_str->ptr(),res_str->length(),res_str->charset());
+ else
+ {
+ result_field->val_str(&cmp->value2);
+ if ((cmp_sign * sortcmp(res_str,&cmp->value2,collation.collation)) < 0)
+ result_field->store(res_str->ptr(),res_str->length(),res_str->charset());
+ }
+ result_field->set_notnull();
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+void
+Item_sum_min_max::min_max_update_real_field()
+{
+ double nr,old_nr;
+
+ DBUG_ENTER("Item_sum_min_max::min_max_update_real_field");
+ old_nr=result_field->val_real();
+ nr= args[0]->val_real();
+ if (!args[0]->null_value)
+ {
+ if (result_field->is_null(0) ||
+ (cmp_sign > 0 ? old_nr > nr : old_nr < nr))
+ old_nr=nr;
+ result_field->set_notnull();
+ }
+ else if (result_field->is_null(0))
+ result_field->set_null();
+ result_field->store(old_nr);
+ DBUG_VOID_RETURN;
+}
+
+
+void
+Item_sum_min_max::min_max_update_int_field()
+{
+ longlong nr,old_nr;
+
+ DBUG_ENTER("Item_sum_min_max::min_max_update_int_field");
+ old_nr=result_field->val_int();
+ nr=args[0]->val_int();
+ if (!args[0]->null_value)
+ {
+ if (result_field->is_null(0))
+ old_nr=nr;
+ else
+ {
+ bool res=(unsigned_flag ?
+ (ulonglong) old_nr > (ulonglong) nr :
+ old_nr > nr);
+ /* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
+ if ((cmp_sign > 0) ^ (!res))
+ old_nr=nr;
+ }
+ result_field->set_notnull();
+ }
+ else if (result_field->is_null(0))
+ result_field->set_null();
+ DBUG_PRINT("info", ("nr: %lld", old_nr));
+ result_field->store(old_nr, unsigned_flag);
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ @todo
+ optimize: do not get result_field in case of args[0] is NULL
+*/
+void
+Item_sum_min_max::min_max_update_decimal_field()
+{
+ DBUG_ENTER("Item_sum_min_max::min_max_update_decimal_field");
+ my_decimal old_val, nr_val;
+ const my_decimal *old_nr;
+ const my_decimal *nr= args[0]->val_decimal(&nr_val);
+ if (!args[0]->null_value)
+ {
+ if (result_field->is_null(0))
+ old_nr=nr;
+ else
+ {
+ old_nr= result_field->val_decimal(&old_val);
+ bool res= my_decimal_cmp(old_nr, nr) > 0;
+ /* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
+ if ((cmp_sign > 0) ^ (!res))
+ old_nr=nr;
+ }
+ result_field->set_notnull();
+ result_field->store_decimal(old_nr);
+ }
+ else if (result_field->is_null(0))
+ result_field->set_null();
+ DBUG_VOID_RETURN;
+}
+
+
+double Item_avg_field_double::val_real()
+{
+ // fix_fields() never calls for this Item
+ double nr;
+ longlong count;
+ uchar *res;
+
+ float8get(nr,field->ptr);
+ res= (field->ptr+sizeof(double));
+ count= sint8korr(res);
+
+ if ((null_value= !count))
+ return 0.0;
+ return nr/(double) count;
+}
+
+
+my_decimal *Item_avg_field_decimal::val_decimal(my_decimal *dec_buf)
+{
+ // fix_fields() never calls for this Item
+ longlong count= sint8korr(field->ptr + dec_bin_size);
+ if ((null_value= !count))
+ return 0;
+
+ my_decimal dec_count, dec_field(field->ptr, f_precision, f_scale);
+ int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &dec_count);
+ my_decimal_div(E_DEC_FATAL_ERROR, dec_buf,
+ &dec_field, &dec_count, prec_increment);
+ return dec_buf;
+}
+
+
+double Item_std_field::val_real()
+{
+ double nr;
+ // fix_fields() never calls for this Item
+ nr= Item_variance_field::val_real();
+ DBUG_ASSERT(nr >= 0.0);
+ return sqrt(nr);
+}
+
+
+double Item_variance_field::val_real()
+{
+ // fix_fields() never calls for this Item
+ Stddev tmp(field->ptr);
+ if ((null_value= (tmp.count() <= sample)))
+ return 0.0;
+
+ return tmp.result(sample);
+}
+
+
+/****************************************************************************
+** Functions to handle dynamic loadable aggregates
+** Original source by: Alexis Mikhailov <root@medinf.chuvashia.su>
+** Adapted for UDAs by: Andreas F. Bobak <bobak@relog.ch>.
+** Rewritten by: Monty.
+****************************************************************************/
+
+#ifdef HAVE_DLOPEN
+
+void Item_udf_sum::clear()
+{
+ DBUG_ENTER("Item_udf_sum::clear");
+ udf.clear();
+ DBUG_VOID_RETURN;
+}
+
+bool Item_udf_sum::add()
+{
+ my_bool tmp_null_value;
+ DBUG_ENTER("Item_udf_sum::add");
+ udf.add(&tmp_null_value);
+ null_value= tmp_null_value;
+ DBUG_RETURN(0);
+}
+
+
+bool Item_udf_sum::supports_removal() const
+{
+ DBUG_ENTER("Item_udf_sum::supports_remove");
+ DBUG_PRINT("info", ("support: %d", udf.supports_removal()));
+ DBUG_RETURN(udf.supports_removal());
+}
+
+
+void Item_udf_sum::remove()
+{
+ my_bool tmp_null_value;
+ DBUG_ENTER("Item_udf_sum::remove");
+ udf.remove(&tmp_null_value);
+ null_value= tmp_null_value;
+ DBUG_VOID_RETURN;
+}
+
+
+void Item_udf_sum::cleanup()
+{
+ /*
+ udf_handler::cleanup() nicely handles case when we have not
+ original item but one created by copy_or_same() method.
+ */
+ udf.cleanup();
+ Item_sum::cleanup();
+}
+
+
+void Item_udf_sum::print(String *str, enum_query_type query_type)
+{
+ str->append(func_name_cstring());
+ str->append('(');
+ for (uint i=0 ; i < arg_count ; i++)
+ {
+ if (i)
+ str->append(',');
+ args[i]->print(str, query_type);
+ }
+ str->append(')');
+}
+
+
+Item *Item_sum_udf_float::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_udf_float(thd, this);
+}
+
+double Item_sum_udf_float::val_real()
+{
+ my_bool tmp_null_value;
+ double res;
+ DBUG_ASSERT(fixed());
+ DBUG_ENTER("Item_sum_udf_float::val");
+ DBUG_PRINT("enter",("result_type: %d arg_count: %d",
+ args[0]->result_type(), arg_count));
+ res= udf.val(&tmp_null_value);
+ null_value= tmp_null_value;
+ DBUG_RETURN(res);
+}
+
+
+String *Item_sum_udf_float::val_str(String *str)
+{
+ return val_string_from_real(str);
+}
+
+
+my_decimal *Item_sum_udf_float::val_decimal(my_decimal *dec)
+{
+ return val_decimal_from_real(dec);
+}
+
+
+my_decimal *Item_sum_udf_decimal::val_decimal(my_decimal *dec_buf)
+{
+ my_decimal *res;
+ my_bool tmp_null_value;
+ DBUG_ASSERT(fixed());
+ DBUG_ENTER("Item_func_udf_decimal::val_decimal");
+ DBUG_PRINT("enter",("result_type: %d arg_count: %d",
+ args[0]->result_type(), arg_count));
+
+ res= udf.val_decimal(&tmp_null_value, dec_buf);
+ null_value= tmp_null_value;
+ DBUG_RETURN(res);
+}
+
+
+Item *Item_sum_udf_decimal::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_udf_decimal(thd, this);
+}
+
+
+Item *Item_sum_udf_int::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_udf_int(thd, this);
+}
+
+longlong Item_sum_udf_int::val_int()
+{
+ my_bool tmp_null_value;
+ longlong res;
+ DBUG_ASSERT(fixed());
+ DBUG_ENTER("Item_sum_udf_int::val_int");
+ DBUG_PRINT("enter",("result_type: %d arg_count: %d",
+ args[0]->result_type(), arg_count));
+ res= udf.val_int(&tmp_null_value);
+ null_value= tmp_null_value;
+ DBUG_RETURN(res);
+}
+
+
+String *Item_sum_udf_int::val_str(String *str)
+{
+ return val_string_from_int(str);
+}
+
+my_decimal *Item_sum_udf_int::val_decimal(my_decimal *dec)
+{
+ return val_decimal_from_int(dec);
+}
+
+
+/** Default max_length is max argument length. */
+
+bool Item_sum_udf_str::fix_length_and_dec(THD *thd)
+{
+ DBUG_ENTER("Item_sum_udf_str::fix_length_and_dec");
+ max_length=0;
+ for (uint i = 0; i < arg_count; i++)
+ set_if_bigger(max_length,args[i]->max_length);
+ DBUG_RETURN(FALSE);
+}
+
+
+Item *Item_sum_udf_str::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_sum_udf_str(thd, this);
+}
+
+
+my_decimal *Item_sum_udf_str::val_decimal(my_decimal *dec)
+{
+ return val_decimal_from_string(dec);
+}
+
+String *Item_sum_udf_str::val_str(String *str)
+{
+ DBUG_ASSERT(fixed());
+ DBUG_ENTER("Item_sum_udf_str::str");
+ String *res=udf.val_str(str,&str_value);
+ null_value = !res;
+ DBUG_RETURN(res);
+}
+
+#endif /* HAVE_DLOPEN */
+
+
+/*****************************************************************************
+ GROUP_CONCAT function
+
+ SQL SYNTAX:
+ GROUP_CONCAT([DISTINCT] expr,... [ORDER BY col [ASC|DESC],...]
+ [SEPARATOR str_const])
+
+ concat of values from "group by" operation
+
+ BUGS
+ Blobs doesn't work with DISTINCT or ORDER BY
+*****************************************************************************/
+
+
+
+/**
+ Compares the values for fields in expr list of GROUP_CONCAT.
+ @note
+
+ GROUP_CONCAT([DISTINCT] expr [,expr ...]
+ [ORDER BY {unsigned_integer | col_name | expr}
+ [ASC | DESC] [,col_name ...]]
+ [SEPARATOR str_val])
+
+ @return
+ @retval -1 : key1 < key2
+ @retval 0 : key1 = key2
+ @retval 1 : key1 > key2
+*/
+
+extern "C"
+int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
+ const void* key2)
+{
+ Item_func_group_concat *item_func= (Item_func_group_concat*)arg;
+
+ for (uint i= 0; i < item_func->arg_count_field; i++)
+ {
+ Item *item= item_func->args[i];
+ /*
+ If item is a const item then either get_tmp_table_field returns 0
+ or it is an item over a const table.
+ */
+ if (item->const_item())
+ continue;
+ /*
+ We have to use get_tmp_table_field() instead of
+ real_item()->get_tmp_table_field() because we want the field in
+ the temporary table, not the original field
+ */
+ Field *field= item->get_tmp_table_field();
+
+ if (!field)
+ continue;
+
+ uint offset= (field->offset(field->table->record[0]) -
+ field->table->s->null_bytes);
+ int res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset);
+ if (res)
+ return res;
+ }
+ return 0;
+}
+
+
+/*
+ @brief
+ Comparator function for DISTINCT clause taking into account NULL values.
+
+ @note
+ Used for JSON_ARRAYAGG function
+*/
+
+int group_concat_key_cmp_with_distinct_with_nulls(void* arg,
+ const void* key1_arg,
+ const void* key2_arg)
+{
+ Item_func_group_concat *item_func= (Item_func_group_concat*)arg;
+
+ uchar *key1= (uchar*)key1_arg + item_func->table->s->null_bytes;
+ uchar *key2= (uchar*)key2_arg + item_func->table->s->null_bytes;
+
+ /*
+ JSON_ARRAYAGG function only accepts one argument.
+ */
+
+ Item *item= item_func->args[0];
+ /*
+ If item is a const item then either get_tmp_table_field returns 0
+ or it is an item over a const table.
+ */
+ if (item->const_item())
+ return 0;
+ /*
+ We have to use get_tmp_table_field() instead of
+ real_item()->get_tmp_table_field() because we want the field in
+ the temporary table, not the original field
+ */
+ Field *field= item->get_tmp_table_field();
+
+ if (!field)
+ return 0;
+
+ if (field->is_null_in_record((uchar*)key1_arg) &&
+ field->is_null_in_record((uchar*)key2_arg))
+ return 0;
+
+ if (field->is_null_in_record((uchar*)key1_arg))
+ return -1;
+
+ if (field->is_null_in_record((uchar*)key2_arg))
+ return 1;
+
+ uint offset= (field->offset(field->table->record[0]) -
+ field->table->s->null_bytes);
+ int res= field->cmp(key1 + offset, key2 + offset);
+ if (res)
+ return res;
+ return 0;
+}
+
+
+/**
+ function of sort for syntax: GROUP_CONCAT(expr,... ORDER BY col,... )
+*/
+
+extern "C"
+int group_concat_key_cmp_with_order(void* arg, const void* key1,
+ const void* key2)
+{
+ Item_func_group_concat* grp_item= (Item_func_group_concat*) arg;
+ ORDER **order_item, **end;
+
+ for (order_item= grp_item->order, end=order_item+ grp_item->arg_count_order;
+ order_item < end;
+ order_item++)
+ {
+ Item *item= *(*order_item)->item;
+ /*
+ If field_item is a const item then either get_tmp_table_field returns 0
+ or it is an item over a const table.
+ */
+ if (item->const_item())
+ continue;
+ /*
+ If item is a const item then either get_tmp_table_field returns 0
+ or it is an item over a const table.
+ */
+ if (item->const_item())
+ continue;
+ /*
+ We have to use get_tmp_table_field() instead of
+ real_item()->get_tmp_table_field() because we want the field in
+ the temporary table, not the original field
+
+ Note that for the case of ROLLUP, field may point to another table
+ tham grp_item->table. This is however ok as the table definitions are
+ the same.
+ */
+ Field *field= item->get_tmp_table_field();
+ if (!field)
+ continue;
+
+ uint offset= (field->offset(field->table->record[0]) -
+ field->table->s->null_bytes);
+ int res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset);
+ if (res)
+ return ((*order_item)->direction == ORDER::ORDER_ASC) ? res : -res;
+ }
+ /*
+ We can't return 0 because in that case the tree class would remove this
+ item as double value. This would cause problems for case-changes and
+ if the returned values are not the same we do the sort on.
+ */
+ return 1;
+}
+
+
+/*
+ @brief
+ Comparator function for ORDER BY clause taking into account NULL values.
+
+ @note
+ Used for JSON_ARRAYAGG function
+*/
+
+int group_concat_key_cmp_with_order_with_nulls(void *arg, const void *key1_arg,
+ const void *key2_arg)
+{
+ Item_func_group_concat* grp_item= (Item_func_group_concat*) arg;
+ ORDER **order_item, **end;
+
+ uchar *key1= (uchar*)key1_arg + grp_item->table->s->null_bytes;
+ uchar *key2= (uchar*)key2_arg + grp_item->table->s->null_bytes;
+
+ for (order_item= grp_item->order, end=order_item+ grp_item->arg_count_order;
+ order_item < end;
+ order_item++)
+ {
+ Item *item= *(*order_item)->item;
+ /*
+ If field_item is a const item then either get_tmp_table_field returns 0
+ or it is an item over a const table.
+ */
+ if (item->const_item())
+ continue;
+ /*
+ We have to use get_tmp_table_field() instead of
+ real_item()->get_tmp_table_field() because we want the field in
+ the temporary table, not the original field
+
+ Note that for the case of ROLLUP, field may point to another table
+ tham grp_item->table. This is however ok as the table definitions are
+ the same.
+ */
+ Field *field= item->get_tmp_table_field();
+ if (!field)
+ continue;
+
+ if (field->is_null_in_record((uchar*)key1_arg) &&
+ field->is_null_in_record((uchar*)key2_arg))
+ continue;
+
+ if (field->is_null_in_record((uchar*)key1_arg))
+ return ((*order_item)->direction == ORDER::ORDER_ASC) ? -1 : 1;
+
+ if (field->is_null_in_record((uchar*)key2_arg))
+ return ((*order_item)->direction == ORDER::ORDER_ASC) ? 1 : -1;
+
+ uint offset= (field->offset(field->table->record[0]) -
+ field->table->s->null_bytes);
+ int res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset);
+ if (res)
+ return ((*order_item)->direction == ORDER::ORDER_ASC) ? res : -res;
+ }
+ /*
+ We can't return 0 because in that case the tree class would remove this
+ item as double value. This would cause problems for case-changes and
+ if the returned values are not the same we do the sort on.
+ */
+ return 1;
+}
+
+
+static void report_cut_value_error(THD *thd, uint row_count, const char *fname)
+{
+ size_t fn_len= strlen(fname);
+ char *fname_upper= (char *) my_alloca(fn_len + 1);
+ if (!fname_upper)
+ fname_upper= (char*) fname; // Out of memory
+ else
+ memcpy(fname_upper, fname, fn_len+1);
+ my_caseup_str(&my_charset_latin1, fname_upper);
+ push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
+ ER_CUT_VALUE_GROUP_CONCAT,
+ ER_THD(thd, ER_CUT_VALUE_GROUP_CONCAT),
+ row_count, fname_upper);
+ my_afree(fname_upper);
+}
+
+
+void Item_func_group_concat::cut_max_length(String *result,
+ uint old_length, uint max_length) const
+{
+ const char *ptr= result->ptr();
+ /*
+ It's ok to use item->result.length() as the fourth argument
+ as this is never used to limit the length of the data.
+ Cut is done with the third argument.
+ */
+ size_t add_length= Well_formed_prefix(collation.collation,
+ ptr + old_length,
+ ptr + max_length,
+ result->length()).length();
+ result->length(old_length + add_length);
+}
+
+
+/**
+ Append data from current leaf to item->result.
+*/
+
+extern "C"
+int dump_leaf_key(void* key_arg, element_count count __attribute__((unused)),
+ void* item_arg)
+{
+ Item_func_group_concat *item= (Item_func_group_concat *) item_arg;
+ TABLE *table= item->table;
+ uint max_length= table->in_use->variables.group_concat_max_len;
+ String tmp((char *)table->record[1], table->s->reclength,
+ default_charset_info);
+ String tmp2;
+ uchar *key= (uchar *) key_arg;
+ String *result= &item->result;
+ Item **arg= item->args, **arg_end= item->args + item->arg_count_field;
+ uint old_length= result->length();
+
+ ulonglong *offset_limit= &item->copy_offset_limit;
+ ulonglong *row_limit = &item->copy_row_limit;
+ if (item->limit_clause && !(*row_limit))
+ {
+ item->result_finalized= true;
+ return 1;
+ }
+
+ tmp.length(0);
+
+ if (item->limit_clause && (*offset_limit))
+ {
+ item->row_count++;
+ (*offset_limit)--;
+ return 0;
+ }
+
+ if (!item->result_finalized)
+ item->result_finalized= true;
+ else
+ result->append(*item->separator);
+
+ for (; arg < arg_end; arg++)
+ {
+ String *res;
+ /*
+ We have to use get_tmp_table_field() instead of
+ real_item()->get_tmp_table_field() because we want the field in
+ the temporary table, not the original field
+ We also can't use table->field array to access the fields
+ because it contains both order and arg list fields.
+ */
+ if ((*arg)->const_item())
+ res= item->get_str_from_item(*arg, &tmp);
+ else
+ {
+ Field *field= (*arg)->get_tmp_table_field();
+ if (field)
+ {
+ uint offset= (field->offset(field->table->record[0]) -
+ table->s->null_bytes);
+ DBUG_ASSERT(offset < table->s->reclength);
+ res= item->get_str_from_field(*arg, field, &tmp, key,
+ offset + item->get_null_bytes());
+ }
+ else
+ res= item->get_str_from_item(*arg, &tmp);
+ }
+
+ if (res)
+ result->append(*res);
+ }
+
+ if (item->limit_clause)
+ (*row_limit)--;
+ item->row_count++;
+
+ /* stop if length of result more than max_length */
+ if (result->length() > max_length)
+ {
+ THD *thd= current_thd;
+ item->cut_max_length(result, old_length, max_length);
+ item->warning_for_row= TRUE;
+ report_cut_value_error(thd, item->row_count, item->func_name());
+
+ /**
+ To avoid duplicated warnings in Item_func_group_concat::val_str()
+ */
+ if (table && table->blob_storage)
+ table->blob_storage->set_truncated_value(false);
+ return 1;
+ }
+ return 0;
+}
+
+
+/**
+ Constructor of Item_func_group_concat.
+
+ @param distinct_arg distinct
+ @param select_list list of expression for show values
+ @param order_list list of sort columns
+ @param separator_arg string value of separator.
+*/
+
+Item_func_group_concat::
+Item_func_group_concat(THD *thd, Name_resolution_context *context_arg,
+ bool distinct_arg, List<Item> *select_list,
+ const SQL_I_List<ORDER> &order_list,
+ String *separator_arg, bool limit_clause,
+ Item *row_limit_arg, Item *offset_limit_arg)
+ :Item_sum(thd), tmp_table_param(0), separator(separator_arg), tree(0),
+ unique_filter(NULL), table(0),
+ order(0), context(context_arg),
+ arg_count_order(order_list.elements),
+ arg_count_field(select_list->elements),
+ row_count(0),
+ distinct(distinct_arg),
+ warning_for_row(FALSE), always_null(FALSE),
+ force_copy_fields(0), row_limit(NULL),
+ offset_limit(NULL), limit_clause(limit_clause),
+ copy_offset_limit(0), copy_row_limit(0), original(0)
+{
+ Item *item_select;
+ Item **arg_ptr;
+
+ quick_group= FALSE;
+ arg_count= arg_count_field + arg_count_order;
+
+ /*
+ We need to allocate:
+ args - arg_count_field+arg_count_order
+ (for possible order items in temporary tables)
+ order - arg_count_order
+ */
+ if (!(args= (Item**) thd->alloc(sizeof(Item*) * arg_count * 2 +
+ sizeof(ORDER*)*arg_count_order)))
+ return;
+
+ order= (ORDER**)(args + arg_count);
+
+ /* fill args items of show and sort */
+ List_iterator_fast<Item> li(*select_list);
+
+ for (arg_ptr=args ; (item_select= li++) ; arg_ptr++)
+ *arg_ptr= item_select;
+
+ if (arg_count_order)
+ {
+ ORDER **order_ptr= order;
+ for (ORDER *order_item= order_list.first;
+ order_item != NULL;
+ order_item= order_item->next)
+ {
+ (*order_ptr++)= order_item;
+ *arg_ptr= *order_item->item;
+ order_item->item= arg_ptr++;
+ }
+ }
+
+ /* orig_args is only used for print() */
+ orig_args= (Item**) (order + arg_count_order);
+ if (arg_count)
+ memcpy(orig_args, args, sizeof(Item*) * arg_count);
+ if (limit_clause)
+ {
+ row_limit= row_limit_arg;
+ offset_limit= offset_limit_arg;
+ }
+}
+
+
+Item_func_group_concat::Item_func_group_concat(THD *thd,
+ Item_func_group_concat *item)
+ :Item_sum(thd, item),
+ tmp_table_param(item->tmp_table_param),
+ separator(item->separator),
+ tree(item->tree),
+ tree_len(item->tree_len),
+ unique_filter(item->unique_filter),
+ table(item->table),
+ context(item->context),
+ arg_count_order(item->arg_count_order),
+ arg_count_field(item->arg_count_field),
+ row_count(item->row_count),
+ distinct(item->distinct),
+ warning_for_row(item->warning_for_row),
+ always_null(item->always_null),
+ force_copy_fields(item->force_copy_fields),
+ row_limit(item->row_limit), offset_limit(item->offset_limit),
+ limit_clause(item->limit_clause),copy_offset_limit(item->copy_offset_limit),
+ copy_row_limit(item->copy_row_limit), original(item)
+{
+ quick_group= item->quick_group;
+ result.set_charset(collation.collation);
+
+ /*
+ Since the ORDER structures pointed to by the elements of the 'order' array
+ may be modified in find_order_in_list() called from
+ Item_func_group_concat::setup(), create a copy of those structures so that
+ such modifications done in this object would not have any effect on the
+ object being copied.
+ */
+ ORDER *tmp;
+ if (!(tmp= (ORDER *) thd->alloc(sizeof(ORDER *) * arg_count_order +
+ sizeof(ORDER) * arg_count_order)))
+ return;
+ order= (ORDER **)(tmp + arg_count_order);
+ for (uint i= 0; i < arg_count_order; i++, tmp++)
+ {
+ /*
+ Compiler generated copy constructor is used to
+ to copy all the members of ORDER struct.
+ It's also necessary to update ORDER::next pointer
+ so that it points to new ORDER element.
+ */
+ new (tmp) st_order(*(item->order[i]));
+ tmp->next= (i + 1 == arg_count_order) ? NULL : (tmp + 1);
+ order[i]= tmp;
+ }
+}
+
+
+void Item_func_group_concat::cleanup()
+{
+ DBUG_ENTER("Item_func_group_concat::cleanup");
+ Item_sum::cleanup();
+
+ /*
+ Free table and tree if they belong to this item (if item have not pointer
+ to original item from which was made copy => it own its objects )
+ */
+ if (!original)
+ {
+ delete tmp_table_param;
+ tmp_table_param= 0;
+ if (table)
+ {
+ THD *thd= table->in_use;
+ if (table->blob_storage)
+ delete table->blob_storage;
+ free_tmp_table(thd, table);
+ table= 0;
+ if (tree)
+ {
+ delete_tree(tree, 0);
+ tree= 0;
+ }
+ if (unique_filter)
+ {
+ delete unique_filter;
+ unique_filter= NULL;
+ }
+ }
+ DBUG_ASSERT(tree == 0);
+ }
+ /*
+ As the ORDER structures pointed to by the elements of the
+ 'order' array may be modified in find_order_in_list() called
+ from Item_func_group_concat::setup() to point to runtime
+ created objects, we need to reset them back to the original
+ arguments of the function.
+ */
+ ORDER **order_ptr= order;
+ for (uint i= 0; i < arg_count_order; i++)
+ {
+ (*order_ptr)->item= &args[arg_count_field + i];
+ order_ptr++;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+Item *Item_func_group_concat::copy_or_same(THD* thd)
+{
+ return new (thd->mem_root) Item_func_group_concat(thd, this);
+}
+
+
+void Item_func_group_concat::clear()
+{
+ result.length(0);
+ result.copy();
+ null_value= TRUE;
+ warning_for_row= FALSE;
+ result_finalized= false;
+ if (offset_limit)
+ copy_offset_limit= offset_limit->val_int();
+ if (row_limit)
+ copy_row_limit= row_limit->val_int();
+ if (tree)
+ {
+ reset_tree(tree);
+ tree_len= 0;
+ }
+ if (unique_filter)
+ unique_filter->reset();
+ if (table && table->blob_storage)
+ table->blob_storage->reset();
+ /* No need to reset the table as we never call write_row */
+}
+
+struct st_repack_tree {
+ TREE tree;
+ TABLE *table;
+ size_t len, maxlen;
+};
+
+extern "C"
+int copy_to_tree(void* key, element_count count __attribute__((unused)),
+ void* arg)
+{
+ struct st_repack_tree *st= (struct st_repack_tree*)arg;
+ TABLE *table= st->table;
+ Field* field= table->field[0];
+ const uchar *ptr= field->ptr_in_record((uchar*)key - table->s->null_bytes);
+ size_t len= (size_t)field->val_int(ptr);
+
+ DBUG_ASSERT(count == 1);
+ if (!tree_insert(&st->tree, key, 0, st->tree.custom_arg))
+ return 1;
+
+ st->len += len;
+ return st->len > st->maxlen;
+}
+
+bool Item_func_group_concat::repack_tree(THD *thd)
+{
+ struct st_repack_tree st;
+ int size= tree->size_of_element;
+ if (!tree->offset_to_key)
+ size-= sizeof(void*);
+
+ init_tree(&st.tree, (size_t) MY_MIN(thd->variables.max_heap_table_size,
+ thd->variables.sortbuff_size/16), 0,
+ size, get_comparator_function_for_order_by(), NULL,
+ (void*) this, MYF(MY_THREAD_SPECIFIC));
+ DBUG_ASSERT(tree->size_of_element == st.tree.size_of_element);
+ st.table= table;
+ st.len= 0;
+ st.maxlen= thd->variables.group_concat_max_len;
+ tree_walk(tree, &copy_to_tree, &st, left_root_right);
+ if (st.len <= st.maxlen) // Copying aborted. Must be OOM
+ {
+ delete_tree(&st.tree, 0);
+ return 1;
+ }
+ delete_tree(tree, 0);
+ *tree= st.tree;
+ tree_len= st.len;
+ return 0;
+}
+
+
+/*
+ Repacking the tree is expensive. But it keeps the tree small, and
+ inserting into an unnecessary large tree is also waste of time.
+
+ The following number is best-by-test. Test execution time slowly
+ decreases up to N=10 (that is, factor=1024) and then starts to increase,
+ again, very slowly.
+*/
+#define GCONCAT_REPACK_FACTOR 10
+
+bool Item_func_group_concat::add(bool exclude_nulls)
+{
+ if (always_null && exclude_nulls)
+ return 0;
+ copy_fields(tmp_table_param);
+ if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
+ return TRUE;
+
+ size_t row_str_len= 0;
+ StringBuffer<MAX_FIELD_WIDTH> buf;
+ String *res;
+ for (uint i= 0; i < arg_count_field; i++)
+ {
+ Item *show_item= args[i];
+ if (show_item->const_item())
+ continue;
+
+ Field *field= show_item->get_tmp_table_field();
+ if (field)
+ {
+ if (field->is_null_in_record((const uchar*) table->record[0]) &&
+ exclude_nulls)
+ return 0; // Skip row if it contains null
+
+ buf.set_buffer_if_not_allocated(&my_charset_bin);
+ if (tree && (res= field->val_str(&buf)))
+ row_str_len+= res->length();
+ }
+ else
+ {
+ /*
+ should not reach here, we create temp table for all the arguments of
+ the group_concat function
+ */
+ DBUG_ASSERT(0);
+ }
+ }
+
+ null_value= FALSE;
+ bool row_eligible= TRUE;
+
+ if (distinct)
+ {
+ /* Filter out duplicate rows. */
+ uint count= unique_filter->elements_in_tree();
+ unique_filter->unique_add(get_record_pointer());
+ if (count == unique_filter->elements_in_tree())
+ row_eligible= FALSE;
+ }
+
+ TREE_ELEMENT *el= 0; // Only for safety
+ if (row_eligible && tree)
+ {
+ THD *thd= table->in_use;
+ table->field[0]->store(row_str_len, FALSE);
+ if ((tree_len >> GCONCAT_REPACK_FACTOR) > thd->variables.group_concat_max_len
+ && tree->elements_in_tree > 1)
+ if (repack_tree(thd))
+ return 1;
+ el= tree_insert(tree, get_record_pointer(), 0, tree->custom_arg);
+ /* check if there was enough memory to insert the row */
+ if (!el)
+ return 1;
+ tree_len+= row_str_len;
+ }
+
+ /*
+ In case of GROUP_CONCAT with DISTINCT or ORDER BY (or both) don't dump the
+ row to the output buffer here. That will be done in val_str.
+ */
+ if (row_eligible && !warning_for_row && (!tree && !distinct))
+ dump_leaf_key(get_record_pointer(), 1, this);
+
+ return 0;
+}
+
+
+bool
+Item_func_group_concat::fix_fields(THD *thd, Item **ref)
+{
+ uint i; /* for loop variable */
+ DBUG_ASSERT(fixed() == 0);
+
+ if (init_sum_func_check(thd))
+ return TRUE;
+
+ set_maybe_null();
+
+ /*
+ Fix fields for select list and ORDER clause
+ */
+
+ for (i=0 ; i < arg_count ; i++)
+ {
+ if (args[i]->fix_fields_if_needed_for_scalar(thd, &args[i]))
+ return TRUE;
+ /* We should ignore FIELD's in arguments to sum functions */
+ with_flags|= (args[i]->with_flags & ~item_with_t::FIELD);
+ }
+
+ /* skip charset aggregation for order columns */
+ if (agg_arg_charsets_for_string_result(collation,
+ args, arg_count - arg_count_order))
+ return 1;
+
+ result.set_charset(collation.collation);
+ result_field= 0;
+ null_value= 1;
+ max_length= (uint32) MY_MIN((ulonglong) thd->variables.group_concat_max_len
+ / collation.collation->mbminlen
+ * collation.collation->mbmaxlen, UINT_MAX32);
+
+ uint32 offset;
+ if (separator->needs_conversion(separator->length(), separator->charset(),
+ collation.collation, &offset))
+ {
+ uint32 buflen= collation.collation->mbmaxlen * separator->length();
+ uint errors, conv_length;
+ char *buf;
+ String *new_separator;
+
+ if (!(buf= (char*) thd->stmt_arena->alloc(buflen)) ||
+ !(new_separator= new(thd->stmt_arena->mem_root)
+ String(buf, buflen, collation.collation)))
+ return TRUE;
+
+ conv_length= copy_and_convert(buf, buflen, collation.collation,
+ separator->ptr(), separator->length(),
+ separator->charset(), &errors);
+ new_separator->length(conv_length);
+ separator= new_separator;
+ }
+
+ if (check_sum_func(thd, ref))
+ return TRUE;
+
+ base_flags|= item_base_t::FIXED;
+ return FALSE;
+}
+
+
+bool Item_func_group_concat::setup(THD *thd)
+{
+ List<Item> list;
+ SELECT_LEX *select_lex= thd->lex->current_select;
+ const bool order_or_distinct= MY_TEST(arg_count_order > 0 || distinct);
+ DBUG_ENTER("Item_func_group_concat::setup");
+
+ /*
+ Currently setup() can be called twice. Please add
+ assertion here when this is fixed.
+ */
+ if (table || tree)
+ DBUG_RETURN(FALSE);
+
+ if (!(tmp_table_param= new (thd->mem_root) TMP_TABLE_PARAM))
+ DBUG_RETURN(TRUE);
+
+ /* Push all not constant fields to the list and create a temp table */
+ always_null= 0;
+ for (uint i= 0; i < arg_count_field; i++)
+ {
+ Item *item= args[i];
+ if (list.push_back(item, thd->mem_root))
+ DBUG_RETURN(TRUE);
+ if (item->const_item() && item->is_null() && skip_nulls())
+ {
+ always_null= 1;
+ DBUG_RETURN(FALSE);
+ }
+ }
+
+ List<Item> all_fields(list);
+ /*
+ Try to find every ORDER expression in the list of GROUP_CONCAT
+ arguments. If an expression is not found, prepend it to
+ "all_fields". The resulting field list is used as input to create
+ tmp table columns.
+ */
+ if (arg_count_order)
+ {
+ uint n_elems= arg_count_order + all_fields.elements;
+ ref_pointer_array= static_cast<Item**>(thd->alloc(sizeof(Item*) * n_elems));
+ if (!ref_pointer_array)
+ DBUG_RETURN(TRUE);
+ memcpy(ref_pointer_array, args, arg_count * sizeof(Item*));
+ DBUG_ASSERT(context);
+ if (setup_order(thd, Ref_ptr_array(ref_pointer_array, n_elems),
+ context->table_list, list, all_fields, *order))
+ DBUG_RETURN(TRUE);
+ /*
+ Prepend the field to store the length of the string representation
+ of this row. Used to detect when the tree goes over group_concat_max_len
+ */
+ Item *item= new (thd->mem_root)
+ Item_uint(thd, thd->variables.group_concat_max_len);
+ if (!item || all_fields.push_front(item, thd->mem_root))
+ DBUG_RETURN(TRUE);
+ }
+
+ count_field_types(select_lex, tmp_table_param, all_fields, 0);
+ tmp_table_param->force_copy_fields= force_copy_fields;
+ tmp_table_param->hidden_field_count= (arg_count_order > 0);
+ DBUG_ASSERT(table == 0);
+ if (order_or_distinct)
+ {
+ /*
+ Convert bit fields to bigint's in the temporary table.
+ Needed as we cannot compare two table records containing BIT fields
+ stored in the the tree used for distinct/order by.
+ Moreover we don't even save in the tree record null bits
+ where BIT fields store parts of their data.
+ */
+ store_bit_fields_as_bigint_in_tempory_table(&all_fields);
+ }
+
+ /*
+ We have to create a temporary table to get descriptions of fields
+ (types, sizes and so on).
+
+ Note that in the table, we first have the ORDER BY fields, then the
+ field list.
+ */
+ if (!(table= create_tmp_table(thd, tmp_table_param, all_fields,
+ (ORDER*) 0, 0, TRUE,
+ (select_lex->options |
+ thd->variables.option_bits),
+ HA_POS_ERROR, &empty_clex_str)))
+ DBUG_RETURN(TRUE);
+ table->file->extra(HA_EXTRA_NO_ROWS);
+ table->no_rows= 1;
+
+ /**
+ Initialize blob_storage if GROUP_CONCAT is used
+ with ORDER BY | DISTINCT and BLOB field count > 0.
+ */
+ if (order_or_distinct && table->s->blob_fields)
+ table->blob_storage= new (thd->mem_root) Blob_mem_storage();
+
+ /*
+ Need sorting or uniqueness: init tree and choose a function to sort.
+ Don't reserve space for NULLs: if any of gconcat arguments is NULL,
+ the row is not added to the result.
+ */
+ uint tree_key_length= table->s->reclength - table->s->null_bytes;
+
+ if (arg_count_order)
+ {
+ tree= &tree_base;
+ /*
+ Create a tree for sorting. The tree is used to sort (according to the
+ syntax of this function). If there is no ORDER BY clause, we don't
+ create this tree.
+ */
+ init_tree(tree, (size_t)MY_MIN(thd->variables.max_heap_table_size,
+ thd->variables.sortbuff_size/16), 0,
+ tree_key_length + get_null_bytes(),
+ get_comparator_function_for_order_by(), NULL, (void*) this,
+ MYF(MY_THREAD_SPECIFIC));
+ tree_len= 0;
+ }
+
+ if (distinct)
+ unique_filter= (new (thd->mem_root)
+ Unique(get_comparator_function_for_distinct(),
+ (void*)this,
+ tree_key_length + get_null_bytes(),
+ ram_limitation(thd)));
+ if ((row_limit && row_limit->cmp_type() != INT_RESULT) ||
+ (offset_limit && offset_limit->cmp_type() != INT_RESULT))
+ {
+ my_error(ER_INVALID_VALUE_TO_LIMIT, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+
+ DBUG_RETURN(FALSE);
+}
+
+
+/* This is used by rollup to create a separate usable copy of the function */
+
+void Item_func_group_concat::make_unique()
+{
+ tmp_table_param= 0;
+ table=0;
+ original= 0;
+ force_copy_fields= 1;
+ tree= 0;
+}
+
+
+String* Item_func_group_concat::val_str(String* str)
+{
+ DBUG_ASSERT(fixed());
+ if (null_value)
+ return 0;
+
+ if (!result_finalized) // Result yet to be written.
+ {
+ if (tree != NULL) // order by
+ tree_walk(tree, &dump_leaf_key, this, left_root_right);
+ else if (distinct) // distinct (and no order by).
+ unique_filter->walk(table, &dump_leaf_key, this);
+ else if (row_limit && copy_row_limit == (ulonglong)row_limit->val_int())
+ return &result;
+ else
+ DBUG_ASSERT(false); // Can't happen
+ }
+
+ if (table && table->blob_storage &&
+ table->blob_storage->is_truncated_value())
+ {
+ warning_for_row= true;
+ report_cut_value_error(current_thd, row_count, func_name());
+ }
+
+ return &result;
+}
+
+
+/*
+ @brief
+ Get the comparator function for DISTINT clause
+*/
+
+qsort_cmp2 Item_func_group_concat::get_comparator_function_for_distinct()
+{
+ return skip_nulls() ?
+ group_concat_key_cmp_with_distinct :
+ group_concat_key_cmp_with_distinct_with_nulls;
+}
+
+
+/*
+ @brief
+ Get the comparator function for ORDER BY clause
+*/
+
+qsort_cmp2 Item_func_group_concat::get_comparator_function_for_order_by()
+{
+ return skip_nulls() ?
+ group_concat_key_cmp_with_order :
+ group_concat_key_cmp_with_order_with_nulls;
+}
+
+
+/*
+
+ @brief
+ Get the record pointer of the current row of the table
+
+ @details
+ look at the comments for Item_func_group_concat::get_null_bytes
+*/
+
+uchar* Item_func_group_concat::get_record_pointer()
+{
+ return skip_nulls() ?
+ table->record[0] + table->s->null_bytes :
+ table->record[0];
+}
+
+
+/*
+ @brief
+ Get the null bytes for the table if required.
+
+ @details
+ This function is used for GROUP_CONCAT (or JSON_ARRAYAGG) implementation
+ where the Unique tree or the ORDER BY tree may store the null values,
+ in such case we also store the null bytes inside each node of the tree.
+
+*/
+
+uint Item_func_group_concat::get_null_bytes()
+{
+ return skip_nulls() ? 0 : table->s->null_bytes;
+}
+
+
+void Item_func_group_concat::print(String *str, enum_query_type query_type)
+{
+ str->append(func_name_cstring());
+ if (distinct)
+ str->append(STRING_WITH_LEN("distinct "));
+ for (uint i= 0; i < arg_count_field; i++)
+ {
+ if (i)
+ str->append(',');
+ orig_args[i]->print(str, query_type);
+ }
+ if (arg_count_order)
+ {
+ str->append(STRING_WITH_LEN(" order by "));
+ for (uint i= 0 ; i < arg_count_order ; i++)
+ {
+ if (i)
+ str->append(',');
+ orig_args[i + arg_count_field]->print(str, query_type);
+ if (order[i]->direction == ORDER::ORDER_ASC)
+ str->append(STRING_WITH_LEN(" ASC"));
+ else
+ str->append(STRING_WITH_LEN(" DESC"));
+ }
+ }
+
+ if (sum_func() == GROUP_CONCAT_FUNC)
+ {
+ str->append(STRING_WITH_LEN(" separator \'"));
+ str->append_for_single_quote(separator->ptr(), separator->length());
+ str->append(STRING_WITH_LEN("\'"));
+ }
+
+ if (limit_clause)
+ {
+ str->append(STRING_WITH_LEN(" limit "));
+ if (offset_limit)
+ {
+ offset_limit->print(str, query_type);
+ str->append(',');
+ }
+ row_limit->print(str, query_type);
+ }
+ str->append(STRING_WITH_LEN(")"));
+}
+
+
+Item_func_group_concat::~Item_func_group_concat()
+{
+ if (!original && unique_filter)
+ delete unique_filter;
+}