/* Copyright (c) 2002, 2016, Oracle and/or its affiliates. Copyright (c) 2011, 2020, MariaDB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */ #include "mariadb.h" /* NO_EMBEDDED_ACCESS_CHECKS */ #include "sql_priv.h" #include "unireg.h" #include "sql_prepare.h" #include "sql_cache.h" // query_cache_* #include "probes_mysql.h" #include "sql_show.h" // append_identifier #include "sql_db.h" // mysql_opt_change_db, mysql_change_db #include "sql_array.h" // Dynamic_array #include "log_event.h" // Query_log_event #include "sql_derived.h" // mysql_handle_derived #include "sql_cte.h" #include "sql_select.h" // Virtual_tmp_table #include "opt_trace.h" #include "my_json_writer.h" #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation #endif #include "sp_head.h" #include "sp.h" #include "sp_pcontext.h" #include "sp_rcontext.h" #include "sp_cache.h" #include "set_var.h" #include "sql_parse.h" // cleanup_items #include "sql_base.h" // close_thread_tables #include "transaction.h" // trans_commit_stmt #include "sql_audit.h" #include "debug_sync.h" #ifdef WITH_WSREP #include "wsrep.h" #include "wsrep_trans_observer.h" #endif /* WITH_WSREP */ /* Sufficient max length of printed destinations and frame offsets (all uints). */ #define SP_INSTR_UINT_MAXLEN 8 #define SP_STMT_PRINT_MAXLEN 40 #include #include "mysql/psi/mysql_statement.h" #include "mysql/psi/mysql_sp.h" #ifdef HAVE_PSI_INTERFACE void init_sp_psi_keys() { const char *category= "sp"; const int num __attribute__((unused)) = __LINE__ + 3; PSI_server->register_statement(category, & sp_instr_stmt::psi_info, 1); PSI_server->register_statement(category, & sp_instr_set::psi_info, 1); PSI_server->register_statement(category, & sp_instr_set_trigger_field::psi_info, 1); PSI_server->register_statement(category, & sp_instr_jump::psi_info, 1); PSI_server->register_statement(category, & sp_instr_jump_if_not::psi_info, 1); PSI_server->register_statement(category, & sp_instr_freturn::psi_info, 1); PSI_server->register_statement(category, & sp_instr_preturn::psi_info, 1); PSI_server->register_statement(category, & sp_instr_hpush_jump::psi_info, 1); PSI_server->register_statement(category, & sp_instr_hpop::psi_info, 1); PSI_server->register_statement(category, & sp_instr_hreturn::psi_info, 1); PSI_server->register_statement(category, & sp_instr_cpush::psi_info, 1); PSI_server->register_statement(category, & sp_instr_cpop::psi_info, 1); PSI_server->register_statement(category, & sp_instr_copen::psi_info, 1); PSI_server->register_statement(category, & sp_instr_cclose::psi_info, 1); PSI_server->register_statement(category, & sp_instr_cfetch::psi_info, 1); PSI_server->register_statement(category, & sp_instr_agg_cfetch::psi_info, 1); PSI_server->register_statement(category, & sp_instr_cursor_copy_struct::psi_info, 1); PSI_server->register_statement(category, & sp_instr_error::psi_info, 1); PSI_server->register_statement(category, & sp_instr_set_case_expr::psi_info, 1); DBUG_ASSERT(SP_PSI_STATEMENT_INFO_COUNT == __LINE__ - num); } #endif #ifdef HAVE_PSI_SP_INTERFACE #define MYSQL_RUN_SP(SP,CODE) \ do { \ PSI_sp_locker_state psi_state; \ PSI_sp_locker *locker= MYSQL_START_SP(&psi_state, (SP)->m_sp_share); \ CODE; \ MYSQL_END_SP(locker); \ } while(0) #else #define MYSQL_RUN_SP(SP, CODE) do { CODE; } while(0) #endif extern "C" uchar *sp_table_key(const uchar *ptr, size_t *plen, my_bool first); /** Helper function which operates on a THD object to set the query start_time to the current time. @param[in, out] thd The session object */ static void reset_start_time_for_sp(THD *thd) { if (!thd->in_sub_stmt) thd->set_start_time(); } bool Item_splocal::append_for_log(THD *thd, String *str) { if (fix_fields_if_needed(thd, NULL)) return true; if (limit_clause_param) return str->append_ulonglong(val_uint()); /* ROW variables are currently not allowed in select_list, e.g.: SELECT row_variable; ROW variables can appear in query parts where name is not important, e.g.: SELECT ROW(1,2)=row_variable FROM t1; So we can skip using NAME_CONST() and use ROW() constants directly. */ if (type_handler() == &type_handler_row) return append_value_for_log(thd, str); if (str->append(STRING_WITH_LEN(" NAME_CONST('")) || str->append(&m_name) || str->append(STRING_WITH_LEN("',"))) return true; return append_value_for_log(thd, str) || str->append(')'); } bool Item_splocal::append_value_for_log(THD *thd, String *str) { StringBuffer str_value_holder(&my_charset_latin1); Item *item= this_item(); String *str_value= item->type_handler()->print_item_value(thd, item, &str_value_holder); return (str_value ? str->append(*str_value) : str->append(NULL_clex_str)); } bool Item_splocal_row_field::append_for_log(THD *thd, String *str) { if (fix_fields_if_needed(thd, NULL)) return true; if (limit_clause_param) return str->append_ulonglong(val_uint()); if (str->append(STRING_WITH_LEN(" NAME_CONST('")) || str->append(&m_name) || str->append('.') || str->append(&m_field_name) || str->append(STRING_WITH_LEN("',"))) return true; return append_value_for_log(thd, str) || str->append(')'); } /** Returns a combination of: - sp_head::MULTI_RESULTS: added if the 'cmd' is a command that might result in multiple result sets being sent back. - sp_head::CONTAINS_DYNAMIC_SQL: added if 'cmd' is one of PREPARE, EXECUTE, DEALLOCATE. */ uint sp_get_flags_for_command(LEX *lex) { uint flags; switch (lex->sql_command) { case SQLCOM_SELECT: if (lex->result && !lex->analyze_stmt) { flags= 0; /* This is a SELECT with INTO clause */ break; } /* fallthrough */ case SQLCOM_ANALYZE: case SQLCOM_OPTIMIZE: case SQLCOM_PRELOAD_KEYS: case SQLCOM_ASSIGN_TO_KEYCACHE: case SQLCOM_CHECKSUM: case SQLCOM_CHECK: case SQLCOM_HA_READ: case SQLCOM_SHOW_AUTHORS: case SQLCOM_SHOW_BINLOGS: case SQLCOM_SHOW_BINLOG_EVENTS: case SQLCOM_SHOW_RELAYLOG_EVENTS: case SQLCOM_SHOW_CHARSETS: case SQLCOM_SHOW_COLLATIONS: case SQLCOM_SHOW_CONTRIBUTORS: case SQLCOM_SHOW_CREATE: case SQLCOM_SHOW_CREATE_DB: case SQLCOM_SHOW_CREATE_FUNC: case SQLCOM_SHOW_CREATE_PROC: case SQLCOM_SHOW_CREATE_PACKAGE: case SQLCOM_SHOW_CREATE_PACKAGE_BODY: case SQLCOM_SHOW_CREATE_EVENT: case SQLCOM_SHOW_CREATE_TRIGGER: case SQLCOM_SHOW_CREATE_USER: case SQLCOM_SHOW_DATABASES: case SQLCOM_SHOW_ERRORS: case SQLCOM_SHOW_EXPLAIN: case SQLCOM_SHOW_ANALYZE: case SQLCOM_SHOW_FIELDS: case SQLCOM_SHOW_FUNC_CODE: case SQLCOM_SHOW_GENERIC: case SQLCOM_SHOW_GRANTS: case SQLCOM_SHOW_ENGINE_STATUS: case SQLCOM_SHOW_ENGINE_LOGS: case SQLCOM_SHOW_ENGINE_MUTEX: case SQLCOM_SHOW_EVENTS: case SQLCOM_SHOW_KEYS: case SQLCOM_SHOW_BINLOG_STAT: case SQLCOM_SHOW_OPEN_TABLES: case SQLCOM_SHOW_PRIVILEGES: case SQLCOM_SHOW_PROCESSLIST: case SQLCOM_SHOW_PROC_CODE: case SQLCOM_SHOW_PACKAGE_BODY_CODE: case SQLCOM_SHOW_SLAVE_HOSTS: case SQLCOM_SHOW_SLAVE_STAT: case SQLCOM_SHOW_STATUS: case SQLCOM_SHOW_STATUS_FUNC: case SQLCOM_SHOW_STATUS_PROC: case SQLCOM_SHOW_STATUS_PACKAGE: case SQLCOM_SHOW_STATUS_PACKAGE_BODY: case SQLCOM_SHOW_STORAGE_ENGINES: case SQLCOM_SHOW_TABLES: case SQLCOM_SHOW_TABLE_STATUS: case SQLCOM_SHOW_VARIABLES: case SQLCOM_SHOW_WARNS: case SQLCOM_REPAIR: flags= sp_head::MULTI_RESULTS; break; /* EXECUTE statement may return a result set, but doesn't have to. We can't, however, know it in advance, and therefore must add this statement here. This is ok, as is equivalent to a result-set statement within an IF condition. */ case SQLCOM_EXECUTE: case SQLCOM_EXECUTE_IMMEDIATE: flags= sp_head::MULTI_RESULTS | sp_head::CONTAINS_DYNAMIC_SQL; break; case SQLCOM_PREPARE: case SQLCOM_DEALLOCATE_PREPARE: flags= sp_head::CONTAINS_DYNAMIC_SQL; break; case SQLCOM_CREATE_TABLE: case SQLCOM_CREATE_SEQUENCE: if (lex->tmp_table()) flags= 0; else flags= sp_head::HAS_COMMIT_OR_ROLLBACK; break; case SQLCOM_DROP_TABLE: case SQLCOM_DROP_SEQUENCE: if (lex->tmp_table()) flags= 0; else flags= sp_head::HAS_COMMIT_OR_ROLLBACK; break; case SQLCOM_FLUSH: flags= sp_head::HAS_SQLCOM_FLUSH; break; case SQLCOM_RESET: flags= sp_head::HAS_SQLCOM_RESET; break; case SQLCOM_CREATE_INDEX: case SQLCOM_CREATE_DB: case SQLCOM_CREATE_PACKAGE: case SQLCOM_CREATE_PACKAGE_BODY: case SQLCOM_CREATE_VIEW: case SQLCOM_CREATE_TRIGGER: case SQLCOM_CREATE_USER: case SQLCOM_CREATE_ROLE: case SQLCOM_ALTER_TABLE: case SQLCOM_ALTER_SEQUENCE: case SQLCOM_ALTER_USER: case SQLCOM_GRANT: case SQLCOM_GRANT_ROLE: case SQLCOM_REVOKE: case SQLCOM_REVOKE_ROLE: case SQLCOM_BEGIN: case SQLCOM_RENAME_TABLE: case SQLCOM_RENAME_USER: case SQLCOM_DROP_INDEX: case SQLCOM_DROP_DB: case SQLCOM_DROP_PACKAGE: case SQLCOM_DROP_PACKAGE_BODY: case SQLCOM_REVOKE_ALL: case SQLCOM_DROP_USER: case SQLCOM_DROP_ROLE: case SQLCOM_DROP_VIEW: case SQLCOM_DROP_TRIGGER: case SQLCOM_TRUNCATE: case SQLCOM_COMMIT: case SQLCOM_ROLLBACK: case SQLCOM_LOAD: case SQLCOM_LOCK_TABLES: case SQLCOM_CREATE_PROCEDURE: case SQLCOM_CREATE_SPFUNCTION: case SQLCOM_ALTER_PROCEDURE: case SQLCOM_ALTER_FUNCTION: case SQLCOM_DROP_PROCEDURE: case SQLCOM_DROP_FUNCTION: case SQLCOM_CREATE_EVENT: case SQLCOM_ALTER_EVENT: case SQLCOM_DROP_EVENT: case SQLCOM_INSTALL_PLUGIN: case SQLCOM_UNINSTALL_PLUGIN: flags= sp_head::HAS_COMMIT_OR_ROLLBACK; break; case SQLCOM_DELETE: case SQLCOM_DELETE_MULTI: case SQLCOM_INSERT: case SQLCOM_REPLACE: case SQLCOM_REPLACE_SELECT: case SQLCOM_INSERT_SELECT: { /* DELETE normally doesn't return resultset, but there are 3 exceptions: - DELETE ... RETURNING - EXPLAIN DELETE ... - ANALYZE DELETE ... */ if (!lex->has_returning() && !lex->describe && !lex->analyze_stmt) flags= 0; else flags= sp_head::MULTI_RESULTS; break; } case SQLCOM_UPDATE: case SQLCOM_UPDATE_MULTI: { if (!lex->describe && !lex->analyze_stmt) flags= 0; else flags= sp_head::MULTI_RESULTS; break; } default: flags= 0; break; } return flags; } /** Prepare an Item for evaluation (call of fix_fields). @param it_addr pointer on item refernce @param cols expected number of elements (1 for scalar, >=1 for ROWs) @retval NULL error @retval non-NULL prepared item */ Item *THD::sp_prepare_func_item(Item **it_addr, uint cols) { DBUG_ENTER("THD::sp_prepare_func_item"); Item *res= sp_fix_func_item(it_addr); if (res && res->check_cols(cols)) DBUG_RETURN(NULL); DBUG_RETURN(res); } /** Fix an Item for evaluation for SP. */ Item *THD::sp_fix_func_item(Item **it_addr) { DBUG_ENTER("THD::sp_fix_func_item"); if ((*it_addr)->fix_fields_if_needed(this, it_addr)) { DBUG_PRINT("info", ("fix_fields() failed")); DBUG_RETURN(NULL); } it_addr= (*it_addr)->this_item_addr(this, it_addr); if ((*it_addr)->fix_fields_if_needed(this, it_addr)) { DBUG_PRINT("info", ("fix_fields() failed")); DBUG_RETURN(NULL); } DBUG_RETURN(*it_addr); } /** Prepare an Item for evaluation as an assignment source, for assignment to the given target. @param to - the assignment target @param it_addr - a pointer on item refernce @retval - NULL on error @retval - a prepared item pointer on success */ Item *THD::sp_fix_func_item_for_assignment(const Field *to, Item **it_addr) { DBUG_ENTER("THD::sp_fix_func_item_for_assignment"); Item *res= sp_fix_func_item(it_addr); if (res && (!res->check_assignability_to(to, false))) DBUG_RETURN(res); DBUG_RETURN(NULL); } /** Evaluate an expression and store the result in the field. @param result_field the field to store the result @param expr_item_ptr the root item of the expression @retval FALSE on success @retval TRUE on error */ bool THD::sp_eval_expr(Field *result_field, Item **expr_item_ptr) { DBUG_ENTER("THD::sp_eval_expr"); DBUG_ASSERT(*expr_item_ptr); Sp_eval_expr_state state(this); /* Save the value in the field. Convert the value if needed. */ DBUG_RETURN(result_field->sp_prepare_and_store_item(this, expr_item_ptr)); } /** Create temporary sp_name object from MDL key. @note The lifetime of this object is bound to the lifetime of the MDL_key. This should be fine as sp_name objects created by this constructor are mainly used for SP-cache lookups. @param key MDL key containing database and routine name. @param qname_buff Buffer to be used for storing quoted routine name (should be at least 2*NAME_LEN+1+1 bytes). */ sp_name::sp_name(const MDL_key *key, char *qname_buff) :Database_qualified_name(key->db_name(), key->db_name_length(), key->name(), key->name_length()), m_explicit_name(false) { if (m_db.length) strxmov(qname_buff, m_db.str, ".", m_name.str, NullS); else strmov(qname_buff, m_name.str); } /** Check that the name 'ident' is ok. It's assumed to be an 'ident' from the parser, so we only have to check length and trailing spaces. The former is a standard requirement (and 'show status' assumes a non-empty name), the latter is a mysql:ism as trailing spaces are removed by get_field(). @retval TRUE bad name @retval FALSE name is ok */ bool check_routine_name(const LEX_CSTRING *ident) { DBUG_ASSERT(ident); DBUG_ASSERT(ident->str); if (!ident->str[0] || ident->str[ident->length-1] == ' ') { my_error(ER_SP_WRONG_NAME, MYF(0), ident->str); return TRUE; } if (check_ident_length(ident)) return TRUE; return FALSE; } /* * * sp_head * */ sp_head *sp_head::create(sp_package *parent, const Sp_handler *handler, enum_sp_aggregate_type agg_type) { MEM_ROOT own_root; init_sql_alloc(key_memory_sp_head_main_root, &own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC, MYF(0)); sp_head *sp; if (!(sp= new (&own_root) sp_head(&own_root, parent, handler, agg_type))) free_root(&own_root, MYF(0)); return sp; } void sp_head::destroy(sp_head *sp) { if (sp) { /* Make a copy of main_mem_root as free_root will free the sp */ MEM_ROOT own_root= sp->main_mem_root; DBUG_PRINT("info", ("mem_root %p moved to %p", &sp->mem_root, &own_root)); delete sp; free_root(&own_root, MYF(0)); } } /* * * sp_head * */ sp_head::sp_head(MEM_ROOT *mem_root_arg, sp_package *parent, const Sp_handler *sph, enum_sp_aggregate_type agg_type) :Query_arena(NULL, STMT_INITIALIZED_FOR_SP), Database_qualified_name(&null_clex_str, &null_clex_str), main_mem_root(*mem_root_arg), #ifdef PROTECT_STATEMENT_MEMROOT executed_counter(0), #endif m_parent(parent), m_handler(sph), m_flags(0), m_tmp_query(NULL), m_explicit_name(false), /* FIXME: the only use case when name is NULL is events, and it should be rewritten soon. Remove the else part and replace 'if' with an assert when this is done. */ m_qname(null_clex_str), m_params(null_clex_str), m_body(null_clex_str), m_body_utf8(null_clex_str), m_defstr(null_clex_str), m_sp_cache_version(0), m_creation_ctx(0), unsafe_flags(0), m_created(0), m_modified(0), m_recursion_level(0), m_next_cached_sp(0), m_param_begin(NULL), m_param_end(NULL), m_cpp_body_begin(NULL), m_thd_root(NULL), m_thd(NULL), m_pcont(new (&main_mem_root) sp_pcontext()), m_cont_level(0) { mem_root= &main_mem_root; set_chistics_agg_type(agg_type); m_first_instance= this; m_first_free_instance= this; m_last_cached_sp= this; m_return_field_def.charset = NULL; DBUG_ENTER("sp_head::sp_head"); m_security_ctx.init(); m_backpatch.empty(); m_backpatch_goto.empty(); m_cont_backpatch.empty(); m_lex.empty(); my_init_dynamic_array(key_memory_sp_head_main_root, &m_instr, sizeof(sp_instr *), 16, 8, MYF(0)); my_hash_init(key_memory_sp_head_main_root, &m_sptabs, system_charset_info, 0, 0, 0, sp_table_key, 0, 0); my_hash_init(key_memory_sp_head_main_root, &m_sroutines, system_charset_info, 0, 0, 0, sp_sroutine_key, 0, 0); DBUG_VOID_RETURN; } sp_package *sp_package::create(LEX *top_level_lex, const sp_name *name, const Sp_handler *sph) { MEM_ROOT own_root; init_sql_alloc(key_memory_sp_head_main_root, &own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC, MYF(0)); sp_package *sp; if (!(sp= new (&own_root) sp_package(&own_root, top_level_lex, name, sph))) free_root(&own_root, MYF(0)); return sp; } sp_package::sp_package(MEM_ROOT *mem_root_arg, LEX *top_level_lex, const sp_name *name, const Sp_handler *sph) :sp_head(mem_root_arg, NULL, sph, DEFAULT_AGGREGATE), m_current_routine(NULL), m_top_level_lex(top_level_lex), m_rcontext(NULL), m_invoked_subroutine_count(0), m_is_instantiated(false), m_is_cloning_routine(false) { init_sp_name(name); } sp_package::~sp_package() { m_routine_implementations.cleanup(); m_routine_declarations.cleanup(); m_body= null_clex_str; if (m_current_routine) sp_head::destroy(m_current_routine->sphead); delete m_rcontext; } /* Test if two routines have equal specifications */ bool sp_head::eq_routine_spec(const sp_head *sp) const { // TODO: Add tests for equal return data types (in case of FUNCTION) // TODO: Add tests for equal argument data types return m_handler->type() == sp->m_handler->type() && m_pcont->context_var_count() == sp->m_pcont->context_var_count(); } bool sp_package::validate_after_parser(THD *thd) { if (m_handler->type() != SP_TYPE_PACKAGE_BODY) return false; sp_head *sp= sp_cache_lookup(&thd->sp_package_spec_cache, this); sp_package *spec= sp ? sp->get_package() : NULL; DBUG_ASSERT(spec); // CREATE PACKAGE must already be cached return validate_public_routines(thd, spec) || validate_private_routines(thd); } bool sp_package::validate_public_routines(THD *thd, sp_package *spec) { /* Check that all routines declared in CREATE PACKAGE have implementations in CREATE PACKAGE BODY. */ List_iterator it(spec->m_routine_declarations); for (LEX *lex; (lex= it++); ) { bool found= false; DBUG_ASSERT(lex->sphead); List_iterator it2(m_routine_implementations); for (LEX *lex2; (lex2= it2++); ) { DBUG_ASSERT(lex2->sphead); if (Sp_handler::eq_routine_name(lex2->sphead->m_name, lex->sphead->m_name) && lex2->sphead->eq_routine_spec(lex->sphead)) { found= true; break; } } if (!found) { my_error(ER_PACKAGE_ROUTINE_IN_SPEC_NOT_DEFINED_IN_BODY, MYF(0), ErrConvDQName(lex->sphead).ptr()); return true; } } return false; } bool sp_package::validate_private_routines(THD *thd) { /* Check that all forwad declarations in CREATE PACKAGE BODY have implementations. */ List_iterator it(m_routine_declarations); for (LEX *lex; (lex= it++); ) { bool found= false; DBUG_ASSERT(lex->sphead); List_iterator it2(m_routine_implementations); for (LEX *lex2; (lex2= it2++); ) { DBUG_ASSERT(lex2->sphead); if (Sp_handler::eq_routine_name(lex2->sphead->m_name, lex->sphead->m_name) && lex2->sphead->eq_routine_spec(lex->sphead)) { found= true; break; } } if (!found) { my_error(ER_PACKAGE_ROUTINE_FORWARD_DECLARATION_NOT_DEFINED, MYF(0), ErrConvDQName(lex->sphead).ptr()); return true; } } return false; } LEX *sp_package::LexList::find(const LEX_CSTRING &name, enum_sp_type type) { List_iterator it(*this); for (LEX *lex; (lex= it++); ) { DBUG_ASSERT(lex->sphead); const char *dot; if (lex->sphead->m_handler->type() == type && (dot= strrchr(lex->sphead->m_name.str, '.'))) { size_t ofs= dot + 1 - lex->sphead->m_name.str; LEX_CSTRING non_qualified_sphead_name= lex->sphead->m_name; non_qualified_sphead_name.str+= ofs; non_qualified_sphead_name.length-= ofs; if (Sp_handler::eq_routine_name(non_qualified_sphead_name, name)) return lex; } } return NULL; } LEX *sp_package::LexList::find_qualified(const LEX_CSTRING &name, enum_sp_type type) { List_iterator it(*this); for (LEX *lex; (lex= it++); ) { DBUG_ASSERT(lex->sphead); if (lex->sphead->m_handler->type() == type && Sp_handler::eq_routine_name(lex->sphead->m_name, name)) return lex; } return NULL; } void sp_package::init_psi_share() { List_iterator it(m_routine_implementations); for (LEX *lex; (lex= it++); ) { DBUG_ASSERT(lex->sphead); lex->sphead->init_psi_share(); } sp_head::init_psi_share(); } void sp_head::init(LEX *lex) { DBUG_ENTER("sp_head::init"); lex->spcont= m_pcont; if (!lex->spcont) DBUG_VOID_RETURN; /* Altough trg_table_fields list is used only in triggers we init for all types of stored procedures to simplify reset_lex()/restore_lex() code. */ lex->trg_table_fields.empty(); #ifdef PROTECT_STATEMENT_MEMROOT executed_counter= 0; #endif DBUG_VOID_RETURN; } void sp_head::init_sp_name(const sp_name *spname) { DBUG_ENTER("sp_head::init_sp_name"); /* Must be initialized in the parser. */ DBUG_ASSERT(spname && spname->m_db.str && spname->m_db.length); /* We have to copy strings to get them into the right memroot. */ Database_qualified_name::copy(&main_mem_root, spname->m_db, spname->m_name); m_explicit_name= spname->m_explicit_name; DBUG_VOID_RETURN; } void sp_head::init_psi_share() { m_sp_share= MYSQL_GET_SP_SHARE(m_handler->type(), m_db.str, static_cast(m_db.length), m_name.str, static_cast(m_name.length)); } void sp_head::set_body_start(THD *thd, const char *cpp_body_start) { m_cpp_body_begin= cpp_body_start; if (!m_parent) thd->m_parser_state->m_lip.body_utf8_start(thd, cpp_body_start); } void sp_head::set_stmt_end(THD *thd, const char *cpp_body_end) { Lex_input_stream *lip= & thd->m_parser_state->m_lip; /* shortcut */ /* Make the string of parameters. */ if (m_param_begin && m_param_end) { m_params.length= m_param_end - m_param_begin; m_params.str= thd->strmake(m_param_begin, m_params.length); } /* Remember end pointer for further dumping of whole statement. */ thd->lex->stmt_definition_end= cpp_body_end; /* Make the string of body (in the original character set). */ m_body= thd->strmake_lex_cstring_trim_whitespace( Lex_cstring(m_cpp_body_begin, cpp_body_end)); /* Make the string of UTF-body. */ lip->body_utf8_append(cpp_body_end); if (!m_parent) m_body_utf8= thd->strmake_lex_cstring_trim_whitespace(lip->body_utf8()); /* Make the string of whole stored-program-definition query (in the original character set). */ m_defstr= thd->strmake_lex_cstring_trim_whitespace( Lex_cstring(lip->get_cpp_buf(), cpp_body_end)); } sp_head::~sp_head() { LEX *lex; sp_instr *i; DBUG_ENTER("sp_head::~sp_head"); /* sp_head::restore_thd_mem_root() must already have been called. */ DBUG_ASSERT(m_thd == NULL); for (uint ip = 0 ; (i = get_instr(ip)) ; ip++) delete i; delete_dynamic(&m_instr); delete m_pcont; free_items(); /* If we have non-empty LEX stack then we just came out of parser with error. Now we should delete all auxilary LEXes and restore original THD::lex. It is safe to not update LEX::ptr because further query string parsing and execution will be stopped anyway. */ while ((lex= (LEX *)m_lex.pop())) { THD *thd= lex->thd; thd->lex->sphead= NULL; lex_end(thd->lex); delete thd->lex; thd->lex= lex; } my_hash_free(&m_sptabs); my_hash_free(&m_sroutines); sp_head::destroy(m_next_cached_sp); DBUG_VOID_RETURN; } void sp_package::LexList::cleanup() { List_iterator it(*this); for (LEX *lex; (lex= it++); ) { lex_end(lex); delete lex; } } /** This is only used for result fields from functions (both during fix_length_and_dec() and evaluation). */ Field * sp_head::create_result_field(uint field_max_length, const LEX_CSTRING *field_name, TABLE *table) const { Field *field; LEX_CSTRING name; DBUG_ENTER("sp_head::create_result_field"); /* m_return_field_def.length is always set to the field length calculated by the parser, according to the RETURNS clause. See prepare_create_field() in sql_table.cc. Value examples, depending on data type: - 11 for INT (character representation length) - 20 for BIGINT (character representation length) - 22 for DOUBLE (character representation length) - N for CHAR(N) CHARACTER SET latin1 (octet length) - 3*N for CHAR(N) CHARACTER SET utf8 (octet length) - 8 for blob-alike data types (packed length !!!) field_max_length is also set according to the data type in the RETURNS clause but can have different values depending on the execution stage: 1. During direct execution: field_max_length is 0, because Item_func_sp::fix_length_and_dec() has not been called yet, so Item_func_sp::max_length is 0 by default. 2a. During PREPARE: field_max_length is 0, because Item_func_sp::fix_length_and_dec() has not been called yet. It's called after create_result_field(). 2b. During EXEC: field_max_length is set to the maximum possible octet length of the RETURNS data type. - N for CHAR(N) CHARACTER SET latin1 (octet length) - 3*N for CHAR(N) CHARACTER SET utf8 (octet length) - 255 for TINYBLOB (octet length, not packed length !!!) Perhaps we should refactor prepare_create_field() to set Create_field::length to maximum octet length for BLOBs, instead of packed length). Note, for integer data types, field_max_length can be bigger than the user specified length, e.g. a field of the INT(1) data type is translated to the item with max_length=11. */ DBUG_ASSERT(field_max_length <= m_return_field_def.length || m_return_field_def.type_handler()->cmp_type() == INT_RESULT || (current_thd->stmt_arena->is_stmt_execute() && m_return_field_def.length == 8 && (m_return_field_def.pack_flag & (FIELDFLAG_BLOB|FIELDFLAG_GEOM)))); if (field_name) name= *field_name; else name= m_name; field= m_return_field_def.make_field(table->s, /* TABLE_SHARE ptr */ table->in_use->mem_root, &name); field->vcol_info= m_return_field_def.vcol_info; if (field) field->init(table); DBUG_RETURN(field); } int cmp_rqp_locations(Rewritable_query_parameter * const *a, Rewritable_query_parameter * const *b) { return (int)((*a)->pos_in_query - (*b)->pos_in_query); } /* StoredRoutinesBinlogging This paragraph applies only to statement-based binlogging. Row-based binlogging does not need anything special like this. Top-down overview: 1. Statements Statements that have is_update_query(stmt) == TRUE are written into the binary log verbatim. Examples: UPDATE tbl SET tbl.x = spfunc_w_side_effects() UPDATE tbl SET tbl.x=1 WHERE spfunc_w_side_effect_that_returns_false(tbl.y) Statements that have is_update_query(stmt) == FALSE (e.g. SELECTs) are not written into binary log. Instead we catch function calls the statement makes and write it into binary log separately (see #3). 2. PROCEDURE calls CALL statements are not written into binary log. Instead * Any FUNCTION invocation (in SET, IF, WHILE, OPEN CURSOR and other SP instructions) is written into binlog separately. * Each statement executed in SP is binlogged separately, according to rules in #1, with the exception that we modify query string: we replace uses of SP local variables with NAME_CONST('spvar_name', ) calls. This substitution is done in subst_spvars(). 3. FUNCTION calls In sp_head::execute_function(), we check * If this function invocation is done from a statement that is written into the binary log. * If there were any attempts to write events to the binary log during function execution (grep for start_union_events and stop_union_events) If the answers are No and Yes, we write the function call into the binary log as "SELECT spfunc(, , ...)" 4. Miscellaneous issues. 4.1 User variables. When we call mysql_bin_log.write() for an SP statement, thd->user_var_events must hold set<{var_name, value}> pairs for all user variables used during the statement execution. This set is produced by tracking user variable reads during statement execution. For SPs, this has the following implications: 1) thd->user_var_events may contain events from several SP statements and needs to be valid after exection of these statements was finished. In order to achieve that, we * Allocate user_var_events array elements on appropriate mem_root (grep for user_var_events_alloc). * Use is_query_in_union() to determine if user_var_event is created. 2) We need to empty thd->user_var_events after we have wrote a function call. This is currently done by making reset_dynamic(&thd->user_var_events); calls in several different places. (TODO cosider moving this into mysql_bin_log.write() function) 4.2 Auto_increment storage in binlog As we may write two statements to binlog from one single logical statement (case of "SELECT func1(),func2()": it is binlogged as "SELECT func1()" and then "SELECT func2()"), we need to reset auto_increment binlog variables after each binlogged SELECT. Otherwise, the auto_increment value of the first SELECT would be used for the second too. */ /** Replace thd->query{_length} with a string that one can write to the binlog. The binlog-suitable string is produced by replacing references to SP local variables with NAME_CONST('sp_var_name', value) calls. @param thd Current thread. @param instr Instruction (we look for Item_splocal instances in instr->free_list) @param query_str Original query string @return - FALSE on success. thd->query{_length} either has been appropriately replaced or there is no need for replacements. - TRUE out of memory error. */ static bool subst_spvars(THD *thd, sp_instr *instr, LEX_STRING *query_str) { DBUG_ENTER("subst_spvars"); Dynamic_array rewritables(PSI_INSTRUMENT_MEM); char *pbuf; StringBuffer<512> qbuf; Copy_query_with_rewrite acc(thd, query_str->str, query_str->length, &qbuf); /* Find rewritable Items used in this statement */ for (Item *item= instr->free_list; item; item= item->next) { Rewritable_query_parameter *rqp= item->get_rewritable_query_parameter(); if (rqp && rqp->pos_in_query) rewritables.append(rqp); } if (!rewritables.elements()) DBUG_RETURN(FALSE); rewritables.sort(cmp_rqp_locations); thd->query_name_consts= (uint)rewritables.elements(); for (Rewritable_query_parameter **rqp= rewritables.front(); rqp <= rewritables.back(); rqp++) { if (acc.append(*rqp)) DBUG_RETURN(TRUE); } if (acc.finalize()) DBUG_RETURN(TRUE); /* Allocate additional space at the end of the new query string for the query_cache_send_result_to_client function. The query buffer layout is: buffer :== The input statement(s) '\0' Terminating null char Length of following current database name 2 Name of current database Flags struct */ size_t buf_len= (qbuf.length() + 1 + QUERY_CACHE_DB_LENGTH_SIZE + thd->db.length + QUERY_CACHE_FLAGS_SIZE + 1); if ((pbuf= (char *) alloc_root(thd->mem_root, buf_len))) { char *ptr= pbuf + qbuf.length(); memcpy(pbuf, qbuf.ptr(), qbuf.length()); *ptr= 0; int2store(ptr+1, thd->db.length); } else DBUG_RETURN(TRUE); thd->set_query(pbuf, qbuf.length()); DBUG_RETURN(FALSE); } void Sp_handler_procedure::recursion_level_error(THD *thd, const sp_head *sp) const { my_error(ER_SP_RECURSION_LIMIT, MYF(0), static_cast(thd->variables.max_sp_recursion_depth), sp->m_name.str); } /** Execute the routine. The main instruction jump loop is there. Assume the parameters already set. @param thd Thread context. @param merge_da_on_success Flag specifying if Warning Info should be propagated to the caller on Completion Condition or not. @todo - Will write this SP statement into binlog separately (TODO: consider changing the condition to "not inside event union") @return Error status. @retval FALSE on success @retval TRUE on error */ bool sp_head::execute(THD *thd, bool merge_da_on_success) { DBUG_ENTER("sp_head::execute"); char saved_cur_db_name_buf[SAFE_NAME_LEN+1]; LEX_STRING saved_cur_db_name= { saved_cur_db_name_buf, sizeof(saved_cur_db_name_buf) }; bool cur_db_changed= FALSE; sp_rcontext *ctx= thd->spcont; bool err_status= FALSE; uint ip= 0; sql_mode_t save_sql_mode; // TODO(cvicentiu) See if you can drop this bit. This is used to resume // execution from where we left off. if (m_chistics.agg_type == GROUP_AGGREGATE) ip= thd->spcont->instr_ptr; bool save_abort_on_warning; Query_arena *old_arena; /* per-instruction arena */ MEM_ROOT execute_mem_root; Query_arena execute_arena(&execute_mem_root, STMT_INITIALIZED_FOR_SP), backup_arena; query_id_t old_query_id; CSET_STRING old_query; TABLE *old_derived_tables; TABLE *old_rec_tables; LEX *old_lex; Item_change_list old_change_list; String old_packet; uint old_server_status; const uint status_backup_mask= SERVER_STATUS_CURSOR_EXISTS | SERVER_STATUS_LAST_ROW_SENT; MEM_ROOT *user_var_events_alloc_saved= 0; Reprepare_observer *save_reprepare_observer= thd->m_reprepare_observer; Object_creation_ctx *UNINIT_VAR(saved_creation_ctx); Diagnostics_area *da= thd->get_stmt_da(); Warning_info sp_wi(da->warning_info_id(), false, true); /* this 7*STACK_MIN_SIZE is a complex matter with a long history (see it!) */ if (check_stack_overrun(thd, 7 * STACK_MIN_SIZE, (uchar*)&old_packet)) DBUG_RETURN(TRUE); opt_trace_disable_if_no_security_context_access(thd); /* init per-instruction memroot */ init_sql_alloc(key_memory_sp_head_execute_root, &execute_mem_root, MEM_ROOT_BLOCK_SIZE, 0, MYF(0)); DBUG_ASSERT(!(m_flags & IS_INVOKED)); m_flags|= IS_INVOKED; if (m_parent) m_parent->m_invoked_subroutine_count++; m_first_instance->m_first_free_instance= m_next_cached_sp; if (m_next_cached_sp) { DBUG_PRINT("info", ("first free for %p ++: %p->%p level: %lu flags %x", m_first_instance, this, m_next_cached_sp, m_next_cached_sp->m_recursion_level, m_next_cached_sp->m_flags)); } /* Check that if there are not any instances after this one then pointer to the last instance points on this instance or if there are some instances after this one then recursion level of next instance greater then recursion level of current instance on 1 */ DBUG_ASSERT((m_next_cached_sp == 0 && m_first_instance->m_last_cached_sp == this) || (m_recursion_level + 1 == m_next_cached_sp->m_recursion_level)); /* NOTE: The SQL Standard does not specify the context that should be preserved for stored routines. However, at SAP/Walldorf meeting it was decided that current database should be preserved. */ if (m_db.length && (err_status= mysql_opt_change_db(thd, &m_db, &saved_cur_db_name, FALSE, &cur_db_changed))) { goto done; } thd->is_slave_error= 0; old_arena= thd->stmt_arena; /* Push a new warning information area. */ da->copy_sql_conditions_to_wi(thd, &sp_wi); da->push_warning_info(&sp_wi); /* Switch query context. This has to be done early as this is sometimes allocated on THD::mem_root */ if (m_creation_ctx) saved_creation_ctx= m_creation_ctx->set_n_backup(thd); /* We have to save/restore this info when we are changing call level to be able properly do close_thread_tables() in instructions. */ old_query_id= thd->query_id; old_query= thd->query_string; old_derived_tables= thd->derived_tables; thd->derived_tables= 0; old_rec_tables= thd->rec_tables; thd->rec_tables= 0; save_sql_mode= thd->variables.sql_mode; thd->variables.sql_mode= m_sql_mode; save_abort_on_warning= thd->abort_on_warning; thd->abort_on_warning= 0; /** When inside a substatement (a stored function or trigger statement), clear the metadata observer in THD, if any. Remember the value of the observer here, to be able to restore it when leaving the substatement. We reset the observer to suppress errors when a substatement uses temporary tables. If a temporary table does not exist at start of the main statement, it's not prelocked and thus is not validated with other prelocked tables. Later on, when the temporary table is opened, metadata versions mismatch, expectedly. The proper solution for the problem is to re-validate tables of substatements (Bug#12257, Bug#27011, Bug#32868, Bug#33000), but it's not implemented yet. */ thd->m_reprepare_observer= 0; /* It is also more efficient to save/restore current thd->lex once when do it in each instruction */ old_lex= thd->lex; /* We should also save Item tree change list to avoid rollback something too early in the calling query. */ thd->Item_change_list::move_elements_to(&old_change_list); /* Cursors will use thd->packet, so they may corrupt data which was prepared for sending by upper level. OTOH cursors in the same routine can share this buffer safely so let use routine-local packet instead of having own packet buffer for each cursor. It is probably safe to use same thd->convert_buff everywhere. */ old_packet.swap(thd->packet); old_server_status= thd->server_status & status_backup_mask; /* Switch to per-instruction arena here. We can do it since we cleanup arena after every instruction. */ thd->set_n_backup_active_arena(&execute_arena, &backup_arena); /* Save callers arena in order to store instruction results and out parameters in it later during sp_eval_func_item() */ thd->spcont->callers_arena= &backup_arena; #if defined(ENABLED_PROFILING) /* Discard the initial part of executing routines. */ thd->profiling.discard_current_query(); #endif sp_instr *i; DEBUG_SYNC(thd, "sp_head_execute_before_loop"); do { #if defined(ENABLED_PROFILING) /* Treat each "instr" of a routine as discrete unit that could be profiled. Profiling only records information for segments of code that set the source of the query, and almost all kinds of instructions in s-p do not. */ thd->profiling.finish_current_query(); thd->profiling.start_new_query("continuing inside routine"); #endif /* get_instr returns NULL when we're done. */ i = get_instr(ip); if (i == NULL) { #if defined(ENABLED_PROFILING) thd->profiling.discard_current_query(); #endif thd->spcont->quit_func= TRUE; break; } /* Reset number of warnings for this query. */ thd->get_stmt_da()->reset_for_next_command(); DBUG_PRINT("execute", ("Instruction %u", ip)); /* We need to reset start_time to allow for time to flow inside a stored procedure. This is only done for SP since time is suppose to be constant during execution of triggers and functions. */ reset_start_time_for_sp(thd); /* We have to set thd->stmt_arena before executing the instruction to store in the instruction free_list all new items, created during the first execution (for example expanding of '*' or the items made during other permanent subquery transformations). */ thd->stmt_arena= i; /* Will write this SP statement into binlog separately. TODO: consider changing the condition to "not inside event union". */ if (thd->locked_tables_mode <= LTM_LOCK_TABLES) { user_var_events_alloc_saved= thd->user_var_events_alloc; thd->user_var_events_alloc= thd->mem_root; } sql_digest_state *parent_digest= thd->m_digest; thd->m_digest= NULL; #ifdef WITH_WSREP if (WSREP(thd) && thd->wsrep_next_trx_id() == WSREP_UNDEFINED_TRX_ID) { thd->set_wsrep_next_trx_id(thd->query_id); WSREP_DEBUG("assigned new next trx ID for SP, trx id: %" PRIu64, thd->wsrep_next_trx_id()); } #endif /* WITH_WSREP */ #ifdef HAVE_PSI_STATEMENT_INTERFACE PSI_statement_locker_state state; PSI_statement_locker *parent_locker; PSI_statement_info *psi_info = i->get_psi_info(); parent_locker= thd->m_statement_psi; thd->m_statement_psi= MYSQL_START_STATEMENT(& state, psi_info->m_key, thd->db.str, thd->db.length, thd->charset(), m_sp_share); #endif err_status= i->execute(thd, &ip); #ifdef PROTECT_STATEMENT_MEMROOT if (!err_status) i->mark_as_run(); #endif #ifdef HAVE_PSI_STATEMENT_INTERFACE MYSQL_END_STATEMENT(thd->m_statement_psi, thd->get_stmt_da()); thd->m_statement_psi= parent_locker; #endif #ifdef WITH_WSREP if (WSREP(thd)) { if (((thd->wsrep_trx().state() == wsrep::transaction::s_executing || thd->in_sub_stmt) && (thd->is_fatal_error || thd->killed))) { WSREP_DEBUG("SP abort err status %d in sub %d trx state %d", err_status, thd->in_sub_stmt, thd->wsrep_trx().state()); err_status= 1; thd->is_fatal_error= 1; /* SP was killed, and it is not due to a wsrep conflict. We skip after_command hook at this point because otherwise it clears the error, and cleans up the whole transaction. For now we just return and finish our handling once we are back to mysql_parse. Same applies to a SP execution, which was aborted due to wsrep related conflict, but which is executing as sub statement. SP in sub statement level should not commit not rollback, we have to call for rollback is up-most SP level. */ WSREP_DEBUG("Skipping after_command hook for killed SP"); } else { const bool must_replay= wsrep_must_replay(thd); if (must_replay) { WSREP_DEBUG("MUST_REPLAY set after SP, err_status %d trx state: %d", err_status, thd->wsrep_trx().state()); } if (wsrep_thd_is_local(thd)) (void) wsrep_after_statement(thd); /* Reset the return code to zero if the transaction was replayed successfully. */ if (must_replay && !wsrep_current_error(thd)) { err_status= 0; thd->get_stmt_da()->reset_diagnostics_area(); } /* Final wsrep error status for statement is known only after wsrep_after_statement() call. If the error is set, override error in thd diagnostics area and reset wsrep client_state error so that the error does not get propagated via client-server protocol. */ if (wsrep_current_error(thd)) { wsrep_override_error(thd, wsrep_current_error(thd), wsrep_current_error_status(thd)); thd->wsrep_cs().reset_error(); /* Reset also thd->killed if it has been set during BF abort. */ if (killed_mask_hard(thd->killed) == KILL_QUERY) thd->killed= NOT_KILLED; /* if failed transaction was not replayed, must return with error from here */ if (!must_replay) err_status = 1; } } } #endif /* WITH_WSREP */ thd->m_digest= parent_digest; if (i->free_list) cleanup_items(i->free_list); /* If we've set thd->user_var_events_alloc to mem_root of this SP statement, clean all the events allocated in it. */ if (thd->locked_tables_mode <= LTM_LOCK_TABLES) { reset_dynamic(&thd->user_var_events); thd->user_var_events_alloc= user_var_events_alloc_saved; } /* we should cleanup free_list and memroot, used by instruction */ thd->cleanup_after_query(); free_root(&execute_mem_root, MYF(0)); /* Find and process SQL handlers unless it is a fatal error (fatal errors are not catchable by SQL handlers) or the connection has been killed during execution. */ if (likely(!thd->is_fatal_error) && likely(!thd->killed_errno()) && ctx->handle_sql_condition(thd, &ip, i)) { err_status= FALSE; } /* Reset sp_rcontext::end_partial_result_set flag. */ ctx->end_partial_result_set= FALSE; #ifdef PROTECT_STATEMENT_MEMROOT if (thd->is_error()) { // Don't count a call ended with an error as normal run executed_counter= 0; main_mem_root.read_only= 0; reset_instrs_executed_counter(); } #endif } while (!err_status && likely(!thd->killed) && likely(!thd->is_fatal_error) && !thd->spcont->pause_state); #if defined(ENABLED_PROFILING) thd->profiling.finish_current_query(); thd->profiling.start_new_query("tail end of routine"); #endif /* Restore query context. */ if (m_creation_ctx) m_creation_ctx->restore_env(thd, saved_creation_ctx); /* Restore arena. */ thd->restore_active_arena(&execute_arena, &backup_arena); /* Only pop cursors when we're done with group aggregate running. */ if (m_chistics.agg_type != GROUP_AGGREGATE || (m_chistics.agg_type == GROUP_AGGREGATE && thd->spcont->quit_func)) thd->spcont->pop_all_cursors(thd); // To avoid memory leaks after an error /* Restore all saved */ if (m_chistics.agg_type == GROUP_AGGREGATE) thd->spcont->instr_ptr= ip; thd->server_status= (thd->server_status & ~status_backup_mask) | old_server_status; old_packet.swap(thd->packet); DBUG_ASSERT(thd->Item_change_list::is_empty()); old_change_list.move_elements_to(thd); thd->lex= old_lex; thd->set_query_id(old_query_id); thd->set_query_inner(old_query); DBUG_ASSERT(!thd->derived_tables); thd->derived_tables= old_derived_tables; thd->rec_tables= old_rec_tables; thd->variables.sql_mode= save_sql_mode; thd->abort_on_warning= save_abort_on_warning; thd->m_reprepare_observer= save_reprepare_observer; thd->stmt_arena= old_arena; state= STMT_EXECUTED; /* Restore the caller's original warning information area: - warnings generated during trigger execution should not be propagated to the caller on success; - if there was an exception during execution, warning info should be propagated to the caller in any case. */ da->pop_warning_info(); if (err_status || merge_da_on_success) { /* If a routine body is empty or if a routine did not generate any warnings, do not duplicate our own contents by appending the contents of the called routine. We know that the called routine did not change its warning info. On the other hand, if the routine body is not empty and some statement in the routine generates a warning or uses tables, warning info is guaranteed to have changed. In this case we know that the routine warning info contains only new warnings, and thus we perform a copy. */ if (da->warning_info_changed(&sp_wi)) { /* If the invocation of the routine was a standalone statement, rather than a sub-statement, in other words, if it's a CALL of a procedure, rather than invocation of a function or a trigger, we need to clear the current contents of the caller's warning info. This is per MySQL rules: if a statement generates a warning, warnings from the previous statement are flushed. Normally it's done in push_warning(). However, here we don't use push_warning() to avoid invocation of condition handlers or escalation of warnings to errors. */ da->opt_clear_warning_info(thd->query_id); da->copy_sql_conditions_from_wi(thd, &sp_wi); da->remove_marked_sql_conditions(); if (i != NULL) push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE, ER_SP_STACK_TRACE, ER_THD(thd, ER_SP_STACK_TRACE), i->m_lineno, m_qname.str != NULL ? m_qname.str : "anonymous block"); } } done: DBUG_PRINT("info", ("err_status: %d killed: %d is_slave_error: %d report_error: %d", err_status, thd->killed, thd->is_slave_error, thd->is_error())); if (thd->killed) err_status= TRUE; /* If the DB has changed, the pointer has changed too, but the original thd->db will then have been freed */ if (cur_db_changed && thd->killed != KILL_CONNECTION) { /* Force switching back to the saved current database, because it may be NULL. In this case, mysql_change_db() would generate an error. */ err_status|= mysql_change_db(thd, (LEX_CSTRING*)&saved_cur_db_name, TRUE) != 0; } #ifdef PROTECT_STATEMENT_MEMROOT if (!err_status) { if (!main_mem_root.read_only && has_all_instrs_executed()) { main_mem_root.read_only= 1; } ++executed_counter; DBUG_PRINT("info", ("execute counter: %lu", executed_counter)); } #endif m_flags&= ~IS_INVOKED; if (m_parent) m_parent->m_invoked_subroutine_count--; DBUG_PRINT("info", ("first free for %p --: %p->%p, level: %lu, flags %x", m_first_instance, m_first_instance->m_first_free_instance, this, m_recursion_level, m_flags)); /* Check that we have one of following: 1) there are not free instances which means that this instance is last in the list of instances (pointer to the last instance point on it and ther are not other instances after this one in the list) 2) There are some free instances which mean that first free instance should go just after this one and recursion level of that free instance should be on 1 more then recursion level of this instance. */ DBUG_ASSERT((m_first_instance->m_first_free_instance == 0 && this == m_first_instance->m_last_cached_sp && m_next_cached_sp == 0) || (m_first_instance->m_first_free_instance != 0 && m_first_instance->m_first_free_instance == m_next_cached_sp && m_first_instance->m_first_free_instance->m_recursion_level == m_recursion_level + 1)); m_first_instance->m_first_free_instance= this; DBUG_RETURN(err_status); } #ifndef NO_EMBEDDED_ACCESS_CHECKS /** set_routine_security_ctx() changes routine security context, and checks if there is an EXECUTE privilege in new context. If there is no EXECUTE privilege, it changes the context back and returns a error. @param thd thread handle @param sp stored routine to change the context for @param save_ctx pointer to an old security context @todo - Cache if the definer has the right to use the object on the first usage and only reset the cache if someone does a GRANT statement that 'may' affect this. @retval TRUE if there was a error, and the context wasn't changed. @retval FALSE if the context was changed. */ bool set_routine_security_ctx(THD *thd, sp_head *sp, Security_context **save_ctx) { *save_ctx= 0; if (sp->suid() != SP_IS_NOT_SUID && sp->m_security_ctx.change_security_context(thd, &sp->m_definer.user, &sp->m_definer.host, &sp->m_db, save_ctx)) return TRUE; /* If we changed context to run as another user, we need to check the access right for the new context again as someone may have revoked the right to use the procedure from this user. TODO: Cache if the definer has the right to use the object on the first usage and only reset the cache if someone does a GRANT statement that 'may' affect this. */ if (*save_ctx && sp->check_execute_access(thd)) { sp->m_security_ctx.restore_security_context(thd, *save_ctx); *save_ctx= 0; return TRUE; } return FALSE; } #endif // ! NO_EMBEDDED_ACCESS_CHECKS bool sp_head::check_execute_access(THD *thd) const { return m_parent ? m_parent->check_execute_access(thd) : check_routine_access(thd, EXECUTE_ACL, &m_db, &m_name, m_handler, false); } /** Create rcontext optionally using the routine security. This is important for sql_mode=ORACLE to make sure that the invoker has access to the tables mentioned in the %TYPE references. In non-Oracle sql_modes we do not need access to any tables, so we can omit the security context switch for performance purposes. @param thd @param ret_value @retval NULL - error (access denided or EOM) @retval !NULL - success (the invoker has rights to all %TYPE tables) */ sp_rcontext *sp_head::rcontext_create(THD *thd, Field *ret_value, Row_definition_list *defs, bool switch_security_ctx) { if (!(m_flags & HAS_COLUMN_TYPE_REFS)) return sp_rcontext::create(thd, this, m_pcont, ret_value, *defs); sp_rcontext *res= NULL; #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *save_security_ctx; if (switch_security_ctx && set_routine_security_ctx(thd, this, &save_security_ctx)) return NULL; #endif if (!defs->resolve_type_refs(thd)) res= sp_rcontext::create(thd, this, m_pcont, ret_value, *defs); #ifndef NO_EMBEDDED_ACCESS_CHECKS if (switch_security_ctx) m_security_ctx.restore_security_context(thd, save_security_ctx); #endif return res; } sp_rcontext *sp_head::rcontext_create(THD *thd, Field *ret_value, List *args) { DBUG_ASSERT(args); Row_definition_list defs; m_pcont->retrieve_field_definitions(&defs); if (defs.adjust_formal_params_to_actual_params(thd, args)) return NULL; return rcontext_create(thd, ret_value, &defs, true); } sp_rcontext *sp_head::rcontext_create(THD *thd, Field *ret_value, Item **args, uint arg_count) { Row_definition_list defs; m_pcont->retrieve_field_definitions(&defs); if (defs.adjust_formal_params_to_actual_params(thd, args, arg_count)) return NULL; return rcontext_create(thd, ret_value, &defs, true); } /** Execute trigger stored program. - changes security context for triggers - switch to new memroot - call sp_head::execute - restore old memroot - restores security context @param thd Thread handle @param db database name @param table table name @param grant_info GRANT_INFO structure to be filled with information about definer's privileges on subject table @todo - TODO: we should create sp_rcontext once per command and reuse it on subsequent executions of a trigger. @retval FALSE on success @retval TRUE on error */ bool sp_head::execute_trigger(THD *thd, const LEX_CSTRING *db_name, const LEX_CSTRING *table_name, GRANT_INFO *grant_info) { sp_rcontext *octx = thd->spcont; sp_rcontext *nctx = NULL; bool err_status= FALSE; MEM_ROOT call_mem_root; Query_arena call_arena(&call_mem_root, Query_arena::STMT_INITIALIZED_FOR_SP); Query_arena backup_arena; DBUG_ENTER("sp_head::execute_trigger"); DBUG_PRINT("info", ("trigger %s", m_name.str)); #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *save_ctx= NULL; if (suid() != SP_IS_NOT_SUID && m_security_ctx.change_security_context(thd, &m_definer.user, &m_definer.host, &m_db, &save_ctx)) DBUG_RETURN(TRUE); /* Fetch information about table-level privileges for subject table into GRANT_INFO instance. The access check itself will happen in Item_trigger_field, where this information will be used along with information about column-level privileges. */ fill_effective_table_privileges(thd, grant_info, db_name->str, table_name->str); /* Check that the definer has TRIGGER privilege on the subject table. */ if (!(grant_info->privilege & TRIGGER_ACL)) { char priv_desc[128]; get_privilege_desc(priv_desc, sizeof(priv_desc), TRIGGER_ACL); my_error(ER_TABLEACCESS_DENIED_ERROR, MYF(0), priv_desc, thd->security_ctx->priv_user, thd->security_ctx->host_or_ip, db_name->str, table_name->str); m_security_ctx.restore_security_context(thd, save_ctx); DBUG_RETURN(TRUE); } #endif // NO_EMBEDDED_ACCESS_CHECKS /* Prepare arena and memroot for objects which lifetime is whole duration of trigger call (sp_rcontext, it's tables and items, sp_cursor and Item_cache holders for case expressions). We can't use caller's arena/memroot for those objects because in this case some fixed amount of memory will be consumed for each trigger invocation and so statements which involve lot of them will hog memory. TODO: we should create sp_rcontext once per command and reuse it on subsequent executions of a trigger. */ init_sql_alloc(key_memory_sp_head_call_root, &call_mem_root, MEM_ROOT_BLOCK_SIZE, 0, MYF(0)); thd->set_n_backup_active_arena(&call_arena, &backup_arena); Row_definition_list defs; m_pcont->retrieve_field_definitions(&defs); if (!(nctx= rcontext_create(thd, NULL, &defs, false))) { err_status= TRUE; goto err_with_cleanup; } thd->spcont= nctx; MYSQL_RUN_SP(this, err_status= execute(thd, FALSE)); err_with_cleanup: thd->restore_active_arena(&call_arena, &backup_arena); #ifndef NO_EMBEDDED_ACCESS_CHECKS m_security_ctx.restore_security_context(thd, save_ctx); #endif // NO_EMBEDDED_ACCESS_CHECKS delete nctx; call_arena.free_items(); free_root(&call_mem_root, MYF(0)); thd->spcont= octx; if (thd->killed) thd->send_kill_message(); DBUG_RETURN(err_status); } /* Execute the package initialization section. */ bool sp_package::instantiate_if_needed(THD *thd) { List args; if (m_is_instantiated) return false; /* Set m_is_instantiated to true early, to avoid recursion in case if the package initialization section calls routines from the same package. */ m_is_instantiated= true; /* Check that the initialization section doesn't contain Dynamic SQL and doesn't return result sets: such stored procedures can't be called from a function or trigger. */ if (thd->in_sub_stmt) { const char *where= (thd->in_sub_stmt & SUB_STMT_TRIGGER ? "trigger" : "function"); if (is_not_allowed_in_function(where)) goto err; } args.elements= 0; if (execute_procedure(thd, &args)) goto err; return false; err: m_is_instantiated= false; return true; } /** Execute a function. - evaluate parameters - changes security context for SUID routines - switch to new memroot - call sp_head::execute - restore old memroot - evaluate the return value - restores security context @param thd Thread handle @param argp Passed arguments (these are items from containing statement?) @param argcount Number of passed arguments. We need to check if this is correct. @param return_value_fld Save result here. @todo We should create sp_rcontext once per command and reuse it on subsequent executions of a function/trigger. @todo In future we should associate call arena/mem_root with sp_rcontext and allocate all these objects (and sp_rcontext itself) on it directly rather than juggle with arenas. @retval FALSE on success @retval TRUE on error */ bool sp_head::execute_function(THD *thd, Item **argp, uint argcount, Field *return_value_fld, sp_rcontext **func_ctx, Query_arena *call_arena) { ulonglong UNINIT_VAR(binlog_save_options); bool need_binlog_call= FALSE; uint arg_no; sp_rcontext *octx = thd->spcont; char buf[STRING_BUFFER_USUAL_SIZE]; String binlog_buf(buf, sizeof(buf), &my_charset_bin); bool err_status= FALSE; Query_arena backup_arena; DBUG_ENTER("sp_head::execute_function"); DBUG_PRINT("info", ("function %s", m_name.str)); if (m_parent && m_parent->instantiate_if_needed(thd)) DBUG_RETURN(true); /* Check that the function is called with all specified arguments. If it is not, use my_error() to report an error, or it will not terminate the invoking query properly. */ if (argcount != m_pcont->context_var_count()) { /* Need to use my_error here, or it will not terminate the invoking query properly. */ my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "FUNCTION", ErrConvDQName(this).ptr(), m_pcont->context_var_count(), argcount); DBUG_RETURN(TRUE); } /* Prepare arena and memroot for objects which lifetime is whole duration of function call (sp_rcontext, it's tables and items, sp_cursor and Item_cache holders for case expressions). We can't use caller's arena/memroot for those objects because in this case some fixed amount of memory will be consumed for each function/trigger invocation and so statements which involve lot of them will hog memory. TODO: we should create sp_rcontext once per command and reuse it on subsequent executions of a function/trigger. */ if (!(*func_ctx)) { thd->set_n_backup_active_arena(call_arena, &backup_arena); if (!(*func_ctx= rcontext_create(thd, return_value_fld, argp, argcount))) { thd->restore_active_arena(call_arena, &backup_arena); err_status= TRUE; goto err_with_cleanup; } /* We have to switch temporarily back to callers arena/memroot. Function arguments belong to the caller and so the may reference memory which they will allocate during calculation long after this function call will be finished (e.g. in Item::cleanup()). */ thd->restore_active_arena(call_arena, &backup_arena); } /* Pass arguments. */ for (arg_no= 0; arg_no < argcount; arg_no++) { /* Arguments must be fixed in Item_func_sp::fix_fields */ DBUG_ASSERT(argp[arg_no]->fixed()); err_status= bind_input_param(thd, argp[arg_no], arg_no, *func_ctx, TRUE); if (err_status) goto err_with_cleanup; } /* If row-based binlogging, we don't need to binlog the function's call, let each substatement be binlogged its way. */ need_binlog_call= mysql_bin_log.is_open() && (thd->variables.option_bits & OPTION_BIN_LOG) && !thd->is_current_stmt_binlog_format_row(); /* Remember the original arguments for unrolled replication of functions before they are changed by execution. */ if (need_binlog_call) { binlog_buf.length(0); binlog_buf.append(STRING_WITH_LEN("SELECT ")); append_identifier(thd, &binlog_buf, &m_db); binlog_buf.append('.'); append_identifier(thd, &binlog_buf, &m_name); binlog_buf.append('('); for (arg_no= 0; arg_no < argcount; arg_no++) { String str_value_holder; String *str_value; if (arg_no) binlog_buf.append(','); Item_field *item= (*func_ctx)->get_parameter(arg_no); str_value= item->type_handler()->print_item_value(thd, item, &str_value_holder); if (str_value) binlog_buf.append(*str_value); else binlog_buf.append(NULL_clex_str); } binlog_buf.append(')'); } thd->spcont= *func_ctx; #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *save_security_ctx; if (set_routine_security_ctx(thd, this, &save_security_ctx)) { err_status= TRUE; goto err_with_cleanup; } #endif if (need_binlog_call) { query_id_t q; reset_dynamic(&thd->user_var_events); /* In case of artificially constructed events for function calls we have separate union for each such event and hence can't use query_id of real calling statement as the start of all these unions (this will break logic of replication of user-defined variables). So we use artifical value which is guaranteed to be greater than all query_id's of all statements belonging to previous events/unions. Possible alternative to this is logging of all function invocations as one select and not resetting THD::user_var_events before each invocation. */ q= get_query_id(); mysql_bin_log.start_union_events(thd, q + 1); binlog_save_options= thd->variables.option_bits; thd->variables.option_bits&= ~OPTION_BIN_LOG; } opt_trace_disable_if_no_stored_proc_func_access(thd, this); /* Switch to call arena/mem_root so objects like sp_cursor or Item_cache holders for case expressions can be allocated on it. TODO: In future we should associate call arena/mem_root with sp_rcontext and allocate all these objects (and sp_rcontext itself) on it directly rather than juggle with arenas. */ thd->set_n_backup_active_arena(call_arena, &backup_arena); MYSQL_RUN_SP(this, err_status= execute(thd, TRUE)); thd->restore_active_arena(call_arena, &backup_arena); if (need_binlog_call) { mysql_bin_log.stop_union_events(thd); thd->variables.option_bits= binlog_save_options; if (thd->binlog_evt_union.unioned_events) { int errcode = query_error_code(thd, thd->killed == NOT_KILLED); Query_log_event qinfo(thd, binlog_buf.ptr(), binlog_buf.length(), thd->binlog_evt_union.unioned_events_trans, FALSE, FALSE, errcode); if (mysql_bin_log.write(&qinfo) && thd->binlog_evt_union.unioned_events_trans) { push_warning(thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "Invoked ROUTINE modified a transactional table but MySQL " "failed to reflect this change in the binary log"); err_status= TRUE; } reset_dynamic(&thd->user_var_events); /* Forget those values, in case more function calls are binlogged: */ thd->stmt_depends_on_first_successful_insert_id_in_prev_stmt= 0; thd->auto_inc_intervals_in_cur_stmt_for_binlog.empty(); } } if (!err_status && thd->spcont->quit_func) { /* We need result only in function but not in trigger */ if (!(*func_ctx)->is_return_value_set()) { my_error(ER_SP_NORETURNEND, MYF(0), m_name.str); err_status= TRUE; } else { /* Copy back all OUT or INOUT values to the previous frame, or set global user variables */ for (arg_no= 0; arg_no < argcount; arg_no++) { err_status= bind_output_param(thd, argp[arg_no], arg_no, octx, *func_ctx); if (err_status) break; } } } #ifndef NO_EMBEDDED_ACCESS_CHECKS m_security_ctx.restore_security_context(thd, save_security_ctx); #endif err_with_cleanup: thd->spcont= octx; /* If not insided a procedure and a function printing warning messsages. */ if (need_binlog_call && thd->spcont == NULL && !thd->binlog_evt_union.do_union) thd->issue_unsafe_warnings(); DBUG_RETURN(err_status); } /** Execute a procedure. The function does the following steps: - Set all parameters - changes security context for SUID routines - call sp_head::execute - copy back values of INOUT and OUT parameters - restores security context @param thd Thread handle @param args List of values passed as arguments. @retval FALSE on success @retval TRUE on error */ bool sp_head::execute_procedure(THD *thd, List *args) { bool err_status= FALSE; uint params = m_pcont->context_var_count(); /* Query start time may be reset in a multi-stmt SP; keep this for later. */ ulonglong utime_before_sp_exec= thd->utime_after_lock; sp_rcontext *save_spcont, *octx; sp_rcontext *nctx = NULL; bool save_enable_slow_log; bool save_log_general= false; sp_package *pkg= get_package(); DBUG_ENTER("sp_head::execute_procedure"); DBUG_PRINT("info", ("procedure %s", m_name.str)); if (m_parent && m_parent->instantiate_if_needed(thd)) DBUG_RETURN(true); if (args->elements != params) { my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE", ErrConvDQName(this).ptr(), params, args->elements); DBUG_RETURN(TRUE); } save_spcont= octx= thd->spcont; if (! octx) { /* Create a temporary old context. */ if (!(octx= rcontext_create(thd, NULL, args))) { DBUG_PRINT("error", ("Could not create octx")); DBUG_RETURN(TRUE); } thd->spcont= octx; /* set callers_arena to thd, for upper-level function to work */ thd->spcont->callers_arena= thd; } if (!pkg) { if (!(nctx= rcontext_create(thd, NULL, args))) { delete nctx; /* Delete nctx if it was init() that failed. */ thd->spcont= save_spcont; DBUG_RETURN(TRUE); } } else { if (!pkg->m_rcontext) { Query_arena backup_arena; thd->set_n_backup_active_arena(this, &backup_arena); nctx= pkg->rcontext_create(thd, NULL, args); thd->restore_active_arena(this, &backup_arena); if (!nctx) { thd->spcont= save_spcont; DBUG_RETURN(TRUE); } pkg->m_rcontext= nctx; } else nctx= pkg->m_rcontext; } if (params > 0) { List_iterator it_args(*args); DBUG_PRINT("info",(" %.*s: eval args", (int) m_name.length, m_name.str)); for (uint i= 0 ; i < params ; i++) { Item *arg_item= it_args++; if (!arg_item) break; err_status= bind_input_param(thd, arg_item, i, nctx, FALSE); if (err_status) break; } /* Okay, got values for all arguments. Close tables that might be used by arguments evaluation. If arguments evaluation required prelocking mode, we'll leave it here. */ thd->lex->unit.cleanup(); if (!thd->in_sub_stmt) { thd->get_stmt_da()->set_overwrite_status(true); thd->is_error() ? trans_rollback_stmt(thd) : trans_commit_stmt(thd); thd->get_stmt_da()->set_overwrite_status(false); } close_thread_tables(thd); thd_proc_info(thd, 0); if (! thd->in_sub_stmt) { if (thd->transaction_rollback_request) { trans_rollback_implicit(thd); thd->release_transactional_locks(); } else if (! thd->in_multi_stmt_transaction_mode()) thd->release_transactional_locks(); else thd->mdl_context.release_statement_locks(); } thd->rollback_item_tree_changes(); DBUG_PRINT("info",(" %.*s: eval args done", (int) m_name.length, m_name.str)); } save_enable_slow_log= thd->enable_slow_log; /* Disable slow log if: - Slow logging is enabled (no change needed) - This is a normal SP (not event log) - If we have not explicitly disabled logging of SP */ if (save_enable_slow_log && ((!(m_flags & LOG_SLOW_STATEMENTS) && (thd->variables.log_slow_disabled_statements & LOG_SLOW_DISABLE_SP)))) { DBUG_PRINT("info", ("Disabling slow log for the execution")); thd->enable_slow_log= FALSE; } /* Disable general log if: - If general log is enabled (no change needed) - This is a normal SP (not event log) - If we have not explicitly disabled logging of SP */ if (!(thd->variables.option_bits & OPTION_LOG_OFF) && (!(m_flags & LOG_GENERAL_LOG) && (thd->variables.log_disabled_statements & LOG_DISABLE_SP))) { DBUG_PRINT("info", ("Disabling general log for the execution")); save_log_general= true; /* disable this bit */ thd->variables.option_bits |= OPTION_LOG_OFF; } thd->spcont= nctx; #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *save_security_ctx= 0; if (!err_status) err_status= set_routine_security_ctx(thd, this, &save_security_ctx); #endif opt_trace_disable_if_no_stored_proc_func_access(thd, this); if (!err_status) MYSQL_RUN_SP(this, err_status= execute(thd, TRUE)); if (save_log_general) thd->variables.option_bits &= ~OPTION_LOG_OFF; thd->enable_slow_log= save_enable_slow_log; /* In the case when we weren't able to employ reuse mechanism for OUT/INOUT paranmeters, we should reallocate memory. This allocation should be done on the arena which will live through all execution of calling routine. */ thd->spcont->callers_arena= octx->callers_arena; if (!err_status && params > 0) { List_iterator it_args(*args); /* Copy back all OUT or INOUT values to the previous frame, or set global user variables */ for (uint i= 0 ; i < params ; i++) { Item *arg_item= it_args++; if (!arg_item) break; err_status= bind_output_param(thd, arg_item, i, octx, nctx); if (err_status) break; } } #ifndef NO_EMBEDDED_ACCESS_CHECKS if (save_security_ctx) m_security_ctx.restore_security_context(thd, save_security_ctx); #endif if (!save_spcont) delete octx; if (!pkg) delete nctx; thd->spcont= save_spcont; thd->utime_after_lock= utime_before_sp_exec; /* If not insided a procedure and a function printing warning messsages. */ bool need_binlog_call= mysql_bin_log.is_open() && (thd->variables.option_bits & OPTION_BIN_LOG) && !thd->is_current_stmt_binlog_format_row(); if (need_binlog_call && thd->spcont == NULL && !thd->binlog_evt_union.do_union) thd->issue_unsafe_warnings(); DBUG_RETURN(err_status); } bool sp_head::bind_input_param(THD *thd, Item *arg_item, uint arg_no, sp_rcontext *nctx, bool is_function) { DBUG_ENTER("sp_head::bind_input_param"); sp_variable *spvar= m_pcont->find_variable(arg_no); if (!spvar) DBUG_RETURN(FALSE); if (spvar->mode != sp_variable::MODE_IN) { Settable_routine_parameter *srp= arg_item->get_settable_routine_parameter(); if (!srp) { my_error(ER_SP_NOT_VAR_ARG, MYF(0), arg_no+1, ErrConvDQName(this).ptr()); DBUG_RETURN(TRUE); } if (is_function) { /* Check if the function is called from SELECT/INSERT/UPDATE/DELETE query and parameter is OUT or INOUT. If yes, it is an invalid call - throw error. */ if (thd->lex->sql_command == SQLCOM_SELECT || thd->lex->sql_command == SQLCOM_INSERT || thd->lex->sql_command == SQLCOM_INSERT_SELECT || thd->lex->sql_command == SQLCOM_UPDATE || thd->lex->sql_command == SQLCOM_DELETE) { my_error(ER_SF_OUT_INOUT_ARG_NOT_ALLOWED, MYF(0), arg_no+1, m_name.str); DBUG_RETURN(TRUE); } } srp->set_required_privilege(spvar->mode == sp_variable::MODE_INOUT); } if (spvar->mode == sp_variable::MODE_OUT) { Item_null *null_item= new (thd->mem_root) Item_null(thd); Item *tmp_item= null_item; if (!null_item || nctx->set_parameter(thd, arg_no, &tmp_item)) { DBUG_PRINT("error", ("set variable failed")); DBUG_RETURN(TRUE); } } else { if (nctx->set_parameter(thd, arg_no, &arg_item)) { DBUG_PRINT("error", ("set variable 2 failed")); DBUG_RETURN(TRUE); } } TRANSACT_TRACKER(add_trx_state_from_thd(thd)); DBUG_RETURN(FALSE); } bool sp_head::bind_output_param(THD *thd, Item *arg_item, uint arg_no, sp_rcontext *octx, sp_rcontext *nctx) { DBUG_ENTER("sp_head::bind_output_param"); sp_variable *spvar= m_pcont->find_variable(arg_no); if (spvar->mode == sp_variable::MODE_IN) DBUG_RETURN(FALSE); Settable_routine_parameter *srp= arg_item->get_settable_routine_parameter(); DBUG_ASSERT(srp); if (srp->set_value(thd, octx, nctx->get_variable_addr(arg_no))) { DBUG_PRINT("error", ("set value failed")); DBUG_RETURN(TRUE); } Send_field *out_param_info= new (thd->mem_root) Send_field(thd, nctx->get_parameter(arg_no)); out_param_info->db_name= m_db; out_param_info->table_name= m_name; out_param_info->org_table_name= m_name; out_param_info->col_name= spvar->name; out_param_info->org_col_name= spvar->name; srp->set_out_param_info(out_param_info); DBUG_RETURN(FALSE); } /** Reset lex during parsing, before we parse a sub statement. @param thd Thread handler. @return Error state @retval true An error occurred. @retval false Success. */ bool sp_head::reset_lex(THD *thd, sp_lex_local *sublex) { DBUG_ENTER("sp_head::reset_lex"); LEX *oldlex= thd->lex; thd->set_local_lex(sublex); DBUG_RETURN(m_lex.push_front(oldlex)); } bool sp_head::reset_lex(THD *thd) { DBUG_ENTER("sp_head::reset_lex"); sp_lex_local *sublex= new (thd->mem_root) sp_lex_local(thd, thd->lex); DBUG_RETURN(sublex ? reset_lex(thd, sublex) : true); } /** Restore lex during parsing, after we have parsed a sub statement. @param thd Thread handle @param oldlex The upper level lex we're near to restore to @param sublex The local lex we're near to restore from @return @retval TRUE failure @retval FALSE success */ bool sp_head::merge_lex(THD *thd, LEX *oldlex, LEX *sublex) { DBUG_ENTER("sp_head::merge_lex"); sublex->set_trg_event_type_for_tables(); oldlex->trg_table_fields.push_back(&sublex->trg_table_fields); /* If this substatement is unsafe, the entire routine is too. */ DBUG_PRINT("info", ("sublex->get_stmt_unsafe_flags: 0x%x", sublex->get_stmt_unsafe_flags())); unsafe_flags|= sublex->get_stmt_unsafe_flags(); /* Add routines which are used by statement to respective set for this routine. */ if (sp_update_sp_used_routines(&m_sroutines, &sublex->sroutines)) DBUG_RETURN(TRUE); /* If this substatement is a update query, then mark MODIFIES_DATA */ if (is_update_query(sublex->sql_command)) m_flags|= MODIFIES_DATA; /* Merge tables used by this statement (but not by its functions or procedures) to multiset of tables used by this routine. */ merge_table_list(thd, sublex->query_tables, sublex); /* Merge lists of PS parameters. */ oldlex->param_list.append(&sublex->param_list); DBUG_RETURN(FALSE); } /** Put the instruction on the backpatch list, associated with the label. */ int sp_head::push_backpatch(THD *thd, sp_instr *i, sp_label *lab, List *list, backpatch_instr_type itype) { bp_t *bp= (bp_t *) thd->alloc(sizeof(bp_t)); if (!bp) return 1; bp->lab= lab; bp->instr= i; bp->instr_type= itype; return list->push_front(bp); } int sp_head::push_backpatch(THD *thd, sp_instr *i, sp_label *lab) { return push_backpatch(thd, i, lab, &m_backpatch, GOTO); } int sp_head::push_backpatch_goto(THD *thd, sp_pcontext *ctx, sp_label *lab) { uint ip= instructions(); /* Add cpop/hpop : they will be removed or updated later if target is in the same block or not */ sp_instr_hpop *hpop= new (thd->mem_root) sp_instr_hpop(ip++, ctx, 0); if (hpop == NULL || add_instr(hpop)) return true; if (push_backpatch(thd, hpop, lab, &m_backpatch_goto, HPOP)) return true; sp_instr_cpop *cpop= new (thd->mem_root) sp_instr_cpop(ip++, ctx, 0); if (cpop == NULL || add_instr(cpop)) return true; if (push_backpatch(thd, cpop, lab, &m_backpatch_goto, CPOP)) return true; // Add jump with ip=0. IP will be updated when label is found. sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(ip, ctx); if (i == NULL || add_instr(i)) return true; if (push_backpatch(thd, i, lab, &m_backpatch_goto, GOTO)) return true; return false; } /** Update all instruction with this label in the backpatch list to the current position. */ void sp_head::backpatch(sp_label *lab) { bp_t *bp; uint dest= instructions(); List_iterator_fast li(m_backpatch); DBUG_ENTER("sp_head::backpatch"); while ((bp= li++)) { if (bp->lab == lab) { DBUG_PRINT("info", ("backpatch: (m_ip %d, label %p <%s>) to dest %d", bp->instr->m_ip, lab, lab->name.str, dest)); bp->instr->backpatch(dest, lab->ctx); } } DBUG_VOID_RETURN; } void sp_head::backpatch_goto(THD *thd, sp_label *lab,sp_label *lab_begin_block) { bp_t *bp; uint dest= instructions(); List_iterator li(m_backpatch_goto); DBUG_ENTER("sp_head::backpatch_goto"); while ((bp= li++)) { if (bp->instr->m_ip < lab_begin_block->ip || bp->instr->m_ip > lab->ip) { /* Update only jump target from the beginning of the block where the label is defined. */ continue; } if (lex_string_cmp(system_charset_info, &bp->lab->name, &lab->name) == 0) { if (bp->instr_type == GOTO) { DBUG_PRINT("info", ("backpatch_goto: (m_ip %d, label %p <%s>) to dest %d", bp->instr->m_ip, lab, lab->name.str, dest)); bp->instr->backpatch(dest, lab->ctx); // Jump resolved, remove from the list li.remove(); continue; } if (bp->instr_type == CPOP) { uint n= bp->instr->m_ctx->diff_cursors(lab_begin_block->ctx, true); if (n == 0) { // Remove cpop instr replace_instr_to_nop(thd,bp->instr->m_ip); } else { // update count of cpop static_cast(bp->instr)->update_count(n); n= 1; } li.remove(); continue; } if (bp->instr_type == HPOP) { uint n= bp->instr->m_ctx->diff_handlers(lab_begin_block->ctx, true); if (n == 0) { // Remove hpop instr replace_instr_to_nop(thd,bp->instr->m_ip); } else { // update count of cpop static_cast(bp->instr)->update_count(n); n= 1; } li.remove(); continue; } } } DBUG_VOID_RETURN; } bool sp_head::check_unresolved_goto() { DBUG_ENTER("sp_head::check_unresolved_goto"); bool has_unresolved_label=false; if (m_backpatch_goto.elements > 0) { List_iterator_fast li(m_backpatch_goto); while (bp_t* bp= li++) { if (bp->instr_type == GOTO) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "GOTO", bp->lab->name.str); has_unresolved_label=true; } } } DBUG_RETURN(has_unresolved_label); } int sp_head::new_cont_backpatch(sp_instr_opt_meta *i) { m_cont_level+= 1; if (i) { /* Use the cont. destination slot to store the level */ i->m_cont_dest= m_cont_level; if (m_cont_backpatch.push_front(i)) return 1; } return 0; } int sp_head::add_cont_backpatch(sp_instr_opt_meta *i) { i->m_cont_dest= m_cont_level; return m_cont_backpatch.push_front(i); } void sp_head::do_cont_backpatch() { uint dest= instructions(); uint lev= m_cont_level--; sp_instr_opt_meta *i; while ((i= m_cont_backpatch.head()) && i->m_cont_dest == lev) { i->m_cont_dest= dest; (void)m_cont_backpatch.pop(); } } bool sp_head::sp_add_instr_cpush_for_cursors(THD *thd, sp_pcontext *pcontext) { for (uint i= 0; i < pcontext->frame_cursor_count(); i++) { const sp_pcursor *c= pcontext->get_cursor_by_local_frame_offset(i); sp_instr_cpush *instr= new (thd->mem_root) sp_instr_cpush(instructions(), pcontext, c->lex(), pcontext->cursor_offset() + i); if (instr == NULL || add_instr(instr)) return true; } return false; } void sp_head::set_chistics(const st_sp_chistics &chistics) { m_chistics.set(chistics); if (m_chistics.comment.length == 0) m_chistics.comment.str= 0; else m_chistics.comment.str= strmake_root(mem_root, m_chistics.comment.str, m_chistics.comment.length); } void sp_head::set_c_chistics(const st_sp_chistics &chistics) { // Set all chistics but preserve agg_type. enum_sp_aggregate_type save_agg_type= agg_type(); set_chistics(chistics); set_chistics_agg_type(save_agg_type); } void sp_head::set_info(longlong created, longlong modified, const st_sp_chistics &chistics, sql_mode_t sql_mode) { m_created= created; m_modified= modified; set_chistics(chistics); m_sql_mode= sql_mode; } void sp_head::reset_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::reset_thd_mem_root"); m_thd_root= thd->mem_root; thd->mem_root= &main_mem_root; DBUG_PRINT("info", ("mem_root %p moved to thd mem root %p", &mem_root, &thd->mem_root)); free_list= thd->free_list; // Keep the old list thd->free_list= NULL; // Start a new one m_thd= thd; DBUG_VOID_RETURN; } void sp_head::restore_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::restore_thd_mem_root"); /* In some cases our parser detects a syntax error and calls LEX::cleanup_lex_after_parse_error() method only after finishing parsing the whole routine. In such a situation sp_head::restore_thd_mem_root() will be called twice - the first time as part of normal parsing process and the second time by cleanup_lex_after_parse_error(). To avoid ruining active arena/mem_root state in this case we skip restoration of old arena/mem_root if this method has been already called for this routine. */ if (!m_thd) DBUG_VOID_RETURN; Item *flist= free_list; // The old list set_query_arena(thd); // Get new free_list and mem_root state= STMT_INITIALIZED_FOR_SP; DBUG_PRINT("info", ("mem_root %p returned from thd mem root %p", &mem_root, &thd->mem_root)); thd->free_list= flist; // Restore the old one thd->mem_root= m_thd_root; m_thd= NULL; DBUG_VOID_RETURN; } /** Check if a user has access right to a routine. @param thd Thread handler @param sp SP @param full_access Set to 1 if the user has SELECT right to the 'mysql.proc' able or is the owner of the routine @retval false ok @retval true error */ bool check_show_routine_access(THD *thd, sp_head *sp, bool *full_access) { TABLE_LIST tables; bzero((char*) &tables,sizeof(tables)); tables.db= MYSQL_SCHEMA_NAME; tables.table_name= MYSQL_PROC_NAME; tables.alias= MYSQL_PROC_NAME; *full_access= ((!check_table_access(thd, SELECT_ACL, &tables, FALSE, 1, TRUE) && (tables.grant.privilege & SELECT_ACL) != NO_ACL) || /* Check if user owns the routine. */ (!strcmp(sp->m_definer.user.str, thd->security_ctx->priv_user) && !strcmp(sp->m_definer.host.str, thd->security_ctx->priv_host)) || /* Check if current role or any of the sub-granted roles own the routine. */ (sp->m_definer.host.length == 0 && (!strcmp(sp->m_definer.user.str, thd->security_ctx->priv_role) || check_role_is_granted(thd->security_ctx->priv_role, NULL, sp->m_definer.user.str)))); if (!*full_access) return check_some_routine_access(thd, sp->m_db.str, sp->m_name.str, sp->m_handler); return 0; } /** Collect metadata for SHOW CREATE statement for stored routines. @param thd Thread context. @param sph Stored routine handler @param fields Item list to populate @return Error status. @retval FALSE on success @retval TRUE on error */ void sp_head::show_create_routine_get_fields(THD *thd, const Sp_handler *sph, List *fields) { const char *col1_caption= sph->show_create_routine_col1_caption(); const char *col3_caption= sph->show_create_routine_col3_caption(); MEM_ROOT *mem_root= thd->mem_root; /* Send header. */ fields->push_back(new (mem_root) Item_empty_string(thd, col1_caption, NAME_CHAR_LEN), mem_root); fields->push_back(new (mem_root) Item_empty_string(thd, "sql_mode", 256), mem_root); { /* NOTE: SQL statement field must be not less than 1024 in order not to confuse old clients. */ Item_empty_string *stmt_fld= new (mem_root) Item_empty_string(thd, col3_caption, 1024); stmt_fld->set_maybe_null(); fields->push_back(stmt_fld, mem_root); } fields->push_back(new (mem_root) Item_empty_string(thd, "character_set_client", MY_CS_CHARACTER_SET_NAME_SIZE), mem_root); fields->push_back(new (mem_root) Item_empty_string(thd, "collation_connection", MY_CS_COLLATION_NAME_SIZE), mem_root); fields->push_back(new (mem_root) Item_empty_string(thd, "Database Collation", MY_CS_COLLATION_NAME_SIZE), mem_root); } /** Implement SHOW CREATE statement for stored routines. @param thd Thread context. @param sph Stored routine handler @return Error status. @retval FALSE on success @retval TRUE on error */ bool sp_head::show_create_routine(THD *thd, const Sp_handler *sph) { const char *col1_caption= sph->show_create_routine_col1_caption(); const char *col3_caption= sph->show_create_routine_col3_caption(); bool err_status; Protocol *protocol= thd->protocol; List fields; LEX_CSTRING sql_mode; bool full_access; MEM_ROOT *mem_root= thd->mem_root; DBUG_ENTER("sp_head::show_create_routine"); DBUG_PRINT("info", ("routine %s", m_name.str)); if (check_show_routine_access(thd, this, &full_access)) DBUG_RETURN(TRUE); sql_mode_string_representation(thd, m_sql_mode, &sql_mode); /* Send header. */ fields.push_back(new (mem_root) Item_empty_string(thd, col1_caption, NAME_CHAR_LEN), thd->mem_root); fields.push_back(new (mem_root) Item_empty_string(thd, "sql_mode", (uint)sql_mode.length), thd->mem_root); { /* NOTE: SQL statement field must be not less than 1024 in order not to confuse old clients. */ Item_empty_string *stmt_fld= new (mem_root) Item_empty_string(thd, col3_caption, (uint)MY_MAX(m_defstr.length, 1024)); stmt_fld->set_maybe_null(); fields.push_back(stmt_fld, thd->mem_root); } fields.push_back(new (mem_root) Item_empty_string(thd, "character_set_client", MY_CS_CHARACTER_SET_NAME_SIZE), thd->mem_root); fields.push_back(new (mem_root) Item_empty_string(thd, "collation_connection", MY_CS_COLLATION_NAME_SIZE), thd->mem_root); fields.push_back(new (mem_root) Item_empty_string(thd, "Database Collation", MY_CS_CHARACTER_SET_NAME_SIZE), thd->mem_root); if (protocol->send_result_set_metadata(&fields, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) { DBUG_RETURN(TRUE); } /* Send data. */ protocol->prepare_for_resend(); protocol->store(m_name.str, m_name.length, system_charset_info); protocol->store(sql_mode.str, sql_mode.length, system_charset_info); if (full_access) protocol->store(m_defstr.str, m_defstr.length, m_creation_ctx->get_client_cs()); else protocol->store_null(); protocol->store(&m_creation_ctx->get_client_cs()->cs_name, system_charset_info); protocol->store(&m_creation_ctx->get_connection_cl()->coll_name, system_charset_info); protocol->store(&m_creation_ctx->get_db_cl()->coll_name, system_charset_info); err_status= protocol->write(); if (!err_status) my_eof(thd); DBUG_RETURN(err_status); } /** Add instruction to SP. @param instr Instruction */ int sp_head::add_instr(sp_instr *instr) { instr->free_list= m_thd->free_list; m_thd->free_list= 0; /* Memory root of every instruction is designated for permanent transformations (optimizations) made on the parsed tree during the first execution. It points to the memory root of the entire stored procedure, as their life span is equal. */ instr->mem_root= &main_mem_root; instr->m_lineno= m_thd->m_parser_state->m_lip.yylineno; return insert_dynamic(&m_instr, (uchar*)&instr); } bool sp_head::add_instr_jump(THD *thd, sp_pcontext *spcont) { sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(instructions(), spcont); return i == NULL || add_instr(i); } bool sp_head::add_instr_jump(THD *thd, sp_pcontext *spcont, uint dest) { sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(instructions(), spcont, dest); return i == NULL || add_instr(i); } bool sp_head::add_instr_jump_forward_with_backpatch(THD *thd, sp_pcontext *spcont, sp_label *lab) { sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(instructions(), spcont); if (i == NULL || add_instr(i)) return true; push_backpatch(thd, i, lab); return false; } bool sp_head::add_instr_freturn(THD *thd, sp_pcontext *spcont, Item *item, LEX *lex) { sp_instr_freturn *i= new (thd->mem_root) sp_instr_freturn(instructions(), spcont, item, m_return_field_def.type_handler(), lex); if (i == NULL || add_instr(i)) return true; m_flags|= sp_head::HAS_RETURN; return false; } bool sp_head::add_instr_preturn(THD *thd, sp_pcontext *spcont) { sp_instr_preturn *i= new (thd->mem_root) sp_instr_preturn(instructions(), spcont); if (i == NULL || add_instr(i)) return true; return false; } /* Replace an instruction at position to "no operation". @param thd - use mem_root of this THD for "new". @param ip - position of the operation @returns - true on error, false on success When we need to remove an instruction that during compilation appeared to be useless (typically as useless jump), we replace it to a jump to exactly the next instruction. Such jumps are later removed during sp_head::optimize(). QQ: Perhaps we need a dedicated sp_instr_nop for this purpose. */ bool sp_head::replace_instr_to_nop(THD *thd, uint ip) { sp_instr *instr= get_instr(ip); sp_instr_jump *nop= new (thd->mem_root) sp_instr_jump(instr->m_ip, instr->m_ctx, instr->m_ip + 1); if (!nop) return true; delete instr; set_dynamic(&m_instr, (uchar *) &nop, ip); return false; } /** Do some minimal optimization of the code: -# Mark used instructions -# While doing this, shortcut jumps to jump instructions -# Compact the code, removing unused instructions. This is the main mark and move loop; it relies on the following methods in sp_instr and its subclasses: - opt_mark() : Mark instruction as reachable - opt_shortcut_jump(): Shortcut jumps to the final destination; used by opt_mark(). - opt_move() : Update moved instruction - set_destination() : Set the new destination (jump instructions only) */ void sp_head::optimize() { List bp; sp_instr *i; uint src, dst; DBUG_EXECUTE_IF("sp_head_optimize_disable", return; ); opt_mark(); bp.empty(); src= dst= 0; while ((i= get_instr(src))) { if (! i->marked) { delete i; src+= 1; } else { if (src != dst) { /* Move the instruction and update prev. jumps */ sp_instr *ibp; List_iterator_fast li(bp); set_dynamic(&m_instr, (uchar*)&i, dst); while ((ibp= li++)) { sp_instr_opt_meta *im= static_cast(ibp); im->set_destination(src, dst); } } i->opt_move(dst, &bp); src+= 1; dst+= 1; } } m_instr.elements= dst; bp.empty(); } void sp_head::add_mark_lead(uint ip, List *leads) { sp_instr *i= get_instr(ip); if (i && ! i->marked) leads->push_front(i); } #ifdef PROTECT_STATEMENT_MEMROOT int sp_head::has_all_instrs_executed() { sp_instr *ip; uint count= 0; for (uint i= 0; i < m_instr.elements; ++i) { get_dynamic(&m_instr, (uchar*)&ip, i); if (ip->has_been_run()) ++count; } return count == m_instr.elements; } void sp_head::reset_instrs_executed_counter() { sp_instr *ip; for (uint i= 0; i < m_instr.elements; ++i) { get_dynamic(&m_instr, (uchar*)&ip, i); ip->mark_as_not_run(); } } #endif void sp_head::opt_mark() { uint ip; sp_instr *i; List leads; /* Forward flow analysis algorithm in the instruction graph: - first, add the entry point in the graph (the first instruction) to the 'leads' list of paths to explore. - while there are still leads to explore: - pick one lead, and follow the path forward. Mark instruction reached. Stop only if the end of the routine is reached, or the path converge to code already explored (marked). - while following a path, collect in the 'leads' list any fork to another path (caused by conditional jumps instructions), so that these paths can be explored as well. */ /* Add the entry point */ i= get_instr(0); leads.push_front(i); /* For each path of code ... */ while (leads.elements != 0) { i= leads.pop(); /* Mark the entire path, collecting new leads. */ while (i && ! i->marked) { ip= i->opt_mark(this, & leads); i= get_instr(ip); } } } #ifndef DBUG_OFF /** Return the routine instructions as a result set. @return 0 if ok, !=0 on error. */ int sp_head::show_routine_code(THD *thd) { Protocol *protocol= thd->protocol; char buff[2048]; String buffer(buff, sizeof(buff), system_charset_info); List field_list; sp_instr *i; bool full_access; int res= 0; uint ip; DBUG_ENTER("sp_head::show_routine_code"); DBUG_PRINT("info", ("procedure: %s", m_name.str)); if (check_show_routine_access(thd, this, &full_access) || !full_access) DBUG_RETURN(1); field_list.push_back(new (thd->mem_root) Item_uint(thd, "Pos", 9), thd->mem_root); // 1024 is for not to confuse old clients field_list.push_back(new (thd->mem_root) Item_empty_string(thd, "Instruction", MY_MAX(buffer.length(), 1024)), thd->mem_root); if (protocol->send_result_set_metadata(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) DBUG_RETURN(1); for (ip= 0; (i = get_instr(ip)) ; ip++) { /* Consistency check. If these are different something went wrong during optimization. */ if (ip != i->m_ip) { const char *format= "Instruction at position %u has m_ip=%u"; char tmp[sizeof(format) + 2*SP_INSTR_UINT_MAXLEN + 1]; my_snprintf(tmp, sizeof(tmp), format, ip, i->m_ip); /* Since this is for debugging purposes only, we don't bother to introduce a special error code for it. */ push_warning(thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, tmp); } protocol->prepare_for_resend(); protocol->store_long(ip); buffer.set("", 0, system_charset_info); i->print(&buffer); protocol->store(buffer.ptr(), buffer.length(), system_charset_info); if ((res= protocol->write())) break; } if (!res) my_eof(thd); DBUG_RETURN(res); } #endif // ifndef DBUG_OFF /** Prepare LEX and thread for execution of instruction, if requested open and lock LEX's tables, execute instruction's core function, perform cleanup afterwards. @param thd thread context @param nextp out - next instruction @param open_tables if TRUE then check read access to tables in LEX's table list and open and lock them (used in instructions which need to calculate some expression and don't execute complete statement). @param sp_instr instruction for which we prepare context, and which core function execute by calling its exec_core() method. @note We are not saving/restoring some parts of THD which may need this because we do this once for whole routine execution in sp_head::execute(). @return 0/non-0 - Success/Failure */ int sp_lex_keeper::reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables, sp_instr* instr) { int res= 0; DBUG_ENTER("reset_lex_and_exec_core"); /* The flag is saved at the entry to the following substatement. It's reset further in the common code part. It's merged with the saved parent's value at the exit of this func. */ bool parent_modified_non_trans_table= thd->transaction->stmt.modified_non_trans_table; unsigned int parent_unsafe_rollback_flags= thd->transaction->stmt.m_unsafe_rollback_flags; thd->transaction->stmt.modified_non_trans_table= FALSE; thd->transaction->stmt.m_unsafe_rollback_flags= 0; DBUG_ASSERT(!thd->derived_tables); DBUG_ASSERT(thd->Item_change_list::is_empty()); /* Use our own lex. We should not save old value since it is saved/restored in sp_head::execute() when we are entering/leaving routine. */ thd->lex= m_lex; thd->set_query_id(next_query_id()); if (thd->locked_tables_mode <= LTM_LOCK_TABLES) { /* This statement will enter/leave prelocked mode on its own. Entering prelocked mode changes table list and related members of LEX, so we'll need to restore them. */ if (lex_query_tables_own_last) { /* We've already entered/left prelocked mode with this statement. Attach the list of tables that need to be prelocked and mark m_lex as having such list attached. */ *lex_query_tables_own_last= prelocking_tables; m_lex->mark_as_requiring_prelocking(lex_query_tables_own_last); } } reinit_stmt_before_use(thd, m_lex); #ifndef EMBEDDED_LIBRARY /* If there was instruction which changed tracking state, the result of changed tracking state send to client in OK packed. So it changes result sent to client and probably can be different independent on query text. So we can't cache such results. */ if ((thd->client_capabilities & CLIENT_SESSION_TRACK) && (thd->server_status & SERVER_SESSION_STATE_CHANGED)) thd->lex->safe_to_cache_query= 0; #endif Opt_trace_start ots(thd); ots.init(thd, m_lex->query_tables, SQLCOM_SELECT, &m_lex->var_list, NULL, 0, thd->variables.character_set_client); Json_writer_object trace_command(thd); Json_writer_array trace_command_steps(thd, "steps"); if (open_tables) res= instr->exec_open_and_lock_tables(thd, m_lex->query_tables); if (likely(!res)) { res= instr->exec_core(thd, nextp); DBUG_PRINT("info",("exec_core returned: %d", res)); } /* Call after unit->cleanup() to close open table key read. */ if (open_tables) { m_lex->unit.cleanup(); /* Here we also commit or rollback the current statement. */ if (! thd->in_sub_stmt) { thd->get_stmt_da()->set_overwrite_status(true); thd->is_error() ? trans_rollback_stmt(thd) : trans_commit_stmt(thd); thd->get_stmt_da()->set_overwrite_status(false); } close_thread_tables(thd); thd_proc_info(thd, 0); if (! thd->in_sub_stmt) { if (thd->transaction_rollback_request) { trans_rollback_implicit(thd); thd->release_transactional_locks(); } else if (! thd->in_multi_stmt_transaction_mode()) thd->release_transactional_locks(); else thd->mdl_context.release_statement_locks(); } } //TODO: why is this here if log_slow_query is in sp_instr_stmt::execute? delete_explain_query(m_lex); if (m_lex->query_tables_own_last) { /* We've entered and left prelocking mode when executing statement stored in m_lex. m_lex->query_tables(->next_global)* list now has a 'tail' - a list of tables that are added for prelocking. (If this is the first execution, the 'tail' was added by open_tables(), otherwise we've attached it above in this function). Now we'll save the 'tail', and detach it. */ lex_query_tables_own_last= m_lex->query_tables_own_last; prelocking_tables= *lex_query_tables_own_last; *lex_query_tables_own_last= NULL; m_lex->query_tables_last= m_lex->query_tables_own_last; m_lex->mark_as_requiring_prelocking(NULL); } thd->rollback_item_tree_changes(); /* Update the state of the active arena if no errors on open_tables stage. */ if (likely(!res) || likely(!thd->is_error())) thd->stmt_arena->state= Query_arena::STMT_EXECUTED; /* Merge here with the saved parent's values what is needed from the substatement gained */ thd->transaction->stmt.modified_non_trans_table |= parent_modified_non_trans_table; thd->transaction->stmt.m_unsafe_rollback_flags |= parent_unsafe_rollback_flags; TRANSACT_TRACKER(add_trx_state_from_thd(thd)); /* Unlike for PS we should not call Item's destructors for newly created items after execution of each instruction in stored routine. This is because SP often create Item (like Item_int, Item_string etc...) when they want to store some value in local variable, pass return value and etc... So their life time should be longer than one instruction. cleanup_items() is called in sp_head::execute() */ thd->lex->restore_set_statement_var(); DBUG_RETURN(res || thd->is_error()); } int sp_lex_keeper::cursor_reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables, sp_instr *instr) { Query_arena *old_arena= thd->stmt_arena; /* Get the Query_arena from the cursor statement LEX, which contains the free_list of the query, so new items (if any) are stored in the right free_list, and we can cleanup after each cursor operation, e.g. open or cursor_copy_struct (for cursor%ROWTYPE variables). */ thd->stmt_arena= m_lex->query_arena(); int res= reset_lex_and_exec_core(thd, nextp, open_tables, instr); cleanup_items(thd->stmt_arena->free_list); thd->stmt_arena= old_arena; return res; } /* sp_instr class functions */ int sp_instr::exec_open_and_lock_tables(THD *thd, TABLE_LIST *tables) { int result; /* Check whenever we have access to tables for this statement and open and lock them before executing instructions core function. */ if (thd->open_temporary_tables(tables) || check_table_access(thd, SELECT_ACL, tables, FALSE, UINT_MAX, FALSE) || open_and_lock_tables(thd, tables, TRUE, 0)) result= -1; else result= 0; /* Prepare all derived tables/views to catch possible errors. */ if (!result) result= mysql_handle_derived(thd->lex, DT_PREPARE) ? -1 : 0; return result; } uint sp_instr::get_cont_dest() const { return (m_ip+1); } int sp_instr::exec_core(THD *thd, uint *nextp) { DBUG_ASSERT(0); return 0; } /* sp_instr_stmt class functions */ PSI_statement_info sp_instr_stmt::psi_info= { 0, "stmt", 0}; int sp_instr_stmt::execute(THD *thd, uint *nextp) { int res; bool save_enable_slow_log; const CSET_STRING query_backup= thd->query_string; Sub_statement_state backup_state; DBUG_ENTER("sp_instr_stmt::execute"); DBUG_PRINT("info", ("command: %d", m_lex_keeper.sql_command())); MYSQL_SET_STATEMENT_TEXT(thd->m_statement_psi, m_query.str, static_cast(m_query.length)); #if defined(ENABLED_PROFILING) /* This s-p instr is profilable and will be captured. */ thd->profiling.set_query_source(m_query.str, m_query.length); #endif save_enable_slow_log= thd->enable_slow_log; thd->store_slow_query_state(&backup_state); if (!(res= alloc_query(thd, m_query.str, m_query.length)) && !(res=subst_spvars(thd, this, &m_query))) { /* (the order of query cache and subst_spvars calls is irrelevant because queries with SP vars can't be cached) */ general_log_write(thd, COM_QUERY, thd->query(), thd->query_length()); if (query_cache_send_result_to_client(thd, thd->query(), thd->query_length()) <= 0) { thd->reset_slow_query_state(); res= m_lex_keeper.reset_lex_and_exec_core(thd, nextp, FALSE, this); bool log_slow= !res && thd->enable_slow_log; /* Finalize server status flags after executing a statement. */ if (log_slow || thd->get_stmt_da()->is_eof()) thd->update_server_status(); if (thd->get_stmt_da()->is_eof()) thd->protocol->end_statement(); query_cache_end_of_result(thd); mysql_audit_general(thd, MYSQL_AUDIT_GENERAL_STATUS, thd->get_stmt_da()->is_error() ? thd->get_stmt_da()->sql_errno() : 0, command_name[COM_QUERY].str); if (log_slow) log_slow_statement(thd); /* Restore enable_slow_log, that can be changed by a admin or call command */ thd->enable_slow_log= save_enable_slow_log; /* Add the number of rows to thd for the 'call' statistics */ thd->add_slow_query_state(&backup_state); } else { /* change statistics */ enum_sql_command save_sql_command= thd->lex->sql_command; thd->lex->sql_command= SQLCOM_SELECT; status_var_increment(thd->status_var.com_stat[SQLCOM_SELECT]); thd->update_stats(); thd->lex->sql_command= save_sql_command; *nextp= m_ip+1; } thd->set_query(query_backup); thd->query_name_consts= 0; if (likely(!thd->is_error())) { res= 0; thd->get_stmt_da()->reset_diagnostics_area(); } } DBUG_RETURN(res || thd->is_error()); } void sp_instr_stmt::print(String *str) { size_t i, len; /* stmt CMD "..." */ if (str->reserve(SP_STMT_PRINT_MAXLEN+SP_INSTR_UINT_MAXLEN+8)) return; str->qs_append(STRING_WITH_LEN("stmt ")); str->qs_append((uint)m_lex_keeper.sql_command()); str->qs_append(STRING_WITH_LEN(" \"")); len= m_query.length; /* Print the query string (but not too much of it), just to indicate which statement it is. */ if (len > SP_STMT_PRINT_MAXLEN) len= SP_STMT_PRINT_MAXLEN-3; /* Copy the query string and replace '\n' with ' ' in the process */ for (i= 0 ; i < len ; i++) { char c= m_query.str[i]; if (c == '\n') c= ' '; str->qs_append(c); } if (m_query.length > SP_STMT_PRINT_MAXLEN) str->qs_append(STRING_WITH_LEN("...")); /* Indicate truncated string */ str->qs_append('"'); } int sp_instr_stmt::exec_core(THD *thd, uint *nextp) { MYSQL_QUERY_EXEC_START(thd->query(), thd->thread_id, thd->get_db(), &thd->security_ctx->priv_user[0], (char *)thd->security_ctx->host_or_ip, 3); int res= mysql_execute_command(thd); MYSQL_QUERY_EXEC_DONE(res); *nextp= m_ip+1; return res; } /* sp_instr_set class functions */ PSI_statement_info sp_instr_set::psi_info= { 0, "set", 0}; int sp_instr_set::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set::execute"); DBUG_PRINT("info", ("offset: %u", m_offset)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } sp_rcontext *sp_instr_set::get_rcontext(THD *thd) const { return m_rcontext_handler->get_rcontext(thd->spcont); } int sp_instr_set::exec_core(THD *thd, uint *nextp) { int res= get_rcontext(thd)->set_variable(thd, m_offset, &m_value); *nextp = m_ip+1; return res; } void sp_instr_set::print(String *str) { /* set name@offset ... */ size_t rsrv = SP_INSTR_UINT_MAXLEN+6; sp_variable *var = m_ctx->find_variable(m_offset); const LEX_CSTRING *prefix= m_rcontext_handler->get_name_prefix(); /* 'var' should always be non-null, but just in case... */ if (var) rsrv+= var->name.length + prefix->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("set ")); str->qs_append(prefix->str, prefix->length); if (var) { str->qs_append(&var->name); str->qs_append('@'); } str->qs_append(m_offset); str->qs_append(' '); m_value->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } /* sp_instr_set_field class functions */ int sp_instr_set_row_field::exec_core(THD *thd, uint *nextp) { int res= get_rcontext(thd)->set_variable_row_field(thd, m_offset, m_field_offset, &m_value); *nextp= m_ip + 1; return res; } void sp_instr_set_row_field::print(String *str) { /* set name@offset[field_offset] ... */ size_t rsrv= SP_INSTR_UINT_MAXLEN + 6 + 6 + 3; sp_variable *var= m_ctx->find_variable(m_offset); const LEX_CSTRING *prefix= m_rcontext_handler->get_name_prefix(); DBUG_ASSERT(var); DBUG_ASSERT(var->field_def.is_row()); const Column_definition *def= var->field_def.row_field_definitions()->elem(m_field_offset); DBUG_ASSERT(def); rsrv+= var->name.length + def->field_name.length + prefix->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("set ")); str->qs_append(prefix); str->qs_append(&var->name); str->qs_append('.'); str->qs_append(&def->field_name); str->qs_append('@'); str->qs_append(m_offset); str->qs_append('['); str->qs_append(m_field_offset); str->qs_append(']'); str->qs_append(' '); m_value->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } /* sp_instr_set_field_by_name class functions */ int sp_instr_set_row_field_by_name::exec_core(THD *thd, uint *nextp) { int res= get_rcontext(thd)->set_variable_row_field_by_name(thd, m_offset, m_field_name, &m_value); *nextp= m_ip + 1; return res; } void sp_instr_set_row_field_by_name::print(String *str) { /* set name.field@offset["field"] ... */ size_t rsrv= SP_INSTR_UINT_MAXLEN + 6 + 6 + 3 + 2; sp_variable *var= m_ctx->find_variable(m_offset); const LEX_CSTRING *prefix= m_rcontext_handler->get_name_prefix(); DBUG_ASSERT(var); DBUG_ASSERT(var->field_def.is_table_rowtype_ref() || var->field_def.is_cursor_rowtype_ref()); rsrv+= var->name.length + 2 * m_field_name.length + prefix->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("set ")); str->qs_append(prefix); str->qs_append(&var->name); str->qs_append('.'); str->qs_append(&m_field_name); str->qs_append('@'); str->qs_append(m_offset); str->qs_append("[\"",2); str->qs_append(&m_field_name); str->qs_append("\"]",2); str->qs_append(' '); m_value->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } /* sp_instr_set_trigger_field class functions */ PSI_statement_info sp_instr_set_trigger_field::psi_info= { 0, "set_trigger_field", 0}; int sp_instr_set_trigger_field::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set_trigger_field::execute"); thd->count_cuted_fields= CHECK_FIELD_ERROR_FOR_NULL; DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_set_trigger_field::exec_core(THD *thd, uint *nextp) { Abort_on_warning_instant_set aws(thd, thd->is_strict_mode() && !thd->lex->ignore); const int res= (trigger_field->set_value(thd, &value) ? -1 : 0); *nextp = m_ip+1; return res; } void sp_instr_set_trigger_field::print(String *str) { str->append(STRING_WITH_LEN("set_trigger_field ")); trigger_field->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); str->append(STRING_WITH_LEN(":=")); value->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } /* sp_instr_opt_meta */ uint sp_instr_opt_meta::get_cont_dest() const { return m_cont_dest; } /* sp_instr_jump class functions */ PSI_statement_info sp_instr_jump::psi_info= { 0, "jump", 0}; int sp_instr_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); *nextp= m_dest; DBUG_RETURN(0); } void sp_instr_jump::print(String *str) { /* jump dest */ if (str->reserve(SP_INSTR_UINT_MAXLEN+5)) return; str->qs_append(STRING_WITH_LEN("jump ")); str->qs_append(m_dest); } uint sp_instr_jump::opt_mark(sp_head *sp, List *leads) { m_dest= opt_shortcut_jump(sp, this); if (m_dest != m_ip+1) /* Jumping to following instruction? */ marked= 1; m_optdest= sp->get_instr(m_dest); return m_dest; } uint sp_instr_jump::opt_shortcut_jump(sp_head *sp, sp_instr *start) { uint dest= m_dest; sp_instr *i; while ((i= sp->get_instr(dest))) { uint ndest; if (start == i || this == i) break; ndest= i->opt_shortcut_jump(sp, start); if (ndest == dest) break; dest= ndest; } return dest; } void sp_instr_jump::opt_move(uint dst, List *bp) { if (m_dest > m_ip) bp->push_back(this); // Forward else if (m_optdest) m_dest= m_optdest->m_ip; // Backward m_ip= dst; } /* sp_instr_jump_if_not class functions */ PSI_statement_info sp_instr_jump_if_not::psi_info= { 0, "jump_if_not", 0}; int sp_instr_jump_if_not::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump_if_not::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_jump_if_not::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= thd->sp_prepare_func_item(&m_expr, 1); if (! it) { res= -1; } else { res= 0; if (! it->val_bool()) *nextp = m_dest; else *nextp = m_ip+1; } return res; } void sp_instr_jump_if_not::print(String *str) { /* jump_if_not dest(cont) ... */ if (str->reserve(2*SP_INSTR_UINT_MAXLEN+14+32)) // Add some for the expr. too return; str->qs_append(STRING_WITH_LEN("jump_if_not ")); str->qs_append(m_dest); str->qs_append('('); str->qs_append(m_cont_dest); str->qs_append(STRING_WITH_LEN(") ")); m_expr->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } uint sp_instr_jump_if_not::opt_mark(sp_head *sp, List *leads) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->add_mark_lead(m_dest, leads); if ((i= sp->get_instr(m_cont_dest))) { m_cont_dest= i->opt_shortcut_jump(sp, this); m_cont_optdest= sp->get_instr(m_cont_dest); } sp->add_mark_lead(m_cont_dest, leads); return m_ip+1; } void sp_instr_jump_if_not::opt_move(uint dst, List *bp) { /* cont. destinations may point backwards after shortcutting jumps during the mark phase. If it's still pointing forwards, only push this for backpatching if sp_instr_jump::opt_move() will not do it (i.e. if the m_dest points backwards). */ if (m_cont_dest > m_ip) { // Forward if (m_dest < m_ip) bp->push_back(this); } else if (m_cont_optdest) m_cont_dest= m_cont_optdest->m_ip; // Backward /* This will take care of m_dest and m_ip */ sp_instr_jump::opt_move(dst, bp); } /* sp_instr_freturn class functions */ PSI_statement_info sp_instr_freturn::psi_info= { 0, "freturn", 0}; int sp_instr_freturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_freturn::execute"); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_freturn::exec_core(THD *thd, uint *nextp) { /* RETURN is a "procedure statement" (in terms of the SQL standard). That means, Diagnostics Area should be clean before its execution. */ if (!(thd->variables.sql_mode & MODE_ORACLE)) { /* Don't clean warnings in ORACLE mode, as they are needed for SQLCODE and SQLERRM: BEGIN SELECT a INTO a FROM t1; RETURN 'No exception ' || SQLCODE || ' ' || SQLERRM; EXCEPTION WHEN NO_DATA_FOUND THEN RETURN 'Exception ' || SQLCODE || ' ' || SQLERRM; END; */ Diagnostics_area *da= thd->get_stmt_da(); da->clear_warning_info(da->warning_info_id()); } /* Change , so that this will be the last instruction in the stored function. */ *nextp= UINT_MAX; /* Evaluate the value of return expression and store it in current runtime context. NOTE: It's necessary to evaluate result item right here, because we must do it in scope of execution the current context/block. */ return thd->spcont->set_return_value(thd, &m_value); } void sp_instr_freturn::print(String *str) { /* freturn type expr... */ if (str->reserve(1024+8+32)) // Add some for the expr. too return; str->qs_append(STRING_WITH_LEN("freturn ")); LEX_CSTRING name= m_type_handler->name().lex_cstring(); str->qs_append(&name); str->qs_append(' '); m_value->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } /* sp_instr_preturn class functions */ PSI_statement_info sp_instr_preturn::psi_info= { 0, "preturn", 0}; int sp_instr_preturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_preturn::execute"); *nextp= UINT_MAX; DBUG_RETURN(0); } void sp_instr_preturn::print(String *str) { str->append(STRING_WITH_LEN("preturn")); } /* sp_instr_hpush_jump class functions */ PSI_statement_info sp_instr_hpush_jump::psi_info= { 0, "hpush_jump", 0}; int sp_instr_hpush_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpush_jump::execute"); int ret= thd->spcont->push_handler(this); *nextp= m_dest; DBUG_RETURN(ret); } void sp_instr_hpush_jump::print(String *str) { /* hpush_jump dest fsize type */ if (str->reserve(SP_INSTR_UINT_MAXLEN*2 + 21)) return; str->qs_append(STRING_WITH_LEN("hpush_jump ")); str->qs_append(m_dest); str->qs_append(' '); str->qs_append(m_frame); switch (m_handler->type) { case sp_handler::EXIT: str->qs_append(STRING_WITH_LEN(" EXIT")); break; case sp_handler::CONTINUE: str->qs_append(STRING_WITH_LEN(" CONTINUE")); break; default: // The handler type must be either CONTINUE or EXIT. DBUG_ASSERT(0); } } uint sp_instr_hpush_jump::opt_mark(sp_head *sp, List *leads) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->add_mark_lead(m_dest, leads); /* For continue handlers, all instructions in the scope of the handler are possible leads. For example, the instruction after freturn might be executed if the freturn triggers the condition handled by the continue handler. m_dest marks the start of the handler scope. It's added as a lead above, so we start on m_dest+1 here. m_opt_hpop is the hpop marking the end of the handler scope. */ if (m_handler->type == sp_handler::CONTINUE) { for (uint scope_ip= m_dest+1; scope_ip <= m_opt_hpop; scope_ip++) sp->add_mark_lead(scope_ip, leads); } return m_ip+1; } /* sp_instr_hpop class functions */ PSI_statement_info sp_instr_hpop::psi_info= { 0, "hpop", 0}; int sp_instr_hpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpop::execute"); thd->spcont->pop_handlers(m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_hpop::print(String *str) { /* hpop count */ if (str->reserve(SP_INSTR_UINT_MAXLEN+5)) return; str->qs_append(STRING_WITH_LEN("hpop ")); str->qs_append(m_count); } /* sp_instr_hreturn class functions */ PSI_statement_info sp_instr_hreturn::psi_info= { 0, "hreturn", 0}; int sp_instr_hreturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hreturn::execute"); uint continue_ip= thd->spcont->exit_handler(thd->get_stmt_da()); *nextp= m_dest ? m_dest : continue_ip; DBUG_RETURN(0); } void sp_instr_hreturn::print(String *str) { /* hreturn framesize dest */ if (str->reserve(SP_INSTR_UINT_MAXLEN*2 + 9)) return; str->qs_append(STRING_WITH_LEN("hreturn ")); if (m_dest) { // NOTE: this is legacy: hreturn instruction for EXIT handler // should print out 0 as frame index. str->qs_append(STRING_WITH_LEN("0 ")); str->qs_append(m_dest); } else { str->qs_append(m_frame); } } uint sp_instr_hreturn::opt_mark(sp_head *sp, List *leads) { marked= 1; if (m_dest) { /* This is an EXIT handler; next instruction step is in m_dest. */ return m_dest; } /* This is a CONTINUE handler; next instruction step will come from the handler stack and not from opt_mark. */ return UINT_MAX; } /* sp_instr_cpush class functions */ PSI_statement_info sp_instr_cpush::psi_info= { 0, "cpush", 0}; int sp_instr_cpush::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cpush::execute"); sp_cursor::reset(thd, &m_lex_keeper); m_lex_keeper.disable_query_cache(); thd->spcont->push_cursor(this); *nextp= m_ip+1; DBUG_RETURN(false); } void sp_instr_cpush::print(String *str) { const LEX_CSTRING *cursor_name= m_ctx->find_cursor(m_cursor); /* cpush name@offset */ size_t rsrv= SP_INSTR_UINT_MAXLEN+7; if (cursor_name) rsrv+= cursor_name->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("cpush ")); if (cursor_name) { str->qs_append(cursor_name->str, cursor_name->length); str->qs_append('@'); } str->qs_append(m_cursor); } /* sp_instr_cpop class functions */ PSI_statement_info sp_instr_cpop::psi_info= { 0, "cpop", 0}; int sp_instr_cpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cpop::execute"); thd->spcont->pop_cursors(thd, m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_cpop::print(String *str) { /* cpop count */ if (str->reserve(SP_INSTR_UINT_MAXLEN+5)) return; str->qs_append(STRING_WITH_LEN("cpop ")); str->qs_append(m_count); } /* sp_instr_copen class functions */ /** @todo Assert that we either have an error or a cursor */ PSI_statement_info sp_instr_copen::psi_info= { 0, "copen", 0}; int sp_instr_copen::execute(THD *thd, uint *nextp) { /* We don't store a pointer to the cursor in the instruction to be able to reuse the same instruction among different threads in future. */ sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_copen::execute"); if (! c) res= -1; else { sp_lex_keeper *lex_keeper= c->get_lex_keeper(); res= lex_keeper->cursor_reset_lex_and_exec_core(thd, nextp, FALSE, this); /* TODO: Assert here that we either have an error or a cursor */ } DBUG_RETURN(res); } int sp_instr_copen::exec_core(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res= c->open(thd); *nextp= m_ip+1; return res; } void sp_instr_copen::print(String *str) { const LEX_CSTRING *cursor_name= m_ctx->find_cursor(m_cursor); /* copen name@offset */ size_t rsrv= SP_INSTR_UINT_MAXLEN+7; if (cursor_name) rsrv+= cursor_name->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("copen ")); if (cursor_name) { str->qs_append(cursor_name->str, cursor_name->length); str->qs_append('@'); } str->qs_append(m_cursor); } /* sp_instr_cclose class functions */ PSI_statement_info sp_instr_cclose::psi_info= { 0, "cclose", 0}; int sp_instr_cclose::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_cclose::execute"); if (! c) res= -1; else res= c->close(thd); *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cclose::print(String *str) { const LEX_CSTRING *cursor_name= m_ctx->find_cursor(m_cursor); /* cclose name@offset */ size_t rsrv= SP_INSTR_UINT_MAXLEN+8; if (cursor_name) rsrv+= cursor_name->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("cclose ")); if (cursor_name) { str->qs_append(cursor_name->str, cursor_name->length); str->qs_append('@'); } str->qs_append(m_cursor); } /* sp_instr_cfetch class functions */ PSI_statement_info sp_instr_cfetch::psi_info= { 0, "cfetch", 0}; int sp_instr_cfetch::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; Query_arena backup_arena; DBUG_ENTER("sp_instr_cfetch::execute"); res= c ? c->fetch(thd, &m_varlist, m_error_on_no_data) : -1; *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cfetch::print(String *str) { List_iterator_fast li(m_varlist); sp_variable *pv; const LEX_CSTRING *cursor_name= m_ctx->find_cursor(m_cursor); /* cfetch name@offset vars... */ size_t rsrv= SP_INSTR_UINT_MAXLEN+8; if (cursor_name) rsrv+= cursor_name->length; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("cfetch ")); if (cursor_name) { str->qs_append(cursor_name->str, cursor_name->length); str->qs_append('@'); } str->qs_append(m_cursor); while ((pv= li++)) { if (str->reserve(pv->name.length+SP_INSTR_UINT_MAXLEN+2)) return; str->qs_append(' '); str->qs_append(&pv->name); str->qs_append('@'); str->qs_append(pv->offset); } } /* sp_instr_agg_cfetch class functions */ PSI_statement_info sp_instr_agg_cfetch::psi_info= { 0, "agg_cfetch", 0}; int sp_instr_agg_cfetch::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_agg_cfetch::execute"); int res= 0; if (!thd->spcont->instr_ptr) { *nextp= m_ip+1; thd->spcont->instr_ptr= m_ip + 1; } else if (!thd->spcont->pause_state) thd->spcont->pause_state= TRUE; else { thd->spcont->pause_state= FALSE; if (thd->server_status & SERVER_STATUS_LAST_ROW_SENT) { my_message(ER_SP_FETCH_NO_DATA, ER_THD(thd, ER_SP_FETCH_NO_DATA), MYF(0)); res= -1; thd->spcont->quit_func= TRUE; } else *nextp= m_ip + 1; } DBUG_RETURN(res); } void sp_instr_agg_cfetch::print(String *str) { uint rsrv= SP_INSTR_UINT_MAXLEN+11; if (str->reserve(rsrv)) return; str->qs_append(STRING_WITH_LEN("agg_cfetch")); } /* sp_instr_cursor_copy_struct class functions */ /** This methods processes cursor %ROWTYPE declarations, e.g.: CURSOR cur IS SELECT * FROM t1; rec cur%ROWTYPE; and does the following: - opens the cursor without copying data (materialization). - copies the cursor structure to the associated %ROWTYPE variable. */ PSI_statement_info sp_instr_cursor_copy_struct::psi_info= { 0, "cursor_copy_struct", 0}; int sp_instr_cursor_copy_struct::exec_core(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cursor_copy_struct::exec_core"); int ret= 0; Item_field_row *row= (Item_field_row*) thd->spcont->get_variable(m_var); DBUG_ASSERT(row->type_handler() == &type_handler_row); /* Copy structure only once. If the cursor%ROWTYPE variable is declared inside a LOOP block, it gets its structure on the first loop interation and remembers the structure for all consequent loop iterations. It we recreated the structure on every iteration, we would get potential memory leaks, and it would be less efficient. */ if (!row->arguments()) { sp_cursor tmp(thd, &m_lex_keeper, true); // Open the cursor without copying data if (!(ret= tmp.open(thd))) { Row_definition_list defs; /* Create row elements on the caller arena. It's the same arena that was used during sp_rcontext::create(). This puts cursor%ROWTYPE elements on the same mem_root where explicit ROW elements and table%ROWTYPE reside: - tmp.export_structure() allocates new Spvar_definition instances and their components (such as TYPELIBs). - row->row_create_items() creates new Item_field instances. They all are created on the same mem_root. */ Query_arena current_arena; thd->set_n_backup_active_arena(thd->spcont->callers_arena, ¤t_arena); if (!(ret= tmp.export_structure(thd, &defs))) row->row_create_items(thd, &defs); thd->restore_active_arena(thd->spcont->callers_arena, ¤t_arena); tmp.close(thd); } } *nextp= m_ip + 1; DBUG_RETURN(ret); } int sp_instr_cursor_copy_struct::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cursor_copy_struct::execute"); int ret= m_lex_keeper.cursor_reset_lex_and_exec_core(thd, nextp, FALSE, this); DBUG_RETURN(ret); } void sp_instr_cursor_copy_struct::print(String *str) { sp_variable *var= m_ctx->find_variable(m_var); const LEX_CSTRING *name= m_ctx->find_cursor(m_cursor); str->append(STRING_WITH_LEN("cursor_copy_struct ")); str->append(name); str->append(' '); str->append(&var->name); str->append('@'); str->append_ulonglong(m_var); } /* sp_instr_error class functions */ PSI_statement_info sp_instr_error::psi_info= { 0, "error", 0}; int sp_instr_error::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_error::execute"); my_message(m_errcode, ER_THD(thd, m_errcode), MYF(0)); WSREP_DEBUG("sp_instr_error: %s %d", ER_THD(thd, m_errcode), thd->is_error()); *nextp= m_ip+1; DBUG_RETURN(-1); } void sp_instr_error::print(String *str) { /* error code */ if (str->reserve(SP_INSTR_UINT_MAXLEN+6)) return; str->qs_append(STRING_WITH_LEN("error ")); str->qs_append(m_errcode); } /************************************************************************** sp_instr_set_case_expr class implementation **************************************************************************/ PSI_statement_info sp_instr_set_case_expr::psi_info= { 0, "set_case_expr", 0}; int sp_instr_set_case_expr::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set_case_expr::execute"); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_set_case_expr::exec_core(THD *thd, uint *nextp) { int res= thd->spcont->set_case_expr(thd, m_case_expr_id, &m_case_expr); if (res && !thd->spcont->get_case_expr(m_case_expr_id)) { /* Failed to evaluate the value, the case expression is still not initialized. Set to NULL so we can continue. */ Item *null_item= new (thd->mem_root) Item_null(thd); if (!null_item || thd->spcont->set_case_expr(thd, m_case_expr_id, &null_item)) { /* If this also failed, we have to abort. */ my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATAL)); } } else *nextp= m_ip+1; return res; } void sp_instr_set_case_expr::print(String *str) { /* set_case_expr (cont) id ... */ str->reserve(2*SP_INSTR_UINT_MAXLEN+18+32); // Add some extra for expr too str->qs_append(STRING_WITH_LEN("set_case_expr (")); str->qs_append(m_cont_dest); str->qs_append(STRING_WITH_LEN(") ")); str->qs_append(m_case_expr_id); str->qs_append(' '); m_case_expr->print(str, enum_query_type(QT_ORDINARY | QT_ITEM_ORIGINAL_FUNC_NULLIF)); } uint sp_instr_set_case_expr::opt_mark(sp_head *sp, List *leads) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_cont_dest))) { m_cont_dest= i->opt_shortcut_jump(sp, this); m_cont_optdest= sp->get_instr(m_cont_dest); } sp->add_mark_lead(m_cont_dest, leads); return m_ip+1; } void sp_instr_set_case_expr::opt_move(uint dst, List *bp) { if (m_cont_dest > m_ip) bp->push_back(this); // Forward else if (m_cont_optdest) m_cont_dest= m_cont_optdest->m_ip; // Backward m_ip= dst; } /* ------------------------------------------------------------------ */ /* Structure that represent all instances of one table in optimized multi-set of tables used by routine. */ typedef struct st_sp_table { /* Multi-set key: db_name\0table_name\0alias\0 - for normal tables db_name\0table_name\0 - for temporary tables */ LEX_STRING qname; size_t db_length, table_name_length; bool temp; /* true if corresponds to a temporary table */ thr_lock_type lock_type; /* lock type used for prelocking */ uint lock_count; uint query_lock_count; uint8 trg_event_map; my_bool for_insert_data; } SP_TABLE; uchar *sp_table_key(const uchar *ptr, size_t *plen, my_bool first) { SP_TABLE *tab= (SP_TABLE *)ptr; *plen= tab->qname.length; return (uchar *)tab->qname.str; } /** Merge the list of tables used by some query into the multi-set of tables used by routine. @param thd thread context @param table table list @param lex_for_tmp_check LEX of the query for which we are merging table list. @note This method will use LEX provided to check whenever we are creating temporary table and mark it as such in target multi-set. @retval TRUE Success @retval FALSE Error */ bool sp_head::merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check) { SP_TABLE *tab; if ((lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE || lex_for_tmp_check->sql_command == SQLCOM_DROP_SEQUENCE) && lex_for_tmp_check->tmp_table()) return TRUE; for (uint i= 0 ; i < m_sptabs.records ; i++) { tab= (SP_TABLE*) my_hash_element(&m_sptabs, i); tab->query_lock_count= 0; } for (; table ; table= table->next_global) if (!table->derived && !table->schema_table && !table->table_function) { /* Structure of key for the multi-set is "db\0table\0alias\0". Since "alias" part can have arbitrary length we use String object to construct the key. By default String will use buffer allocated on stack with NAME_LEN bytes reserved for alias, since in most cases it is going to be smaller than NAME_LEN bytes. */ char tname_buff[(SAFE_NAME_LEN + 1) * 3]; String tname(tname_buff, sizeof(tname_buff), &my_charset_bin); uint temp_table_key_length; tname.length(0); tname.append(&table->db); tname.append('\0'); tname.append(&table->table_name); tname.append('\0'); temp_table_key_length= tname.length(); tname.append(&table->alias); tname.append('\0'); /* Upgrade the lock type because this table list will be used only in pre-locked mode, in which DELAYED inserts are always converted to normal inserts. */ if (table->lock_type == TL_WRITE_DELAYED) table->lock_type= TL_WRITE; /* We ignore alias when we check if table was already marked as temporary (and therefore should not be prelocked). Otherwise we will erroneously treat table with same name but with different alias as non-temporary. */ if ((tab= (SP_TABLE*) my_hash_search(&m_sptabs, (uchar *)tname.ptr(), tname.length())) || ((tab= (SP_TABLE*) my_hash_search(&m_sptabs, (uchar *)tname.ptr(), temp_table_key_length)) && tab->temp)) { if (tab->lock_type < table->lock_type) tab->lock_type= table->lock_type; // Use the table with the highest lock type tab->query_lock_count++; if (tab->query_lock_count > tab->lock_count) tab->lock_count++; tab->trg_event_map|= table->trg_event_map; tab->for_insert_data|= table->for_insert_data; } else { if (!(tab= (SP_TABLE *)thd->calloc(sizeof(SP_TABLE)))) return FALSE; if ((lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE || lex_for_tmp_check->sql_command == SQLCOM_CREATE_SEQUENCE) && lex_for_tmp_check->query_tables == table && lex_for_tmp_check->tmp_table()) { tab->temp= TRUE; tab->qname.length= temp_table_key_length; } else tab->qname.length= tname.length(); tab->qname.str= (char*) thd->memdup(tname.ptr(), tab->qname.length); if (!tab->qname.str) return FALSE; tab->table_name_length= table->table_name.length; tab->db_length= table->db.length; tab->lock_type= table->lock_type; tab->lock_count= tab->query_lock_count= 1; tab->trg_event_map= table->trg_event_map; tab->for_insert_data= table->for_insert_data; if (my_hash_insert(&m_sptabs, (uchar *)tab)) return FALSE; } } return TRUE; } /** Add tables used by routine to the table list. Converts multi-set of tables used by this routine to table list and adds this list to the end of table list specified by 'query_tables_last_ptr'. Elements of list will be allocated in PS memroot, so this list will be persistent between PS executions. @param[in] thd Thread context @param[in,out] query_tables_last_ptr Pointer to the next_global member of last element of the list where tables will be added (or to its root). @param[in] belong_to_view Uppermost view which uses this routine, 0 if none. @retval TRUE if some elements were added @retval FALSE otherwise. */ bool sp_head::add_used_tables_to_table_list(THD *thd, TABLE_LIST ***query_tables_last_ptr, TABLE_LIST *belong_to_view) { uint i; Query_arena *arena, backup; bool result= FALSE; DBUG_ENTER("sp_head::add_used_tables_to_table_list"); /* Use persistent arena for table list allocation to be PS/SP friendly. Note that we also have to copy database/table names and alias to PS/SP memory since current instance of sp_head object can pass away before next execution of PS/SP for which tables are added to prelocking list. This will be fixed by introducing of proper invalidation mechanism once new TDC is ready. */ arena= thd->activate_stmt_arena_if_needed(&backup); for (i=0 ; i < m_sptabs.records ; i++) { char *tab_buff, *key_buff; SP_TABLE *stab= (SP_TABLE*) my_hash_element(&m_sptabs, i); LEX_CSTRING db_name; if (stab->temp) continue; if (!(tab_buff= (char *)thd->alloc(ALIGN_SIZE(sizeof(TABLE_LIST)) * stab->lock_count)) || !(key_buff= (char*)thd->memdup(stab->qname.str, stab->qname.length))) DBUG_RETURN(FALSE); db_name.str= key_buff; db_name.length= stab->db_length; for (uint j= 0; j < stab->lock_count; j++) { TABLE_LIST *table= (TABLE_LIST *)tab_buff; LEX_CSTRING table_name= { key_buff + stab->db_length + 1, stab->table_name_length }; LEX_CSTRING alias= { table_name.str + table_name.length + 1, strlen(table_name.str + table_name.length + 1) }; table->init_one_table_for_prelocking(&db_name, &table_name, &alias, stab->lock_type, TABLE_LIST::PRELOCK_ROUTINE, belong_to_view, stab->trg_event_map, query_tables_last_ptr, stab->for_insert_data); tab_buff+= ALIGN_SIZE(sizeof(TABLE_LIST)); result= TRUE; } } if (arena) thd->restore_active_arena(arena, &backup); DBUG_RETURN(result); } /** Simple function for adding an explicitly named (systems) table to the global table list, e.g. "mysql", "proc". */ TABLE_LIST * sp_add_to_query_tables(THD *thd, LEX *lex, const LEX_CSTRING *db, const LEX_CSTRING *name, thr_lock_type locktype, enum_mdl_type mdl_type) { TABLE_LIST *table; if (!(table= (TABLE_LIST *)thd->calloc(sizeof(TABLE_LIST)))) return NULL; if (!thd->make_lex_string(&table->db, db->str, db->length) || !thd->make_lex_string(&table->table_name, name->str, name->length) || !thd->make_lex_string(&table->alias, name->str, name->length)) return NULL; table->lock_type= locktype; table->select_lex= lex->current_select; table->cacheable_table= 1; MDL_REQUEST_INIT(&table->mdl_request, MDL_key::TABLE, table->db.str, table->table_name.str, mdl_type, MDL_TRANSACTION); lex->add_to_query_tables(table); return table; } Item *sp_head::adjust_assignment_source(THD *thd, Item *val, Item *val2) { return val ? val : val2 ? val2 : new (thd->mem_root) Item_null(thd); } /** Helper action for a SET statement. Used to push a SP local variable into the assignment list. @param var_type the SP local variable @param val the value being assigned to the variable @return TRUE if error, FALSE otherwise. */ bool sp_head::set_local_variable(THD *thd, sp_pcontext *spcont, const Sp_rcontext_handler *rh, sp_variable *spv, Item *val, LEX *lex, bool responsible_to_free_lex) { if (!(val= adjust_assignment_source(thd, val, spv->default_value))) return true; if (val->walk(&Item::unknown_splocal_processor, false, NULL)) return true; sp_instr_set *sp_set= new (thd->mem_root) sp_instr_set(instructions(), spcont, rh, spv->offset, val, lex, responsible_to_free_lex); return sp_set == NULL || add_instr(sp_set); } /** Similar to set_local_variable(), but for ROW variable fields. */ bool sp_head::set_local_variable_row_field(THD *thd, sp_pcontext *spcont, const Sp_rcontext_handler *rh, sp_variable *spv, uint field_idx, Item *val, LEX *lex) { if (!(val= adjust_assignment_source(thd, val, NULL))) return true; sp_instr_set_row_field *sp_set= new (thd->mem_root) sp_instr_set_row_field(instructions(), spcont, rh, spv->offset, field_idx, val, lex, true); return sp_set == NULL || add_instr(sp_set); } bool sp_head::set_local_variable_row_field_by_name(THD *thd, sp_pcontext *spcont, const Sp_rcontext_handler *rh, sp_variable *spv, const LEX_CSTRING *field_name, Item *val, LEX *lex) { if (!(val= adjust_assignment_source(thd, val, NULL))) return true; sp_instr_set_row_field_by_name *sp_set= new (thd->mem_root) sp_instr_set_row_field_by_name(instructions(), spcont, rh, spv->offset, *field_name, val, lex, true); return sp_set == NULL || add_instr(sp_set); } bool sp_head::add_open_cursor(THD *thd, sp_pcontext *spcont, uint offset, sp_pcontext *param_spcont, List *parameters) { /* The caller must make sure that the number of formal parameters matches the number of actual parameters. */ DBUG_ASSERT((param_spcont ? param_spcont->context_var_count() : 0) == (parameters ? parameters->elements : 0)); if (parameters && add_set_cursor_param_variables(thd, param_spcont, parameters)) return true; sp_instr_copen *i= new (thd->mem_root) sp_instr_copen(instructions(), spcont, offset); return i == NULL || add_instr(i); } bool sp_head::add_for_loop_open_cursor(THD *thd, sp_pcontext *spcont, sp_variable *index, const sp_pcursor *pcursor, uint coffset, sp_assignment_lex *param_lex, Item_args *parameters) { if (parameters && add_set_for_loop_cursor_param_variables(thd, pcursor->param_context(), param_lex, parameters)) return true; sp_instr *instr_copy_struct= new (thd->mem_root) sp_instr_cursor_copy_struct(instructions(), spcont, coffset, pcursor->lex(), index->offset); if (instr_copy_struct == NULL || add_instr(instr_copy_struct)) return true; sp_instr_copen *instr_copen= new (thd->mem_root) sp_instr_copen(instructions(), spcont, coffset); if (instr_copen == NULL || add_instr(instr_copen)) return true; sp_instr_cfetch *instr_cfetch= new (thd->mem_root) sp_instr_cfetch(instructions(), spcont, coffset, false); if (instr_cfetch == NULL || add_instr(instr_cfetch)) return true; instr_cfetch->add_to_varlist(index); return false; } bool sp_head::add_set_for_loop_cursor_param_variables(THD *thd, sp_pcontext *param_spcont, sp_assignment_lex *param_lex, Item_args *parameters) { DBUG_ASSERT(param_spcont->context_var_count() == parameters->argument_count()); for (uint idx= 0; idx < parameters->argument_count(); idx ++) { /* param_lex is shared between multiple items (cursor parameters). Only the last sp_instr_set is responsible for freeing param_lex. See more comments in LEX::sp_for_loop_cursor_declarations in sql_lex.cc. */ bool last= idx + 1 == parameters->argument_count(); sp_variable *spvar= param_spcont->get_context_variable(idx); if (set_local_variable(thd, param_spcont, &sp_rcontext_handler_local, spvar, parameters->arguments()[idx], param_lex, last)) return true; } return false; } bool sp_head::spvar_fill_row(THD *thd, sp_variable *spvar, Row_definition_list *defs) { spvar->field_def.set_row_field_definitions(defs); spvar->field_def.field_name= spvar->name; if (fill_spvar_definition(thd, &spvar->field_def)) return true; row_fill_field_definitions(thd, defs); return false; } bool sp_head::spvar_fill_type_reference(THD *thd, sp_variable *spvar, const LEX_CSTRING &table, const LEX_CSTRING &col) { Qualified_column_ident *ref; if (!(ref= new (thd->mem_root) Qualified_column_ident(&table, &col))) return true; fill_spvar_using_type_reference(spvar, ref); return false; } bool sp_head::spvar_fill_type_reference(THD *thd, sp_variable *spvar, const LEX_CSTRING &db, const LEX_CSTRING &table, const LEX_CSTRING &col) { Qualified_column_ident *ref; if (!(ref= new (thd->mem_root) Qualified_column_ident(thd, &db, &table, &col))) return true; fill_spvar_using_type_reference(spvar, ref); return false; } bool sp_head::spvar_fill_table_rowtype_reference(THD *thd, sp_variable *spvar, const LEX_CSTRING &table) { Table_ident *ref; if (!(ref= new (thd->mem_root) Table_ident(&table))) return true; fill_spvar_using_table_rowtype_reference(thd, spvar, ref); return false; } bool sp_head::spvar_fill_table_rowtype_reference(THD *thd, sp_variable *spvar, const LEX_CSTRING &db, const LEX_CSTRING &table) { Table_ident *ref; if (!(ref= new (thd->mem_root) Table_ident(thd, &db, &table, false))) return true; fill_spvar_using_table_rowtype_reference(thd, spvar, ref); return false; } bool sp_head::check_group_aggregate_instructions_forbid() const { if (unlikely(m_flags & sp_head::HAS_AGGREGATE_INSTR)) { my_error(ER_NOT_AGGREGATE_FUNCTION, MYF(0)); return true; } return false; } bool sp_head::check_group_aggregate_instructions_require() const { if (unlikely(!(m_flags & HAS_AGGREGATE_INSTR))) { my_error(ER_INVALID_AGGREGATE_FUNCTION, MYF(0)); return true; } return false; } bool sp_head::check_group_aggregate_instructions_function() const { return agg_type() == GROUP_AGGREGATE ? check_group_aggregate_instructions_require() : check_group_aggregate_instructions_forbid(); } /* In Oracle mode stored routines have an optional name at the end of a declaration: PROCEDURE p1 AS BEGIN NULL END p1; Check that the first p1 and the last p1 match. */ bool sp_head::check_package_routine_end_name(const LEX_CSTRING &end_name) const { LEX_CSTRING non_qualified_name= m_name; const char *errpos; size_t ofs; if (!end_name.length) return false; // No end name if (!(errpos= strrchr(m_name.str, '.'))) { errpos= m_name.str; goto err; } errpos++; ofs= errpos - m_name.str; non_qualified_name.str+= ofs; non_qualified_name.length-= ofs; if (Sp_handler::eq_routine_name(end_name, non_qualified_name)) return false; err: my_error(ER_END_IDENTIFIER_DOES_NOT_MATCH, MYF(0), end_name.str, errpos); return true; } bool sp_head::check_standalone_routine_end_name(const sp_name *end_name) const { if (end_name && !end_name->eq(this)) { my_error(ER_END_IDENTIFIER_DOES_NOT_MATCH, MYF(0), ErrConvDQName(end_name).ptr(), ErrConvDQName(this).ptr()); return true; } return false; } ulong sp_head::sp_cache_version() const { return m_parent ? m_parent->sp_cache_version() : m_sp_cache_version; }