summaryrefslogtreecommitdiffstats
path: root/sql/sql_join_cache.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/sql_join_cache.cc')
-rw-r--r--sql/sql_join_cache.cc4834
1 files changed, 4834 insertions, 0 deletions
diff --git a/sql/sql_join_cache.cc b/sql/sql_join_cache.cc
new file mode 100644
index 00000000..f8ac6516
--- /dev/null
+++ b/sql/sql_join_cache.cc
@@ -0,0 +1,4834 @@
+/* Copyright (C) 2000-2006 MySQL AB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
+
+/**
+ @file
+
+ @brief
+ join cache optimizations
+
+ @defgroup Query_Optimizer Query Optimizer
+ @{
+*/
+
+#ifdef USE_PRAGMA_IMPLEMENTATION
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include "mariadb.h"
+#include "key.h"
+#include "sql_base.h"
+#include "sql_select.h"
+#include "opt_subselect.h"
+
+#define NO_MORE_RECORDS_IN_BUFFER (uint)(-1)
+
+static void save_or_restore_used_tabs(JOIN_TAB *join_tab, bool save);
+
+/*****************************************************************************
+ * Join cache module
+******************************************************************************/
+
+/*
+ Fill in the descriptor of a flag field associated with a join cache
+
+ SYNOPSIS
+ add_field_flag_to_join_cache()
+ str position in a record buffer to copy the field from/to
+ length length of the field
+ field IN/OUT pointer to the field descriptor to fill in
+
+ DESCRIPTION
+ The function fill in the descriptor of a cache flag field to which
+ the parameter 'field' points to. The function uses the first two
+ parameters to set the position in the record buffer from/to which
+ the field value is to be copied and the length of the copied fragment.
+ Before returning the result the function increments the value of
+ *field by 1.
+ The function ignores the fields 'blob_length' and 'ofset' of the
+ descriptor.
+
+ RETURN VALUE
+ the length of the field
+*/
+
+static
+uint add_flag_field_to_join_cache(uchar *str, uint length, CACHE_FIELD **field)
+{
+ CACHE_FIELD *copy= *field;
+ copy->str= str;
+ copy->length= length;
+ copy->type= 0;
+ copy->field= 0;
+ copy->referenced_field_no= 0;
+ (*field)++;
+ return length;
+}
+
+
+/*
+ Fill in the descriptors of table data fields associated with a join cache
+
+ SYNOPSIS
+ add_table_data_fields_to_join_cache()
+ tab descriptors of fields from this table are to be filled
+ field_set descriptors for only these fields are to be created
+ field_cnt IN/OUT counter of data fields
+ descr IN/OUT pointer to the first descriptor to be filled
+ field_ptr_cnt IN/OUT counter of pointers to the data fields
+ descr_ptr IN/OUT pointer to the first pointer to blob descriptors
+
+ DESCRIPTION
+ The function fills in the descriptors of cache data fields from the table
+ 'tab'. The descriptors are filled only for the fields marked in the
+ bitmap 'field_set'.
+ The function fills the descriptors starting from the position pointed
+ by 'descr'. If an added field is of a BLOB type then a pointer to the
+ its descriptor is added to the array descr_ptr.
+ At the return 'descr' points to the position after the last added
+ descriptor while 'descr_ptr' points to the position right after the
+ last added pointer.
+
+ RETURN VALUE
+ the total length of the added fields
+*/
+
+static
+uint add_table_data_fields_to_join_cache(JOIN_TAB *tab,
+ MY_BITMAP *field_set,
+ uint *field_cnt,
+ CACHE_FIELD **descr,
+ uint *field_ptr_cnt,
+ CACHE_FIELD ***descr_ptr)
+{
+ Field **fld_ptr;
+ uint len= 0;
+ CACHE_FIELD *copy= *descr;
+ CACHE_FIELD **copy_ptr= *descr_ptr;
+ uint used_fields= bitmap_bits_set(field_set);
+ for (fld_ptr= tab->table->field; used_fields; fld_ptr++)
+ {
+ if (bitmap_is_set(field_set, (*fld_ptr)->field_index))
+ {
+ len+= (*fld_ptr)->fill_cache_field(copy);
+ if (copy->type == CACHE_BLOB)
+ {
+ *copy_ptr= copy;
+ copy_ptr++;
+ (*field_ptr_cnt)++;
+ }
+ copy->field= *fld_ptr;
+ copy->referenced_field_no= 0;
+ copy++;
+ (*field_cnt)++;
+ used_fields--;
+ }
+ }
+ *descr= copy;
+ *descr_ptr= copy_ptr;
+ return len;
+}
+
+/*
+ Determine different counters of fields associated with a record in the cache
+
+ SYNOPSIS
+ calc_record_fields()
+
+ DESCRIPTION
+ The function counts the number of total fields stored in a record
+ of the cache and saves this number in the 'fields' member. It also
+ determines the number of flag fields and the number of blobs.
+ The function sets 'with_match_flag' on if 'join_tab' needs a match flag
+ i.e. if it is the first inner table of an outer join or a semi-join.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::calc_record_fields()
+{
+ JOIN_TAB *tab;
+
+ if (prev_cache)
+ tab= prev_cache->join_tab;
+ else
+ {
+ if (join_tab->bush_root_tab)
+ {
+ /*
+ --ot1--SJM1--------------ot2--...
+ |
+ |
+ +-it1--...--itN
+ ^____________ this->join_tab is somewhere here,
+ inside an sjm nest.
+
+ The join buffer should store the values of it1.*, it2.*, ..
+ It should not store values of ot1.*.
+ */
+ tab= join_tab->bush_root_tab->bush_children->start;
+ }
+ else
+ {
+ /*
+ -ot1--ot2--SJM1--SJM2--------------ot3--...--otN
+ | | ^
+ | +-it21--...--it2N |
+ | \-- we're somewhere here,
+ +-it11--...--it1N at the top level
+
+ The join buffer should store the values of
+
+ ot1.*, ot2.*, it1{i}, it2{j}.*, ot3.*, ...
+
+ that is, we should start from the first non-const top-level table.
+
+ We will need to store columns of SJ-inner tables (it_X_Y.*), but we're
+ not interested in storing the columns of materialization tables
+ themselves. Beause of that, if the first non-const top-level table is a
+ materialized table, we move to its bush_children:
+ */
+ tab= join->join_tab + join->const_tables;
+ if (tab->bush_children)
+ tab= tab->bush_children->start;
+ }
+ }
+ DBUG_ASSERT(!tab->bush_children);
+
+ start_tab= tab;
+ fields= 0;
+ blobs= 0;
+ flag_fields= 0;
+ data_field_count= 0;
+ data_field_ptr_count= 0;
+ referenced_fields= 0;
+
+ /*
+ The following loop will get inside SJM nests, because data may be unpacked
+ to sjm-inner tables.
+ */
+ for (; tab != join_tab ; tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ tab->calc_used_field_length(FALSE);
+ flag_fields+= MY_TEST(tab->used_null_fields || tab->used_uneven_bit_fields);
+ flag_fields+= MY_TEST(tab->table->maybe_null);
+ fields+= tab->used_fields;
+ blobs+= tab->used_blobs;
+ }
+ if ((with_match_flag= join_tab->use_match_flag()))
+ flag_fields++;
+ fields+= flag_fields;
+}
+
+
+/*
+ Collect information on join key arguments
+
+ SYNOPSIS
+ collect_info_on_key_args()
+
+ DESCRIPTION
+ The function traverses the ref expressions that are used to access the
+ joined table join_tab. For each table 'tab' whose fields are to be stored
+ in the join buffer of the cache the function finds the fields from 'tab'
+ that occur in the ref expressions and marks these fields in the bitmap
+ tab->table->tmp_set. The function counts the number of them stored
+ in this cache and the total number of them stored in the previous caches
+ and saves the results of the counting in 'local_key_arg_fields' and
+ 'external_key_arg_fields' respectively.
+
+ NOTES
+ The function does not do anything if no key is used to join the records
+ from join_tab.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::collect_info_on_key_args()
+{
+ JOIN_TAB *tab;
+ JOIN_CACHE *cache;
+ local_key_arg_fields= 0;
+ external_key_arg_fields= 0;
+
+ if (!is_key_access())
+ return;
+
+ TABLE_REF *ref= &join_tab->ref;
+ cache= this;
+ do
+ {
+ for (tab= cache->start_tab; tab != cache->join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ uint key_args;
+ bitmap_clear_all(&tab->table->tmp_set);
+ for (uint i= 0; i < ref->key_parts; i++)
+ {
+ Item *ref_item= ref->items[i];
+ if (!(tab->table->map & ref_item->used_tables()))
+ continue;
+ ref_item->walk(&Item::add_field_to_set_processor, 1, tab->table);
+ }
+ if ((key_args= bitmap_bits_set(&tab->table->tmp_set)))
+ {
+ if (cache == this)
+ local_key_arg_fields+= key_args;
+ else
+ external_key_arg_fields+= key_args;
+ }
+ }
+ cache= cache->prev_cache;
+ }
+ while (cache);
+
+ return;
+}
+
+
+/*
+ Allocate memory for descriptors and pointers to them associated with the cache
+
+ SYNOPSIS
+ alloc_fields()
+
+ DESCRIPTION
+ The function allocates memory for the array of fields descriptors
+ and the array of pointers to the field descriptors used to copy
+ join record data from record buffers into the join buffer and
+ backward. Some pointers refer to the field descriptor associated
+ with previous caches. They are placed at the beginning of the array
+ of pointers and its total number is stored in external_key_arg_fields.
+ The pointer of the first array is assigned to field_descr and the number
+ of the elements in it is precalculated by the function calc_record_fields.
+ The allocated arrays are adjacent.
+
+ NOTES
+ The memory is allocated in join->thd->mem_root
+
+ RETURN VALUE
+ pointer to the first array
+*/
+
+int JOIN_CACHE::alloc_fields()
+{
+ uint ptr_cnt= external_key_arg_fields+blobs+1;
+ uint fields_size= sizeof(CACHE_FIELD)*fields;
+ field_descr= (CACHE_FIELD*) join->thd->alloc(fields_size +
+ sizeof(CACHE_FIELD*)*ptr_cnt);
+ blob_ptr= (CACHE_FIELD **) ((uchar *) field_descr + fields_size);
+ return (field_descr == NULL);
+}
+
+
+/*
+ Create descriptors of the record flag fields stored in the join buffer
+
+ SYNOPSIS
+ create_flag_fields()
+
+ DESCRIPTION
+ The function creates descriptors of the record flag fields stored
+ in the join buffer. These are descriptors for:
+ - an optional match flag field,
+ - table null bitmap fields,
+ - table null row fields.
+ The match flag field is created when 'join_tab' is the first inner
+ table of an outer join our a semi-join. A null bitmap field is
+ created for any table whose fields are to be stored in the join
+ buffer if at least one of these fields is nullable or is a BIT field
+ whose bits are partially stored with null bits. A null row flag
+ is created for any table assigned to the cache if it is an inner
+ table of an outer join.
+ The descriptor for flag fields are placed one after another at the
+ beginning of the array of field descriptors 'field_descr' that
+ contains 'fields' elements. If there is a match flag field the
+ descriptor for it is always first in the sequence of flag fields.
+ The descriptors for other flag fields can follow in an arbitrary
+ order.
+ The flag field values follow in a record stored in the join buffer
+ in the same order as field descriptors, with the match flag always
+ following first.
+ The function sets the value of 'flag_fields' to the total number
+ of the descriptors created for the flag fields.
+ The function sets the value of 'length' to the total length of the
+ flag fields.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::create_flag_fields()
+{
+ CACHE_FIELD *copy;
+ JOIN_TAB *tab;
+
+ copy= field_descr;
+
+ length=0;
+
+ /* If there is a match flag the first field is always used for this flag */
+ if (with_match_flag)
+ length+= add_flag_field_to_join_cache((uchar*) &join_tab->found,
+ sizeof(join_tab->found),
+ &copy);
+
+ /* Create fields for all null bitmaps and null row flags that are needed */
+ for (tab= start_tab; tab != join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ TABLE *table= tab->table;
+
+ /* Create a field for the null bitmap from table if needed */
+ if (tab->used_null_fields || tab->used_uneven_bit_fields)
+ length+= add_flag_field_to_join_cache(table->null_flags,
+ table->s->null_bytes,
+ &copy);
+
+ /* Create table for the null row flag if needed */
+ if (table->maybe_null)
+ length+= add_flag_field_to_join_cache((uchar*) &table->null_row,
+ sizeof(table->null_row),
+ &copy);
+ }
+
+ /* Theoretically the new value of flag_fields can be less than the old one */
+ flag_fields= (uint)(copy-field_descr);
+}
+
+
+/*
+ Create descriptors of the fields used to build access keys to the joined table
+
+ SYNOPSIS
+ create_key_arg_fields()
+
+ DESCRIPTION
+ The function creates descriptors of the record fields stored in the join
+ buffer that are used to build access keys to the joined table. These
+ fields are put into the buffer ahead of other records fields stored in
+ the buffer. Such placement helps to optimize construction of access keys.
+ For each field that is used to build access keys to the joined table but
+ is stored in some other join cache buffer the function saves a pointer
+ to the the field descriptor. The array of such pointers are placed in the
+ the join cache structure just before the array of pointers to the
+ blob fields blob_ptr.
+ Any field stored in a join cache buffer that is used to construct keys
+ to access tables associated with other join caches is called a referenced
+ field. It receives a unique number that is saved by the function in the
+ member 'referenced_field_no' of the CACHE_FIELD descriptor for the field.
+ This number is used as index to the array of offsets to the referenced
+ fields that are saved and put in the join cache buffer after all record
+ fields.
+ The function also finds out whether that the keys to access join_tab
+ can be considered as embedded and, if so, sets the flag 'use_emb_key' in
+ this join cache appropriately.
+
+ NOTES.
+ When a key to access the joined table 'join_tab' is constructed the array
+ of pointers to the field descriptors for the external fields is looked
+ through. For each of this pointers we find out in what previous key cache
+ the referenced field is stored. The value of 'referenced_field_no'
+ provides us with the index into the array of offsets for referenced
+ fields stored in the join cache. The offset read by the the index allows
+ us to read the field without reading all other fields of the record
+ stored the join cache buffer. This optimizes the construction of keys
+ to access 'join_tab' when some key arguments are stored in the previous
+ join caches.
+
+ NOTES
+ The function does not do anything if no key is used to join the records
+ from join_tab.
+
+ RETURN VALUE
+ none
+*/
+void JOIN_CACHE::create_key_arg_fields()
+{
+ JOIN_TAB *tab;
+ JOIN_CACHE *cache;
+
+ if (!is_key_access())
+ return;
+
+ /*
+ Save pointers to the cache fields in previous caches
+ that are used to build keys for this key access.
+ */
+ cache= this;
+ uint ext_key_arg_cnt= external_key_arg_fields;
+ CACHE_FIELD *copy;
+ CACHE_FIELD **copy_ptr= blob_ptr;
+ while (ext_key_arg_cnt)
+ {
+ cache= cache->prev_cache;
+ for (tab= cache->start_tab; tab != cache->join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ CACHE_FIELD *copy_end;
+ MY_BITMAP *key_read_set= &tab->table->tmp_set;
+ /* key_read_set contains the bitmap of tab's fields referenced by ref */
+ if (bitmap_is_clear_all(key_read_set))
+ continue;
+ copy_end= cache->field_descr+cache->fields;
+ for (copy= cache->field_descr+cache->flag_fields; copy < copy_end; copy++)
+ {
+ /*
+ (1) - when we store rowids for DuplicateWeedout, they have
+ copy->field==NULL
+ */
+ if (copy->field && // (1)
+ copy->field->table == tab->table &&
+ bitmap_is_set(key_read_set, copy->field->field_index))
+ {
+ *copy_ptr++= copy;
+ ext_key_arg_cnt--;
+ if (!copy->referenced_field_no)
+ {
+ /*
+ Register the referenced field 'copy':
+ - set the offset number in copy->referenced_field_no,
+ - adjust the value of the flag 'with_length',
+ - adjust the values of 'pack_length' and
+ of 'pack_length_with_blob_ptrs'.
+ */
+ copy->referenced_field_no= ++cache->referenced_fields;
+ if (!cache->with_length)
+ {
+ cache->with_length= TRUE;
+ uint sz= cache->get_size_of_rec_length();
+ cache->base_prefix_length+= sz;
+ cache->pack_length+= sz;
+ cache->pack_length_with_blob_ptrs+= sz;
+ }
+ cache->pack_length+= cache->get_size_of_fld_offset();
+ cache->pack_length_with_blob_ptrs+= cache->get_size_of_fld_offset();
+ }
+ }
+ }
+ }
+ }
+ /* After this 'blob_ptr' shall not be be changed */
+ blob_ptr= copy_ptr;
+
+ /* Now create local fields that are used to build ref for this key access */
+ copy= field_descr+flag_fields;
+ for (tab= start_tab; tab != join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ length+= add_table_data_fields_to_join_cache(tab, &tab->table->tmp_set,
+ &data_field_count, &copy,
+ &data_field_ptr_count,
+ &copy_ptr);
+ }
+
+ use_emb_key= check_emb_key_usage();
+
+ return;
+}
+
+
+/*
+ Create descriptors of all remaining data fields stored in the join buffer
+
+ SYNOPSIS
+ create_remaining_fields()
+
+ DESCRIPTION
+ The function creates descriptors for all remaining data fields of a
+ record from the join buffer. If the value returned by is_key_access() is
+ false the function creates fields for all read record fields that
+ comprise the partial join record joined with join_tab. Otherwise,
+ for each table tab, the set of the read fields for which the descriptors
+ have to be added is determined as the difference between all read fields
+ and and those for which the descriptors have been already created.
+ The latter are supposed to be marked in the bitmap tab->table->tmp_set.
+ The function increases the value of 'length' to the the total length of
+ the added fields.
+
+ NOTES
+ If is_key_access() returns true the function modifies the value of
+ tab->table->tmp_set for a each table whose fields are stored in the cache.
+ The function calls the method Field::fill_cache_field to figure out
+ the type of the cache field and the maximal length of its representation
+ in the join buffer. If this is a blob field then additionally a pointer
+ to this field is added as an element of the array blob_ptr. For a blob
+ field only the size of the length of the blob data is taken into account.
+ It is assumed that 'data_field_count' contains the number of descriptors
+ for data fields that have been already created and 'data_field_ptr_count'
+ contains the number of the pointers to such descriptors having been
+ stored up to the moment.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::create_remaining_fields()
+{
+ JOIN_TAB *tab;
+ bool all_read_fields= !is_key_access();
+ CACHE_FIELD *copy= field_descr+flag_fields+data_field_count;
+ CACHE_FIELD **copy_ptr= blob_ptr+data_field_ptr_count;
+
+ for (tab= start_tab; tab != join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ MY_BITMAP *rem_field_set;
+ TABLE *table= tab->table;
+
+ if (all_read_fields)
+ rem_field_set= table->read_set;
+ else
+ {
+ bitmap_invert(&table->tmp_set);
+ bitmap_intersect(&table->tmp_set, table->read_set);
+ rem_field_set= &table->tmp_set;
+ }
+
+ length+= add_table_data_fields_to_join_cache(tab, rem_field_set,
+ &data_field_count, &copy,
+ &data_field_ptr_count,
+ &copy_ptr);
+
+ /* SemiJoinDuplicateElimination: allocate space for rowid if needed */
+ if (tab->keep_current_rowid)
+ {
+ copy->str= table->file->ref;
+ if (copy->str)
+ copy->length= table->file->ref_length;
+ else
+ {
+ /* This may happen only for materialized derived tables and views */
+ copy->length= 0;
+ copy->str= (uchar *) table;
+ }
+ copy->type= CACHE_ROWID;
+ copy->field= 0;
+ copy->referenced_field_no= 0;
+ /*
+ Note: this may seem odd, but at this point we have
+ table->file->ref==NULL while table->file->ref_length is already set
+ to correct value.
+ */
+ length += table->file->ref_length;
+ data_field_count++;
+ copy++;
+ }
+ }
+}
+
+
+
+/*
+ Calculate and set all cache constants
+
+ SYNOPSIS
+ set_constants()
+
+ DESCRIPTION
+ The function calculates and set all precomputed constants that are used
+ when writing records into the join buffer and reading them from it.
+ It calculates the size of offsets of a record within the join buffer
+ and of a field within a record. It also calculates the number of bytes
+ used to store record lengths.
+ The function also calculates the maximal length of the representation
+ of record in the cache excluding blob_data. This value is used when
+ making a dicision whether more records should be added into the join
+ buffer or not.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::set_constants()
+{
+ /*
+ Any record from a BKA cache is prepended with the record length.
+ We use the record length when reading the buffer and building key values
+ for each record. The length allows us not to read the fields that are
+ not needed for keys.
+ If a record has match flag it also may be skipped when the match flag
+ is on. It happens if the cache is used for a semi-join operation or
+ for outer join when the 'not exist' optimization can be applied.
+ If some of the fields are referenced from other caches then
+ the record length allows us to easily reach the saved offsets for
+ these fields since the offsets are stored at the very end of the record.
+ However at this moment we don't know whether we have referenced fields for
+ the cache or not. Later when a referenced field is registered for the cache
+ we adjust the value of the flag 'with_length'.
+ */
+ with_length= is_key_access() ||
+ join_tab->is_inner_table_of_semi_join_with_first_match() ||
+ join_tab->is_inner_table_of_outer_join();
+ /*
+ At this moment we don't know yet the value of 'referenced_fields',
+ but in any case it can't be greater than the value of 'fields'.
+ */
+ uint len= length + fields*sizeof(uint)+blobs*sizeof(uchar *) +
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
+ sizeof(ulong);
+ /*
+ The values of size_of_rec_ofs, size_of_rec_len, size_of_fld_ofs,
+ base_prefix_length, pack_length, pack_length_with_blob_ptrs
+ will be recalculated later in this function when we get the estimate
+ for the actual value of the join buffer size.
+ */
+ size_of_rec_ofs= size_of_rec_len= size_of_fld_ofs= 4;
+ base_prefix_length= (with_length ? size_of_rec_len : 0) +
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
+ pack_length= (with_length ? size_of_rec_len : 0) +
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
+ length + fields*sizeof(uint);
+ pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
+ min_records= 1;
+ min_buff_size= get_min_join_buffer_size();
+ buff_size= (size_t)MY_MAX(join->thd->variables.join_buff_size,
+ min_buff_size);
+ size_of_rec_ofs= offset_size(buff_size);
+ size_of_rec_len= blobs ? size_of_rec_ofs : offset_size(len);
+ size_of_fld_ofs= size_of_rec_len;
+ base_prefix_length= (with_length ? size_of_rec_len : 0) +
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
+ /*
+ Call ge_min_join_buffer_size() again as the size may have got smaller
+ if size_of_rec_ofs or some other variable changed since last call.
+ */
+ min_buff_size= 0;
+ min_buff_size= get_min_join_buffer_size();
+ /*
+ The size of the offsets for referenced fields will be added later.
+ The values of 'pack_length' and 'pack_length_with_blob_ptrs' are adjusted
+ every time when the first reference to the referenced field is registered.
+ */
+ pack_length= (with_length ? size_of_rec_len : 0) +
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
+ length;
+ pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
+}
+
+
+/*
+ Get maximum total length of all affixes of a record in the join cache buffer
+
+ SYNOPSIS
+ get_record_max_affix_length()
+
+ DESCRIPTION
+ The function calculates the maximum possible total length of all affixes
+ of a record in the join cache buffer, that is made of:
+ - the length of all prefixes used in this cache,
+ - the length of the match flag if it's needed
+ - the total length of the maximum possible offsets to the fields of
+ a record in the buffer.
+
+ RETURN VALUE
+ The maximum total length of all affixes of a record in the join buffer
+*/
+
+uint JOIN_CACHE::get_record_max_affix_length()
+{
+ uint len= get_prefix_length() +
+ MY_TEST(with_match_flag) +
+ size_of_fld_ofs * data_field_count;
+ return len;
+}
+
+
+/*
+ Get the minimum possible size of the cache join buffer
+
+ SYNOPSIS
+ get_min_join_buffer_size()
+
+ DESCRIPTION
+ At the first its invocation for the cache the function calculates the
+ minimum possible size of the join buffer of the cache. This value depends
+ on the minimal number of records 'min_records' to be stored in the join
+ buffer. The number is supposed to be determined by the procedure that
+ chooses the best access path to the joined table join_tab in the execution
+ plan. After the calculation of the interesting size the function saves it
+ in the field 'min_buff_size' in order to use it directly at the next
+ invocations of the function.
+
+ NOTES
+ Currently the number of minimal records is just set to 1.
+
+ RETURN VALUE
+ The minimal possible size of the join buffer of this cache
+*/
+
+size_t JOIN_CACHE::get_min_join_buffer_size()
+{
+ if (min_buff_size)
+ return min_buff_size; // use cached value
+
+ size_t len= 0, len_last= 0, len_addon, min_sz, add_sz= 0;
+
+ for (JOIN_TAB *tab= start_tab; tab != join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ len+= tab->get_max_used_fieldlength();
+ len_last+= tab->get_used_fieldlength();
+ }
+ len_addon= (get_record_max_affix_length() +
+ get_max_key_addon_space_per_record());
+ len+= len_addon;
+ len_last+= len_addon;
+ min_sz= len*(min_records-1) + len_last;
+ min_sz+= pack_length_with_blob_ptrs;
+ for (uint i=0; i < min_records; i++)
+ add_sz+= join_tab_scan->aux_buffer_incr(i+1);
+ avg_aux_buffer_incr= add_sz/min_records;
+ min_sz+= add_sz;
+ set_if_bigger(min_sz, 1);
+ min_buff_size= min_sz;
+ return min_buff_size;
+}
+
+
+size_t JOIN_CACHE::calc_avg_record_length()
+{
+ size_t len= 0;
+ for (JOIN_TAB *tab= start_tab; tab != join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ len+= tab->get_used_fieldlength();
+ }
+ len+= get_record_max_affix_length();
+ return len;
+}
+
+/*
+ Get the maximum possible size of the cache join buffer
+
+ SYNOPSIS
+ get_max_join_buffer_size()
+
+ optimize_buff_size FALSE <-> do not take more memory than needed for
+ the estimated number of records in the partial join
+
+ DESCRIPTION
+
+ At the first its invocation for the cache the function calculates
+ the maximum possible size of join buffer for the cache. If the
+ parameter optimize_buff_size true then this value does not exceed
+ the size of the space needed for the estimated number of records
+ 'max_records' in the partial join that joins tables from the first
+ one through join_tab. This value is also capped off by the value
+ of the system parameter join_buffer_size. After the calculation of
+ the interesting size the function saves the value in the field
+ 'max_buff_size' in order to use it directly at the next
+ invocations of the function.
+
+ RETURN VALUE
+ The maximum possible size of the join buffer of this cache
+ avg_record_length is also updated if optimize_buff_size != 0
+*/
+
+size_t JOIN_CACHE::get_max_join_buffer_size(bool optimize_buff_size,
+ size_t min_sz)
+{
+ if (max_buff_size)
+ return max_buff_size; // use cached value
+
+ size_t limit_sz= (size_t) join->thd->variables.join_buff_size;
+
+ if (!optimize_buff_size)
+ return max_buff_size= limit_sz;
+
+ size_t max_sz;
+ size_t len;
+ double max_records, partial_join_cardinality=
+ (join_tab-1)->get_partial_join_cardinality();
+ /* Expected join buffer space used for one record */
+ size_t space_per_record;
+
+ len= avg_record_length= calc_avg_record_length();
+ len+= get_max_key_addon_space_per_record() + avg_aux_buffer_incr;
+ space_per_record= len;
+
+ /* Note that space_per_record can be 0 if no table fields where used */
+ max_records= (double) (limit_sz / MY_MAX(space_per_record, 1));
+ set_if_smaller(max_records, partial_join_cardinality);
+ set_if_bigger(max_records, 10.0);
+
+ if ((size_t) (limit_sz / max_records) > space_per_record)
+ max_sz= space_per_record * (size_t) max_records;
+ else
+ max_sz= limit_sz;
+ max_sz+= pack_length_with_blob_ptrs;
+ set_if_smaller(max_sz, limit_sz);
+
+ set_if_bigger(max_sz, min_sz);
+ max_buff_size= max_sz;
+ return max_buff_size;
+}
+
+
+/*
+ Allocate memory for a join buffer
+
+ SYNOPSIS
+ alloc_buffer()
+
+ DESCRIPTION
+ The function allocates a lump of memory for the cache join buffer.
+ Initially the function sets the size of the buffer buff_size equal to
+ the value returned by get_max_join_buffer_size(). If the total size of
+ the space intended to be used for the join buffers employed by the
+ tables from the first one through join_tab exceeds the value of the
+ system parameter join_buff_space_limit, then the function first tries
+ to shrink the used buffers to make the occupied space fit the maximum
+ memory allowed to be used for all join buffers in total. After
+ this the function tries to allocate a join buffer for join_tab.
+ If it fails to do so, it decrements the requested size of the join
+ buffer, shrinks proportionally the join buffers used for the previous
+ tables and tries to allocate a buffer for join_tab. In the case of a
+ failure the function repeats its attempts with smaller and smaller
+ requested sizes of the buffer, but not more than 4 times.
+
+ RETURN VALUE
+ 0 if the memory has been successfully allocated
+ 1 otherwise
+*/
+
+int JOIN_CACHE::alloc_buffer()
+{
+ JOIN_TAB *tab;
+ JOIN_CACHE *cache;
+ ulonglong curr_buff_space_sz= 0;
+ ulonglong curr_min_buff_space_sz= 0;
+ ulonglong join_buff_space_limit=
+ join->thd->variables.join_buff_space_limit;
+ bool optimize_buff_size=
+ optimizer_flag(join->thd, OPTIMIZER_SWITCH_OPTIMIZE_JOIN_BUFFER_SIZE);
+ buff= NULL;
+ buff_size= get_max_join_buffer_size(optimize_buff_size, min_buff_size);
+
+ for (tab= start_tab; tab!= join_tab;
+ tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
+ {
+ cache= tab->cache;
+ if (cache)
+ {
+ curr_min_buff_space_sz+= cache->get_min_join_buffer_size();
+ curr_buff_space_sz+= cache->get_join_buffer_size();
+ }
+ }
+ curr_min_buff_space_sz+= min_buff_size;
+ curr_buff_space_sz+= buff_size;
+
+ if (optimize_buff_size)
+ {
+ /*
+ optimize_join_buffer_size=on used. We should limit the join
+ buffer space to join_buff_space_limit if possible.
+ */
+ if (curr_min_buff_space_sz > join_buff_space_limit)
+ {
+ /*
+ Increase buffer size to minimum needed, to be able to use the
+ join buffer.
+ */
+ join_buff_space_limit= curr_min_buff_space_sz;
+ }
+ if (curr_buff_space_sz > join_buff_space_limit &&
+ join->shrink_join_buffers(join_tab, curr_buff_space_sz,
+ join_buff_space_limit))
+ goto fail; // Fatal error
+ }
+ else if (curr_min_buff_space_sz > buff_size)
+ goto fail;
+
+ if (for_explain_only)
+ return 0;
+
+ for (size_t buff_size_decr= (buff_size-min_buff_size)/4 + 1; ; )
+ {
+ size_t next_buff_size;
+
+ if ((buff= (uchar*) my_malloc(key_memory_JOIN_CACHE, buff_size,
+ MYF(MY_THREAD_SPECIFIC))))
+ break;
+
+ next_buff_size= buff_size > buff_size_decr ? buff_size-buff_size_decr : 0;
+ if (next_buff_size < min_buff_size ||
+ join->shrink_join_buffers(join_tab, curr_buff_space_sz,
+ curr_buff_space_sz-buff_size_decr))
+ goto fail;
+ buff_size= next_buff_size;
+
+ curr_buff_space_sz= 0;
+ for (tab= join->join_tab+join->const_tables; tab <= join_tab; tab++)
+ {
+ cache= tab->cache;
+ if (cache)
+ curr_buff_space_sz+= cache->get_join_buffer_size();
+ }
+ }
+ return 0;
+
+fail:
+ buff_size= 0;
+ return 1;
+}
+
+
+/*
+ Shrink the size if the cache join buffer in a given ratio
+
+ SYNOPSIS
+ shrink_join_buffer_in_ratio()
+ n nominator of the ratio to shrink the buffer in
+ d denominator if the ratio
+
+ DESCRIPTION
+ The function first deallocates the join buffer of the cache. Then
+ it allocates a buffer that is (n/d) times smaller.
+
+ RETURN VALUE
+ FALSE on success with allocation of the smaller join buffer
+ TRUE otherwise
+*/
+
+bool JOIN_CACHE::shrink_join_buffer_in_ratio(ulonglong n, ulonglong d)
+{
+ size_t next_buff_size;
+ if (n < d)
+ return FALSE;
+ next_buff_size= (size_t) ((double) buff_size / n * d);
+ set_if_bigger(next_buff_size, min_buff_size);
+ buff_size= next_buff_size;
+ return realloc_buffer();
+}
+
+
+/*
+ Reallocate the join buffer of a join cache
+
+ SYNOPSIS
+ realloc_buffer()
+
+ DESCRITION
+ The function reallocates the join buffer of the join cache. After this
+ it resets the buffer for writing.
+
+ NOTES
+ The function assumes that buff_size contains the new value for the join
+ buffer size.
+
+ RETURN VALUE
+ 0 if the buffer has been successfully reallocated
+ 1 otherwise
+*/
+
+int JOIN_CACHE::realloc_buffer()
+{
+ free();
+ buff= (uchar*) my_malloc(key_memory_JOIN_CACHE, buff_size,
+ MYF(MY_THREAD_SPECIFIC));
+ reset(TRUE);
+ return buff == NULL;
+}
+
+
+/*
+ Initialize a join cache
+
+ SYNOPSIS
+ init()
+ for_explain join buffer is initialized for explain only
+
+ DESCRIPTION
+ The function initializes the join cache structure. It supposed to be called
+ by init methods for classes derived from the JOIN_CACHE.
+ The function allocates memory for the join buffer and for descriptors of
+ the record fields stored in the buffer.
+
+ NOTES
+ The code of this function should have been included into the constructor
+ code itself. However the new operator for the class JOIN_CACHE would
+ never fail while memory allocation for the join buffer is not absolutely
+ unlikely to fail. That's why this memory allocation has to be placed in a
+ separate function that is called in a couple with a cache constructor.
+ It is quite natural to put almost all other constructor actions into
+ this function.
+
+ RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE::init(bool for_explain)
+{
+ DBUG_ENTER("JOIN_CACHE::init");
+
+ for_explain_only= for_explain;
+
+ calc_record_fields();
+
+ collect_info_on_key_args();
+
+ if (alloc_fields())
+ DBUG_RETURN(1);
+
+ create_flag_fields();
+
+ create_key_arg_fields();
+
+ create_remaining_fields();
+
+ set_constants();
+
+ if (alloc_buffer())
+ DBUG_RETURN(1);
+
+ reset(TRUE);
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Check the possibility to read the access keys directly from the join buffer
+ SYNOPSIS
+ check_emb_key_usage()
+
+ DESCRIPTION
+ The function checks some conditions at which the key values can be
+ read directly from the join buffer. This is possible when the key
+ values can be composed by concatenation of the record fields
+ stored in the join buffer. Sometimes when the access key is
+ multi-component the function has to re-order the fields written
+ into the join buffer to make keys embedded. If key values for the
+ key access are detected as embedded then 'use_emb_key' is set to
+ TRUE.
+
+ EXAMPLE
+ Let table t2 has an index defined on the columns a,b . Let's assume also
+ that the columns t2.a, t2.b as well as the columns t1.a, t1.b are all
+ of the integer type. Then if the query
+ SELECT COUNT(*) FROM t1, t2 WHERE t1.a=t2.a and t1.b=t2.b
+ is executed with a join cache in such a way that t1 is the driving
+ table then the key values to access table t2 can be read directly
+ from the join buffer.
+
+ NOTES
+ In some cases key values could be read directly from the join buffer but
+ we still do not consider them embedded. In the future we'll expand the
+ the class of keys which we identify as embedded.
+
+ NOTES
+ The function returns FALSE if no key is used to join the records
+ from join_tab.
+
+ RETURN VALUE
+ TRUE key values will be considered as embedded,
+ FALSE otherwise.
+*/
+
+bool JOIN_CACHE::check_emb_key_usage()
+{
+
+ if (!is_key_access())
+ return FALSE;
+
+ uint i;
+ Item *item;
+ KEY_PART_INFO *key_part;
+ CACHE_FIELD *copy;
+ CACHE_FIELD *copy_end;
+ uint len= 0;
+ TABLE_REF *ref= &join_tab->ref;
+ KEY *keyinfo= join_tab->get_keyinfo_by_key_no(ref->key);
+
+ /*
+ If some of the key arguments are not from the local cache the key
+ is not considered as embedded.
+ TODO:
+ Expand it to the case when ref->key_parts=1 and local_key_arg_fields=0.
+ */
+ if (external_key_arg_fields != 0)
+ return FALSE;
+ /*
+ If the number of the local key arguments is not equal to the number
+ of key parts the key value cannot be read directly from the join buffer.
+ */
+ if (local_key_arg_fields != ref->key_parts)
+ return FALSE;
+
+ /*
+ A key is not considered embedded if one of the following is true:
+ - one of its key parts is not equal to a field
+ - it is a partial key
+ - definition of the argument field does not coincide with the
+ definition of the corresponding key component
+ - some of the key components are nullable
+ */
+ for (i=0; i < ref->key_parts; i++)
+ {
+ item= ref->items[i]->real_item();
+ if (item->type() != Item::FIELD_ITEM)
+ return FALSE;
+ key_part= keyinfo->key_part+i;
+ if (key_part->key_part_flag & HA_PART_KEY_SEG)
+ return FALSE;
+ if (!key_part->field->eq_def(((Item_field *) item)->field))
+ return FALSE;
+ if (key_part->field->maybe_null())
+ return FALSE;
+ }
+
+ copy= field_descr+flag_fields;
+ copy_end= copy+local_key_arg_fields;
+ for ( ; copy < copy_end; copy++)
+ {
+ /*
+ If some of the key arguments are of variable length the key
+ is not considered as embedded.
+ */
+ if (copy->type != 0)
+ return FALSE;
+ /*
+ If some of the key arguments are bit fields whose bits are partially
+ stored with null bits the key is not considered as embedded.
+ */
+ if (copy->field->type() == MYSQL_TYPE_BIT &&
+ ((Field_bit*) (copy->field))->bit_len)
+ return FALSE;
+ len+= copy->length;
+ }
+
+ emb_key_length= len;
+
+ /*
+ Make sure that key fields follow the order of the corresponding
+ key components these fields are equal to. For this the descriptors
+ of the fields that comprise the key might be re-ordered.
+ */
+ for (i= 0; i < ref->key_parts; i++)
+ {
+ uint j;
+ Item *item= ref->items[i]->real_item();
+ Field *fld= ((Item_field *) item)->field;
+ CACHE_FIELD *init_copy= field_descr+flag_fields+i;
+ for (j= i, copy= init_copy; j < local_key_arg_fields; j++, copy++)
+ {
+ if (fld->eq(copy->field))
+ {
+ if (j != i)
+ {
+ CACHE_FIELD key_part_copy= *copy;
+ *copy= *init_copy;
+ *init_copy= key_part_copy;
+ }
+ break;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ Write record fields and their required offsets into the join cache buffer
+
+ SYNOPSIS
+ write_record_data()
+ link a reference to the associated info in the previous cache
+ is_full OUT true if it has been decided that no more records will be
+ added to the join buffer
+
+ DESCRIPTION
+ This function put into the cache buffer the following info that it reads
+ from the join record buffers or computes somehow:
+ (1) the length of all fields written for the record (optional)
+ (2) an offset to the associated info in the previous cache (if there is any)
+ determined by the link parameter
+ (3) all flag fields of the tables whose data field are put into the cache:
+ - match flag (optional),
+ - null bitmaps for all tables,
+ - null row flags for all tables
+ (4) values of all data fields including
+ - full images of those fixed legth data fields that cannot have
+ trailing spaces
+ - significant part of fixed length fields that can have trailing spaces
+ with the prepanded length
+ - data of non-blob variable length fields with the prepanded data length
+ - blob data from blob fields with the prepanded data length
+ (5) record offset values for the data fields that are referred to from
+ other caches
+
+ The record is written at the current position stored in the field 'pos'.
+ At the end of the function 'pos' points at the position right after the
+ written record data.
+ The function increments the number of records in the cache that is stored
+ in the 'records' field by 1. The function also modifies the values of
+ 'curr_rec_pos' and 'last_rec_pos' to point to the written record.
+ The 'end_pos' cursor is modified accordingly.
+ The 'last_rec_blob_data_is_in_rec_buff' is set on if the blob data
+ remains in the record buffers and not copied to the join buffer. It may
+ happen only to the blob data from the last record added into the cache.
+ If on_precond is attached to join_tab and it is not evaluated to TRUE
+ then MATCH_IMPOSSIBLE is placed in the match flag field of the record
+ written into the join buffer.
+
+ RETURN VALUE
+ length of the written record data
+*/
+
+uint JOIN_CACHE::write_record_data(uchar * link, bool *is_full)
+{
+ uint len;
+ bool last_record;
+ CACHE_FIELD *copy;
+ CACHE_FIELD *copy_end;
+ uchar *flags_pos;
+ uchar *cp= pos;
+ uchar *init_pos= cp;
+ uchar *rec_len_ptr= 0;
+ uint key_extra= extra_key_length();
+
+ records++; /* Increment the counter of records in the cache */
+
+ len= pack_length + key_extra;
+
+ /* Make an adjustment for the size of the auxiliary buffer if there is any */
+ uint incr= aux_buffer_incr(records);
+ size_t rem= rem_space();
+ aux_buff_size+= len+incr < rem ? incr : rem;
+
+ /*
+ For each blob to be put into cache save its length and a pointer
+ to the value in the corresponding element of the blob_ptr array.
+ Blobs with null values are skipped.
+ Increment 'len' by the total length of all these blobs.
+ */
+ if (blobs)
+ {
+ CACHE_FIELD **copy_ptr= blob_ptr;
+ CACHE_FIELD **copy_ptr_end= copy_ptr+blobs;
+ for ( ; copy_ptr < copy_ptr_end; copy_ptr++)
+ {
+ Field_blob *blob_field= (Field_blob *) (*copy_ptr)->field;
+ if (!blob_field->is_null())
+ {
+ uint blob_len= blob_field->get_length();
+ (*copy_ptr)->blob_length= blob_len;
+ len+= blob_len;
+ (*copy_ptr)->str= blob_field->get_ptr();
+ }
+ }
+ }
+
+ /*
+ Check whether we won't be able to add any new record into the cache after
+ this one because the cache will be full. Set last_record to TRUE if it's so.
+ The assume that the cache will be full after the record has been written
+ into it if either the remaining space of the cache is not big enough for the
+ record's blob values or if there is a chance that not all non-blob fields
+ of the next record can be placed there.
+ This function is called only in the case when there is enough space left in
+ the cache to store at least non-blob parts of the current record.
+ */
+ last_record= (len+pack_length_with_blob_ptrs+key_extra) > rem_space();
+
+ /*
+ Save the position for the length of the record in the cache if it's needed.
+ The length of the record will be inserted here when all fields of the record
+ are put into the cache.
+ */
+ if (with_length)
+ {
+ rec_len_ptr= cp;
+ DBUG_ASSERT(cp + size_of_rec_len <= buff + buff_size);
+ cp+= size_of_rec_len;
+ }
+
+ /*
+ Put a reference to the fields of the record that are stored in the previous
+ cache if there is any. This reference is passed by the 'link' parameter.
+ */
+ if (prev_cache)
+ {
+ DBUG_ASSERT(cp + prev_cache->get_size_of_rec_offset() <= buff + buff_size);
+ cp+= prev_cache->get_size_of_rec_offset();
+ prev_cache->store_rec_ref(cp, link);
+ }
+
+ curr_rec_pos= cp;
+
+ /* If the there is a match flag set its value to 0 */
+ copy= field_descr;
+ if (with_match_flag)
+ *copy[0].str= 0;
+
+ /* First put into the cache the values of all flag fields */
+ copy_end= field_descr+flag_fields;
+ flags_pos= cp;
+ for ( ; copy < copy_end; copy++)
+ {
+ DBUG_ASSERT(cp + copy->length <= buff + buff_size);
+ memcpy(cp, copy->str, copy->length);
+ cp+= copy->length;
+ }
+
+ /* Now put the values of the remaining fields as soon as they are not nulls */
+ copy_end= field_descr+fields;
+ for ( ; copy < copy_end; copy++)
+ {
+ Field *field= copy->field;
+ if (field && field->maybe_null() && field->is_null())
+ {
+ if (copy->referenced_field_no)
+ copy->offset= 0;
+ continue;
+ }
+ /* Save the offset of the field to put it later at the end of the record */
+ if (copy->referenced_field_no)
+ copy->offset= (uint)(cp-curr_rec_pos);
+
+ switch (copy->type) {
+ case CACHE_BLOB:
+ {
+ Field_blob *blob_field= (Field_blob *) copy->field;
+ if (last_record)
+ {
+ last_rec_blob_data_is_in_rec_buff= 1;
+ /* Put down the length of the blob and the pointer to the data */
+ DBUG_ASSERT(cp + copy->length + sizeof(char*) <= buff + buff_size);
+ blob_field->get_image(cp, copy->length+sizeof(char*),
+ blob_field->charset());
+ cp+= copy->length+sizeof(char*);
+ }
+ else
+ {
+ /* First put down the length of the blob and then copy the data */
+ blob_field->get_image(cp, copy->length,
+ blob_field->charset());
+ DBUG_ASSERT(cp + copy->length + copy->blob_length <= buff + buff_size);
+ if (copy->blob_length)
+ memcpy(cp+copy->length, copy->str, copy->blob_length);
+ cp+= copy->length+copy->blob_length;
+ }
+ break;
+ }
+ case CACHE_VARSTR1:
+ /* Copy the significant part of the short varstring field */
+ len= (uint) copy->str[0] + 1;
+ DBUG_ASSERT(cp + len <= buff + buff_size);
+ memcpy(cp, copy->str, len);
+ cp+= len;
+ break;
+ case CACHE_VARSTR2:
+ /* Copy the significant part of the long varstring field */
+ len= uint2korr(copy->str) + 2;
+ DBUG_ASSERT(cp + len <= buff + buff_size);
+ memcpy(cp, copy->str, len);
+ cp+= len;
+ break;
+ case CACHE_STRIPPED:
+ {
+ /*
+ Put down the field value stripping all trailing spaces off.
+ After this insert the length of the written sequence of bytes.
+ */
+ uchar *str, *end;
+ for (str= copy->str, end= str+copy->length;
+ end > str && end[-1] == ' ';
+ end--) ;
+ len=(uint) (end-str);
+ DBUG_ASSERT(cp + len + 2 <= buff + buff_size);
+ int2store(cp, len);
+ memcpy(cp+2, str, len);
+ cp+= len+2;
+ break;
+ }
+ case CACHE_ROWID:
+ if (!copy->length)
+ {
+ /*
+ This may happen only for ROWID fields of materialized
+ derived tables and views.
+ */
+ TABLE *table= (TABLE *) copy->str;
+ copy->str= table->file->ref;
+ copy->length= table->file->ref_length;
+ if (!copy->str)
+ {
+ /*
+ If table is an empty inner table of an outer join and it is
+ a materialized derived table then table->file->ref == NULL.
+ */
+ cp+= copy->length;
+ break;
+ }
+ }
+ /* fall through */
+ default:
+ /* Copy the entire image of the field from the record buffer */
+ DBUG_ASSERT(cp + copy->length <= buff + buff_size);
+ if (copy->str)
+ memcpy(cp, copy->str, copy->length);
+ cp+= copy->length;
+ }
+ }
+
+ /* Add the offsets of the fields that are referenced from other caches */
+ if (referenced_fields)
+ {
+ uint cnt= 0;
+ for (copy= field_descr+flag_fields; copy < copy_end ; copy++)
+ {
+ if (copy->referenced_field_no)
+ {
+ store_fld_offset(cp+size_of_fld_ofs*(copy->referenced_field_no-1),
+ copy->offset);
+ cnt++;
+ }
+ }
+ DBUG_ASSERT(cp + size_of_fld_ofs*cnt <= buff + buff_size);
+ cp+= size_of_fld_ofs*cnt;
+ }
+
+ if (rec_len_ptr)
+ store_rec_length(rec_len_ptr, (ulong) (cp-rec_len_ptr-size_of_rec_len));
+ last_rec_pos= curr_rec_pos;
+ end_pos= pos= cp;
+ *is_full= last_record;
+
+ last_written_is_null_compl= 0;
+ if (!join_tab->first_unmatched && join_tab->on_precond)
+ {
+ join_tab->found= 0;
+ join_tab->not_null_compl= 1;
+ if (!join_tab->on_precond->val_int())
+ {
+ flags_pos[0]= MATCH_IMPOSSIBLE;
+ last_written_is_null_compl= 1;
+ }
+ }
+
+ return (uint) (cp-init_pos);
+}
+
+
+/*
+ Reset the join buffer for reading/writing: default implementation
+
+ SYNOPSIS
+ reset()
+ for_writing if it's TRUE the function reset the buffer for writing
+
+ DESCRIPTION
+ This default implementation of the virtual function reset() resets
+ the join buffer for reading or writing.
+ If the buffer is reset for reading only the 'pos' value is reset
+ to point to the very beginning of the join buffer. If the buffer is
+ reset for writing additionally:
+ - the counter of the records in the buffer is set to 0,
+ - the the value of 'last_rec_pos' gets pointing at the position just
+ before the buffer,
+ - 'end_pos' is set to point to the beginning of the join buffer,
+ - the size of the auxiliary buffer is reset to 0,
+ - the flag 'last_rec_blob_data_is_in_rec_buff' is set to 0.
+
+ RETURN VALUE
+ none
+*/
+void JOIN_CACHE::reset(bool for_writing)
+{
+ pos= buff;
+ curr_rec_link= 0;
+ if (for_writing)
+ {
+ records= 0;
+ last_rec_pos= buff;
+ aux_buff_size= 0;
+ end_pos= pos;
+ last_rec_blob_data_is_in_rec_buff= 0;
+ }
+}
+
+
+/*
+ Add a record into the join buffer: the default implementation
+
+ SYNOPSIS
+ put_record()
+
+ DESCRIPTION
+ This default implementation of the virtual function put_record writes
+ the next matching record into the join buffer.
+ It also links the record having been written into the join buffer with
+ the matched record in the previous cache if there is any.
+ The implementation assumes that the function get_curr_link()
+ will return exactly the pointer to this matched record.
+
+ RETURN VALUE
+ TRUE if it has been decided that it should be the last record
+ in the join buffer,
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE::put_record()
+{
+ bool is_full;
+ uchar *link= 0;
+ if (prev_cache)
+ link= prev_cache->get_curr_rec_link();
+ write_record_data(link, &is_full);
+ return is_full;
+}
+
+
+/*
+ Read the next record from the join buffer: the default implementation
+
+ SYNOPSIS
+ get_record()
+
+ DESCRIPTION
+ This default implementation of the virtual function get_record
+ reads fields of the next record from the join buffer of this cache.
+ The function also reads all other fields associated with this record
+ from the the join buffers of the previous caches. The fields are read
+ into the corresponding record buffers.
+ It is supposed that 'pos' points to the position in the buffer
+ right after the previous record when the function is called.
+ When the function returns the 'pos' values is updated to point
+ to the position after the read record.
+ The value of 'curr_rec_pos' is also updated by the function to
+ point to the beginning of the first field of the record in the
+ join buffer.
+
+ RETURN VALUE
+ TRUE there are no more records to read from the join buffer
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE::get_record()
+{
+ bool res;
+ uchar *prev_rec_ptr= 0;
+ if (with_length)
+ pos+= size_of_rec_len;
+ if (prev_cache)
+ {
+ pos+= prev_cache->get_size_of_rec_offset();
+ prev_rec_ptr= prev_cache->get_rec_ref(pos);
+ }
+ curr_rec_pos= pos;
+ if (!(res= read_all_record_fields() == NO_MORE_RECORDS_IN_BUFFER))
+ {
+ pos+= referenced_fields*size_of_fld_ofs;
+ if (prev_cache)
+ prev_cache->get_record_by_pos(prev_rec_ptr);
+ }
+ return res;
+}
+
+
+/*
+ Read a positioned record from the join buffer: the default implementation
+
+ SYNOPSIS
+ get_record_by_pos()
+ rec_ptr position of the first field of the record in the join buffer
+
+ DESCRIPTION
+ This default implementation of the virtual function get_record_pos
+ reads the fields of the record positioned at 'rec_ptr' from the join buffer.
+ The function also reads all other fields associated with this record
+ from the the join buffers of the previous caches. The fields are read
+ into the corresponding record buffers.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE::get_record_by_pos(uchar *rec_ptr)
+{
+ uchar *save_pos= pos;
+ pos= rec_ptr;
+ read_all_record_fields();
+ pos= save_pos;
+ if (prev_cache)
+ {
+ uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
+ prev_cache->get_record_by_pos(prev_rec_ptr);
+ }
+}
+
+
+/*
+ Get the match flag from the referenced record: the default implementation
+
+ SYNOPSIS
+ get_match_flag_by_pos()
+ rec_ptr position of the first field of the record in the join buffer
+
+ DESCRIPTION
+ This default implementation of the virtual function get_match_flag_by_pos
+ get the match flag for the record pointed by the reference at the position
+ rec_ptr. If the match flag is placed in one of the previous buffers the
+ function first reaches the linked record fields in this buffer.
+ The function returns the value of the first encountered match flag.
+
+ RETURN VALUE
+ match flag for the record at the position rec_ptr
+*/
+
+enum JOIN_CACHE::Match_flag JOIN_CACHE::get_match_flag_by_pos(uchar *rec_ptr)
+{
+ Match_flag match_fl= MATCH_NOT_FOUND;
+ if (with_match_flag)
+ {
+ match_fl= (enum Match_flag) rec_ptr[0];
+ return match_fl;
+ }
+ if (prev_cache)
+ {
+ uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
+ return prev_cache->get_match_flag_by_pos(prev_rec_ptr);
+ }
+ DBUG_ASSERT(0);
+ return match_fl;
+}
+
+
+/*
+ Get the match flag for the referenced record from specified join buffer
+
+ SYNOPSIS
+ get_match_flag_by_pos_from_join_buffer()
+ rec_ptr position of the first field of the record in the join buffer
+ tab join table with join buffer where to look for the match flag
+
+ DESCRIPTION
+ This default implementation of the get_match_flag_by_pos_from_join_buffer
+ method gets the match flag for the record pointed by the reference at the
+ position rec_ptr from the join buffer attached to the join table tab.
+
+ RETURN VALUE
+ match flag for the record at the position rec_ptr from the join
+ buffer attached to the table tab.
+*/
+
+enum JOIN_CACHE::Match_flag
+JOIN_CACHE::get_match_flag_by_pos_from_join_buffer(uchar *rec_ptr,
+ JOIN_TAB *tab)
+{
+ DBUG_ASSERT(tab->cache && tab->cache->with_match_flag);
+ for (JOIN_CACHE *cache= this; ; )
+ {
+ if (cache->join_tab == tab)
+ return (enum Match_flag) rec_ptr[0];
+ cache= cache->prev_cache;
+ rec_ptr= cache->get_rec_ref(rec_ptr);
+ }
+}
+
+
+/*
+ Calculate the increment of the auxiliary buffer for a record write
+
+ SYNOPSIS
+ aux_buffer_incr()
+ recno the number of the record the increment to be calculated for
+
+ DESCRIPTION
+ This function calls the aux_buffer_incr the method of the
+ companion member join_tab_scan to calculate the growth of the
+ auxiliary buffer when the recno-th record is added to the
+ join_buffer of this cache.
+
+ RETURN VALUE
+ the number of bytes in the increment
+*/
+
+uint JOIN_CACHE::aux_buffer_incr(size_t recno)
+{
+ return join_tab_scan->aux_buffer_incr(recno);
+}
+
+/*
+ Read all flag and data fields of a record from the join buffer
+
+ SYNOPSIS
+ read_all_record_fields()
+
+ DESCRIPTION
+ The function reads all flag and data fields of a record from the join
+ buffer into the corresponding record buffers.
+ The fields are read starting from the position 'pos' which is
+ supposed to point to the beginning of the first record field.
+ The function increments the value of 'pos' by the length of the
+ read data.
+
+ RETURN VALUE
+ (-1) if there is no more records in the join buffer
+ length of the data read from the join buffer - otherwise
+*/
+
+uint JOIN_CACHE::read_all_record_fields()
+{
+ uchar *init_pos= pos;
+
+ if (pos > last_rec_pos || !records)
+ return NO_MORE_RECORDS_IN_BUFFER;
+
+ /* First match flag, read null bitmaps and null_row flag for each table */
+ read_flag_fields();
+
+ /* Now read the remaining table fields if needed */
+ CACHE_FIELD *copy= field_descr+flag_fields;
+ CACHE_FIELD *copy_end= field_descr+fields;
+ bool blob_in_rec_buff= blob_data_is_in_rec_buff(init_pos);
+ for ( ; copy < copy_end; copy++)
+ read_record_field(copy, blob_in_rec_buff);
+
+ return (uint) (pos-init_pos);
+}
+
+
+/*
+ Read all flag fields of a record from the join buffer
+
+ SYNOPSIS
+ read_flag_fields()
+
+ DESCRIPTION
+ The function reads all flag fields of a record from the join
+ buffer into the corresponding record buffers.
+ The fields are read starting from the position 'pos'.
+ The function increments the value of 'pos' by the length of the
+ read data.
+
+ RETURN VALUE
+ length of the data read from the join buffer
+*/
+
+uint JOIN_CACHE::read_flag_fields()
+{
+ uchar *init_pos= pos;
+ CACHE_FIELD *copy= field_descr;
+ CACHE_FIELD *copy_end= copy+flag_fields;
+ if (with_match_flag)
+ {
+ copy->str[0]= MY_TEST((Match_flag) pos[0] == MATCH_FOUND);
+ pos+= copy->length;
+ copy++;
+ }
+ for ( ; copy < copy_end; copy++)
+ {
+ memcpy(copy->str, pos, copy->length);
+ pos+= copy->length;
+ }
+ return (uint)(pos-init_pos);
+}
+
+
+/*
+ Read a data record field from the join buffer
+
+ SYNOPSIS
+ read_record_field()
+ copy the descriptor of the data field to be read
+ blob_in_rec_buff indicates whether this is the field from the record
+ whose blob data are in record buffers
+
+ DESCRIPTION
+ The function reads the data field specified by the parameter copy
+ from the join buffer into the corresponding record buffer.
+ The field is read starting from the position 'pos'.
+ The data of blob values is not copied from the join buffer.
+ The function increments the value of 'pos' by the length of the
+ read data.
+
+ RETURN VALUE
+ length of the data read from the join buffer
+*/
+
+uint JOIN_CACHE::read_record_field(CACHE_FIELD *copy, bool blob_in_rec_buff)
+{
+ uint len;
+ /* Do not copy the field if its value is null */
+ if (copy->field && copy->field->maybe_null() && copy->field->is_null())
+ return 0;
+ switch (copy->type) {
+ case CACHE_BLOB:
+ {
+ Field_blob *blob_field= (Field_blob *) copy->field;
+ /*
+ Copy the length and the pointer to data but not the blob data
+ itself to the record buffer
+ */
+ if (blob_in_rec_buff)
+ {
+ blob_field->set_image(pos, copy->length + sizeof(char*),
+ blob_field->charset());
+ len= copy->length + sizeof(char*);
+ }
+ else
+ {
+ blob_field->set_ptr(pos, pos+copy->length);
+ len= copy->length + blob_field->get_length();
+ }
+ }
+ break;
+ case CACHE_VARSTR1:
+ /* Copy the significant part of the short varstring field */
+ len= (uint) pos[0] + 1;
+ memcpy(copy->str, pos, len);
+ break;
+ case CACHE_VARSTR2:
+ /* Copy the significant part of the long varstring field */
+ len= uint2korr(pos) + 2;
+ memcpy(copy->str, pos, len);
+ break;
+ case CACHE_STRIPPED:
+ /* Pad the value by spaces that has been stripped off */
+ len= uint2korr(pos);
+ memcpy(copy->str, pos+2, len);
+ memset(copy->str+len, ' ', copy->length-len);
+ len+= 2;
+ break;
+ case CACHE_ROWID:
+ if (!copy->str)
+ {
+ len= copy->length;
+ break;
+ }
+ /* fall through */
+ default:
+ /* Copy the entire image of the field from the record buffer */
+ len= copy->length;
+ memcpy(copy->str, pos, len);
+ }
+ pos+= len;
+ return len;
+}
+
+
+/*
+ Read a referenced field from the join buffer
+
+ SYNOPSIS
+ read_referenced_field()
+ copy pointer to the descriptor of the referenced field
+ rec_ptr pointer to the record that may contain this field
+ len IN/OUT total length of the record fields
+
+ DESCRIPTION
+ The function checks whether copy points to a data field descriptor
+ for this cache object. If it does not then the function returns
+ FALSE. Otherwise the function reads the field of the record in
+ the join buffer pointed by 'rec_ptr' into the corresponding record
+ buffer and returns TRUE.
+ If the value of *len is 0 then the function sets it to the total
+ length of the record fields including possible trailing offset
+ values. Otherwise *len is supposed to provide this value that
+ has been obtained earlier.
+
+ NOTE
+ If the value of the referenced field is null then the offset
+ for the value is set to 0. If the value of a field can be null
+ then the value of flag_fields is always positive. So the offset
+ for any non-null value cannot be 0 in this case.
+
+ RETURN VALUE
+ TRUE 'copy' points to a data descriptor of this join cache
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE::read_referenced_field(CACHE_FIELD *copy,
+ uchar *rec_ptr,
+ uint *len)
+{
+ uchar *ptr;
+ uint offset;
+ if (copy < field_descr || copy >= field_descr+fields)
+ return FALSE;
+ if (!*len)
+ {
+ /* Get the total length of the record fields */
+ uchar *len_ptr= rec_ptr;
+ if (prev_cache)
+ len_ptr-= prev_cache->get_size_of_rec_offset();
+ *len= get_rec_length(len_ptr-size_of_rec_len);
+ }
+
+ ptr= rec_ptr-(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
+ offset= get_fld_offset(ptr+ *len -
+ size_of_fld_ofs*
+ (referenced_fields+1-copy->referenced_field_no));
+ bool is_null= FALSE;
+ Field *field= copy->field;
+ if (offset == 0 && flag_fields)
+ is_null= TRUE;
+ if (is_null)
+ {
+ field->set_null();
+ if (!field->real_maybe_null())
+ field->table->null_row= 1;
+ }
+ else
+ {
+ uchar *save_pos= pos;
+ field->set_notnull();
+ if (!field->real_maybe_null())
+ field->table->null_row= 0;
+ pos= rec_ptr+offset;
+ read_record_field(copy, blob_data_is_in_rec_buff(rec_ptr));
+ pos= save_pos;
+ }
+ return TRUE;
+}
+
+
+/*
+ Skip record from join buffer if's already matched: default implementation
+
+ SYNOPSIS
+ skip_if_matched()
+
+ DESCRIPTION
+ This default implementation of the virtual function skip_if_matched
+ skips the next record from the join buffer if its match flag is set to
+ MATCH_FOUND.
+ If the record is skipped the value of 'pos' is set to point to the position
+ right after the record.
+
+ NOTE
+ Currently this function is called only when generating null complemented
+ records for outer joins (=> only when join_tab->first_unmatched != NULL).
+
+ RETURN VALUE
+ TRUE the match flag is set to MATCH_FOUND and the record has been skipped
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE::skip_if_matched()
+{
+ DBUG_ASSERT(with_length);
+ uint offset= size_of_rec_len;
+ if (prev_cache)
+ offset+= prev_cache->get_size_of_rec_offset();
+ /* Check whether the match flag is MATCH_FOUND */
+ if (get_match_flag_by_pos_from_join_buffer(pos+offset,
+ join_tab->first_unmatched) ==
+ MATCH_FOUND)
+ {
+ pos+= size_of_rec_len + get_rec_length(pos);
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/*
+ Skip record from join buffer if the match isn't needed: default implementation
+
+ SYNOPSIS
+ skip_if_not_needed_match()
+
+ DESCRIPTION
+ This default implementation of the virtual function skip_if_not_needed_match
+ skips the next record from the join when generating join extensions
+ for the records in the join buffer depending on the value of the match flag.
+ - In the case of a semi-nest the match flag may be in two states
+ {MATCH_NOT_FOUND, MATCH_FOUND}. The record is skipped if the flag is set
+ to MATCH_FOUND.
+ - In the case of an outer join the match may be in three states
+ {MATCH_NOT_FOUND, MATCH_IMPOSSIBLE, MATCH_FOUND}.
+ If not_exists optimization is applied the record is skipped when
+ the flag is set to MATCH_FOUND or to MATCH_IMPOSSIBLE. Otherwise
+ the record is skipped only when the flag is set to MATCH_IMPOSSIBLE.
+
+ If the record is skipped the value of 'pos' is set to point to the position
+ right after the record.
+
+ NOTE
+ Currently the function is called only when generating non-null complemented
+ extensions for records in the join buffer.
+
+ RETURN VALUE
+ TRUE the record has to be skipped
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE::skip_if_not_needed_match()
+{
+ DBUG_ASSERT(with_length);
+ enum Match_flag match_fl;
+ uint offset= size_of_rec_len;
+ bool skip= FALSE;
+ if (prev_cache)
+ offset+= prev_cache->get_size_of_rec_offset();
+
+ match_fl= get_match_flag_by_pos(pos+offset);
+ skip= join_tab->first_sj_inner_tab ?
+ match_fl == MATCH_FOUND : // the case of semi-join
+ not_exists_opt_is_applicable &&
+ join_tab->table->reginfo.not_exists_optimize ?
+ match_fl != MATCH_NOT_FOUND : // the case of not exist opt
+ match_fl == MATCH_IMPOSSIBLE;
+
+ if (skip)
+ {
+ pos+= size_of_rec_len + get_rec_length(pos);
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/*
+ Restore the fields of the last record from the join buffer
+
+ SYNOPSIS
+ restore_last_record()
+
+ DESCRIPTION
+ This function restore the values of the fields of the last record put
+ into join buffer in record buffers. The values most probably have been
+ overwritten by the field values from other records when they were read
+ from the join buffer into the record buffer in order to check pushdown
+ predicates.
+
+ RETURN
+ none
+*/
+
+void JOIN_CACHE::restore_last_record()
+{
+ if (records)
+ get_record_by_pos(last_rec_pos);
+}
+
+
+/*
+ Join records from the join buffer with records from the next join table
+
+ SYNOPSIS
+ join_records()
+ skip_last do not find matches for the last record from the buffer
+
+ DESCRIPTION
+ The functions extends all records from the join buffer by the matched
+ records from join_tab. In the case of outer join operation it also
+ adds null complementing extensions for the records from the join buffer
+ that have no match.
+ No extensions are generated for the last record from the buffer if
+ skip_last is true.
+
+ NOTES
+ The function must make sure that if linked join buffers are used then
+ a join buffer cannot be refilled again until all extensions in the
+ buffers chained to this one are generated.
+ Currently an outer join operation with several inner tables always uses
+ at least two linked buffers with the match join flags placed in the
+ first buffer. Any record composed of rows of the inner tables that
+ matches a record in this buffer must refer to the position of the
+ corresponding match flag.
+
+ IMPLEMENTATION
+ When generating extensions for outer tables of an outer join operation
+ first we generate all extensions for those records from the join buffer
+ that have matches, after which null complementing extension for all
+ unmatched records from the join buffer are generated.
+
+ RETURN VALUE
+ return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
+*/
+
+enum_nested_loop_state JOIN_CACHE::join_records(bool skip_last)
+{
+ JOIN_TAB *tab;
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ bool outer_join_first_inner= join_tab->is_first_inner_for_outer_join();
+ DBUG_ENTER("JOIN_CACHE::join_records");
+
+ if (outer_join_first_inner && !join_tab->first_unmatched)
+ join_tab->not_null_compl= TRUE;
+
+ if (!join_tab->first_unmatched)
+ {
+ bool pfs_batch_update= join_tab->pfs_batch_update(join);
+ if (pfs_batch_update)
+ join_tab->table->file->start_psi_batch_mode();
+ /* Find all records from join_tab that match records from join buffer */
+ rc= join_matching_records(skip_last);
+ if (pfs_batch_update)
+ join_tab->table->file->end_psi_batch_mode();
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ if (outer_join_first_inner)
+ {
+ if (next_cache && join_tab != join_tab->last_inner)
+ {
+ /*
+ Ensure that all matches for outer records from join buffer are to be
+ found. Now we ensure that all full records are found for records from
+ join buffer. Generally this is an overkill.
+ TODO: Ensure that only matches of the inner table records have to be
+ found for the records from join buffer.
+ */
+ rc= next_cache->join_records(skip_last);
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ }
+ join_tab->not_null_compl= FALSE;
+ /*
+ Prepare for generation of null complementing extensions.
+ For all inner tables of the outer join operation for which
+ regular matches have been just found the field 'first_unmatched'
+ is set to point the the first inner table. After all null
+ complement rows are generated for this outer join this field
+ is set back to NULL.
+ */
+ for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
+ tab->first_unmatched= join_tab->first_inner;
+ }
+ }
+ if (join_tab->first_unmatched)
+ {
+ if (is_key_access())
+ restore_last_record();
+
+ /*
+ Generate all null complementing extensions for the records from
+ join buffer that don't have any matching rows from the inner tables.
+ */
+ reset(FALSE);
+ rc= join_null_complements(skip_last);
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ }
+ if(next_cache)
+ {
+ /*
+ When using linked caches we must ensure the records in the next caches
+ that refer to the records in the join buffer are fully extended.
+ Otherwise we could have references to the records that have been
+ already erased from the join buffer and replaced for new records.
+ */
+ rc= next_cache->join_records(skip_last);
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ }
+
+ if (skip_last)
+ {
+ DBUG_ASSERT(!is_key_access());
+ /*
+ Restore the last record from the join buffer to generate
+ all extensions for it.
+ */
+ get_record();
+ }
+
+finish:
+ if (outer_join_first_inner &&
+ join_tab->first_inner == join_tab->first_unmatched)
+ {
+ /*
+ All null complemented rows have been already generated for all
+ outer records from join buffer. Restore the state of the
+ first_unmatched values to 0 to avoid another null complementing.
+ */
+ for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
+ tab->first_unmatched= 0;
+ }
+ restore_last_record();
+ reset(TRUE);
+ DBUG_PRINT("exit", ("rc: %d", rc));
+ DBUG_RETURN(rc);
+}
+
+
+/*
+ Find matches from the next table for records from the join buffer
+
+ SYNOPSIS
+ join_matching_records()
+ skip_last do not look for matches for the last partial join record
+
+ DESCRIPTION
+ The function retrieves rows of the join_tab table and checks whether they
+ match partial join records from the join buffer. If a match is found
+ the function will call the sub_select function trying to look for matches
+ for the remaining join operations.
+ This function currently is called only from the function join_records.
+ If the value of skip_last is true the function writes the partial join
+ record from the record buffer into the join buffer to save its value for
+ the future processing in the caller function.
+
+ NOTES
+ If employed by BNL or BNLH join algorithms the function performs a full
+ scan of join_tab for each refill of the join buffer. If BKA or BKAH
+ algorithms are used then the function iterates only over those records
+ from join_tab that can be accessed by keys built over records in the join
+ buffer. To apply a proper method of iteration the function just calls
+ virtual iterator methods (open, next, close) of the member join_tab_scan.
+ The member can be either of the JOIN_TAB_SCAN or JOIN_TAB_SCAN_MMR type.
+ The class JOIN_TAB_SCAN provides the iterator methods for BNL/BNLH join
+ algorithms. The class JOIN_TAB_SCAN_MRR provides the iterator methods
+ for BKA/BKAH join algorithms.
+ When the function looks for records from the join buffer that would
+ match a record from join_tab it iterates either over all records in
+ the buffer or only over selected records. If BNL join operation is
+ performed all records are checked for the match. If BNLH or BKAH
+ algorithm is employed to join join_tab then the function looks only
+ through the records with the same join key as the record from join_tab.
+ With the BKA join algorithm only one record from the join buffer is checked
+ for a match for any record from join_tab. To iterate over the candidates
+ for a match the virtual function get_next_candidate_for_match is used,
+ while the virtual function prepare_look_for_matches is called to prepare
+ for such iteration process.
+
+ NOTES
+ The function produces all matching extensions for the records in the
+ join buffer following the path of the employed blocked algorithm.
+ When an outer join operation is performed all unmatched records from
+ the join buffer must be extended by null values. The function
+ 'join_null_complements' serves this purpose.
+
+ RETURN VALUE
+ return one of enum_nested_loop_state
+*/
+
+enum_nested_loop_state JOIN_CACHE::join_matching_records(bool skip_last)
+{
+ int error;
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ join_tab->table->null_row= 0;
+ bool check_only_first_match= join_tab->check_only_first_match();
+ DBUG_ENTER("JOIN_CACHE::join_matching_records");
+
+ /* Return at once if there are no records in the join buffer */
+ if (!records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+
+ /*
+ When joining we read records from the join buffer back into record buffers.
+ If matches for the last partial join record are found through a call to
+ the sub_select function then this partial join record must be saved in the
+ join buffer in order to be restored just before the sub_select call.
+ */
+ if (skip_last)
+ put_record();
+
+ if (join_tab->use_quick == 2 && join_tab->select->quick)
+ {
+ /* A dynamic range access was used last. Clean up after it */
+ delete join_tab->select->quick;
+ join_tab->select->quick= 0;
+ }
+
+ if ((rc= join_tab_execution_startup(join_tab)) < 0)
+ goto finish2;
+
+ if (join_tab->build_range_rowid_filter_if_needed())
+ {
+ rc= NESTED_LOOP_ERROR;
+ goto finish2;
+ }
+
+ /* Prepare to retrieve all records of the joined table */
+ if (unlikely((error= join_tab_scan->open())))
+ {
+ /*
+ TODO: if we get here, we will assert in net_send_statement(). Add test
+ coverage and fix.
+ */
+ goto finish;
+ }
+
+ while (!(error= join_tab_scan->next()))
+ {
+ if (unlikely(join->thd->check_killed()))
+ {
+ /* The user has aborted the execution of the query */
+ rc= NESTED_LOOP_KILLED;
+ goto finish;
+ }
+
+ if (join_tab->keep_current_rowid)
+ join_tab->table->file->position(join_tab->table->record[0]);
+
+ /* Prepare to read matching candidates from the join buffer */
+ if (prepare_look_for_matches(skip_last))
+ continue;
+ join_tab->jbuf_tracker->r_scans++;
+
+ uchar *rec_ptr;
+ /* Read each possible candidate from the buffer and look for matches */
+ while ((rec_ptr= get_next_candidate_for_match()))
+ {
+ join_tab->jbuf_tracker->r_rows++;
+ /*
+ If only the first match is needed, and, it has been already found for
+ the next record read from the join buffer, then the record is skipped.
+ Also those records that must be null complemented are not considered
+ as candidates for matches.
+ */
+
+ not_exists_opt_is_applicable= true;
+ if (check_only_first_match && join_tab->first_inner)
+ {
+ /*
+ This is the case with not_exists optimization for nested outer join
+ when join_tab is the last inner table for one or more embedding outer
+ joins. To safely use 'not_exists' optimization in this case we have
+ to check that the match flags for all these embedding outer joins are
+ in the 'on' state.
+ (See also a similar check in evaluate_join_record() for the case when
+ join buffer are not used.)
+ */
+ for (JOIN_TAB *tab= join_tab->first_inner;
+ tab && tab->first_inner && tab->last_inner == join_tab;
+ tab= tab->first_inner->first_upper)
+ {
+ if (get_match_flag_by_pos_from_join_buffer(rec_ptr, tab) !=
+ MATCH_FOUND)
+ {
+ not_exists_opt_is_applicable= false;
+ break;
+ }
+ }
+ }
+
+ if ((!join_tab->on_precond &&
+ (!check_only_first_match ||
+ (join_tab->first_inner && !not_exists_opt_is_applicable))) ||
+ !skip_next_candidate_for_match(rec_ptr))
+ {
+ ANALYZE_START_TRACKING(join->thd, join_tab->jbuf_unpack_tracker);
+ read_next_candidate_for_match(rec_ptr);
+ ANALYZE_STOP_TRACKING(join->thd, join_tab->jbuf_unpack_tracker);
+ rc= generate_full_extensions(rec_ptr);
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ }
+ }
+ }
+
+finish:
+ if (error)
+ rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
+finish2:
+ join_tab_scan->close();
+ DBUG_RETURN(rc);
+}
+
+
+/*
+ Set match flag for a record in join buffer if it has not been set yet
+
+ SYNOPSIS
+ set_match_flag_if_none()
+ first_inner the join table to which this flag is attached to
+ rec_ptr pointer to the record in the join buffer
+
+ DESCRIPTION
+ If the records of the table are accumulated in a join buffer the function
+ sets the match flag for the record in the buffer that is referred to by
+ the record from this cache positioned at 'rec_ptr'.
+ The function also sets the match flag 'found' of the table first inner
+ if it has not been set before.
+
+ NOTES
+ The function assumes that the match flag for any record in any cache
+ is placed in the first byte occupied by the record fields.
+
+ RETURN VALUE
+ TRUE the match flag is set by this call for the first time
+ FALSE the match flag has been set before this call
+*/
+
+bool JOIN_CACHE::set_match_flag_if_none(JOIN_TAB *first_inner,
+ uchar *rec_ptr)
+{
+ if (!first_inner->cache)
+ {
+ /*
+ Records of the first inner table to which the flag is attached to
+ are not accumulated in a join buffer.
+ */
+ if (first_inner->found)
+ return FALSE;
+ else
+ {
+ first_inner->found= 1;
+ return TRUE;
+ }
+ }
+ JOIN_CACHE *cache= this;
+ while (cache->join_tab != first_inner)
+ {
+ cache= cache->prev_cache;
+ DBUG_ASSERT(cache);
+ rec_ptr= cache->get_rec_ref(rec_ptr);
+ }
+ if ((Match_flag) rec_ptr[0] != MATCH_FOUND)
+ {
+ rec_ptr[0]= MATCH_FOUND;
+ first_inner->found= 1;
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/*
+ Generate all full extensions for a partial join record in the buffer
+
+ SYNOPSIS
+ generate_full_extensions()
+ rec_ptr pointer to the record from join buffer to generate extensions
+
+ DESCRIPTION
+ The function first checks whether the current record of 'join_tab' matches
+ the partial join record from join buffer located at 'rec_ptr'. If it is the
+ case the function calls the join_tab->next_select method to generate
+ all full extension for this partial join match.
+
+ RETURN VALUE
+ return one of enum_nested_loop_state.
+*/
+
+enum_nested_loop_state JOIN_CACHE::generate_full_extensions(uchar *rec_ptr)
+{
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ DBUG_ENTER("JOIN_CACHE::generate_full_extensions");
+
+ /*
+ Check whether the extended partial join record meets
+ the pushdown conditions.
+ */
+ if (check_match(rec_ptr))
+ {
+ int res= 0;
+
+ if (!join_tab->check_weed_out_table ||
+ !(res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd)))
+ {
+ set_curr_rec_link(rec_ptr);
+ rc= (join_tab->next_select)(join, join_tab+1, 0);
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ {
+ reset(TRUE);
+ DBUG_RETURN(rc);
+ }
+ }
+ if (res == -1)
+ {
+ rc= NESTED_LOOP_ERROR;
+ DBUG_RETURN(rc);
+ }
+ }
+ else if (unlikely(join->thd->is_error()))
+ rc= NESTED_LOOP_ERROR;
+ DBUG_RETURN(rc);
+}
+
+
+/*
+ Check matching to a partial join record from the join buffer
+
+ SYNOPSIS
+ check_match()
+ rec_ptr pointer to the record from join buffer to check matching to
+
+ DESCRIPTION
+ The function checks whether the current record of 'join_tab' matches
+ the partial join record from join buffer located at 'rec_ptr'. If this is
+ the case and 'join_tab' is the last inner table of a semi-join or an outer
+ join the function turns on the match flag for the 'rec_ptr' record unless
+ it has been already set.
+
+ NOTES
+ Setting the match flag on can trigger re-evaluation of pushdown conditions
+ for the record when join_tab is the last inner table of an outer join.
+
+ RETURN VALUE
+ TRUE there is a match
+ FALSE there is no match
+ In this case the caller must also check thd->is_error() to see
+ if there was a fatal error for the query.
+*/
+
+inline bool JOIN_CACHE::check_match(uchar *rec_ptr)
+{
+ /* Check whether pushdown conditions are satisfied */
+ DBUG_ENTER("JOIN_CACHE:check_match");
+
+ if (join_tab->select && join_tab->select->skip_record(join->thd) <= 0)
+ DBUG_RETURN(FALSE);
+
+ join_tab->jbuf_tracker->r_rows_after_where++;
+
+ if (!join_tab->is_last_inner_table())
+ DBUG_RETURN(TRUE);
+
+ /*
+ This is the last inner table of an outer join,
+ and maybe of other embedding outer joins, or
+ this is the last inner table of a semi-join.
+ */
+ JOIN_TAB *first_inner= join_tab->get_first_inner_table();
+ do
+ {
+ set_match_flag_if_none(first_inner, rec_ptr);
+ if (first_inner->check_only_first_match() &&
+ !join_tab->first_inner)
+ DBUG_RETURN(TRUE);
+ /*
+ This is the first match for the outer table row.
+ The function set_match_flag_if_none has turned the flag
+ first_inner->found on. The pushdown predicates for
+ inner tables must be re-evaluated with this flag on.
+ Note that, if first_inner is the first inner table
+ of a semi-join, but is not an inner table of an outer join
+ such that 'not exists' optimization can be applied to it,
+ the re-evaluation of the pushdown predicates is not needed.
+ */
+ for (JOIN_TAB *tab= first_inner; tab <= join_tab; tab++)
+ {
+ if (tab->select && tab->select->skip_record(join->thd) <= 0)
+ DBUG_RETURN(FALSE);
+ }
+ }
+ while ((first_inner= first_inner->first_upper) &&
+ first_inner->last_inner == join_tab);
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Add null complements for unmatched outer records from join buffer
+
+ SYNOPSIS
+ join_null_complements()
+ skip_last do not add null complements for the last record
+
+ DESCRIPTION
+ This function is called only for inner tables of outer joins.
+ The function retrieves all rows from the join buffer and adds null
+ complements for those of them that do not have matches for outer
+ table records.
+ If the 'join_tab' is the last inner table of the embedding outer
+ join and the null complemented record satisfies the outer join
+ condition then the the corresponding match flag is turned on
+ unless it has been set earlier. This setting may trigger
+ re-evaluation of pushdown conditions for the record.
+
+ NOTES
+ The same implementation of the virtual method join_null_complements
+ is used for BNL/BNLH/BKA/BKA join algorthm.
+
+ RETURN VALUE
+ return one of enum_nested_loop_state.
+*/
+
+enum_nested_loop_state JOIN_CACHE::join_null_complements(bool skip_last)
+{
+ ulonglong cnt;
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ bool is_first_inner= join_tab == join_tab->first_unmatched;
+ DBUG_ENTER("JOIN_CACHE::join_null_complements");
+
+ /* Return at once if there are no records in the join buffer */
+ if (!records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+
+ cnt= records - (is_key_access() ? 0 : MY_TEST(skip_last));
+
+ /* This function may be called only for inner tables of outer joins */
+ DBUG_ASSERT(join_tab->first_inner);
+
+ for ( ; cnt; cnt--)
+ {
+ if (unlikely(join->thd->check_killed()))
+ {
+ /* The user has aborted the execution of the query */
+ rc= NESTED_LOOP_KILLED;
+ goto finish;
+ }
+ /* Just skip the whole record if a match for it has been already found */
+ if (!is_first_inner || !skip_if_matched())
+ {
+ get_record();
+ /* The outer row is complemented by nulls for each inner table */
+ restore_record(join_tab->table, s->default_values);
+ mark_as_null_row(join_tab->table);
+ rc= generate_full_extensions(get_curr_rec());
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ goto finish;
+ }
+ }
+
+finish:
+ DBUG_RETURN(rc);
+}
+
+
+/*
+ Save data on the join algorithm employed by the join cache
+
+ SYNOPSIS
+ save_explain_data()
+ str string to add the comment on the employed join algorithm to
+
+ DESCRIPTION
+ This function puts info about the type of the used join buffer (flat or
+ incremental) and on the type of the the employed join algorithm (BNL,
+ BNLH, BKA or BKAH) to the data structure
+
+ RETURN VALUE
+ 0 ok
+ 1 error
+*/
+
+bool JOIN_CACHE::save_explain_data(EXPLAIN_BKA_TYPE *explain)
+{
+ explain->incremental= MY_TEST(prev_cache);
+
+ explain->join_buffer_size= get_join_buffer_size();
+
+ switch (get_join_alg()) {
+ case BNL_JOIN_ALG:
+ explain->join_alg= "BNL";
+ break;
+ case BNLH_JOIN_ALG:
+ explain->join_alg= "BNLH";
+ break;
+ case BKA_JOIN_ALG:
+ explain->join_alg= "BKA";
+ break;
+ case BKAH_JOIN_ALG:
+ explain->join_alg= "BKAH";
+ break;
+ default:
+ DBUG_ASSERT(0);
+ }
+ return 0;
+}
+
+/**
+ get thread handle.
+*/
+
+THD *JOIN_CACHE::thd()
+{
+ return join->thd;
+}
+
+
+static bool add_mrr_explain_info(String *str, uint mrr_mode, handler *file)
+{
+ char mrr_str_buf[128]={0};
+ int len;
+ len= file->multi_range_read_explain_info(mrr_mode, mrr_str_buf,
+ sizeof(mrr_str_buf));
+ if (len > 0)
+ {
+ if (str->length())
+ {
+ if (str->append(STRING_WITH_LEN("; ")))
+ return 1;
+ }
+ if (str->append(mrr_str_buf, len))
+ return 1;
+ }
+ return 0;
+}
+
+
+bool JOIN_CACHE_BKA::save_explain_data(EXPLAIN_BKA_TYPE *explain)
+{
+ if (JOIN_CACHE::save_explain_data(explain))
+ return 1;
+ return add_mrr_explain_info(&explain->mrr_type, mrr_mode, join_tab->table->file);
+}
+
+
+bool JOIN_CACHE_BKAH::save_explain_data(EXPLAIN_BKA_TYPE *explain)
+{
+ if (JOIN_CACHE::save_explain_data(explain))
+ return 1;
+ return add_mrr_explain_info(&explain->mrr_type, mrr_mode, join_tab->table->file);
+}
+
+
+/*
+ Initialize a hashed join cache
+
+ SYNOPSIS
+ init()
+ for_explain join buffer is initialized for explain only
+
+ DESCRIPTION
+ The function initializes the cache structure with a hash table in it.
+ The hash table will be used to store key values for the records from
+ the join buffer.
+ The function allocates memory for the join buffer and for descriptors of
+ the record fields stored in the buffer.
+ The function also initializes a hash table for record keys within the join
+ buffer space.
+
+ NOTES VALUE
+ The function is supposed to be called by the init methods of the classes
+ derived from JOIN_CACHE_HASHED.
+
+ RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE_HASHED::init(bool for_explain)
+{
+ TABLE_REF *ref= &join_tab->ref;
+ DBUG_ENTER("JOIN_CACHE_HASHED::init");
+
+ hash_table= 0;
+ key_entries= 0;
+
+ key_length= ref->key_length;
+
+ if (JOIN_CACHE::init(for_explain))
+ {
+ THD *thd= join->thd;
+ const char *errmsg=
+ "Could not create a join buffer. Please check and "
+ "adjust the value of the variables 'JOIN_BUFFER_SIZE (%llu)' and "
+ "'JOIN_BUFFER_SPACE_LIMIT (%llu)'";
+ my_printf_error(ER_OUTOFMEMORY, errmsg, MYF(0),
+ thd->variables.join_buff_size,
+ thd->variables.join_buff_space_limit);
+ DBUG_RETURN (1);
+ }
+
+ if (for_explain)
+ DBUG_RETURN(0);
+
+ if (!(key_buff= (uchar*) join->thd->alloc(key_length)))
+ DBUG_RETURN(1);
+
+ /* Take into account a reference to the next record in the key chain */
+ pack_length+= get_size_of_rec_offset();
+ pack_length_with_blob_ptrs+= get_size_of_rec_offset();
+
+ ref_key_info= join_tab->get_keyinfo_by_key_no(join_tab->ref.key);
+ ref_used_key_parts= join_tab->ref.key_parts;
+
+ hash_func= &JOIN_CACHE_HASHED::get_hash_idx_simple;
+ hash_cmp_func= &JOIN_CACHE_HASHED::equal_keys_simple;
+
+ KEY_PART_INFO *key_part= ref_key_info->key_part;
+ KEY_PART_INFO *key_part_end= key_part+ref_used_key_parts;
+ for ( ; key_part < key_part_end; key_part++)
+ {
+ if (!key_part->field->eq_cmp_as_binary())
+ {
+ hash_func= &JOIN_CACHE_HASHED::get_hash_idx_complex;
+ hash_cmp_func= &JOIN_CACHE_HASHED::equal_keys_complex;
+ break;
+ }
+ }
+
+ init_hash_table();
+
+ rec_fields_offset= get_size_of_rec_offset()+get_size_of_rec_length()+
+ (prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
+
+ data_fields_offset= 0;
+ if (use_emb_key)
+ {
+ CACHE_FIELD *copy= field_descr;
+ CACHE_FIELD *copy_end= copy+flag_fields;
+ for ( ; copy < copy_end; copy++)
+ data_fields_offset+= copy->length;
+ }
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Initialize the hash table of a hashed join cache
+
+ SYNOPSIS
+ init_hash_table()
+
+ DESCRIPTION
+ The function estimates the number of hash table entries in the hash
+ table to be used and initializes this hash table within the join buffer
+ space.
+
+ RETURN VALUE
+ Currently the function always returns 0;
+*/
+
+int JOIN_CACHE_HASHED::init_hash_table()
+{
+ hash_table= 0;
+ key_entries= 0;
+
+ avg_record_length= calc_avg_record_length();
+
+ /* Calculate the minimal possible value of size_of_key_ofs greater than 1 */
+ uint max_size_of_key_ofs= MY_MAX(2, get_size_of_rec_offset());
+ for (size_of_key_ofs= 2;
+ size_of_key_ofs <= max_size_of_key_ofs;
+ size_of_key_ofs+= 2)
+ {
+ key_entry_length= get_size_of_rec_offset() + // key chain header
+ size_of_key_ofs + // reference to the next key
+ (use_emb_key ? get_size_of_rec_offset() : key_length);
+
+ size_t space_per_rec= avg_record_length +
+ avg_aux_buffer_incr +
+ key_entry_length+size_of_key_ofs;
+ size_t n= buff_size / space_per_rec;
+
+ /*
+ TODO: Make a better estimate for this upper bound of
+ the number of records in in the join buffer.
+ */
+ size_t max_n= buff_size / (pack_length-length+
+ key_entry_length+size_of_key_ofs);
+
+ hash_entries= (uint) (n / 0.7);
+ set_if_bigger(hash_entries, 1);
+
+ if (offset_size((uint)(max_n*key_entry_length)) <=
+ size_of_key_ofs)
+ break;
+ }
+
+ /* Initialize the hash table */
+ hash_table= buff + (buff_size-hash_entries*size_of_key_ofs);
+ cleanup_hash_table();
+ curr_key_entry= hash_table;
+
+ return 0;
+}
+
+
+/*
+ Reallocate the join buffer of a hashed join cache
+
+ SYNOPSIS
+ realloc_buffer()
+
+ DESCRITION
+ The function reallocates the join buffer of the hashed join cache.
+ After this it initializes a hash table within the buffer space and
+ resets the join cache for writing.
+
+ NOTES
+ The function assumes that buff_size contains the new value for the join
+ buffer size.
+
+ RETURN VALUE
+ 0 if the buffer has been successfully reallocated
+ 1 otherwise
+*/
+
+int JOIN_CACHE_HASHED::realloc_buffer()
+{
+ free();
+ buff= (uchar*) my_malloc(key_memory_JOIN_CACHE, buff_size,
+ MYF(MY_THREAD_SPECIFIC));
+ init_hash_table();
+ reset(TRUE);
+ return buff == NULL;
+}
+
+
+/*
+ Get maximum size of the additional space per record used for record keys
+
+ SYNOPSYS
+ get_max_key_addon_space_per_record()
+
+ DESCRIPTION
+ The function returns the size of the space occupied by one key entry
+ and one hash table entry.
+
+ RETURN VALUE
+ maximum size of the additional space per record that is used to store
+ record keys in the hash table
+*/
+
+uint JOIN_CACHE_HASHED::get_max_key_addon_space_per_record()
+{
+ ulong len;
+ TABLE_REF *ref= &join_tab->ref;
+ /*
+ The total number of hash entries in the hash tables is bounded by
+ ceiling(N/0.7) where N is the maximum number of records in the buffer.
+ That's why the multiplier 2 is used in the formula below.
+ */
+ len= (use_emb_key ? get_size_of_rec_offset() : ref->key_length) +
+ size_of_rec_ofs + // size of the key chain header
+ size_of_rec_ofs + // >= size of the reference to the next key
+ 2*size_of_rec_ofs; // >= 2*( size of hash table entry)
+ return len;
+}
+
+
+/*
+ Reset the buffer of a hashed join cache for reading/writing
+
+ SYNOPSIS
+ reset()
+ for_writing if it's TRUE the function reset the buffer for writing
+
+ DESCRIPTION
+ This implementation of the virtual function reset() resets the join buffer
+ of the JOIN_CACHE_HASHED class for reading or writing.
+ Additionally to what the default implementation does this function
+ cleans up the hash table allocated within the buffer.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE_HASHED::reset(bool for_writing)
+{
+ this->JOIN_CACHE::reset(for_writing);
+ if (for_writing && hash_table)
+ cleanup_hash_table();
+ curr_key_entry= hash_table;
+}
+
+
+/*
+ Add a record into the buffer of a hashed join cache
+
+ SYNOPSIS
+ put_record()
+
+ DESCRIPTION
+ This implementation of the virtual function put_record writes the next
+ matching record into the join buffer of the JOIN_CACHE_HASHED class.
+ Additionally to what the default implementation does this function
+ performs the following.
+ It extracts from the record the key value used in lookups for matching
+ records and searches for this key in the hash tables from the join cache.
+ If it finds the key in the hash table it joins the record to the chain
+ of records with this key. If the key is not found in the hash table the
+ key is placed into it and a chain containing only the newly added record
+ is attached to the key entry. The key value is either placed in the hash
+ element added for the key or, if the use_emb_key flag is set, remains in
+ the record from the partial join.
+ If the match flag field of a record contains MATCH_IMPOSSIBLE the key is
+ not created for this record.
+
+ RETURN VALUE
+ TRUE if it has been decided that it should be the last record
+ in the join buffer,
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_HASHED::put_record()
+{
+ bool is_full;
+ uchar *key;
+ uint key_len= key_length;
+ uchar *key_ref_ptr;
+ uchar *link= 0;
+ TABLE_REF *ref= &join_tab->ref;
+ uchar *next_ref_ptr= pos;
+
+ pos+= get_size_of_rec_offset();
+ /* Write the record into the join buffer */
+ if (prev_cache)
+ link= prev_cache->get_curr_rec_link();
+ write_record_data(link, &is_full);
+
+ if (last_written_is_null_compl)
+ return is_full;
+
+ if (use_emb_key)
+ key= get_curr_emb_key();
+ else
+ {
+ /* Build the key over the fields read into the record buffers */
+ cp_buffer_from_ref(join->thd, join_tab->table, ref);
+ key= ref->key_buff;
+ }
+
+ /* Look for the key in the hash table */
+ if (key_search(key, key_len, &key_ref_ptr))
+ {
+ uchar *last_next_ref_ptr;
+ /*
+ The key is found in the hash table.
+ Add the record to the circular list of the records attached to this key.
+ Below 'rec' is the record to be added into the record chain for the found
+ key, 'key_ref' points to a flatten representation of the st_key_entry
+ structure that contains the key and the head of the record chain.
+ */
+ last_next_ref_ptr= get_next_rec_ref(key_ref_ptr+get_size_of_key_offset());
+ /* rec->next_rec= key_entry->last_rec->next_rec */
+ memcpy(next_ref_ptr, last_next_ref_ptr, get_size_of_rec_offset());
+ /* key_entry->last_rec->next_rec= rec */
+ store_next_rec_ref(last_next_ref_ptr, next_ref_ptr);
+ /* key_entry->last_rec= rec */
+ store_next_rec_ref(key_ref_ptr+get_size_of_key_offset(), next_ref_ptr);
+ }
+ else
+ {
+ /*
+ The key is not found in the hash table.
+ Put the key into the join buffer linking it with the keys for the
+ corresponding hash entry. Create a circular list with one element
+ referencing the record and attach the list to the key in the buffer.
+ */
+ uchar *cp= last_key_entry;
+ cp-= get_size_of_rec_offset()+get_size_of_key_offset();
+ store_next_key_ref(key_ref_ptr, cp);
+ store_null_key_ref(cp);
+ store_next_rec_ref(next_ref_ptr, next_ref_ptr);
+ store_next_rec_ref(cp+get_size_of_key_offset(), next_ref_ptr);
+ if (use_emb_key)
+ {
+ cp-= get_size_of_rec_offset();
+ store_emb_key_ref(cp, key);
+ }
+ else
+ {
+ cp-= key_len;
+ memcpy(cp, key, key_len);
+ }
+ last_key_entry= cp;
+ DBUG_ASSERT(last_key_entry >= end_pos);
+ /* Increment the counter of key_entries in the hash table */
+ key_entries++;
+ }
+ return is_full;
+}
+
+
+/*
+ Read the next record from the buffer of a hashed join cache
+
+ SYNOPSIS
+ get_record()
+
+ DESCRIPTION
+ Additionally to what the default implementation of the virtual
+ function get_record does this implementation skips the link element
+ used to connect the records with the same key into a chain.
+
+ RETURN VALUE
+ TRUE there are no more records to read from the join buffer
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_HASHED::get_record()
+{
+ pos+= get_size_of_rec_offset();
+ return this->JOIN_CACHE::get_record();
+}
+
+
+/*
+ Skip record from a hashed join buffer if its match flag is set to MATCH_FOUND
+
+ SYNOPSIS
+ skip_if_matched()
+
+ DESCRIPTION
+ This implementation of the virtual function skip_if_matched does
+ the same as the default implementation does, but it takes into account
+ the link element used to connect the records with the same key into a chain.
+
+ RETURN VALUE
+ TRUE the match flag is MATCH_FOUND and the record has been skipped
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_HASHED::skip_if_matched()
+{
+ uchar *save_pos= pos;
+ pos+= get_size_of_rec_offset();
+ if (!this->JOIN_CACHE::skip_if_matched())
+ {
+ pos= save_pos;
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+/*
+ Skip record from a hashed join buffer if its match flag dictates to do so
+
+ SYNOPSIS
+ skip_if_uneeded_match()
+
+ DESCRIPTION
+ This implementation of the virtual function skip_if_not_needed_match does
+ the same as the default implementation does, but it takes into account
+ the link element used to connect the records with the same key into a chain.
+
+ RETURN VALUE
+ TRUE the match flag dictates to skip the record
+ FALSE the match flag is off
+*/
+
+bool JOIN_CACHE_HASHED::skip_if_not_needed_match()
+{
+ uchar *save_pos= pos;
+ pos+= get_size_of_rec_offset();
+ if (!this->JOIN_CACHE::skip_if_not_needed_match())
+ {
+ pos= save_pos;
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+/*
+ Search for a key in the hash table of the join buffer
+
+ SYNOPSIS
+ key_search()
+ key pointer to the key value
+ key_len key value length
+ key_ref_ptr OUT position of the reference to the next key from
+ the hash element for the found key , or
+ a position where the reference to the the hash
+ element for the key is to be added in the
+ case when the key has not been found
+
+ DESCRIPTION
+ The function looks for a key in the hash table of the join buffer.
+ If the key is found the functionreturns the position of the reference
+ to the next key from to the hash element for the given key.
+ Otherwise the function returns the position where the reference to the
+ newly created hash element for the given key is to be added.
+
+ RETURN VALUE
+ TRUE the key is found in the hash table
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_HASHED::key_search(uchar *key, uint key_len,
+ uchar **key_ref_ptr)
+{
+ bool is_found= FALSE;
+ uint idx= (this->*hash_func)(key, key_length);
+ uchar *ref_ptr= hash_table+size_of_key_ofs*idx;
+ while (!is_null_key_ref(ref_ptr))
+ {
+ uchar *next_key;
+ ref_ptr= get_next_key_ref(ref_ptr);
+ next_key= use_emb_key ? get_emb_key(ref_ptr-get_size_of_rec_offset()) :
+ ref_ptr-key_length;
+
+ if ((this->*hash_cmp_func)(next_key, key, key_len))
+ {
+ is_found= TRUE;
+ break;
+ }
+ }
+ *key_ref_ptr= ref_ptr;
+ return is_found;
+}
+
+
+/*
+ Hash function that considers a key in the hash table as byte array
+
+ SYNOPSIS
+ get_hash_idx_simple()
+ key pointer to the key value
+ key_len key value length
+
+ DESCRIPTION
+ The function calculates an index of the hash entry in the hash table
+ of the join buffer for the given key. It considers the key just as
+ a sequence of bytes of the length key_len.
+
+ RETURN VALUE
+ the calculated index of the hash entry for the given key
+*/
+
+inline
+uint JOIN_CACHE_HASHED::get_hash_idx_simple(uchar* key, uint key_len)
+{
+ ulong nr= 1;
+ ulong nr2= 4;
+ uchar *pos= key;
+ uchar *end= key+key_len;
+ for (; pos < end ; pos++)
+ {
+ nr^= (ulong) ((((uint) nr & 63)+nr2)*((uint) *pos))+ (nr << 8);
+ nr2+= 3;
+ }
+ return nr % hash_entries;
+}
+
+
+/*
+ Hash function that takes into account collations of the components of the key
+
+ SYNOPSIS
+ get_hash_idx_complex()
+ key pointer to the key value
+ key_len key value length
+
+ DESCRIPTION
+ The function calculates an index of the hash entry in the hash table
+ of the join buffer for the given key. It takes into account that the
+ components of the key may be of a varchar type with different collations.
+ The function guarantees that the same hash value for any two equal
+ keys that may differ as byte sequences.
+ The function takes the info about the components of the key, their
+ types and used collations from the class member ref_key_info containing
+ a pointer to the descriptor of the index that can be used for the join
+ operation.
+
+ RETURN VALUE
+ the calculated index of the hash entry for the given key
+*/
+
+inline
+uint JOIN_CACHE_HASHED::get_hash_idx_complex(uchar *key, uint key_len)
+{
+ return
+ (uint) (key_hashnr(ref_key_info, ref_used_key_parts, key) % hash_entries);
+}
+
+
+/*
+ Compare two key entries in the hash table as sequence of bytes
+
+ SYNOPSIS
+ equal_keys_simple()
+ key1 pointer to the first key entry
+ key2 pointer to the second key entry
+ key_len the length of the key values
+
+ DESCRIPTION
+ The function compares two key entries in the hash table key1 and key2
+ as two sequences bytes of the length key_len
+
+ RETURN VALUE
+ TRUE key1 coincides with key2
+ FALSE otherwise
+*/
+
+inline
+bool JOIN_CACHE_HASHED::equal_keys_simple(uchar *key1, uchar *key2,
+ uint key_len)
+{
+ return memcmp(key1, key2, key_len) == 0;
+}
+
+
+/*
+ Compare two key entries taking into account the used collation
+
+ SYNOPSIS
+ equal_keys_complex()
+ key1 pointer to the first key entry
+ key2 pointer to the second key entry
+ key_len the length of the key values
+
+ DESCRIPTION
+ The function checks whether two key entries in the hash table
+ key1 and key2 are equal as, possibly, compound keys of a certain
+ structure whose components may be of a varchar type and may
+ employ different collations.
+ The descriptor of the key structure is taken from the class
+ member ref_key_info.
+
+ RETURN VALUE
+ TRUE key1 is equal tokey2
+ FALSE otherwise
+*/
+
+inline
+bool JOIN_CACHE_HASHED::equal_keys_complex(uchar *key1, uchar *key2,
+ uint key_len)
+{
+ return key_buf_cmp(ref_key_info, ref_used_key_parts, key1, key2) == 0;
+}
+
+
+/*
+ Clean up the hash table of the join buffer
+
+ SYNOPSIS
+ cleanup_hash_table()
+ key pointer to the key value
+ key_len key value length
+
+ DESCRIPTION
+ The function cleans up the hash table in the join buffer removing all
+ hash elements from the table.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE_HASHED:: cleanup_hash_table()
+{
+ last_key_entry= hash_table;
+ bzero(hash_table, (buff+buff_size)-hash_table);
+ key_entries= 0;
+}
+
+
+/*
+ Check whether all records in a key chain have their match flags set on
+
+ SYNOPSIS
+ check_all_match_flags_for_key()
+ key_chain_ptr
+
+ DESCRIPTION
+ This function retrieves records in the given circular chain and checks
+ whether their match flags are set on. The parameter key_chain_ptr shall
+ point to the position in the join buffer storing the reference to the
+ last element of this chain.
+
+ RETURN VALUE
+ TRUE if each retrieved record has its match flag set to MATCH_FOUND
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_HASHED::check_all_match_flags_for_key(uchar *key_chain_ptr)
+{
+ uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
+ uchar *next_rec_ref_ptr= last_rec_ref_ptr;
+ do
+ {
+ next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
+ uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
+ if (get_match_flag_by_pos(rec_ptr) != MATCH_FOUND)
+ return FALSE;
+ }
+ while (next_rec_ref_ptr != last_rec_ref_ptr);
+ return TRUE;
+}
+
+
+/*
+ Get the next key built for the records from the buffer of a hashed join cache
+
+ SYNOPSIS
+ get_next_key()
+ key pointer to the buffer where the key value is to be placed
+
+ DESCRIPTION
+ The function reads the next key value stored in the hash table of the
+ join buffer. Depending on the value of the use_emb_key flag of the
+ join cache the value is read either from the table itself or from
+ the record field where it occurs.
+
+ RETURN VALUE
+ length of the key value - if the starting value of 'cur_key_entry' refers
+ to the position after that referred by the the value of 'last_key_entry',
+ 0 - otherwise.
+*/
+
+uint JOIN_CACHE_HASHED::get_next_key(uchar ** key)
+{
+ if (curr_key_entry == last_key_entry)
+ return 0;
+
+ curr_key_entry-= key_entry_length;
+
+ *key = use_emb_key ? get_emb_key(curr_key_entry) : curr_key_entry;
+
+ DBUG_ASSERT(*key >= buff && *key < hash_table);
+
+ return key_length;
+}
+
+
+/*
+ Initiate an iteration process over records in the joined table
+
+ SYNOPSIS
+ open()
+
+ DESCRIPTION
+ The function initiates the process of iteration over records from the
+ joined table recurrently performed by the BNL/BKLH join algorithm.
+
+ RETURN VALUE
+ 0 the initiation is a success
+ error code otherwise
+*/
+
+int JOIN_TAB_SCAN::open()
+{
+ save_or_restore_used_tabs(join_tab, FALSE);
+ is_first_record= TRUE;
+ join_tab->tracker->r_scans++;
+ return join_init_read_record(join_tab);
+}
+
+
+/*
+ Read the next record that can match while scanning the joined table
+
+ SYNOPSIS
+ next()
+
+ DESCRIPTION
+ The function reads the next record from the joined table that can
+ match some records in the buffer of the join cache 'cache'. To do
+ this the function calls the function that scans table records and
+ looks for the next one that meets the condition pushed to the
+ joined table join_tab.
+
+ NOTES
+ The function catches the signal that kills the query.
+
+ RETURN VALUE
+ 0 the next record exists and has been successfully read
+ error code otherwise
+*/
+
+int JOIN_TAB_SCAN::next()
+{
+ int err= 0;
+ int skip_rc;
+ READ_RECORD *info= &join_tab->read_record;
+ SQL_SELECT *select= join_tab->cache_select;
+ THD *thd= join->thd;
+
+ if (is_first_record)
+ is_first_record= FALSE;
+ else
+ err= info->read_record();
+
+ if (!err)
+ {
+ join_tab->tracker->r_rows++;
+ }
+
+ while (!err && select && (skip_rc= select->skip_record(thd)) <= 0)
+ {
+ if (unlikely(thd->check_killed()) || skip_rc < 0)
+ return 1;
+ /*
+ Move to the next record if the last retrieved record does not
+ meet the condition pushed to the table join_tab.
+ */
+ err= info->read_record();
+ if (!err)
+ {
+ join_tab->tracker->r_rows++;
+ }
+ }
+
+ if (!err)
+ join_tab->tracker->r_rows_after_where++;
+ return err;
+}
+
+
+/*
+ Walk back in join order from join_tab until we encounter a join tab with
+ tab->cache!=NULL, and save/restore tab->table->status along the way.
+
+ @param save TRUE save
+ FALSE restore
+*/
+
+static void save_or_restore_used_tabs(JOIN_TAB *join_tab, bool save)
+{
+ JOIN_TAB *first= join_tab->bush_root_tab?
+ join_tab->bush_root_tab->bush_children->start :
+ join_tab->join->join_tab + join_tab->join->const_tables;
+
+ for (JOIN_TAB *tab= join_tab-1; tab != first && !tab->cache; tab--)
+ {
+ if (tab->bush_children)
+ {
+ for (JOIN_TAB *child= tab->bush_children->start;
+ child != tab->bush_children->end;
+ child++)
+ {
+ if (save)
+ child->table->status= child->status;
+ else
+ {
+ tab->status= tab->table->status;
+ tab->table->status= 0;
+ }
+ }
+ }
+
+ if (save)
+ tab->table->status= tab->status;
+ else
+ {
+ tab->status= tab->table->status;
+ tab->table->status= 0;
+ }
+ }
+}
+
+
+/*
+ Perform finalizing actions for a scan over the table records
+
+ SYNOPSIS
+ close()
+
+ DESCRIPTION
+ The function performs the necessary restoring actions after
+ the table scan over the joined table has been finished.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_TAB_SCAN::close()
+{
+ save_or_restore_used_tabs(join_tab, TRUE);
+}
+
+
+/*
+ Prepare to iterate over the BNL join cache buffer to look for matches
+
+ SYNOPSIS
+ prepare_look_for_matches()
+ skip_last <-> ignore the last record in the buffer
+
+ DESCRIPTION
+ The function prepares the join cache for an iteration over the
+ records in the join buffer. The iteration is performed when looking
+ for matches for the record from the joined table join_tab that
+ has been placed into the record buffer of the joined table.
+ If the value of the parameter skip_last is TRUE then the last
+ record from the join buffer is ignored.
+ The function initializes the counter of the records that have been
+ not iterated over yet.
+
+ RETURN VALUE
+ TRUE there are no records in the buffer to iterate over
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BNL::prepare_look_for_matches(bool skip_last)
+{
+ if (!records)
+ return TRUE;
+ reset(FALSE);
+ rem_records= (uint)records - MY_TEST(skip_last);
+ return rem_records == 0;
+}
+
+
+/*
+ Get next record from the BNL join cache buffer when looking for matches
+
+ SYNOPSIS
+ get_next_candidate_for_match
+
+ DESCRIPTION
+ This method is used for iterations over the records from the join
+ cache buffer when looking for matches for records from join_tab.
+ The methods performs the necessary preparations to read the next record
+ from the join buffer into the record buffer by the method
+ read_next_candidate_for_match, or, to skip the next record from the join
+ buffer by the method skip_recurrent_candidate_for_match.
+ This implementation of the virtual method get_next_candidate_for_match
+ just decrements the counter of the records that are to be iterated over
+ and returns the current value of the cursor 'pos' as the position of
+ the record to be processed.
+
+ RETURN VALUE
+ pointer to the position right after the prefix of the current record
+ in the join buffer if the there is another record to iterate over,
+ 0 - otherwise.
+*/
+
+uchar *JOIN_CACHE_BNL::get_next_candidate_for_match()
+{
+ if (!rem_records)
+ return 0;
+ rem_records--;
+ return pos+base_prefix_length;
+}
+
+
+/*
+ Check whether the matching record from the BNL cache is to be skipped
+
+ SYNOPSIS
+ skip_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after the prefix
+ of the current record
+
+ DESCRIPTION
+ This implementation of the virtual function just calls the
+ method skip_if_not_needed_match to check whether the record referenced by
+ ref_ptr has its match flag set either to MATCH_FOUND and join_tab is the
+ first inner table of a semi-join, or it's set to MATCH_IMPOSSIBLE and
+ join_tab is the first inner table of an outer join.
+ If so, the function just skips this record setting the value of the
+ cursor 'pos' to the position right after it.
+
+ RETURN VALUE
+ TRUE the record referenced by rec_ptr has been skipped
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BNL::skip_next_candidate_for_match(uchar *rec_ptr)
+{
+ pos= rec_ptr-base_prefix_length;
+ return skip_if_not_needed_match();
+}
+
+
+/*
+ Read next record from the BNL join cache buffer when looking for matches
+
+ SYNOPSIS
+ read_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after the prefix
+ the current record.
+
+ DESCRIPTION
+ This implementation of the virtual method read_next_candidate_for_match
+ calls the method get_record to read the record referenced by rec_ptr from
+ the join buffer into the record buffer. If this record refers to the
+ fields in the other join buffers the call of get_record ensures that
+ these fields are read into the corresponding record buffers as well.
+ This function is supposed to be called after a successful call of
+ the method get_next_candidate_for_match.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE_BNL::read_next_candidate_for_match(uchar *rec_ptr)
+{
+ pos= rec_ptr-base_prefix_length;
+ get_record();
+}
+
+
+/*
+ Initialize the BNL join cache
+
+ SYNOPSIS
+ init
+ for_explain join buffer is initialized for explain only
+
+ DESCRIPTION
+ The function initializes the cache structure. It is supposed to be called
+ right after a constructor for the JOIN_CACHE_BNL.
+
+ NOTES
+ The function first constructs a companion object of the type JOIN_TAB_SCAN,
+ then it calls the init method of the parent class.
+
+ RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE_BNL::init(bool for_explain)
+{
+ DBUG_ENTER("JOIN_CACHE_BNL::init");
+
+ if (!(join_tab_scan= new JOIN_TAB_SCAN(join, join_tab)))
+ DBUG_RETURN(1);
+
+ DBUG_RETURN(JOIN_CACHE::init(for_explain));
+}
+
+
+/*
+ Get the chain of records from buffer matching the current candidate for join
+
+ SYNOPSIS
+ get_matching_chain_by_join_key()
+
+ DESCRIPTION
+ This function first build a join key for the record of join_tab that
+ currently is in the join buffer for this table. Then it looks for
+ the key entry with this key in the hash table of the join cache.
+ If such a key entry is found the function returns the pointer to
+ the head of the chain of records in the join_buffer that match this
+ key.
+
+ RETURN VALUE
+ The pointer to the corresponding circular list of records if
+ the key entry with the join key is found, 0 - otherwise.
+*/
+
+uchar *JOIN_CACHE_BNLH::get_matching_chain_by_join_key()
+{
+ uchar *key_ref_ptr;
+ TABLE *table= join_tab->table;
+ TABLE_REF *ref= &join_tab->ref;
+ KEY *keyinfo= join_tab->get_keyinfo_by_key_no(ref->key);
+ /* Build the join key value out of the record in the record buffer */
+ key_copy(key_buff, table->record[0], keyinfo, key_length, TRUE);
+ /* Look for this key in the join buffer */
+ if (!key_search(key_buff, key_length, &key_ref_ptr))
+ return 0;
+ return key_ref_ptr+get_size_of_key_offset();
+}
+
+
+/*
+ Prepare to iterate over the BNLH join cache buffer to look for matches
+
+ SYNOPSIS
+ prepare_look_for_matches()
+ skip_last <-> ignore the last record in the buffer
+
+ DESCRIPTION
+ The function prepares the join cache for an iteration over the
+ records in the join buffer. The iteration is performed when looking
+ for matches for the record from the joined table join_tab that
+ has been placed into the record buffer of the joined table.
+ If the value of the parameter skip_last is TRUE then the last
+ record from the join buffer is ignored.
+ The function builds the hashed key from the join fields of join_tab
+ and uses this key to look in the hash table of the join cache for
+ the chain of matching records in in the join buffer. If it finds
+ such a chain it sets the member last_rec_ref_ptr to point to the
+ last link of the chain while setting the member next_rec_ref_po 0.
+
+ RETURN VALUE
+ TRUE there are no matching records in the buffer to iterate over
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BNLH::prepare_look_for_matches(bool skip_last)
+{
+ uchar *curr_matching_chain;
+ last_matching_rec_ref_ptr= next_matching_rec_ref_ptr= 0;
+ if (!(curr_matching_chain= get_matching_chain_by_join_key()))
+ return 1;
+ last_matching_rec_ref_ptr= get_next_rec_ref(curr_matching_chain);
+ return 0;
+}
+
+
+/*
+ Get next record from the BNLH join cache buffer when looking for matches
+
+ SYNOPSIS
+ get_next_candidate_for_match
+
+ DESCRIPTION
+ This method is used for iterations over the records from the join
+ cache buffer when looking for matches for records from join_tab.
+ The methods performs the necessary preparations to read the next record
+ from the join buffer into the record buffer by the method
+ read_next_candidate_for_match, or, to skip the next record from the join
+ buffer by the method skip_next_candidate_for_match.
+ This implementation of the virtual method moves to the next record
+ in the chain of all records from the join buffer that are to be
+ equi-joined with the current record from join_tab.
+
+ RETURN VALUE
+ pointer to the beginning of the record fields in the join buffer
+ if the there is another record to iterate over, 0 - otherwise.
+*/
+
+uchar *JOIN_CACHE_BNLH::get_next_candidate_for_match()
+{
+ if (next_matching_rec_ref_ptr == last_matching_rec_ref_ptr)
+ return 0;
+ next_matching_rec_ref_ptr= get_next_rec_ref(next_matching_rec_ref_ptr ?
+ next_matching_rec_ref_ptr :
+ last_matching_rec_ref_ptr);
+ return next_matching_rec_ref_ptr+rec_fields_offset;
+}
+
+
+/*
+ Check whether the matching record from the BNLH cache is to be skipped
+
+ SYNOPSIS
+ skip_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after
+ the previous record
+
+ DESCRIPTION
+ This implementation of the virtual function just calls the
+ method get_match_flag_by_pos to check whether the record referenced
+ by ref_ptr has its match flag set to MATCH_FOUND.
+
+ RETURN VALUE
+ TRUE the record referenced by rec_ptr has its match flag set to
+ MATCH_FOUND
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BNLH::skip_next_candidate_for_match(uchar *rec_ptr)
+{
+ return join_tab->check_only_first_match() &&
+ (get_match_flag_by_pos(rec_ptr) == MATCH_FOUND);
+}
+
+
+/*
+ Read next record from the BNLH join cache buffer when looking for matches
+
+ SYNOPSIS
+ read_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after
+ the previous record
+
+ DESCRIPTION
+ This implementation of the virtual method read_next_candidate_for_match
+ calls the method get_record_by_pos to read the record referenced by rec_ptr
+ from the join buffer into the record buffer. If this record refers to
+ fields in the other join buffers the call of get_record_by_po ensures that
+ these fields are read into the corresponding record buffers as well.
+ This function is supposed to be called after a successful call of
+ the method get_next_candidate_for_match.
+
+ RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE_BNLH::read_next_candidate_for_match(uchar *rec_ptr)
+{
+ get_record_by_pos(rec_ptr);
+}
+
+
+/*
+ Initialize the BNLH join cache
+
+ SYNOPSIS
+ init
+ for_explain join buffer is initialized for explain only
+
+ DESCRIPTION
+ The function initializes the cache structure. It is supposed to be called
+ right after a constructor for the JOIN_CACHE_BNLH.
+
+ NOTES
+ The function first constructs a companion object of the type JOIN_TAB_SCAN,
+ then it calls the init method of the parent class.
+
+ RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE_BNLH::init(bool for_explain)
+{
+ DBUG_ENTER("JOIN_CACHE_BNLH::init");
+
+ if (!(join_tab_scan= new JOIN_TAB_SCAN(join, join_tab)))
+ DBUG_RETURN(1);
+
+ DBUG_RETURN(JOIN_CACHE_HASHED::init(for_explain));
+}
+
+
+/*
+ Calculate the increment of the MRR buffer for a record write
+
+ SYNOPSIS
+ aux_buffer_incr()
+
+ DESCRIPTION
+ This implementation of the virtual function aux_buffer_incr determines
+ for how much the size of the MRR buffer should be increased when another
+ record is added to the cache.
+
+ RETURN VALUE
+ the increment of the size of the MRR buffer for the next record
+*/
+
+uint JOIN_TAB_SCAN_MRR::aux_buffer_incr(size_t recno)
+{
+ uint incr= 0;
+ TABLE_REF *ref= &join_tab->ref;
+ TABLE *tab= join_tab->table;
+ ha_rows rec_per_key=
+ (ha_rows) tab->key_info[ref->key].actual_rec_per_key(ref->key_parts-1);
+ set_if_bigger(rec_per_key, 1);
+ if (recno == 1)
+ incr= ref->key_length + tab->file->ref_length;
+ incr+= (uint)(tab->file->stats.mrr_length_per_rec * rec_per_key);
+ return incr;
+}
+
+
+/*
+ Initiate iteration over records returned by MRR for the current join buffer
+
+ SYNOPSIS
+ open()
+
+ DESCRIPTION
+ The function initiates the process of iteration over the records from
+ join_tab returned by the MRR interface functions for records from
+ the join buffer. Such an iteration is performed by the BKA/BKAH join
+ algorithm for each new refill of the join buffer.
+ The function calls the MRR handler function multi_range_read_init to
+ initiate this process.
+
+ RETURN VALUE
+ 0 the initiation is a success
+ error code otherwise
+*/
+
+int JOIN_TAB_SCAN_MRR::open()
+{
+ handler *file= join_tab->table->file;
+
+ join_tab->table->null_row= 0;
+
+
+ /* Dynamic range access is never used with BKA */
+ DBUG_ASSERT(join_tab->use_quick != 2);
+
+ join_tab->tracker->r_scans++;
+ save_or_restore_used_tabs(join_tab, FALSE);
+
+ init_mrr_buff();
+
+ /*
+ Prepare to iterate over keys from the join buffer and to get
+ matching candidates obtained with MMR handler functions.
+ */
+ if (!file->inited)
+ file->ha_index_init(join_tab->ref.key, 1);
+ ranges= cache->get_number_of_ranges_for_mrr();
+ if (!join_tab->cache_idx_cond)
+ range_seq_funcs.skip_index_tuple= 0;
+ return file->multi_range_read_init(&range_seq_funcs, (void*) cache,
+ ranges, mrr_mode, &mrr_buff);
+}
+
+
+/*
+ Read the next record returned by MRR for the current join buffer
+
+ SYNOPSIS
+ next()
+
+ DESCRIPTION
+ The function reads the next record from the joined table join_tab
+ returned by the MRR handler function multi_range_read_next for
+ the current refill of the join buffer. The record is read into
+ the record buffer used for join_tab records in join operations.
+
+ RETURN VALUE
+ 0 the next record exists and has been successfully read
+ error code otherwise
+*/
+
+int JOIN_TAB_SCAN_MRR::next()
+{
+ char **ptr= (char **) cache->get_curr_association_ptr();
+
+ DBUG_ASSERT(sizeof(range_id_t) == sizeof(*ptr));
+ int rc= join_tab->table->file->multi_range_read_next((range_id_t*)ptr) ? -1 : 0;
+ if (!rc)
+ {
+ join_tab->tracker->r_rows++;
+ join_tab->tracker->r_rows_after_where++;
+ /*
+ If a record in in an incremental cache contains no fields then the
+ association for the last record in cache will be equal to cache->end_pos
+ */
+ /*
+ psergey: this makes no sense where HA_MRR_NO_ASSOC is used.
+ DBUG_ASSERT(cache->buff <= (uchar *) (*ptr) &&
+ (uchar *) (*ptr) <= cache->end_pos);
+ */
+ }
+ return rc;
+}
+
+
+static
+void bka_range_seq_key_info(void *init_params, uint *length,
+ key_part_map *map)
+{
+ TABLE_REF *ref= &(((JOIN_CACHE*)init_params)->join_tab->ref);
+ *length= ref->key_length;
+ *map= (key_part_map(1) << ref->key_parts) - 1;
+}
+
+
+/*
+Initialize retrieval of range sequence for BKA join algorithm
+
+SYNOPSIS
+ bka_range_seq_init()
+ init_params pointer to the BKA join cache object
+ n_ranges the number of ranges obtained
+ flags combination of MRR flags
+
+DESCRIPTION
+ The function interprets init_param as a pointer to a JOIN_CACHE_BKA
+ object. The function prepares for an iteration over the join keys
+ built for all records from the cache join buffer.
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ init_param value that is to be used as a parameter of bka_range_seq_next()
+*/
+
+static
+range_seq_t bka_range_seq_init(void *init_param, uint n_ranges, uint flags)
+{
+ DBUG_ENTER("bka_range_seq_init");
+ JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) init_param;
+ cache->reset(0);
+ DBUG_RETURN((range_seq_t) init_param);
+}
+
+
+/*
+Get the next range/key over records from the join buffer used by a BKA cache
+
+SYNOPSIS
+ bka_range_seq_next()
+ seq the value returned by bka_range_seq_init
+ range OUT reference to the next range
+
+DESCRIPTION
+ The function interprets seq as a pointer to a JOIN_CACHE_BKA
+ object. The function returns a pointer to the range descriptor
+ for the key built over the next record from the join buffer.
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ FALSE ok, the range structure filled with info about the next range/key
+ TRUE no more ranges
+*/
+
+static
+bool bka_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
+{
+ DBUG_ENTER("bka_range_seq_next");
+ JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
+ TABLE_REF *ref= &cache->join_tab->ref;
+ key_range *start_key= &range->start_key;
+ if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
+ {
+ start_key->keypart_map= (1 << ref->key_parts) - 1;
+ start_key->flag= HA_READ_KEY_EXACT;
+ range->end_key= *start_key;
+ range->end_key.flag= HA_READ_AFTER_KEY;
+ range->ptr= (char *) cache->get_curr_rec();
+ range->range_flag= EQ_RANGE;
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(1);
+}
+
+
+/*
+Check whether range_info orders to skip the next record from BKA buffer
+
+SYNOPSIS
+ bka_range_seq_skip_record()
+ seq value returned by bka_range_seq_init()
+ range_info information about the next range
+ rowid [NOT USED] rowid of the record to be checked
+
+
+DESCRIPTION
+ The function interprets seq as a pointer to a JOIN_CACHE_BKA object.
+ The function returns TRUE if the record with this range_info
+ is to be filtered out from the stream of records returned by
+ multi_range_read_next().
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ 1 record with this range_info is to be filtered out from the stream
+ of records returned by multi_range_read_next()
+ 0 the record is to be left in the stream
+*/
+
+static
+bool bka_range_seq_skip_record(range_seq_t rseq, range_id_t range_info, uchar *rowid)
+{
+ DBUG_ENTER("bka_range_seq_skip_record");
+ JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
+ bool res= cache->get_match_flag_by_pos((uchar *) range_info) ==
+ JOIN_CACHE::MATCH_FOUND;
+ DBUG_RETURN(res);
+}
+
+
+/*
+Check if the record combination from BKA cache matches the index condition
+
+SYNOPSIS
+ bka_skip_index_tuple()
+ rseq value returned by bka_range_seq_init()
+ range_info record chain for the next range/key returned by MRR
+
+DESCRIPTION
+ This is wrapper for JOIN_CACHE_BKA::skip_index_tuple method,
+ see comments there.
+
+NOTE
+ This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
+
+RETURN VALUE
+ 0 The record combination satisfies the index condition
+ 1 Otherwise
+*/
+
+static
+bool bka_skip_index_tuple(range_seq_t rseq, range_id_t range_info)
+{
+ DBUG_ENTER("bka_skip_index_tuple");
+ JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
+ THD *thd= cache->thd();
+ bool res;
+ status_var_increment(thd->status_var.ha_icp_attempts);
+ if (!(res= cache->skip_index_tuple(range_info)))
+ status_var_increment(thd->status_var.ha_icp_match);
+ DBUG_RETURN(res);
+}
+
+
+/*
+Prepare to read the record from BKA cache matching the current joined record
+
+SYNOPSIS
+ prepare_look_for_matches()
+ skip_last <-> ignore the last record in the buffer (always unused here)
+
+DESCRIPTION
+ The function prepares to iterate over records in the join cache buffer
+ matching the record loaded into the record buffer for join_tab when
+ performing join operation by BKA join algorithm. With BKA algorithms the
+ record loaded into the record buffer for join_tab always has a direct
+ reference to the matching records from the join buffer. When the regular
+ BKA join algorithm is employed the record from join_tab can refer to
+ only one such record.
+ The function sets the counter of the remaining records from the cache
+ buffer that would match the current join_tab record to 1.
+
+RETURN VALUE
+ TRUE there are no records in the buffer to iterate over
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BKA::prepare_look_for_matches(bool skip_last)
+{
+ if (!records)
+ return TRUE;
+ rem_records= 1;
+ return FALSE;
+}
+
+
+/*
+Get the record from the BKA cache matching the current joined record
+
+SYNOPSIS
+ get_next_candidate_for_match
+
+DESCRIPTION
+ This method is used for iterations over the records from the join
+ cache buffer when looking for matches for records from join_tab.
+ The method performs the necessary preparations to read the next record
+ from the join buffer into the record buffer by the method
+ read_next_candidate_for_match, or, to skip the next record from the join
+ buffer by the method skip_if_not_needed_match.
+ This implementation of the virtual method get_next_candidate_for_match
+ just decrements the counter of the records that are to be iterated over
+ and returns the value of curr_association as a reference to the position
+ of the beginning of the record fields in the buffer.
+
+RETURN VALUE
+ pointer to the start of the record fields in the join buffer
+ if the there is another record to iterate over, 0 - otherwise.
+*/
+
+uchar *JOIN_CACHE_BKA::get_next_candidate_for_match()
+{
+ if (!rem_records)
+ return 0;
+ rem_records--;
+ return curr_association;
+}
+
+
+/*
+Check whether the matching record from the BKA cache is to be skipped
+
+SYNOPSIS
+ skip_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after
+ the previous record
+
+DESCRIPTION
+ This implementation of the virtual function just calls the
+ method get_match_flag_by_pos to check whether the record referenced
+ by ref_ptr has its match flag set to MATCH_FOUND.
+
+RETURN VALUE
+ TRUE the record referenced by rec_ptr has its match flag set to
+ MATCH_FOUND
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BKA::skip_next_candidate_for_match(uchar *rec_ptr)
+{
+ return join_tab->check_only_first_match() &&
+ (get_match_flag_by_pos(rec_ptr) == MATCH_FOUND);
+}
+
+
+/*
+Read the next record from the BKA join cache buffer when looking for matches
+
+SYNOPSIS
+ read_next_candidate_for_match
+ rec_ptr pointer to the position in the join buffer right after
+ the previous record
+
+DESCRIPTION
+ This implementation of the virtual method read_next_candidate_for_match
+ calls the method get_record_by_pos to read the record referenced by rec_ptr
+ from the join buffer into the record buffer. If this record refers to
+ fields in the other join buffers the call of get_record_by_po ensures that
+ these fields are read into the corresponding record buffers as well.
+ This function is supposed to be called after a successful call of
+ the method get_next_candidate_for_match.
+
+RETURN VALUE
+ none
+*/
+
+void JOIN_CACHE_BKA::read_next_candidate_for_match(uchar *rec_ptr)
+{
+ get_record_by_pos(rec_ptr);
+}
+
+
+/*
+Initialize the BKA join cache
+
+SYNOPSIS
+ init
+ for_explain join buffer is initialized for explain only
+
+
+DESCRIPTION
+ The function initializes the cache structure. It is supposed to be called
+ right after a constructor for the JOIN_CACHE_BKA.
+
+NOTES
+ The function first constructs a companion object of the type
+ JOIN_TAB_SCAN_MRR, then it calls the init method of the parent class.
+
+RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE_BKA::init(bool for_explain)
+{
+ int res;
+ bool check_only_first_match= join_tab->check_only_first_match();
+
+ RANGE_SEQ_IF rs_funcs= { bka_range_seq_key_info,
+ bka_range_seq_init,
+ bka_range_seq_next,
+ check_only_first_match ? bka_range_seq_skip_record : 0,
+ bka_skip_index_tuple };
+
+ DBUG_ENTER("JOIN_CACHE_BKA::init");
+
+ JOIN_TAB_SCAN_MRR *jsm;
+ if (!(join_tab_scan= jsm= new JOIN_TAB_SCAN_MRR(join, join_tab,
+ mrr_mode, rs_funcs)))
+ DBUG_RETURN(1);
+
+ if ((res= JOIN_CACHE::init(for_explain)))
+ DBUG_RETURN(res);
+
+ if (use_emb_key)
+ jsm->mrr_mode |= HA_MRR_MATERIALIZED_KEYS;
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+Get the key built over the next record from BKA join buffer
+
+SYNOPSIS
+ get_next_key()
+ key pointer to the buffer where the key value is to be placed
+
+DESCRIPTION
+ The function reads key fields from the current record in the join buffer.
+ and builds the key value out of these fields that will be used to access
+ the 'join_tab' table. Some of key fields may belong to previous caches.
+ They are accessed via record references to the record parts stored in the
+ previous join buffers. The other key fields always are placed right after
+ the flag fields of the record.
+ If the key is embedded, which means that its value can be read directly
+ from the join buffer, then *key is set to the beginning of the key in
+ this buffer. Otherwise the key is built in the join_tab->ref->key_buff.
+ The function returns the length of the key if it succeeds ro read it.
+ If is assumed that the functions starts reading at the position of
+ the record length which is provided for each records in a BKA cache.
+ After the key is built the 'pos' value points to the first position after
+ the current record.
+ The function just skips the records with MATCH_IMPOSSIBLE in the
+ match flag field if there is any.
+ The function returns 0 if the initial position is after the beginning
+ of the record fields for last record from the join buffer.
+
+RETURN VALUE
+ length of the key value - if the starting value of 'pos' points to
+ the position before the fields for the last record,
+ 0 - otherwise.
+*/
+
+uint JOIN_CACHE_BKA::get_next_key(uchar ** key)
+{
+ uint len;
+ uint32 rec_len;
+ uchar *init_pos;
+ JOIN_CACHE *cache;
+
+start:
+
+ /* Any record in a BKA cache is prepended with its length */
+ DBUG_ASSERT(with_length);
+
+ if ((pos+size_of_rec_len) > last_rec_pos || !records)
+ return 0;
+
+ /* Read the length of the record */
+ rec_len= get_rec_length(pos);
+ pos+= size_of_rec_len;
+ init_pos= pos;
+
+ /* Read a reference to the previous cache if any */
+ if (prev_cache)
+ pos+= prev_cache->get_size_of_rec_offset();
+
+ curr_rec_pos= pos;
+
+ /* Read all flag fields of the record */
+ read_flag_fields();
+
+ if (with_match_flag &&
+ (Match_flag) curr_rec_pos[0] == MATCH_IMPOSSIBLE )
+ {
+ pos= init_pos+rec_len;
+ goto start;
+ }
+
+ if (use_emb_key)
+ {
+ /* An embedded key is taken directly from the join buffer */
+ *key= pos;
+ len= emb_key_length;
+ }
+ else
+ {
+ /* Read key arguments from previous caches if there are any such fields */
+ if (external_key_arg_fields)
+ {
+ uchar *rec_ptr= curr_rec_pos;
+ uint key_arg_count= external_key_arg_fields;
+ CACHE_FIELD **copy_ptr= blob_ptr-key_arg_count;
+ for (cache= prev_cache; key_arg_count; cache= cache->prev_cache)
+ {
+ uint len= 0;
+ DBUG_ASSERT(cache);
+ rec_ptr= cache->get_rec_ref(rec_ptr);
+ while (!cache->referenced_fields)
+ {
+ cache= cache->prev_cache;
+ DBUG_ASSERT(cache);
+ rec_ptr= cache->get_rec_ref(rec_ptr);
+ }
+ while (key_arg_count &&
+ cache->read_referenced_field(*copy_ptr, rec_ptr, &len))
+ {
+ copy_ptr++;
+ --key_arg_count;
+ }
+ }
+ }
+
+ /*
+ Read the other key arguments from the current record. The fields for
+ these arguments are always first in the sequence of the record's fields.
+ */
+ CACHE_FIELD *copy= field_descr+flag_fields;
+ CACHE_FIELD *copy_end= copy+local_key_arg_fields;
+ bool blob_in_rec_buff= blob_data_is_in_rec_buff(curr_rec_pos);
+ for ( ; copy < copy_end; copy++)
+ read_record_field(copy, blob_in_rec_buff);
+
+ /* Build the key over the fields read into the record buffers */
+ TABLE_REF *ref= &join_tab->ref;
+ cp_buffer_from_ref(join->thd, join_tab->table, ref);
+ *key= ref->key_buff;
+ len= ref->key_length;
+ }
+
+ pos= init_pos+rec_len;
+
+ return len;
+}
+
+
+/*
+Check the index condition of the joined table for a record from the BKA cache
+
+SYNOPSIS
+ skip_index_tuple()
+ range_info pointer to the record returned by MRR
+
+DESCRIPTION
+ This function is invoked from MRR implementation to check if an index
+ tuple matches the index condition. It is used in the case where the index
+ condition actually depends on both columns of the used index and columns
+ from previous tables.
+
+NOTES
+ Accessing columns of the previous tables requires special handling with
+ BKA. The idea of BKA is to collect record combinations in a buffer and
+ then do a batch of ref access lookups, i.e. by the time we're doing a
+ lookup its previous-records-combination is not in prev_table->record[0]
+ but somewhere in the join buffer.
+ We need to get it from there back into prev_table(s)->record[0] before we
+ can evaluate the index condition, and that's why we need this function
+ instead of regular IndexConditionPushdown.
+
+NOTES
+ Possible optimization:
+ Before we unpack the record from a previous table
+ check if this table is used in the condition.
+ If so then unpack the record otherwise skip the unpacking.
+ This should be done by a special virtual method
+ get_partial_record_by_pos().
+
+RETURN VALUE
+ 1 the record combination does not satisfies the index condition
+ 0 otherwise
+*/
+
+bool JOIN_CACHE_BKA::skip_index_tuple(range_id_t range_info)
+{
+ DBUG_ENTER("JOIN_CACHE_BKA::skip_index_tuple");
+ get_record_by_pos((uchar*)range_info);
+ DBUG_RETURN(!join_tab->cache_idx_cond->val_int());
+}
+
+
+
+/*
+Initialize retrieval of range sequence for the BKAH join algorithm
+
+SYNOPSIS
+ bkah_range_seq_init()
+ init_params pointer to the BKAH join cache object
+ n_ranges the number of ranges obtained
+ flags combination of MRR flags
+
+DESCRIPTION
+ The function interprets init_param as a pointer to a JOIN_CACHE_BKAH
+ object. The function prepares for an iteration over distinct join keys
+ built over the records from the cache join buffer.
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ init_param value that is to be used as a parameter of
+ bkah_range_seq_next()
+*/
+
+static
+range_seq_t bkah_range_seq_init(void *init_param, uint n_ranges, uint flags)
+{
+ DBUG_ENTER("bkah_range_seq_init");
+ JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) init_param;
+ cache->reset(0);
+ DBUG_RETURN((range_seq_t) init_param);
+}
+
+
+/*
+Get the next range/key over records from the join buffer of a BKAH cache
+
+SYNOPSIS
+ bkah_range_seq_next()
+ seq value returned by bkah_range_seq_init()
+ range OUT reference to the next range
+
+DESCRIPTION
+ The function interprets seq as a pointer to a JOIN_CACHE_BKAH
+ object. The function returns a pointer to the range descriptor
+ for the next unique key built over records from the join buffer.
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ FALSE ok, the range structure filled with info about the next range/key
+ TRUE no more ranges
+*/
+
+static
+bool bkah_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
+{
+ DBUG_ENTER("bkah_range_seq_next");
+ JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
+ TABLE_REF *ref= &cache->join_tab->ref;
+ key_range *start_key= &range->start_key;
+ if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
+ {
+ start_key->keypart_map= (1 << ref->key_parts) - 1;
+ start_key->flag= HA_READ_KEY_EXACT;
+ range->end_key= *start_key;
+ range->end_key.flag= HA_READ_AFTER_KEY;
+ range->ptr= (char *) cache->get_curr_key_chain();
+ range->range_flag= EQ_RANGE;
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(1);
+}
+
+
+/*
+Check whether range_info orders to skip the next record from BKAH join buffer
+
+SYNOPSIS
+ bkah_range_seq_skip_record()
+ seq value returned by bkah_range_seq_init()
+ range_info information about the next range/key returned by MRR
+ rowid [NOT USED] rowid of the record to be checked (not used)
+
+DESCRIPTION
+ The function interprets seq as a pointer to a JOIN_CACHE_BKAH
+ object. The function returns TRUE if the record with this range_info
+ is to be filtered out from the stream of records returned by
+ multi_range_read_next().
+
+NOTE
+ This function are used only as a callback function.
+
+RETURN VALUE
+ 1 record with this range_info is to be filtered out from the stream
+ of records returned by multi_range_read_next()
+ 0 the record is to be left in the stream
+*/
+
+static
+bool bkah_range_seq_skip_record(range_seq_t rseq, range_id_t range_info, uchar *rowid)
+{
+ DBUG_ENTER("bkah_range_seq_skip_record");
+ JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
+ bool res= cache->check_all_match_flags_for_key((uchar *) range_info);
+ DBUG_RETURN(res);
+}
+
+
+/*
+Check if the record combination from BKAH cache matches the index condition
+
+SYNOPSIS
+ bkah_skip_index_tuple()
+ rseq value returned by bka_range_seq_init()
+ range_info record chain for the next range/key returned by MRR
+
+DESCRIPTION
+ This is wrapper for JOIN_CACHE_BKA_UNIQUE::skip_index_tuple method,
+ see comments there.
+
+NOTE
+ This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
+
+RETURN VALUE
+ 0 some records from the chain satisfy the index condition
+ 1 otherwise
+*/
+
+static
+bool bkah_skip_index_tuple(range_seq_t rseq, range_id_t range_info)
+{
+ DBUG_ENTER("bka_unique_skip_index_tuple");
+ JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
+ THD *thd= cache->thd();
+ bool res;
+ status_var_increment(thd->status_var.ha_icp_attempts);
+ if (!(res= cache->skip_index_tuple(range_info)))
+ status_var_increment(thd->status_var.ha_icp_match);
+ DBUG_RETURN(res);
+}
+
+
+/*
+Prepare to read record from BKAH cache matching the current joined record
+
+SYNOPSIS
+ prepare_look_for_matches()
+ skip_last <-> ignore the last record in the buffer (always unused here)
+
+DESCRIPTION
+ The function prepares to iterate over records in the join cache buffer
+ matching the record loaded into the record buffer for join_tab when
+ performing join operation by BKAH join algorithm. With BKAH algorithm, if
+ association labels are used, then record loaded into the record buffer
+ for join_tab always has a direct reference to the chain of the mathing
+ records from the join buffer. If association labels are not used then
+ then the chain of the matching records is obtained by the call of the
+ get_key_chain_by_join_key function.
+
+RETURN VALUE
+ TRUE there are no records in the buffer to iterate over
+ FALSE otherwise
+*/
+
+bool JOIN_CACHE_BKAH::prepare_look_for_matches(bool skip_last)
+{
+ last_matching_rec_ref_ptr= next_matching_rec_ref_ptr= 0;
+ if (no_association &&
+ !(curr_matching_chain= get_matching_chain_by_join_key())) //psergey: added '!'
+ return 1;
+ last_matching_rec_ref_ptr= get_next_rec_ref(curr_matching_chain);
+ return 0;
+}
+
+/*
+ Initialize the BKAH join cache
+
+ SYNOPSIS
+ init
+ for_explain join buffer is initialized for explain only
+
+ DESCRIPTION
+ The function initializes the cache structure. It is supposed to be called
+ right after a constructor for the JOIN_CACHE_BKAH.
+
+ NOTES
+ The function first constructs a companion object of the type
+ JOIN_TAB_SCAN_MRR, then it calls the init method of the parent class.
+
+ RETURN VALUE
+ 0 initialization with buffer allocations has been succeeded
+ 1 otherwise
+*/
+
+int JOIN_CACHE_BKAH::init(bool for_explain)
+{
+ bool check_only_first_match= join_tab->check_only_first_match();
+
+ no_association= MY_TEST(mrr_mode & HA_MRR_NO_ASSOCIATION);
+
+ RANGE_SEQ_IF rs_funcs= { bka_range_seq_key_info,
+ bkah_range_seq_init,
+ bkah_range_seq_next,
+ check_only_first_match && !no_association ?
+ bkah_range_seq_skip_record : 0,
+ bkah_skip_index_tuple };
+
+ DBUG_ENTER("JOIN_CACHE_BKAH::init");
+
+ if (!(join_tab_scan= new JOIN_TAB_SCAN_MRR(join, join_tab,
+ mrr_mode, rs_funcs)))
+ DBUG_RETURN(1);
+
+ DBUG_RETURN(JOIN_CACHE_HASHED::init(for_explain));
+}
+
+
+/*
+ Check the index condition of the joined table for a record from the BKA cache
+
+ SYNOPSIS
+ skip_index_tuple()
+ range_info record chain returned by MRR
+
+ DESCRIPTION
+ See JOIN_CACHE_BKA::skip_index_tuple().
+ This function is the variant for use with rhe class JOIN_CACHE_BKAH.
+ The difference from JOIN_CACHE_BKA case is that there may be multiple
+ previous table record combinations that share the same key(MRR range).
+ As a consequence, we need to loop through the chain of all table record
+ combinations that match the given MRR range key range_info until we find
+ one that satisfies the index condition.
+
+ NOTE
+ Possible optimization:
+ Before we unpack the record from a previous table
+ check if this table is used in the condition.
+ If so then unpack the record otherwise skip the unpacking.
+ This should be done by a special virtual method
+ get_partial_record_by_pos().
+
+ RETURN VALUE
+ 1 any record combination from the chain referred by range_info
+ does not satisfy the index condition
+ 0 otherwise
+
+
+*/
+
+bool JOIN_CACHE_BKAH::skip_index_tuple(range_id_t range_info)
+{
+ uchar *last_rec_ref_ptr= get_next_rec_ref((uchar*) range_info);
+ uchar *next_rec_ref_ptr= last_rec_ref_ptr;
+ DBUG_ENTER("JOIN_CACHE_BKAH::skip_index_tuple");
+ do
+ {
+ next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
+ uchar *rec_ptr= next_rec_ref_ptr + rec_fields_offset;
+ get_record_by_pos(rec_ptr);
+ if (join_tab->cache_idx_cond->val_int())
+ DBUG_RETURN(FALSE);
+ } while(next_rec_ref_ptr != last_rec_ref_ptr);
+ DBUG_RETURN(TRUE);
+}