From 3f619478f796eddbba6e39502fe941b285dd97b1 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 4 May 2024 20:00:34 +0200 Subject: Adding upstream version 1:10.11.6. Signed-off-by: Daniel Baumann --- libmariadb/external/zlib/adler32_simd.c | 387 ++++++++++++++++++++++++++++++++ 1 file changed, 387 insertions(+) create mode 100644 libmariadb/external/zlib/adler32_simd.c (limited to 'libmariadb/external/zlib/adler32_simd.c') diff --git a/libmariadb/external/zlib/adler32_simd.c b/libmariadb/external/zlib/adler32_simd.c new file mode 100644 index 00000000..5f8c06d0 --- /dev/null +++ b/libmariadb/external/zlib/adler32_simd.c @@ -0,0 +1,387 @@ +/* adler32_simd.c + * + * (C) 1995-2013 Jean-loup Gailly and Mark Adler + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgment in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + * + * Jean-loup Gailly Mark Adler + * jloup@gzip.org madler@alumni.caltech.edu + * + * Copyright 2017 The Chromium Authors. All rights reserved. + * Use of this source code is governed by a BSD-style license that can be + * found in the Chromium source repository LICENSE file. + * + * Per http://en.wikipedia.org/wiki/Adler-32 the adler32 A value (aka s1) is + * the sum of N input data bytes D1 ... DN, + * + * A = A0 + D1 + D2 + ... + DN + * + * where A0 is the initial value. + * + * SSE2 _mm_sad_epu8() can be used for byte sums (see http://bit.ly/2wpUOeD, + * for example) and accumulating the byte sums can use SSE shuffle-adds (see + * the "Integer" section of http://bit.ly/2erPT8t for details). Arm NEON has + * similar instructions. + * + * The adler32 B value (aka s2) sums the A values from each step: + * + * B0 + (A0 + D1) + (A0 + D1 + D2) + ... + (A0 + D1 + D2 + ... + DN) or + * + * B0 + N.A0 + N.D1 + (N-1).D2 + (N-2).D3 + ... + (N-(N-1)).DN + * + * B0 being the initial value. For 32 bytes (ideal for garden-variety SIMD): + * + * B = B0 + 32.A0 + [D1 D2 D3 ... D32] x [32 31 30 ... 1]. + * + * Adjacent blocks of 32 input bytes can be iterated with the expressions to + * compute the adler32 s1 s2 of M >> 32 input bytes [1]. + * + * As M grows, the s1 s2 sums grow. If left unchecked, they would eventually + * overflow the precision of their integer representation (bad). However, s1 + * and s2 also need to be computed modulo the adler BASE value (reduced). If + * at most NMAX bytes are processed before a reduce, s1 s2 _cannot_ overflow + * a uint32_t type (the NMAX constraint) [2]. + * + * [1] the iterative equations for s2 contain constant factors; these can be + * hoisted from the n-blocks do loop of the SIMD code. + * + * [2] zlib adler32_z() uses this fact to implement NMAX-block-based updates + * of the adler s1 s2 of uint32_t type (see adler32.c). + */ + +#include "adler32_simd.h" + +/* Definitions from adler32.c: largest prime smaller than 65536 */ +#define BASE 65521U +/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ +#define NMAX 5552 + +#if defined(ADLER32_SIMD_SSSE3) + +#include + +uint32_t ZLIB_INTERNAL adler32_simd_( /* SSSE3 */ + uint32_t adler, + const unsigned char *buf, + unsigned long len) +{ + /* + * Split Adler-32 into component sums. + */ + uint32_t s1 = adler & 0xffff; + uint32_t s2 = adler >> 16; + + /* + * Process the data in blocks. + */ + const unsigned BLOCK_SIZE = 1 << 5; + + unsigned long blocks = len / BLOCK_SIZE; + len -= blocks * BLOCK_SIZE; + + while (blocks) + { + unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */ + if (n > blocks) + n = (unsigned) blocks; + blocks -= n; + + const __m128i tap1 = + _mm_setr_epi8(32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17); + const __m128i tap2 = + _mm_setr_epi8(16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1); + const __m128i zero = + _mm_setr_epi8( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); + const __m128i ones = + _mm_set_epi16( 1, 1, 1, 1, 1, 1, 1, 1); + + /* + * Process n blocks of data. At most NMAX data bytes can be + * processed before s2 must be reduced modulo BASE. + */ + __m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n); + __m128i v_s2 = _mm_set_epi32(0, 0, 0, s2); + __m128i v_s1 = _mm_set_epi32(0, 0, 0, 0); + + do { + /* + * Load 32 input bytes. + */ + const __m128i bytes1 = _mm_loadu_si128((__m128i*)(buf)); + const __m128i bytes2 = _mm_loadu_si128((__m128i*)(buf + 16)); + + /* + * Add previous block byte sum to v_ps. + */ + v_ps = _mm_add_epi32(v_ps, v_s1); + + /* + * Horizontally add the bytes for s1, multiply-adds the + * bytes by [ 32, 31, 30, ... ] for s2. + */ + v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero)); + const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1); + v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones)); + + v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero)); + const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2); + v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones)); + + buf += BLOCK_SIZE; + + } while (--n); + + v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5)); + + /* + * Sum epi32 ints v_s1(s2) and accumulate in s1(s2). + */ + +#define S23O1 _MM_SHUFFLE(2,3,0,1) /* A B C D -> B A D C */ +#define S1O32 _MM_SHUFFLE(1,0,3,2) /* A B C D -> C D A B */ + + v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1)); + v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32)); + + s1 += _mm_cvtsi128_si32(v_s1); + + v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1)); + v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32)); + + s2 = _mm_cvtsi128_si32(v_s2); + +#undef S23O1 +#undef S1O32 + + /* + * Reduce. + */ + s1 %= BASE; + s2 %= BASE; + } + + /* + * Handle leftover data. + */ + if (len) { + if (len >= 16) { + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + len -= 16; + } + + while (len--) { + s2 += (s1 += *buf++); + } + + if (s1 >= BASE) + s1 -= BASE; + s2 %= BASE; + } + + /* + * Return the recombined sums. + */ + return s1 | (s2 << 16); +} + +#elif defined(ADLER32_SIMD_NEON) + +#include + +uint32_t ZLIB_INTERNAL adler32_simd_( /* NEON */ + uint32_t adler, + const unsigned char *buf, + unsigned long len) +{ + /* + * Split Adler-32 into component sums. + */ + uint32_t s1 = adler & 0xffff; + uint32_t s2 = adler >> 16; + + /* + * Serially compute s1 & s2, until the data is 16-byte aligned. + */ + if ((uintptr_t)buf & 15) { + while ((uintptr_t)buf & 15) { + s2 += (s1 += *buf++); + --len; + } + + if (s1 >= BASE) + s1 -= BASE; + s2 %= BASE; + } + + /* + * Process the data in blocks. + */ + const unsigned BLOCK_SIZE = 1 << 5; + + unsigned long blocks = len / BLOCK_SIZE; + len -= blocks * BLOCK_SIZE; + + while (blocks) + { + unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */ + if (n > blocks) + n = blocks; + blocks -= n; + + /* + * Process n blocks of data. At most NMAX data bytes can be + * processed before s2 must be reduced modulo BASE. + */ + uint32x4_t v_s2 = (uint32x4_t) { 0, 0, 0, s1 * n }; + uint32x4_t v_s1 = (uint32x4_t) { 0, 0, 0, 0 }; + + uint16x8_t v_column_sum_1 = vdupq_n_u16(0); + uint16x8_t v_column_sum_2 = vdupq_n_u16(0); + uint16x8_t v_column_sum_3 = vdupq_n_u16(0); + uint16x8_t v_column_sum_4 = vdupq_n_u16(0); + + do { + /* + * Load 32 input bytes. + */ + const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf)); + const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16)); + + /* + * Add previous block byte sum to v_s2. + */ + v_s2 = vaddq_u32(v_s2, v_s1); + + /* + * Horizontally add the bytes for s1. + */ + v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2)); + + /* + * Vertically add the bytes for s2. + */ + v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8 (bytes1)); + v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1)); + v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8 (bytes2)); + v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2)); + + buf += BLOCK_SIZE; + + } while (--n); + + v_s2 = vshlq_n_u32(v_s2, 5); + + /* + * Multiply-add bytes by [ 32, 31, 30, ... ] for s2. + */ + v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_1), + (uint16x4_t) { 32, 31, 30, 29 }); + v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), + (uint16x4_t) { 28, 27, 26, 25 }); + v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_2), + (uint16x4_t) { 24, 23, 22, 21 }); + v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), + (uint16x4_t) { 20, 19, 18, 17 }); + v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_3), + (uint16x4_t) { 16, 15, 14, 13 }); + v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), + (uint16x4_t) { 12, 11, 10, 9 }); + v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_4), + (uint16x4_t) { 8, 7, 6, 5 }); + v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), + (uint16x4_t) { 4, 3, 2, 1 }); + + /* + * Sum epi32 ints v_s1(s2) and accumulate in s1(s2). + */ + uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1)); + uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2)); + uint32x2_t s1s2 = vpadd_u32(sum1, sum2); + + s1 += vget_lane_u32(s1s2, 0); + s2 += vget_lane_u32(s1s2, 1); + + /* + * Reduce. + */ + s1 %= BASE; + s2 %= BASE; + } + + /* + * Handle leftover data. + */ + if (len) { + if (len >= 16) { + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + s2 += (s1 += *buf++); + + len -= 16; + } + + while (len--) { + s2 += (s1 += *buf++); + } + + if (s1 >= BASE) + s1 -= BASE; + s2 %= BASE; + } + + /* + * Return the recombined sums. + */ + return s1 | (s2 << 16); +} + +#endif /* ADLER32_SIMD_SSSE3 */ -- cgit v1.2.3