diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-29 04:41:38 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-29 04:41:38 +0000 |
commit | 7b6e527f440cd7e6f8be2b07cee320ee6ca18786 (patch) | |
tree | 4a2738d69fa2814659fdadddf5826282e73d81f4 /mesonbuild/interpreterbase/interpreterbase.py | |
parent | Initial commit. (diff) | |
download | meson-7b6e527f440cd7e6f8be2b07cee320ee6ca18786.tar.xz meson-7b6e527f440cd7e6f8be2b07cee320ee6ca18786.zip |
Adding upstream version 1.0.1.upstream/1.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | mesonbuild/interpreterbase/interpreterbase.py | 604 |
1 files changed, 604 insertions, 0 deletions
diff --git a/mesonbuild/interpreterbase/interpreterbase.py b/mesonbuild/interpreterbase/interpreterbase.py new file mode 100644 index 0000000..f72ddc1 --- /dev/null +++ b/mesonbuild/interpreterbase/interpreterbase.py @@ -0,0 +1,604 @@ +# Copyright 2016-2017 The Meson development team + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This class contains the basic functionality needed to run any interpreter +# or an interpreter-based tool. +from __future__ import annotations + +from .. import mparser, mesonlib +from .. import environment + +from .baseobjects import ( + InterpreterObject, + MesonInterpreterObject, + MutableInterpreterObject, + InterpreterObjectTypeVar, + ObjectHolder, + IterableObject, + + HoldableTypes, +) + +from .exceptions import ( + InterpreterException, + InvalidCode, + InvalidArguments, + SubdirDoneRequest, + ContinueRequest, + BreakRequest +) + +from .decorators import FeatureNew +from .disabler import Disabler, is_disabled +from .helpers import default_resolve_key, flatten, resolve_second_level_holders +from .operator import MesonOperator +from ._unholder import _unholder + +import os, copy, re, pathlib +import typing as T +import textwrap + +if T.TYPE_CHECKING: + from .baseobjects import SubProject, TYPE_kwargs, TYPE_var + from ..interpreter import Interpreter + + HolderMapType = T.Dict[ + T.Union[ + T.Type[mesonlib.HoldableObject], + T.Type[int], + T.Type[bool], + T.Type[str], + T.Type[list], + T.Type[dict], + ], + # For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar] + T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]] + ] + + FunctionType = T.Dict[ + str, + T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var] + ] + +class InterpreterBase: + def __init__(self, source_root: str, subdir: str, subproject: 'SubProject'): + self.source_root = source_root + self.funcs: FunctionType = {} + self.builtin: T.Dict[str, InterpreterObject] = {} + # Holder maps store a mapping from an HoldableObject to a class ObjectHolder + self.holder_map: HolderMapType = {} + self.bound_holder_map: HolderMapType = {} + self.subdir = subdir + self.root_subdir = subdir + self.subproject = subproject + self.variables: T.Dict[str, InterpreterObject] = {} + self.argument_depth = 0 + self.current_lineno = -1 + # Current node set during a function call. This can be used as location + # when printing a warning message during a method call. + self.current_node = None # type: mparser.BaseNode + # This is set to `version_string` when this statement is evaluated: + # meson.version().compare_version(version_string) + # If it was part of a if-clause, it is used to temporally override the + # current meson version target within that if-block. + self.tmp_meson_version = None # type: T.Optional[str] + + def load_root_meson_file(self) -> None: + mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename) + if not os.path.isfile(mesonfile): + raise InvalidArguments(f'Missing Meson file in {mesonfile}') + with open(mesonfile, encoding='utf-8') as mf: + code = mf.read() + if code.isspace(): + raise InvalidCode('Builder file is empty.') + assert isinstance(code, str) + try: + self.ast = mparser.Parser(code, mesonfile).parse() + except mesonlib.MesonException as me: + me.file = mesonfile + raise me + + def parse_project(self) -> None: + """ + Parses project() and initializes languages, compilers etc. Do this + early because we need this before we parse the rest of the AST. + """ + self.evaluate_codeblock(self.ast, end=1) + + def sanity_check_ast(self) -> None: + if not isinstance(self.ast, mparser.CodeBlockNode): + raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.') + if not self.ast.lines: + raise InvalidCode('No statements in code.') + first = self.ast.lines[0] + if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project': + p = pathlib.Path(self.source_root).resolve() + found = p + for parent in p.parents: + if (parent / 'meson.build').is_file(): + with open(parent / 'meson.build', encoding='utf-8') as f: + if f.readline().startswith('project('): + found = parent + break + else: + break + + error = 'first statement must be a call to project()' + if found != p: + raise InvalidCode(f'Not the project root: {error}\n\nDid you mean to run meson from the directory: "{found}"?') + else: + raise InvalidCode(f'Invalid source tree: {error}') + + def run(self) -> None: + # Evaluate everything after the first line, which is project() because + # we already parsed that in self.parse_project() + try: + self.evaluate_codeblock(self.ast, start=1) + except SubdirDoneRequest: + pass + + def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None: + if node is None: + return + if not isinstance(node, mparser.CodeBlockNode): + e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.') + e.lineno = node.lineno + e.colno = node.colno + raise e + statements = node.lines[start:end] + i = 0 + while i < len(statements): + cur = statements[i] + try: + self.current_lineno = cur.lineno + self.evaluate_statement(cur) + except Exception as e: + if getattr(e, 'lineno', None) is None: + # We are doing the equivalent to setattr here and mypy does not like it + e.lineno = cur.lineno # type: ignore + e.colno = cur.colno # type: ignore + e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore + raise e + i += 1 # In THE FUTURE jump over blocks and stuff. + + def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]: + self.current_node = cur + if isinstance(cur, mparser.FunctionNode): + return self.function_call(cur) + elif isinstance(cur, mparser.AssignmentNode): + self.assignment(cur) + elif isinstance(cur, mparser.MethodNode): + return self.method_call(cur) + elif isinstance(cur, mparser.StringNode): + return self._holderify(cur.value) + elif isinstance(cur, mparser.BooleanNode): + return self._holderify(cur.value) + elif isinstance(cur, mparser.IfClauseNode): + return self.evaluate_if(cur) + elif isinstance(cur, mparser.IdNode): + return self.get_variable(cur.value) + elif isinstance(cur, mparser.ComparisonNode): + return self.evaluate_comparison(cur) + elif isinstance(cur, mparser.ArrayNode): + return self.evaluate_arraystatement(cur) + elif isinstance(cur, mparser.DictNode): + return self.evaluate_dictstatement(cur) + elif isinstance(cur, mparser.NumberNode): + return self._holderify(cur.value) + elif isinstance(cur, mparser.AndNode): + return self.evaluate_andstatement(cur) + elif isinstance(cur, mparser.OrNode): + return self.evaluate_orstatement(cur) + elif isinstance(cur, mparser.NotNode): + return self.evaluate_notstatement(cur) + elif isinstance(cur, mparser.UMinusNode): + return self.evaluate_uminusstatement(cur) + elif isinstance(cur, mparser.ArithmeticNode): + return self.evaluate_arithmeticstatement(cur) + elif isinstance(cur, mparser.ForeachClauseNode): + self.evaluate_foreach(cur) + elif isinstance(cur, mparser.PlusAssignmentNode): + self.evaluate_plusassign(cur) + elif isinstance(cur, mparser.IndexNode): + return self.evaluate_indexing(cur) + elif isinstance(cur, mparser.TernaryNode): + return self.evaluate_ternary(cur) + elif isinstance(cur, mparser.FormatStringNode): + if isinstance(cur, mparser.MultilineFormatStringNode): + return self.evaluate_multiline_fstring(cur) + else: + return self.evaluate_fstring(cur) + elif isinstance(cur, mparser.ContinueNode): + raise ContinueRequest() + elif isinstance(cur, mparser.BreakNode): + raise BreakRequest() + else: + raise InvalidCode("Unknown statement.") + return None + + def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject: + (arguments, kwargs) = self.reduce_arguments(cur.args) + if len(kwargs) > 0: + raise InvalidCode('Keyword arguments are invalid in array construction.') + return self._holderify([_unholder(x) for x in arguments]) + + @FeatureNew('dict', '0.47.0') + def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject: + def resolve_key(key: mparser.BaseNode) -> str: + if not isinstance(key, mparser.StringNode): + FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject) + str_key = _unholder(self.evaluate_statement(key)) + if not isinstance(str_key, str): + raise InvalidArguments('Key must be a string') + return str_key + arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}') + assert not arguments + return self._holderify({k: _unholder(v) for k, v in kwargs.items()}) + + def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject: + v = self.evaluate_statement(cur.value) + if isinstance(v, Disabler): + return v + return self._holderify(v.operator_call(MesonOperator.NOT, None)) + + def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]: + assert isinstance(node, mparser.IfClauseNode) + for i in node.ifs: + # Reset self.tmp_meson_version to know if it gets set during this + # statement evaluation. + self.tmp_meson_version = None + result = self.evaluate_statement(i.condition) + if isinstance(result, Disabler): + return result + if not isinstance(result, InterpreterObject): + raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.') + res = result.operator_call(MesonOperator.BOOL, None) + if not isinstance(res, bool): + raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.') + if res: + prev_meson_version = mesonlib.project_meson_versions[self.subproject] + if self.tmp_meson_version: + mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version + try: + self.evaluate_codeblock(i.block) + finally: + mesonlib.project_meson_versions[self.subproject] = prev_meson_version + return None + if not isinstance(node.elseblock, mparser.EmptyNode): + self.evaluate_codeblock(node.elseblock) + return None + + def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject: + val1 = self.evaluate_statement(node.left) + if isinstance(val1, Disabler): + return val1 + val2 = self.evaluate_statement(node.right) + if isinstance(val2, Disabler): + return val2 + + # New code based on InterpreterObjects + operator = { + 'in': MesonOperator.IN, + 'notin': MesonOperator.NOT_IN, + '==': MesonOperator.EQUALS, + '!=': MesonOperator.NOT_EQUALS, + '>': MesonOperator.GREATER, + '<': MesonOperator.LESS, + '>=': MesonOperator.GREATER_EQUALS, + '<=': MesonOperator.LESS_EQUALS, + }[node.ctype] + + # Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`) + if operator in (MesonOperator.IN, MesonOperator.NOT_IN): + val1, val2 = val2, val1 + + val1.current_node = node + return self._holderify(val1.operator_call(operator, _unholder(val2))) + + def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + l_bool = l.operator_call(MesonOperator.BOOL, None) + if not l_bool: + return self._holderify(l_bool) + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + return self._holderify(r.operator_call(MesonOperator.BOOL, None)) + + def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + l_bool = l.operator_call(MesonOperator.BOOL, None) + if l_bool: + return self._holderify(l_bool) + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + return self._holderify(r.operator_call(MesonOperator.BOOL, None)) + + def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject: + v = self.evaluate_statement(cur.value) + if isinstance(v, Disabler): + return v + v.current_node = cur + return self._holderify(v.operator_call(MesonOperator.UMINUS, None)) + + def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + + mapping: T.Dict[str, MesonOperator] = { + 'add': MesonOperator.PLUS, + 'sub': MesonOperator.MINUS, + 'mul': MesonOperator.TIMES, + 'div': MesonOperator.DIV, + 'mod': MesonOperator.MOD, + } + l.current_node = cur + res = l.operator_call(mapping[cur.operation], _unholder(r)) + return self._holderify(res) + + def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]: + assert isinstance(node, mparser.TernaryNode) + result = self.evaluate_statement(node.condition) + if isinstance(result, Disabler): + return result + result.current_node = node + result_bool = result.operator_call(MesonOperator.BOOL, None) + if result_bool: + return self.evaluate_statement(node.trueblock) + else: + return self.evaluate_statement(node.falseblock) + + @FeatureNew('multiline format strings', '0.63.0') + def evaluate_multiline_fstring(self, node: mparser.MultilineFormatStringNode) -> InterpreterObject: + return self.evaluate_fstring(node) + + @FeatureNew('format strings', '0.58.0') + def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject: + assert isinstance(node, mparser.FormatStringNode) + + def replace(match: T.Match[str]) -> str: + var = str(match.group(1)) + try: + val = _unholder(self.variables[var]) + if not isinstance(val, (str, int, float, bool)): + raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' + + '(has to be an integer, a string, a floating point number or a boolean).') + + return str(val) + except KeyError: + raise InvalidCode(f'Identifier "{var}" does not name a variable.') + + res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value) + return self._holderify(res) + + def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None: + assert isinstance(node, mparser.ForeachClauseNode) + items = self.evaluate_statement(node.items) + if not isinstance(items, IterableObject): + raise InvalidArguments('Items of foreach loop do not support iterating') + + tsize = items.iter_tuple_size() + if len(node.varnames) != (tsize or 1): + raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}') + + for i in items.iter_self(): + if tsize is None: + if isinstance(i, tuple): + raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None') + self.set_variable(node.varnames[0], self._holderify(i)) + else: + if not isinstance(i, tuple): + raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}') + if len(i) != tsize: + raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}') + for j in range(tsize): + self.set_variable(node.varnames[j], self._holderify(i[j])) + try: + self.evaluate_codeblock(node.block) + except ContinueRequest: + continue + except BreakRequest: + break + + def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None: + assert isinstance(node, mparser.PlusAssignmentNode) + varname = node.var_name + addition = self.evaluate_statement(node.value) + + # Remember that all variables are immutable. We must always create a + # full new variable and then assign it. + old_variable = self.get_variable(varname) + old_variable.current_node = node + new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition))) + self.set_variable(varname, new_value) + + def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject: + assert isinstance(node, mparser.IndexNode) + iobject = self.evaluate_statement(node.iobject) + if isinstance(iobject, Disabler): + return iobject + index = _unholder(self.evaluate_statement(node.index)) + + if iobject is None: + raise InterpreterException('Tried to evaluate indexing on None') + iobject.current_node = node + return self._holderify(iobject.operator_call(MesonOperator.INDEX, index)) + + def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]: + func_name = node.func_name + (h_posargs, h_kwargs) = self.reduce_arguments(node.args) + (posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs) + if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'unset_variable', 'is_disabler'}: + return Disabler() + if func_name in self.funcs: + func = self.funcs[func_name] + func_args = posargs + if not getattr(func, 'no-args-flattening', False): + func_args = flatten(posargs) + if not getattr(func, 'no-second-level-holder-flattening', False): + func_args, kwargs = resolve_second_level_holders(func_args, kwargs) + res = func(node, func_args, kwargs) + return self._holderify(res) if res is not None else None + else: + self.unknown_function_called(func_name) + return None + + def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]: + invokable = node.source_object + obj: T.Optional[InterpreterObject] + if isinstance(invokable, mparser.IdNode): + object_display_name = f'variable "{invokable.value}"' + obj = self.get_variable(invokable.value) + else: + object_display_name = invokable.__class__.__name__ + obj = self.evaluate_statement(invokable) + method_name = node.name + (h_args, h_kwargs) = self.reduce_arguments(node.args) + (args, kwargs) = self._unholder_args(h_args, h_kwargs) + if is_disabled(args, kwargs): + return Disabler() + if not isinstance(obj, InterpreterObject): + raise InvalidArguments(f'{object_display_name} is not callable.') + # TODO: InterpreterBase **really** shouldn't be in charge of checking this + if method_name == 'extract_objects': + if isinstance(obj, ObjectHolder): + self.validate_extraction(obj.held_object) + elif not isinstance(obj, Disabler): + raise InvalidArguments(f'Invalid operation "extract_objects" on {object_display_name} of type {type(obj).__name__}') + obj.current_node = node + res = obj.method_call(method_name, args, kwargs) + return self._holderify(res) if res is not None else None + + def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject: + if isinstance(res, HoldableTypes): + # Always check for an exact match first. + cls = self.holder_map.get(type(res), None) + if cls is not None: + # Casts to Interpreter are required here since an assertion would + # not work for the `ast` module. + return cls(res, T.cast('Interpreter', self)) + # Try the boundary types next. + for typ, cls in self.bound_holder_map.items(): + if isinstance(res, typ): + return cls(res, T.cast('Interpreter', self)) + raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.') + elif isinstance(res, ObjectHolder): + raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.') + elif isinstance(res, MesonInterpreterObject): + return res + raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.') + + def _unholder_args(self, + args: T.List[InterpreterObject], + kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]: + return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()} + + def unknown_function_called(self, func_name: str) -> None: + raise InvalidCode(f'Unknown function "{func_name}".') + + def reduce_arguments( + self, + args: mparser.ArgumentNode, + key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key, + duplicate_key_error: T.Optional[str] = None, + ) -> T.Tuple[ + T.List[InterpreterObject], + T.Dict[str, InterpreterObject] + ]: + assert isinstance(args, mparser.ArgumentNode) + if args.incorrect_order(): + raise InvalidArguments('All keyword arguments must be after positional arguments.') + self.argument_depth += 1 + reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] + if any(x is None for x in reduced_pos): + raise InvalidArguments('At least one value in the arguments is void.') + reduced_kw: T.Dict[str, InterpreterObject] = {} + for key, val in args.kwargs.items(): + reduced_key = key_resolver(key) + assert isinstance(val, mparser.BaseNode) + reduced_val = self.evaluate_statement(val) + if reduced_val is None: + raise InvalidArguments(f'Value of key {reduced_key} is void.') + if duplicate_key_error and reduced_key in reduced_kw: + raise InvalidArguments(duplicate_key_error.format(reduced_key)) + reduced_kw[reduced_key] = reduced_val + self.argument_depth -= 1 + final_kw = self.expand_default_kwargs(reduced_kw) + return reduced_pos, final_kw + + def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]: + if 'kwargs' not in kwargs: + return kwargs + to_expand = _unholder(kwargs.pop('kwargs')) + if not isinstance(to_expand, dict): + raise InterpreterException('Value of "kwargs" must be dictionary.') + if 'kwargs' in to_expand: + raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P') + for k, v in to_expand.items(): + if k in kwargs: + raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.') + kwargs[k] = self._holderify(v) + return kwargs + + def assignment(self, node: mparser.AssignmentNode) -> None: + assert isinstance(node, mparser.AssignmentNode) + if self.argument_depth != 0: + raise InvalidArguments(textwrap.dedent('''\ + Tried to assign values inside an argument list. + To specify a keyword argument, use : instead of =. + ''')) + var_name = node.var_name + if not isinstance(var_name, str): + raise InvalidArguments('Tried to assign value to a non-variable.') + value = self.evaluate_statement(node.value) + # For mutable objects we need to make a copy on assignment + if isinstance(value, MutableInterpreterObject): + value = copy.deepcopy(value) + self.set_variable(var_name, value) + + def set_variable(self, varname: str, variable: T.Union[TYPE_var, InterpreterObject], *, holderify: bool = False) -> None: + if variable is None: + raise InvalidCode('Can not assign None to variable.') + if holderify: + variable = self._holderify(variable) + else: + # Ensure that we are always storing ObjectHolders + if not isinstance(variable, InterpreterObject): + raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}') + if not isinstance(varname, str): + raise InvalidCode('First argument to set_variable must be a string.') + if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None: + raise InvalidCode('Invalid variable name: ' + varname) + if varname in self.builtin: + raise InvalidCode(f'Tried to overwrite internal variable "{varname}"') + self.variables[varname] = variable + + def get_variable(self, varname: str) -> InterpreterObject: + if varname in self.builtin: + return self.builtin[varname] + if varname in self.variables: + return self.variables[varname] + raise InvalidCode(f'Unknown variable "{varname}".') + + def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None: + raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)') |